
64 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

IN RECENT YEARS, the software en-
gineering (SE) and human-computer in-
teraction (HCI) communities have tried
to combine their methods and tech-
niques. Such cross-fertilization is dif-
fi cult because each community works
independently. Although practitioners
often participate in multidisciplinary
teams, a lack of communication still
exists. Software developers often fail to
recognize mature, successful user-cen-
tered design techniques from the HCI
community—for instance, user roles
and personas, human-activity model-
ing, and contextual inquiry and de-
sign.1 Although these techniques tackle

major SE issues (requirements and user
involvement), too few practitioners
understand them, and they’re still far
from experiencing large-scale adoption.

We’ve been exploring one area of
cross-fertilization for both disciplines:
how to produce more consistent soft-
ware project size estimations based
on use-case points (UCPs) by exploit-
ing usage-centered design (usageCD).
Usage-centered design differs from
user-centered design in that it puts uses
rather than users at the center of de-
sign and changes the prime objective
from enhancing user experience to en-
hancing user performance.2 In particu-

lar, we’ve modifi ed the UCP method to
make it appropriate for agile develop-
ment of interactive software; we call
our version Interactive UCP (iUCP).

UCPs
Researchers have proposed several
functional size measurement methods
and cost estimation models, notably
function point analysis (FPA)3 and CO-
COMO.4 Both assume that developers
can derive size measurements and esti-
mates from historical project data and
current project characteristics.

With object orientation, use cases
emerged as a dominant technique for
structuring requirements. This tech-
nique was integrated into the Unifi ed
Modeling Language (UML) and Uni-
fi ed Process and became the de facto
standard for SE requirements model-
ing. Consequently, Gustav Karner cre-
ated the UCP method, which estimates
project size by assigning points to use
cases in much the same way that FPA
assigns points to functions.5 The UCP
model gained popularity because of its
simplicity and abstraction, which make
it good for early estimations. Sergey
Diev6 and Edward Carroll7 comprehen-
sively discuss UCPs.

Defi ning Actors and Use Cases
The UCP model’s starting point is the
standard UML defi nitions of actor and
use case (www.omg.org/gettingstarted/
what_is_uml.htm) because the UCP
method focuses mainly on estimating
actor and use case complexity. Fur-
thermore, the model takes into account
technical, environmental, and produc-
tivity factors.

We seek to create more consistent
size estimations based on revised ac-
tor and use-case concepts. Our modi-
fi cations to the UCP method result in
more convergent estimates of unad-
justed complexity because they rely on

i UCP:
Estimating Interactive-
Software Project Size with
Enhanced Use-Case Points

Nuno Jardim Nunes and Larry Constantine, University of Madeira

Rick Kazman, University of Hawaii

// An empirical study shows that estimations based on a

modi� ed use-case-point method exhibit less interestimator

variance than those based on the original method. //

FEATURE: PROJECT ESTIMATION

	 JULY/AUGUST 2011 | IEEE SOFTWARE � 65

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

well-defined, less ambiguous defini-
tions of actors and use cases that we
obtain through the usageCD method.
The technical, environmental, and—
particularly—productivity factors that
adjust the complexity still depend on
historical data from past projects but
don’t depend on the actor and use case
models.

Estimating UCPs
The UCP method first determines the
unadjusted actor weight (UAW). For
each actor in the use-case model, the
method attributes a weight factor:

•	 Simple actors (a weight factor of 1)
are system actors that communicate
through an API.

•	 Average actors (a factor of 2) are
system actors that communicate
through a protocol or data store.

•	 Complex actors (a factor of 3) are
human actors that interact nor-
mally through a GUI or other hu-
man interface.

The total UAW is the weighted sum of
all the actors.

The UCP method also attributes a

weight factor for each use case with ref-
erence to the scenario that leads to the
state originally anticipated by the user
(success scenario):

•	 Simple use cases (a factor of 5) in-
volve a simple UI or simple process-
ing and only one database entity.
The success scenario involves three
or fewer transactions and five or
fewer class implementations.

•	 Average use cases (a factor of 10)
involve moderately complex UIs
and two or three database entities.
The success scenario involves four
to seven transactions and five to 10
classes.

