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Abstract

Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in
the SVM training procedure, along with the feature selection, significantly influences the classification accuracy. This study simulta-
neously determines the parameter values while discovering a subset of features, without reducing SVM classification accuracy. A particle
swarm optimization (PSO) based approach for parameter determination and feature selection of the SVM, termed PSO + SVM, is
developed.

Several public datasets are employed to calculate the classification accuracy rate in order to evaluate the developed PSO + SVM
approach. The developed approach was compared with grid search, which is a conventional method of searching parameter values,
and other approaches. Experimental results demonstrate that the classification accuracy rates of the developed approach surpass those
of grid search and many other approaches, and that the developed PSO + SVM approach has a similar result to GA + SVM. Therefore,
the PSO + SVM approach is valuable for parameter determination and feature selection in an SVM.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Classification problems have been extensively studied.
Numerous factors, such as incomplete data, and the choice
of values for the parameters of a given model, may affect
classification results. Classification problems have previ-
ously been solved with statistical methods such as logistic
regression or discriminate analysis. Technological advances
have led to the development of methods for solving classi-
fication problems, including decision trees, back-propaga-
tion neural networks, rough set theory and support
vector machines (SVM). SVM which is an emerging data
classification technique proposed by Vapnik (1995), and
has been widely adopted in various fields of classification
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problems in recent years (Cao & Tay, 2003; Huang, Lai,
Luo, & Yan, 2005; Liang, 2004; Ng & Gong, 2002; Shin,
Lee, & Kim, 2005; Valentini, 2002).

In the SVM, the model for classification is generated
from the training process with the training data. Later
on, classification is executed based on the trained model.
The largest problems encountered in setting up the SVM
model are how to select the kernel function and its param-
eter values. Inappropriate parameter settings lead to poor
classification results (Keerthi & Lin, 2003).

Classification problems generally involve a number of
features. However, not all of these features are equally
important for a specific task. Some of them may be redun-
dant or even irrelevant. Better performance may be
achieved by discarding some features. In other circum-
stances, the dimensionality of input space may be
decreased to save some computation effort, although this
may slightly lower classification accuracy. Therefore, the
classification process must be fast and accurate, using the
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smallest number of features. This objective can be achieved
using feature selection. Feature selection strategies are
often implied to explore the effect of irrelevant attributes
on the performance of classifier systems (Acir, Özdamar,
& Guzelis, 2006; Valentini, Muselli, & Ruffino, 2004;
Zhang, Guo, Du, & Li, 2005).

If the SVM is adopted without considering feature selec-
tion, then the dimension of the input space is large and
non-clean, degrading the performance of the SVM. Like-
wise an efficient and robust feature selection method that
eliminates noisy, irrelevant and redundant data, while
maintaining the discriminating power of the data, is critical
In such a system, features extracted from the original data
are adopted as inputs to the classifiers in the SVM.

This study attempts to increase the classification
accuracy rate by employing an approach based on
particle swarm optimization (PSO) in SVM. This novel
approach is termed PSO + SVM. The developed PSO +
SVM approach not only tunes the parameter values of
SVM, but also identifies a subset of features for specific
problems, maximizing the classification accuracy rate of
SVM. This makes the optimal separating hyper-plane
obtainable in both linear and non-linear classification
problems.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews pertinent literature on SVM and the feature
selection. Section 3 then describes in detail the developed
PSO + SVM approach for determining the parameter val-
ues for SVM with and without feature selection. Next, Sec-
tion 4 compares the experimental results with those of
existing approaches. Conclusions are finally drawn in Sec-
tion 5, along with recommendations for future research.
2. Literature review

SVM technique is briefly described as follows (Burgers,
1998; Huang, Chen, & Wang, 2006; SchÖlkopf & Smola,
2002). Let (xi, yi), 1 6 i 6 N, denote a set of training data,
where N represents the number of training data. Each
datum must conform to the criteria xi 2 Rd and
yi 2 { � 1,1}, where d denotes the number of dimensions
of input data.

