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a b s t r a c t

The Distributed and Flexible Job-shop Scheduling problem (DFJS) considers the scheduling of distributed
manufacturing environments, where jobs are processed by a system of several Flexible Manufacturing
Units (FMUs). Distributed scheduling problems deal with the assignment of jobs to FMUs and with deter-
mining the scheduling of each FMU, in terms of assignment of each job operation to one of the machines
able to work it (job-routing flexibility) and sequence of operations on each machine. The objective is to
minimize the global makespan over all the FMUs. This paper proposes an Improved Genetic Algorithm to
solve the Distributed and Flexible Job-shop Scheduling problem. With respect to the solution represen-
tation for non-distributed job-shop scheduling, gene encoding is extended to include information on
job-to-FMU assignment, and a greedy decoding procedure exploits flexibility and determines the job
routings. Besides traditional crossover and mutation operators, a new local search based operator is used
to improve available solutions by refining the most promising individuals of each generation. The pro-
posed approach has been compared with other algorithms for distributed scheduling and evaluated with
satisfactory results on a large set of distributed-and-flexible scheduling problems derived from classical
job-shop scheduling benchmarks.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

During the last decades, the manufacturing systems are evolv-
ing from traditional centralized environments to more flexible
distributed settings, including multi-factory networks or multi-
cell job shops. Multi-factory production takes place in several fac-
tories, which may be geographically distributed in different loca-
tions, in order to comply with and to take advantage from the
trend of globalization [28,29]. Multi-cell environments include
several independent manufacturing cells located in the same plant
and they allow high-volume productions or multiple product
types by exploiting all the available manufacturing resources. Sys-
tems of manufacturing cells may be found, for example, in the
woodcutting industry, where a single plant may include more
than one cell, each including a sawing machine and a trimming/
boarding unit, able to perform all the operations needed to pro-
duce semi-finished parts for the furniture industry. A sample mul-
ti-cell setting is shown in Fig. 1. The system is composed of four
Flexible Manufacturing Cell (FMCs) interconnected by a material
handling system. Each FMC is made-up of several multi-purpose
machines equipped with interchangeable tools to perform
ll rights reserved.
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different operations during the same production cycle. The I/O
center loads raw parts from a raw material storage unit, unloads
finished parts and handles unfinished parts, so that the workload
of a production cycle can be distributed among the different
FMCs. Each FMC receives raw parts and material from the han-
dling system and its set of flexible machines completes the subset
of jobs assigned to the FMC itself.

Concerning distributed factory networks, each factory is config-
ured as a flexible manufacturing system, with a set of multi-pur-
pose machines. The I/O center and the handling system are
replaced by a dispatching center assigning each job to one of the
suitable factories and by a transportation system to move jobs be-
tween factories and customers [9].

The Distributed and Flexible Job-shop Scheduling problem
(DFJS) considers the production scheduling problems emerging in
distributed manufacturing environments, where jobs are carried
out by a system of several, generally distributed, Flexible Manufac-
turing Units (FMUs), corresponding to the factories in a multi-fac-
tory environment or cells in a multi-cell setting. In the DFJS, the
problem is to assign each job to one FMU and to solve a Flexible
Job-shop Scheduling problem (FJS) for each cell, with the objective
of minimizing the overall completion time of all the jobs on all the
FMUs. In the DFJS, the optimization of the production cycle in-
volves the following hierarchical problems that need to be solved
sequentially or simultaneously:
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Fig. 1. A sample system of flexible manufacturing cells.
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– determining the most suitable FMU (cell or factory) for each job
(assignment problem);

– determining, for each operation of assigned jobs, the most suit-
able machine within a given FMU (routing problem);

– determining the assignment of operations to machines over
time span (sequencing problem).

We consider that all the FMUs work simultaneously and coop-
erate to define an optimal production plan. Scheduling objectives
have to be considered comprehensively. In particular, a measure
related to the maximum job completion time (or makespan) is ta-
ken into account. Two types of makespan are defined:

– the local makespan related to a single FMU, which corresponds
to the maximum completion time for jobs processed by the
FMU itself; the completion time has to consider the job delivery
time implied by the material handling system or by the trans-
portation system, which may be different for different job
assignments [9];

– the global makespan related to the whole system of FMUs, that is
the maximum completion time of all jobs on all FMUs; this cor-
responds to the maximum over all the local makespans.

In the DFJS, the objective of minimizing the global makespan of
the FMUs system is taken into account.

The DFJS extends the classic Flexible Job-shop Scheduling prob-
lem (FJS), as it allows several FMUs able to carry out different jobs
of a manufacturing process. The DFJS extends also the Distributed
Scheduling problem without machine route flexibility (DJS), where
jobs can be assigned to several manufacturing units, but job rout-
ing within each unit is fixed, meaning that each job operation can
be processed by an unique machine.