•	 Complex use cases (a factor of 15)
involve complex UIs or processing
and three or more database enti-
ties. The success scenario involves
eight or more transactions and 11
or more classes.

The total unadjusted use-case weight
(UUCW) is the weighted sum of all the
use cases.

We further modify unadjusted UCPs
(UUCPs) to reflect a project’s complex-
ity and its developers’ experience. To

do this, we weight technical-complex-
ity factors (TCFs) and environment-
complexity factors (ECFs) on the basis
of the team’s experience, the develop-
ment platform, and other criteria de-
pending on the context.

After estimating the UCPs, we es-
timate the number of project hours by
multiplying the UCPs by a productivity
factor (PF) defining the ratio of devel-
opment person-hours per UCP. We base
PF on past project statistics and fine-
tune it through historical data. A value
between 15 and 30 is typical, depend-
ing on the team’s experience. The com-
plete formula is

UCPs = (UUCW + UAW) × TCFs × ECFs.

For example, for a project with a
UUCW of 50, a UAW of 10, 1.02 TCFs,
and 1.04 ECFs,

UCPs = (50 + 10) × 1.02 × 1.04 = 63.648.

So, applying a PF of 20 would yield an
estimate of 1,272.96 person-hours for
the project.

For more on calculating UCPs, see
the related sidebar.

CALCULATING USE-CASE POINTS
Use-case point (UCP) calculations aren’t complicated; the central
problem is defining the UCP model’s elements (actors and use
cases) and assigning weights to them. Sergey Diev discussed is-
sues related to weighting actors and use cases; he argued that to
obtain reasonably accurate estimates, we must clarify these con-
cepts across and within projects.1

Estimation relies on the quality of the underlying use-case
model.2 The estimates’ quality depends on consistent applica-
tion of the heuristics across and within projects. Edward Carroll
described how a multiteam organization used UCP to accurately
estimate project cost early during software development.3 He also
explained how the organization evaluated metrics to ensure the
UCP model’s accuracy. Ayman Issa and his colleagues discussed
how use-case representations of requirements don’t directly map

to the structures that project managers use.4 This failure leads to
ongoing comparisons of individual costs that are subjective and
often don’t represent final project expenditures.

References
	 1.	 S. Diev, “Use Cases Modeling and Software Estimation: Applying Use

Case Points,” ACM Software Eng. Notes, vol. 31, no. 6, 2006, pp. 1–4.
	 2.	 K. Vinsen, D. Jamieson, and G. Callender, “Use Case Estimation: The

Devil Is in the Detail,” Proc. 12th IEEE Int’l Requirements Eng. Conf., IEEE
CS Press, 2004, pp. 10–15.

	 3.	 E.R. Carroll, “Estimating Software Based on Use Case Points,” Proc.
2005 Conf. Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 05), ACM Press, 2005, pp. 257–265.

	 4.	 A. Issa, M. Odeh, and D. Coward, “Software Cost Estimation Using Use-
Case Models: A Critical Evaluation,” Proc. 3rd Int’l Conf. Information and
Comm. Technologies: From Theory to Applications (ICTTA 06), vol. 2, IEEE
Press, 2006, pp. 2766–2771.

66 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: PROJECT ESTIMATION

iUCP : Estimation in
Interaction Design Projects
To explain how interaction design can
infl uence UCP estimation,5 we consider
the model-based techniques that Larry
Constantine and Lucy Lockwood pio-
neered8 and others further expanded.7,8
UsageCD provides the methodological
scaffolding for applying activity theory,
particularly for interactive software de-
velopment. In the broader context of
human-activity modeling, it provides
a systematic approach to organize and
represent the contextual aspects of hu-
man use of tools and artifacts.

Weighting Actors
Effective interaction design involves
understanding users and their needs.
As with UML, we call users who inter-
act with a system actors. However, un-
like UML, we expand the actor concept
through user roles, representing rela-
tionships between users and a system.
We can describe a role by the context in
which it’s performed, the characteristic
manner in which it’s performed, and
the design criteria for the role’s sup-
porting performance.