SVM attempts to identify a hyper-plane, which functions
as a separating plane for classification of data, in a multi-
dimensional space. The parameters w and b are given by

ðhw � xii þ bÞ ¼ 0; i ¼ 1; . . . ;N : ð1Þ

If a hyper-plane exists that satisfies Eq. (1), then linear
separation is obtained. In this case, w and b can be rewrit-
ten as follows. Eq. (1) becomes

min
16i6N

yiðhw � xii þ bÞP 1; i ¼ 1; . . . ;N : ð2Þ

Let the distance from the data point to the hyper-plane
be 1/kwk. Among separating hyper-planes, there exists one
optimal separating hyper-plane (OSH), and the distance
between two support vector points on two sides of this
hyper-plane is maximal. Because the distance between
two support vector points is 1/kwk2, the minimal distance
to OSH, kwk2, may be derived from Eq. (2).

The margin of a separating hyper-plane, calculated as
2/kwk, determines the hyper-plane’s generalization
ability. The OSH has the largest margin among separa-
ting hyper-planes. kwk2 is minimized with Eq. (2) and
Lagrange’s polynomial. Let a denote (a1, . . ., aN). Combin-
ing Lagrange’s polynomial (in the order of N) with Eq. (2)
produces the following equations for maximization.

W ðaÞ ¼
XN

i¼1

ai �
1

2

XN

i;j¼1

aiajyiyjxixj ð3Þ

where ai P 0 and under constraint
PN

I¼1yiai ¼ 0.
Quadratic programming method can be adopted to

solve the above maximization problem. If a vector
a0 ¼ ða0

1; . . . ; a0
N Þ satisfies the Eq. (3) in maximization, then

the OSH expressed in terms of (w0,b0) may be expressed as
follows:

w0 ¼
XN

I¼1

a0
i yixi: ð4Þ

where the support vector points must comply with a0
i P 0

and Eq. (2). When considering expansion in constraint Eq.
(4), the determinant function of hyper-plane is expressed as
follows:

f ðxÞ ¼ sign
XN

i¼1

a0
i yixixþ b0

 !
¼ 0: ð5Þ

In most cases, the data are not linearly separable, and
are consequently mapped to a higher-dimensional feature
space. Therefore, if the data cannot be classified clearly
in the current dimensional space, then the SVM will map
them to a higher dimensional space for classification.

Input data are mapped to a higher dimensional feature
space by plotting a nonlinear curve. The OSH is con-
structed in the feature space. By constructing the feature
space, /(x) can be adopted in constrained Eq. (3) as shown
below:

W ðaÞ ¼
XN

i¼1

ai �
1

2

XN

i;j¼1

aiajyiyj/ðxiÞ/ðxjÞ: ð6Þ

Given a symmetric and positive kernel function K(x,y),
the existence of Mercer’s theorem can be deduced. There-
fore, K(x,y) = /(x)/(y). Provided that the kernel function
K satisfies Mercer’s theorem, the derived training algorithm
is guaranteed for minimization

W ðaÞ ¼
XN

i¼1

ai �
1

2

XN

i;j¼1

aiajyiyj/ðxiÞ/ðxjÞ: ð7Þ

The decision function is expressed as follows:

f ðxÞ ¼ sign
XN

i¼1

aiyiKðxi � xjÞ þ b

 !
: ð8Þ
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Several kernel functions help the SVM in obtaining the
optimal solution. The most frequently used such kernel
functions are the polynomial, sigmoid and radial basis ker-
nel function (RBF) (Liao, Fang, & Nuttle, 2004; Lin & Lin,
2003; Müller, Mike, Rätsch, Tsuda, & Schölkopf, 2001).
The RBF is generally applied most frequently, because it
can classify multi-dimensional data, unlike a linear kernel
function. Additionally, the RBF has fewer parameters to
set than a polynomial kernel. RBF and other kernel func-
tions have similar overall performance. Consequently,
RBF is an effective option for kernel function. Therefore,
this study applies an RBF kernel function in the SVM to
obtain optimal solution.