Production scheduling problems have been the subject of many
research works in the last decades. Before concentrating on the lit-
erature concerning distributed scheduling, we note that, at the mo-
ment, research on scheduling of flexible manufacturing systems
has been mostly devoted to non-distributed environments, that
is to FJS. In particular, due to the complexity of the FJS, heuristic
methods are generally proposed, mainly based on local search ap-
proaches ([2,6,13,18,24,32] among others) and genetic algorithms
([10,17,20,26,30] among others). Some interesting works from
the methodological point of view propose the application of new
meta-heuristics schemes to solve FJS. Xia and Wu [33] propose par-
ticle swarm optimization hybridized with simulated annealing to
solve a multi-objective FJS. In [4] the FJS is represented as a lan-
guage grammar by means of a syntactic model where Resource Ele-
ments are used to automatically consider all process planning
options during the scheduling. This enables, on the one hand, to re-
duce the problem size and widen the scope of the problem to tak-
ing into account alternative process plans, and, on the other hand,
to solve the problem by adopting an original linguistic based meta-
heuristic, where existing job-shop scheduling algorithms are used
in a simulated annealing framework. A mixed integer program-
ming model along with a local search scheme is presented in
[11] to solve the a generalized FJS where sequence-dependent set-
up operations are involved. The works cited above directly address
the scheduling of a single cell or factory. As we have seen, schedul-
ing distributed manufacturing systems is more complex, as a fur-
ther decision level is involved, related to the choice of the factory
or cell to allocate each job. Literature mainly proposes heuristic ap-
proaches. Di Natale and Stankovic [14] present a general frame-
work to apply to distributed static systems, based on simulated
annealing. An agent-based approach is proposed in [12], where
wasp-inspired autonomous agents implement an adaptive bidding
mechanism for the dynamic assignment of jobs to manufacturing
cells. Many other heuristic approaches have been proposed
([3,27,31], etc.). However, as already noted in [9], little attention
has been devoted to the DFJS as described above.

Jia et al. [19] present a Modified Genetic Algorithm (MGA) to
solve distributed scheduling problems in a multi-factory network,
even if job delivery times are neglected. The algorithm is designed
for fixed job routing and the flexibility issue is not taken into ac-
count. The proposed MGA is obtained by a straightforward exten-
sion of the chromosome encoding used for classic job-shop
problems, where no information on operation routing is required:
each gene specifies a job and a related factory, while the sequence
of operations on machines is determined by the decoding proce-
dure, according to the order in which the genes appear. One cross-
over operator is presented, based on exchanging partial strings,
along with two mutation operators: a local one, to change ran-
domly the order of the genes, and a global one, to randomly change
the assignment of jobs to factories. Concerning computational re-
sults, one simple example of distributed multi-factory scheduling
is presented and solved to optimality. MGA is also applied to some
classic job-shop scheduling instances.

To the best of our knowledge, the first works addressing all the
features of the DFJS are Chan et al. [8,9], where a multi-factory set-
ting is considered and a Genetic Algorithm with Dominated Genes
(GADG) is proposed. A more complex chromosome encoding is
used, where genes specify job, operation, factory and machine. A



Table 1
A sample DFJS instance.

U1 U2 U3

d1
i M11 M12 M13 d2

i M21 M22 M23 d3
i M31 M32

J1 O11 2 2 1 3 3 3 – 2 4 2 4
O12 3 5 – 3 3 3 3 –
O13 3 3 2 2 1 – – 3

J2 O21 3 4 6 2 2 5 4 5 3 4 5
O22 3 2 7 5 4 3 4 3

J3 O31 3 3 1 4 5 3 6 4 4 4 3
O32 – 3 4 5 3 4 2 2
O33 4 4 2 – – – 2 3

J4 O41 4 5 4 5 3 6 3 5 5 3 4

J5 O51 3 – 5 8 – – – – 3 5 4
O52 2 1 2 – – – 2 3
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new crossover mechanism, the dominated gene crossover, is pre-
sented to enhance the performance of genetic search by recording
and preserving the best genes, and to eliminate the problem of
determining the optimal crossover rate. Also, similarity checking
to prevent pre-mature convergence and mechanisms to adapt the
value of some parameters to the evolution of the search are imple-
mented. The GADG is tested on several DFJS instances proposed by
the authors and some DJS and FJS cases presented in literature,
showing the relevance of the new dominated gene crossover in
obtaining better global makespans and improving the robustness
of the genetic approach in terms of low standard deviation. The re-
sults are extended in [7], where a generalized version of the DFJS is
studied, taking into account machine maintenance issues. A math-
ematical model for the problem is given and the results on some
new test instances are presented, including the case with no main-
tenance (corresponding to the DFJS), confirming the good perfor-
mance of the GADG approach.