The difference between a usageCD
context map and a conventional use-

case model is the richness of the infor-
mation conveyed about each actor. For
example, a conventional UML model
would represent the ticketing problem
in Figure 1 with 12 actors: six human
actors (A1–6 in Figure 1) and six sys-
tem actors). With the UCP method, the
estimation would be four simple actors
(the credit card reader, envelope printer,
ticket printer, and venue or event man-
ager), two average actors (the credit
card network and accounting system),
and six complex actors (A1–6).

Table 1 illustrates the weighting of
the 12 ticketing application use cases

A5: Sales
supervisor

R05: Supervising-ticket-sales role

Credit-card
network

Accounting
system

Venue/event
management

Sales
support

R01: Telephone-selling role

R02: Telephone-query-handling role

R03: Advance-window-selling role

R04: Current-window-selling role

R06: Ticket-mailing role

R07: Pickup-window-ticket-issuing role

A3: Telephone
ticket agent

A4: Ticket-window
agent

A6: Ticket
mailer

A1: Telephone
customer

A2: In-person
customer

Ticket printer

Envelope
printer

Credit-card
reader

System actor User role

User actor Indirect user

FIGURE 1. A context map for a ticketing application. From left to right, indirect and direct human actors interact through roles with the

reference system (sales support). On the right, several system actors also interface with the reference system.

	 JULY/AUGUST 2011 | IEEE SOFTWARE � 67

for the model in Figure 1. Analyzing
the model, we can verify that the com-
plexity weighting of actors discards all
the role information provided by the
usageCD method. Conventional UML
assumptions probably wouldn’t con-
sider A1 and A2 as actors, and they
would have zero weighting under the
assumptions discussed previously. So in
either case, only four complex actors ex-
ist, and the total estimated weight is 20.

iUCP considers the user roles and
additional information that usageCD
provides to inform early estimation by
weighting the actors. The number of
roles each actor supports provides an
important way to infer the use case’s
complexity. Additionally, usageCD sug-
gests the concept of focal role together
with several relationships that consti-
tute a model designated a user-role
map.11 Focal roles are central to the
rest of the design process.

Our experience working and con-
sulting on many projects that have ap-
plied usageCD suggests revised heuris-
tics for actor weighting:

•	 Simple system actors (a factor of 1)
communicate through an API.

•	 Average system actors (a factor of
2) communicate through a protocol
or data store.

•	 Simple human actors (a factor of 3)
are supported by one user role.

•	 Complex system actors (also a fac-
tor of 3) communicate through a
complex protocol or data store.

•	 Average human actors (a factor of
4) are supported by two or three
user roles or one focal role.

•	 Complex human actors (a factor of
5) are supported by more than three
user roles or more than one focal
role.

We can conclude from Table 1 that
there’s a total difference of four UCPs
(from 20 to 24) on the basis of revised
actor weighting (assuming both ap-
proaches zero-weight the indirect ac-
tors). Although this difference might
look minor, in a real-world project with
three times as many actors and roles,
the impact is substantial.

Weighting Use Cases
Use cases have become ubiquitous in
software development.11 We can at-
tribute part of their success to the
concept’s simplicity, but some of that
success is probably also due to their
imprecise definition. Entire books
have discussed the definition of a use
case, and we find many instantia-
tions of use cases that vary in scope,
detail, format, and style. Any estima-
tion method relying on weighting use
cases will suffer from the same uncer-
tainty. UsageCD clearly defines use
cases through the concept of essential
use cases.11

Essential use cases are more ab-
stract, generalized, and technology-free
descriptions of the essence of a given
problem. But they’re also described in
a systematic sequence of steps divided
between user intentions and system
responsibilities. These steps provide a
systematic way to identify transactions
(that we can depict using narratives or
sequence or activity diagrams), which
are key to classifying use cases in the

TA
B

L
E

 1 Use-case point (UCP) and interactive UCP (iUCP) estimations.

Method Actor type Description No. of actors Weight factor Weight

UCP Simple Defined API 4 1 4

Average Interactive or protocol-driven 2 2 4

Complex GUI 4 3 12

20 total

iUCP Simple system Defined API 4 1 4

Average system Interactive or protocol-driven 2 2 4

Simple human/complex system Supports one user role 1 3 3

Average human Supports two to three user roles or
one focal role

2 4 8

Complex human Supports more than three user roles
or more than one focal role

1 5 5

24 total

68	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: PROJECT ESTIMATION

UCP method. For example, Table 2
shows a use case for withdrawing cash
from an ATM.