Two major RBF parameters applied in SVM, C and � ,
must be set appropriately. Parameter C represents the cost
of the penalty. The choice of value for C influences on the
classification outcome. If C is too large, then the classifica-
tion accuracy rate is very high in the training phase, but
very low in the testing phase. If C is too small, then the
classification accuracy rate unsatisfactory, making the
model useless. Parameter � has a much greater influence
on classification outcomes than C, because its value affects
the partitioning outcome in the feature space. An exces-
sively large value for parameter � results in over-fitting,
while a disproportionately small value leads to under-fit-
ting (Pardo & Sberveglieri, 2005).

Grid search (Hsu, Chang, & Lin, 2003; Wang, Wu, &
Zhang, 2005) is the most common method to determine
appropriate values for C and � . Values for parameters C

and � that lead to the highest classification accuracy rate
in this interval can be found by setting appropriate values
for the upper and lower bounds (the search interval) and
the jumping interval in the search. Nevertheless, this
approach is a local search method, and vulnerable to local
optima. Additionally, setting the search interval is a prob-
lem. Too large a search interval wastes computational
resource, while too small a search interval might render a
satisfactory outcome impossible.

In addition to the commonly used, grid search, other
techniques are employed in SVM to improve the possibility
of a correct choice of parameter values. The F-score adopts
statistical type I and II errors, and random forest (RF) (Wei
& Lin, 2005). Pai and Hong (2005) proposed an SA-based
approach to obtain parameter values for SVM, and applied
it in real data; however, this approach does not address fea-
ture selection, and therefore may exclude the optimal result.

As well as the two parameters C and � , other factors,
such as the quality of the feature’s dataset, may influence
the classification accuracy rate. For instance, the correla-
tions between features influence the classification result.
Accidental removal of important features might lower the
classification accuracy rate. Additionally, some dataset fea-
tures may have no influence at all, or may contain a high
level of noise. Removing such features can improve the
searching speed and accuracy rate.

Approaches for feature selection can be categorized into
two models, namely a filter model and a wrapper model
(Liu & Motoda, 1998). Statistical techniques, such as prin-
cipal component analysis, factor analysis, independent
component analysis and discriminate analysis can be
adopted in filter-based feature selection approaches to
investigate other indirect performance measures, most of
which are based on distance and information. Chen and
Hsieh (2006) presented latent semantic analysis and web
page feature selection, which are combined with the SVM
technique to extract features. Gold, Holub, and Sollich
(2005) presented a Bayesian viewpoint of SVM classifiers
to tune hyper-parameter values in order to determine use-
ful criteria for pruning irrelevant features. Even though
the filter model is fast, the resulting feature subset may
not be optimal (Liu & Motoda, 1998).

The wrapper model (Kohavi & John, 1997) applies the
classifier accuracy rate as the performance measure. Some
researchers have concluded that if the purpose of the model
is to minimize the classifier error rate, and the measurement
cost for all the features is equal, then the classifier’s predic-
tive accuracy is the most important factor. Restated, the
classifier should be constructed to achieve the highest clas-
sification accuracy. The features adopted by the classifier
are then chosen as the optimal features. In the wrapper
model, meta-heuristic approaches are commonly employed
to help in looking for the best feature subset. Although
meta-heuristic approaches are slow, they obtain the (near)
best feature subset.

Jack and Nandi (2002) and Shon, Kim, Lee, and Moon
(2005), employed GA to screen the features of a dataset.
The selected subset of features is then fed into the SVM
for classification testing. Zhang, Jack, and Nandi (2005)
developed a GA-based approach to discover a beneficial
subset of features for SVM in machine condition monitor-
ing. Samanta, Al-Balushi, and Al-Araimi (2003) proposed
a GA approach to modify the RBF width parameter of
SVM with feature selection. Nevertheless, since these
approaches only consider the RBF width parameter for
the SVM, they may miss the optimal parameter setting.
Huang and Wang (2006) presented a GA-based feature
selection and parameters optimization for SVM. More-
over, Huang et al. (2006) utilized the GA-based feature
selection and parameter optimization for credit scoring.