A conventional use-case scenario
for this example (for example, from
the Eclipse Process Framework wiki at
http://epf.eclipse.org) would typically be
classified as complex because it involves
more than seven transactions. However,
the essential use case would count just
two essential steps (system responsibili-
ties), making this a simple use case.

The discrepancy underlies the prob-
lems in applying UCPs across compa-
nies, teams, and projects. Interestingly,
the heuristics for assigning weight fac-
tors to use cases depend on assump-
tions about the UI. In the UCP method,
a simple use case corresponds to a sim-
ple UI, an average use case to a mod-
erate UI, and a complex use case to a
complex UI. However, conventional
use cases don’t reflect the division be-
tween user intentions and system re-
sponsibilities that conveys the notion of
interaction (that is, interaction happens
when a user specifies an intention to the
system).

Essential use cases provide a sys-
tematic way to express transactions as
steps in a dialogue. Originally, this type
of description was intended to get at a
task’s essence from a user’s perspective,
avoiding unintended or premature as-
sumptions about the UI. When applied
to estimating use cases, it becomes an
important way to retain scope and pre-
vent the granularity problems we previ-
ously described.

Estimating transactions isn’t the
only concern when assigning weight
factors. The heuristics specifically men-

tion two additional criteria depending
on the conceptual architecture:

•	 the number of entities manipulated
in the use case’s context and

•	 the number of classes implementing
the use case.

The relationship between use cases
and implementation classes is accom-
plished in UML using the entity/con-
trol/boundary pattern. However, this
pattern doesn’t reflect the separation
of concerns that interactive system de-
velopment requires. Boundary classes
encapsulate interfaces to both human
actors and system actors, so no clear
distinction exists between human and
system interaction. So, the implementa-
tion classes extracted from the use cases
won’t reflect the UI’s complexity, which
is key to assigning weight factors to use
cases.

iUCP extends this original frame-
work to include two concepts reflect-
ing the user intentions that form the
basis of usageCD: tasks and interac-
tion spaces.9 Task classes model the
structure of the dialogue between the
user and the system; they also man-
age task-level sequencing, multiple-in-
teraction-space consistency, and map-
ping between entities and the interface.
Interaction-space classes represent the
space in a system’s UI where the user
interacts with all the functions, con-
tainers, and information needed to
carry out a particular task or set of in-
terrelated tasks. Together, the concepts
of task and interaction-space classes
extend the UML entity/control/bound-
ary pattern, providing enhanced sepa-

ration of concerns and enabling more
consistent estimation of use-case com-
plexity, particularly regarding the un-
derlying human interaction.

Elsewhere, we’ve described how to
extract software architecture from es-
sential use cases.12 Figure 2 highlights
the process, in which task classes origi-
nate from user intentions, control and
entity classes from system responsibili-
ties, and interaction spaces from the
crossing of both. This process increases
traceability and is central in identifying
the entities and classes required to im-
plement a use case.

The ATM example in Figure 2 illus-
trates how we can use usage-centered
architecture to inform the classification
of use cases in iUCP. Transactions are
the number of system responsibilities in
an essential use case. Implementation
classes are the total number of classes
originating from an essential use case,
as shown by the dashed lines connect-
ing use-case descriptions to the concep-
tual architecture.

Table 3 shows how to apply the heu-
ristics to the example in Figure 2. We
count the number of system responsi-
bilities and user intentions per use case
and the number of originating imple-
mentation classes. This contrasts with
the uncertainty surrounding a conven-
tional use case: not only is isolating
transactions more difficult, but there’s
also little guidance regarding the num-
ber of implementation classes corre-
sponding to each use case.

Empirical Evaluation
To evaluate the impact of using
usageCD for use-case estimation, we
developed an empirical experiment
with master’s students taking the Uni-
versity of Madeira’s human-centered
software engineering course. The
course exposed students to the concepts
of usageCD and had them develop a
group project in teams of four. On av-
erage, approximately 30 students par-
ticipated (20 SE and 10 HCI students).

TA
B

L
E

 2 A use case for withdrawing cash from an ATM.

User intention System responsibility

Identify self Check identity

Specify amount Provide cash

 JULY/AUGUST 2011 | IEEE SOFTWARE 69

Most students had a computer science
background and experience developing
moderate-sized software systems. Some
HCI students had backgrounds in de-
sign or the social sciences but were al-
ways grouped with CS students.

Over two consecutive years, the
students worked on the same project.
They had to model and prototype a
computer-based controller for manag-
ing a videoconferencing facility. Here
are two short excerpts from the proj-
ect brief:

Account

Login

ClientID
handler

Account
handler

Identify self

Account selector Identify Account

Identify self

Specify source
account and amount

Identify destination
account

Get transfer details

Specify transferAccount transfer

Transfer
handler

Identify self

Identify self

Select card

Get card transactions

Card

Select cardCard selector

Card
handler

Bank
customer

Get account balance

Identify account

Check identity

Check account balance

Transfer money

Check identity

Check account balance

Check identity

Check card transactions

Transfer money

Check card
transactions

Check account
balance

User intentions

User intentions

User intentions

System responsibilities

System responsibilities

System responsibilities

FIGURE 2. A conceptual architecture extracted from essential use cases.12 This simple model refers to an ATM system involving one actor

and three use cases. Each use case is detailed with an essential task � ow described in terms of user intentions and system responsibilities. The

right side depicts the architecture extracted from the use cases.

TA
B

L
E

 3 Estimation based on iUCP for the ATM example.

Use-case type Description
No. of use

cases
Weight
factor Weight

Simple Simple UI, 1 entity,
≤3 transactions

0 5 0

Average Average UI, 2-3 entities,
4-7 transactions

1 10 10

Complex Complex UI, >3 entities,
>7 transactions

2 15 30

70	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: PROJECT ESTIMATION

A presentation area at the front of
the room faces several rows of seats
behind desks. For each pair of seats
there is a press-to-talk/press-to-
release microphone with an LED
that indicates when it is active.
Loudspeakers are located at the

front and sides of the room.

There are two video cameras, one at
the front of the room, the A camera,
facing toward the audience, and one
at the back, the B camera, facing front
toward the presentation area. The

cameras are mounted on motorized
gimbals and are equipped with motor-
ized zoom lenses.

The project aimed to provide a
simple, efficient video controller sys-
tem interface. Students had to design

TA
B

L
E

 4 Modeling estimates from each group of students.

Method Group
No. of

activities
No. of
actors

No. of user
roles

No. of
artifacts

No. of
use cases

No. of
interaction

spaces
No. of
tasks

No. of
con-
trols

No. of
entities

UCP 1 8 7 4 4 10 7 11 5 4

2 10 5 5 5 23 17 23 8 8

3 6 2 4 6 14 11 12 9 13

4 14 8 7 4 9 8 9 6 5

5 16 8 7 5 38 16 45 13 5

6 10 7 9 7 19 13 13 8 8

7 6 3 7 5 7 10 11 6 5

Average 10.0 5.7 6.1 5.1 17.1 11.7 17.7 7.9 6.9

Standard
deviation

3.8 2.4 1.9 1.1 10.8 3.8 12.9 2.7 3.1

Variance 14.7 5.9 3.5 1.1 117.1 14.6 165.6 7.1 9.8

iUCP 1 7 12 4 3 14 11 13 5 3

2 9 8 2 2 13 7 16 6 6

3 8 6 7 7 6 8 8 8 6

4 9 6 3 6 17 6 27 17 10

5 8 5 4 3 18 10 11 8 8

6 5 4 2 7 8 8 18 7 7

7 3 7 3 4 16 6 6 6 4

Average 7.0 6.9 3.6 4.6 13.1 8.0 14.1 8.1 6.3

Standard
deviation

2.2 2.6 1.7 2.1 4.6 1.9 7.1 4.1 2.4

Variance 5.0 6.8 3.0 4.3 20.8 3.7 49.8 16.5 5.6

F-test 0.867 0.848 0.054 0.169

	 JULY/AUGUST 2011 | IEEE SOFTWARE � 71

something practical using existing
technology and the available program-
ming resources. The students had two
months to complete the project and had
to present all the models prescribed in
usageCD and estimate their project us-
ing the UCP method or iUCP.