3. The developed PSO + SVM approach

3.1. Particle swarm optimization

Particle swarm optimization (PSO) (Kennedy & Eber-
hart, 1995) is an emerging population-based meta-heuristic
that simulates social behavior such as birds flocking to a
promising position to achieve precise objectives in a multi-
dimensional space. Like evolutionary algorithms, PSO per-
forms searches using a population (called swarm) of
individuals (called particles) that are updated from itera-
tion to iteration. To discover the optimal solution, each
particle changes its searching direction according to two
factors, its own best previous experience (pbest) and the



Fig. 2. Solution representation.
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best experience of all other members (gbest). Shi and Eber-
hart (1998) called pbest the cognition part, and gbest the
social part.

Each particle represents a candidate position (i.e., solu-
tion). A particle is considered as a point in a D-dimension
space, and its status is characterized according to its posi-
tion and velocity. The D-dimensional position for the par-
ticle i at iteration t can be represented as xt

i ¼ fxt
i1;

xt
i2; . . . xt

iDg. Likewise, the velocity (i.e., distance change),
which is also an D-dimension vector, for particle i at itera-
tion t can be described as vt

i ¼ fvt
i1; v

t
i2; . . . ; vt

iDg. Fig. 1 illus-
trates the above concept of modulation of searching points.

Let pt
i ¼ fpt

i1; p
t
i2; . . . ; pt

iDg represent the best solution
that particle i has obtained until iteration t, and
pt

g ¼ fpt
g1; p

t
g2; . . . ; pt

gDg denote the best solution obtained
from pt

i in the population at iteration t. To search for the
optimal solution, each particle changes its velocity accord-
ing to the cognition and social parts as follows:

V t
id ¼ V t�1

id þ c1r1ðP t
id � xt

idÞ þ c2r2ðP t
gd � xt

idÞ;
d ¼ 1; 2; . . . ;D ð9Þ

where c1 indicates the cognition learning factor; c2 indicates
the social learning factor, and r1 and r2 are random num-
bers uniformly distributed in U(0,1). Each particle then
moves to a new potential solution based on the following
equation:

X tþ1
id ¼ X t

id þ V t
id ; d ¼ 1; 2; . . . ;D ð10Þ

The basic process of the PSO algorithm is given as
follows.

Step 1: (Initialization) Randomly generate initial
particles.
Step 2: (Fitness) Measure the fitness of each particle in
the population.
Step 3: (Update) Compute the velocity of each particle
with Eq. (9).
Fig. 1. Search concept of particle swarm optimization.
Step 4: (Construction) For each particle, move to the
next position according to Eq. (10).
Step 5: (Termination) Stop the algorithm if termination
criterion is satisfied; return to Step 2 otherwise.

The iteration is terminated if the number of iteration
reaches the pre-determined maximum number of iteration.
3.2. Apply PSO to SVM

This study developed a PSO approach, termed
PSO + SVM, for parameter determination and feature
selection in the SVM. Without feature selection, two deci-
sion variables, designated C and � , are required. For the
feature selection, if n features are required to decide which
features are chosen, then 2 + n decision variables must be
adopted. The value of n variables ranges between 0 and
1. If the value of a variable is less than or equal to 0.5, then
its corresponding feature is not chosen. Conversely, if the
value of a variable is greater than 0.5, then its correspond-
ing feature is chosen. Fig. 2 illustrates the solution
representation.

Fig. 3 shows the flowchart for PSO + SVM. First, the
population of particles is initialized, each particle having
a random position within the D-dimensional space and a
random velocity for each dimension. Second, each parti-
cle’s fitness for the SVM is evaluated. The each particle’s
fitness in this study is the classification accuracy. If the fit-
ness is better than the particle’s best fitness, then the posi-
Fig. 3. The flowchart of PSO algorithm.
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tion vector is saved for the particle. If the particle’s fitness
is better than the global best fitness, then the position
vector is saved for the global best. Finally the particle’s
velocity and position are updated until the termination
condition is satisfied.

4. Experiment results

The platform adopted to develop the PSO + SVM
approach is a PC with the following features: Intel Pentium
IV 3.0 GHz CPU, 512 MB RAM, a Windows XP operat-
ing system and the Visual C++ 6.0 development environ-
ment. To measure the performance of the developed
PSO + SVM approach, the following datasets were used:
Australian, Boston housing, Breast cancer, Bupa live, Ger-
man, Ionosphere, Pima, Sonar, Car Evaluation Database,
Glass, Teaching Assistant Evaluation, Vehicle, Vowel and
Wine, from the UCI machine learning repository (Hettich,
Blake, & Merz, 1998), and Bioinformatics, taken from Hsu
et al. (2003). The predicted data of the Boston housing
dataset was transformed from continuous into binary class
(Fung & Mangasarian, 2003). Table 1 presents the proper-
ties of these datasets.

Scaling was applied to prevent feature values in greater
numeric ranges from dominating those in smaller numeric
ranges, and to prevent numerical difficulties in the calcula-
tion. Experimental results obtained in this study demon-
strate that scaling the feature value improves the
classification accuracy of SVM. In general, the range of
each feature value can be linearly scaled to the range
[� 1, +1].

The k-fold method presented by Salzberg (1997) was
employed in the experiments. In this study, the value of k

is set to 10. Thus, the dataset was split into 10 parts, with
each part of the data sharing the same proportion of each
class of data. Nine data parts were applied in the training
Table 1
Dataset from the UCI repository

No Dataset No. of
classes

No. of
instances

No. of
features

1 Australian 2 653 15
2 Bioinformatics 3 391 20
3 Boston housing 2 1012 13
4 Breast cancer 2 683 10
5 Bupa live 2 345 6
6 Car evaluation 4 1728 6
7 Cleveland heart 2 296 13
8 German 2 1000 30
9 Glass 6 214 9
10 Ionosphere 2 351 34
11 Iris 3 150 4
12 Pima 2 768 8
13 Sonar 2 208 60
14 Teaching assistant

evaluation
3 151 5

15 Vehicle 4 846 18
16 Vowel 11 528 10
17 Wine 3 175 13
process, while the remaining one was utilized in the testing
process (Han & Kamber, 2003). The program was run 10
times to enable each slice of data to take a turn as the test-
ing data. The rate of accuracy in classification of this exper-
iment was computed by summing the individual accuracy
rate for each run of testing, and then dividing the total
by 10. Since the number of data in each class is not a multi-
ple of 10, the dataset cannot be partitioned fairly. How-
ever, the ratio of the number of data in the training set
to the number of data in the validation set was maintained
as closely as possible to 9:1. Fig. 4 shows the architecture of
the developed PSO-based parameter determination and
feature selection approach for SVM.

Through initial experiment, the parameter values of the
developed PSO + SVM approach were set as follows. Both
the cognition learning factor c1 and the social learning fac-
tor c2 were set to 2. When not considering feature selection,
the number of particles and generations were found to be 6
and 50; thus the total number of solutions evaluated was
300. With feature selection, the number of features selected
for use can be obtained by the PSO + SVM approach.
Since the PSO + SVM approach has a larger solution
space, in terms of number of features, the number of solu-
tion evaluated is also larger. The number of solution eval-
uated was raised to 2000 by setting the number of particles
and generations to 8 and 250, respectively. The searching
range of parameter C of SVM was between 0.01 and
35,000, while the searching range of parameter � of SVM
was between 0.0001 and 32 (Lin & Lin, 2003).
Fig. 4. The architecture of the proposed PSO-based parameters determi-
nation and feature selection approach for SVM.