For empirical evaluation, we gave
14 distinct groups of five students the
same project (seven groups in one aca-
demic year and an additional, distinct,

seven groups in the following academic
year). The first seven groups modeled
the system using usageCD and pro-
duced a UUCP estimation on the basis
of the UCP method. The second seven
groups modeled the same system us-
ing the same models but generated an
iUCP estimation. We hypothesized
that the students’ unadjusted complex-
ity estimates of actors and use cases
would have less variance using iUCP

than using the UCP method.
During the project, the students de-

veloped several models independently.
At the end, we inspected all their mod-
els. Table 4 summarizes the information
we collected from the models (that is,
the table lists the factors that students
used to generate their estimations).

To verify whether the data from
both groups followed a normal dis-
tribution, we performed the Shapiro-

TA
B

L
E

 5 Calculated actor and use-case weights for the UCP method and iUCP.

Method Group Unadjusted actor weight Unadjusted use-case weight Unadjusted UCPs

UCP 1 6 60 66

2 12 195 207

3 34 125 159

4 14 110 124

5 8 235 243

6 15 140 155

7 13 55 68

Average 14.6 131.4 146.0

Standard deviation 9.2 66.2 66.3

Variance 84.0 4,381.0 4,391.3

iUCP 1 20 75 95

2 10 130 140

3 28 55 83

4 15 110 125

5 12 118 130

6 11 75 86

7 14 85 99

Average 15.7 92.6 108.3

Standard deviation 6.3 27.2 22.9

Variance 40.2 739.6 525.9

F-test 0.393 0.048 0.021

72 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: PROJECT ESTIMATION

Wilk test. For group 1, p = 0.636; for
group 2, p = 0.291. In addition, both
groups’ box plots showed no outliers.
To determine the quality of the vari-
ances between the two samples, we ap-
plied the F-test. Because both the UCP
method and iUCP depend primarily on
the number of actors and use cases, we
compared the numbers in both groups.
Apart from actors and roles, the vari-
ance in use cases differed signifi cantly
(p = 0.054).

Table 5 summarizes the calculated
UAW and UUCW for the UCP method
and iUCP. Comparing the variances of
the calculated UAW and UUCW shows
improved results. As we expected, the
F-test for the UAW isn’t statistically sig-
nifi cant (p = 0.40) but the differences
for UUCW (p = 0.048) and UUCP (p =
0.021) are statistically signifi cant.

Our results show that using iUCP
produces size estimations more con-
sistent in their estimation of use-case

complexity and overall UCP unadjusted
complexity. This supports our hypothe-
sis that by using iUCP, the students’ un-
adjusted complexity estimates of actors
and use cases would have less variance.

E arly estimation of software size
is critical. Our approach not
only helps bridge the gap be-

tween SE and HCI but also provides
software developers with systematic
guidance to produce quality early es-
timates for software. It’s increasingly
important to fi nd ways to enable both
HCI and SE experts to collaborate
early in the life cycle. By employing us-
ageCD techniques such as user roles,
essential use cases, and interactive con-
ceptual architectural models, we not
only bridge the gap but—what’s more
important—also illustrate how HCI
techniques can improve software esti-
mates and models.

Combining SE and HCI provides
new opportunities for collaboration
between interaction designers and soft-
ware developers. This helps developers
see the advantage of using HCI tech-
niques early on. Conversely, interaction
designers can better understand their
models’ impact and recognize UI ele-
ments’ impact at the architecture level,
building common ground for other ac-
tivities such as prioritizing development
and planning releases.

We built the iUCP on statistical
data from usageCD projects collected
over several years. However, a system-
atic evaluation would require more
extensive data collection and analysis
over a longer period of time. But our
purpose here isn’t to prove the estima-
tion method’s validity; other research-
ers (for example, Edward Carroll7)
have covered this topic. Our modifi ca-
tions of the UCP method are minimal,
letting us preserve the original model’s
integrity. Our goal with iUCP is to
help software developers and interac-
tion designers apply heuristics that are
suitable for interactive applications
and that work consistently across and
within projects.

References
 1. A. Seffah and E. Metzker, “The Obstacles and

Myths of Usability and Software Engineer-
ing,” Comm. ACM, vol. 47, no. 12, 2004, pp.
71–76.

 2. L. Constantine, “Beyond User-Centered De-
sign and User Experience,” Cutter IT J., vol.
17, no. 2, 2004.

 3. A.J. Albrecht, “Measuring Application
Development Productivity,” Proc. Joint Share,
Guide, and IBM Application Development
Symp., IBM, 1979, pp. 83–92.

 4. B.W. Boehm et al., Software Cost Estimation
with COCOMO II, Prentice-Hall, 2000.

 5. G. Karner, “Resource Estimation for Objec-
tory Projects,” Rational Software, 1993.

 6. S. Diev, “Use Cases Modeling and Software
Estimation: Applying Use Case Points,” ACM
Software Eng. Notes, vol. 31, no. 6, 2006, pp.
1–4.

 7. E.R. Carroll, “Estimating Software Based on
Use Case Points,” Proc. 2005 Conf. Object-
Oriented Programming, Systems, Languages,
and Applications (OOPSLA 05), ACM Press,
2005, pp. 257–265.

NUNO JARDIM NUNES is an associate professor of computer sci-
ence and the president of the Madeira Interactive Technologies Institute
(Madeira-ITI) at the University of Madeira. His research interests
include service design, bridging software engineering (SE) and human-
computer interaction (HCI), and methods and tools for agile software
development. Nunes has a PhD in HCI and SE. He’s a member of the
ACM and SIGCHI. Contact him at njn@uma.pt.

LARRY CONSTANTINE is a professor at the University of Madeira’s
Department of Mathematics and Engineering and an Institute Fellow
with Madeira-ITI. His research interests include safety-critical interac-
tion and model-driven design. Constantine has an SB in management
from MIT. He’s an ACM Fellow, a member of the Usability Professionals’
Association and the IEEE Computer Society, and 2009 winner of the
Stevens Award. Contact him at lconstantine@uma.pt.

RICK KAZMAN is a professor at the University of Hawaii’s Department
of Information Technology Management and a visiting scientist at the
Software Engineering Institute. His research interests include software
architecture, design and analysis tools, software visualization, software
engineering economics, and human-computer interaction. Kazman has
a PhD in computational linguistics from Carnegie Mellon University.
Contact him at kazman@sei.cmu.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 JULY/AUGUST 2011 | IEEE SOFTWARE 73

 8. LL. Constantine and L.A.D. Lockwood, Soft-
ware for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,
Addison-Wesley Longman, 1999.

 9. N.J. Nunes and J.F. Cunha, “A Software En-
gineering Method for Small Software Develop-
ment Companies,” IEEE Software, vol. 17, no.
5, 2000, pp. 113–119.

 10. N.J. Nunes and J.F. Cunha, “Wisdom—
Whitewater Interactive System Development

with Object Models,” Object-Oriented User
Interface Design, M. van Harmelen, ed.,
Addison-Wesley, 2001, pp. 197–243.

 11. L. Constantine and L. Lockwood, “Structure
and Style in Use Cases for User Interface De-
sign,” Object-Oriented User Interface Design,
M. van Harmelen, ed., Addison-Wesley, 2001,
pp. 245–279.

 12. N. Nunes, “What Drives Software Develop-
ment: Bridging the Gap between Software

and Usability Engineering,” Human-Centered
Software Engineering, Springer, 2009, pp.
9–25.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

A new publication model that will
provide subscribers with features
and benefits that cannot be found in
traditional print such as:

•	 More	Rapid	Publication	of	Research
•	 Online	Access	to	the	CSDL
•	 Interactive	 Disk	 and	 a	 Book	 of	

Abstracts
•	 Lower	Price

Available Transactions Titles by 2012:

•	 TDSC
•	 TMC
•	 TPAMI
•	 TPDS
•	 TVCG

For more information about OnlinePlus™,
please visit http://www.computer.org/onlineplus.

Silver Bullet
Security Podcast

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews with security gurus Hosted by Gary McGraw.