Table 2
Comparison between the PSO + SVM, NSVM, SVM, LSVM and approaches proposed by Fung & Mangasarian and Liao et al. (%)

Dataset PSO + SVM NSVM SVM LSVM Gaussian kernel Polynomial kernel Sigmoid kernel

Boston housing 99.90a 86.60 85.80 86.60 – – –
Bupa liver 80.52a 70.20 69.30 70.20 71.35 72.85 73.17
Cleveland heart 87.83a 86.30 85.90 86.30 85.11 84.67 85.17
Ionosphere 97.20a 89.80 88.30 89.80 93.12 92.15 94.37
Pima 80.21a 77.00 77.10 77.00 – – –
Breast cancer 97.95a – – – 96.37 96.37 96.23

– Approach did not use the dataset for test.
a The highest classification accuracy rate among approaches.

1822 S.-W. Lin et al. / Expert Systems with Applications 35 (2008) 1817–1824
The results of the developed PSO + SVM approach
without feature selection were compared with those of
Fung and Mangasarian (2003) and Liao et al. (2004). Fung
and Mangasarian tested several UCI datasets using New-
ton SVM (NSVM), SVM and Lagrangina SVM (LSVM)
Table 3
Comparison between the PSO + SVM and GA + SVM approach pro-
posed by Huang et al. (%)

Dataset Without feature selection With feature selection

PSO + SVM GA + SVM PSO + SVM GA + SVM

Australian 88.09 88.09b 91.03a 88.10b

Breast cancer 97.95a 94.23 99.18a 96.19
Cleveland

heart
88.17 94.58a 92.83 94.80a

German 79.00 84.24a,b 81.62 85.60a,b

Ionosphere 97.50a 96.61 99.01a 98.56
Iris 98.00a 97.56 99.20 100.00a

Pima 80.19 82.98a 82.68a 81.50
Sonar 88.32 95.22a 96.26 98.00a

Vehicle 88.71a 85.87 89.83a 84.06
Vowel 99.27a 95.13b 100.00a 99.30b

a The higher classification accuracy rate between two approaches.
b Inconsistency is due to the different version of dataset used.

Table 4
Experimental results of the developed PSO + SVM approach with and withou

Dataset (1) PSO + SVM without
feature selection

(2) PSO + SV
feature select

Australian 88.09 91.03
Bioinformatics 89.09 90.63
Boston housing 99.90 100.00
Breast cancer 97.95 99.18
Bupa live 80.81 82.05
Car evaluation 99.89 99.68
Cleveland heart 88.17 92.83
German 79.00 81.62
Glass 78.04 85.26
Ionosphere 97.50 99.01
Iris 98.00 99.20
Pima 80.19 82.68
Sonar 88.32 96.26
Teaching assistant evaluation 77.09 82.63
Vehicle 88.71 89.83
Vowel 99.27 100.00
Wine 99.56 100.00

Confidence level a = 0.05.
without feature selection. Liao et al. employed three kernel
functions, a Gaussian kernel, a polynominal kernel and a
sigmoid kernel in the SVM to test several datasets from
UCI. Table 2 shows the results of these approaches. All
of the accuracy rates of the developed PSO + SVM
approach are better than those obtained with Fung and
Mangasarian. The developed PSO + SVM approach gener-
ated the best C and � values, yielding a higher classification
accuracy rate across different datasets.

The results obtained by the developed PSO + SVM
approach with/without feature selection were compared
with those of GA + SVM developed by Huang et al.
(2006) The classification accuracy rates are cited from their
original papers. Table 3 shows a comparison of the results.
Without feature selection, the PSO + SVM approach
yielded a higher classification accuracy rate in five datasets,
while the GA + SVM approach did so in four. With fea-
ture selection, the PSO + SVM approach yielded the higher
classification accuracy rate in six datasets, while the
GA + SVM approach did so in four. Thus, the developed
PSO + SVM approach yielded more appropriate parame-
ters and subset, giving higher classification accuracy rate
across different datasets.
t feature selection and grid search (%)

M with
ion

(3) grid
search

Pair t test (1) v.s. (3)
P-Value

Pair t test (2) v.s. (3)
P-Value

84.54 <0.001 <0.001
83.92 <0.001 <0.001
99.80 0.099 0.099
96.64 <0.001 <0.001
71.83 <0.001 <0.001
99.89 0.161 0.067
81.37 <0.001 <0.001
75.30 <0.001 <0.001
70.61 <0.001 <0.001
93.08 <0.001 <0.001
96.00 <0.001 <0.001
76.69 <0.001 <0.001
87.90 0.007 <0.001
64.26 <0.001 <0.001
84.28 <0.001 <0.001
98.91 0.011 <0.001
96.60 <0.001 <0.001



Table 5
Experimental results of the developed PSO + SVM approach with and without feature selection

Dataset PSO + SVM with feature selection PSO + SVM without feature selection Pair t test
P-valueNo. of original

features
No. of selected
features

Average accuracy
rate (%)

Average accuracy rate (%)

Australian 15 9.00 ± 2.01 91.03 88.09 <0.001
Bioinformatics 20 15.00 ± 2.32 90.63 89.09 <0.001
Boston housing 13 7.00 ± 1.00 100.00 99.90 0.500
Breast cancer 10 6.00 ± 1.29 99.18 97.95 <0.001
Bupa live 6 4.00 ± 0.88 82.05 80.81 0.165
Car evaluation 6 5.00 ± 0.44 99.68 99.89 0.067
Cleveland heart 13 8.00 ± 1.69 92.83 88.17 <0.001
German 30 18.00 ± 3.49 81.62 79.00 <0.001
Glass 9 5.00 ± 1.00 85.26 78.04 <0.001
Ionosphere 34 21.00 ± 3.23 99.01 97.50 <0.001
Iris 4 2.00 ± 0.64 99.20 98.00 <0.001
Pima 8 5.00 ± 1.26 82.68 80.19 <0.001
Sonar 60 37.00 ± 4.75 96.26 88.32 <0.001
Teaching assistant evaluation 5 3.00 ± 0.85 82.63 77.09 <0.001
Vehicle 18 13.00 ± 1.85 89.83 88.71 <0.001
Vowel 10 7.00 ± 0.95 100.00 99.27 <0.001
Wine 13 8.00 ± 1.56 100.00 99.56 0.022

Confidence level a = 0.05.
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An experiment using seventeen datasets from UCI was
performed to further compare the results of the developed
PSO + SVM approach with and without feature selection.
The results obtained were compared with those of the grid
search, as shown in Table 4. Results obtained using the
developed PSO + SVM approach with and without feature
selection were better than those of grid search in all cases
examined. The use of a feature selection was found to
improve the classification accuracy rate for each dataset
except the Car Evaluation dataset. Only the classification
accuracy rate of the Boston housing dataset and Car Eval-
uation dataset did not exhibit a significant improvement
between the developed PSO + SVM approach and the grid
search. This result indicates that good results are also
obtainable from models with few features, clearly revealing
that certain features are redundant or insignificant relative
to particular classification problems. Undoubtedly, the
PSO + SVM approach can simultaneously determine the
parameter values and find a subset of features without low-
ering SVM classification accuracy.

Finally, to identify any differences in the classification
accuracy rates of PSO + SVM with and without feature
selection, the results of PSO + SVM with and without fea-
ture selection were compared, and are presented in Table 5.
As shown in the table, only Boston housing, Bupa live, and
Car Evaluation did not exhibit a statistical significant dif-
ference. Therefore, the PSO + SVM with feature selection
has better performance than that of PSO + SVM without
feature selection.

5. Conclusions and future research

This study presents a particle swarm optimization-based
approach, capable of searching for the optimal parameter
values for SVM to obtain a subset of beneficial features.
This optimal subset of features is then adopted in both
training and testing to obtain the optimal outcomes in
classification. Comparison of the obtained results with
those of other approaches demonstrates that the developed
PSO + SVM approach has a better classification accuracy
than others tested. After using feature selection in the
experiment, the PSO + SVM approach is applied to elimi-
nate unnecessary or insignificant features, and effectively
determine the parameter values, in turn improving the
overall classification results.

Results of this study were obtained with an RBF kernel
function. However, other kernel parameters can also be
optimized using the same approach. Experimental results
obtained from UCI datasets, other public datasets and
real-world problems can be tested in the future to verify
and extend this approach.
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