The scope of this work is to propose a new optimization proce-
dure combining genetic algorithms and local search heuristics to
solve distributed scheduling problems in flexible manufacturing
environments. In particular, we aim at improving the MGA pro-
posed by Jia et al. [19] and extending the domain of its application
to systems of FMUs (distributed factories or independent manufac-
turing cells in the same plant). The Improved Genetic Algorithm
(IGA) presented in this paper introduces a new decoding mecha-
nism, able to handle alternative job routings, and a refinement
operator, acting as an ‘‘intelligent mutation” which exploits a local
search procedure to refine the job routing and operations schedul-
ing of most promising individuals.

This paper is organized as follows. Section 2 gives the
specifications of the DFJS, introducing the basic notation to han-
dle the scheduling of jobs and operations in systems of FMUs.
Section 3 describes the IGA which combines a genetic algorithm,
extension of the MGA, and a local search procedure applied to
an elite subset of individuals of each generation to improve
their schedules. Extended experiments on distributed and flexi-
ble scheduling problems have been run to verify the effective-
ness of IGA with results discussed in Section 4. Section 5
concludes the paper and suggests possible lines for further re-
search on the DFJS.
2. The Distributed and Flexible Job-shop Scheduling problem
(DFJS)

The Distributed and Flexible Job-shop Scheduling problem
(DFJS) can be stated as follows: a set J ¼ fJ1; J2; . . . ; Ji; . . . ; Jng of
independent jobs is given, which have to be processed in a set
U ¼ fU1;U2; . . . ;Ul; . . . ;Uqg of FMUs. We recall that a FMU may rep-
resent one factory of a geographically distributed network or one
cell in a system of flexible manufacturing cells. For each pair of
job i and FMU l a distance dl

i is defined. In case of distributed fac-
tories networks, dl

i is the time to deliver job i from the factory l it
is assigned to, to its customer. In case of FMC systems, dl

i is the time
implied by the material handling system to move raw parts from
the I/O center to the FMC l and the completed job from l back to
the I/O center. Each FMU l is equipped with a set Ml ¼
fMl1;Ml2; . . . ;Mlk; . . . ;Mlml

g of machines. Each job i consists of an
ordered set (sequence) of operations and can be processed on a
set Ui # U of FMUs. Note that, once a job is assigned to a FMU, all
the operations have to be processed on the same FMU. The set of
operations depends, in general, on the FMU, so that different se-
quences may be defined for each job, one for each FMU enabled
to process it. The sequence of operations for Ji to be processed on
Ul is ðOl

i1;O
l
i2; . . . ;Ol

ij; . . . ;Ol
inl

i
Þ. Note that different FMUs may use

different manufacturing technologies, and, as a consequence, each
FMU may define a different number and/or sequence of operations
to complete the same job. If Ji is assigned to Ul, each operation j
(namely Ol

ij) has to be processed without interruption on one ma-
chine k: machine k has to be selected among a subset of the ma-
chines within Ul, namely the set Ml

ij # Ml. The processing time of
each operation is related to both the FMU and the machine, and
it is denoted by plk

ij . The completion time of a job is defined as
the time at which the last operation of the job is completed, plus
the distance dl

i. Operations must be processed one after the other
and without preemption, according to the sequence defined by
the selected FMU. Machines can process only one operation on
the same time. We assume that all FMUs, jobs and machines are
available at time zero. The aim of the DFJS is to determine the
assignment of jobs to FMUs, the routing of jobs through machines
and the sequencing of operations on machines, with the objective
of minimizing the global makespan.

A sample instance of DFJS is given in Table 1. The related FMUs
system is composed of three FMUs (U1, U2 and U3) and five jobs (J1,
J2, J3, J4 and J5) have to be completed. The three FMUs are equipped
with, respectively, three, three and two multi-purpose machines.
For each FMU, the first column reports the distance of the related
job to/from the marketplace or the I/O center. The remaining
numerical entries represent the processing times plk

ij : for example,
the time required to execute the first operation of J2 on the third
machine of U1 is obtained by setting i ¼ 2, j ¼ 1, l ¼ 1 and k ¼ 3,
that is, p13

21 ¼ 2 time units. Note that only partial flexibility is con-
sidered in this example, as, for some FMU l, job i and operation j,
Ml

ij(Ml, that is, the operation cannot be performed by all the ma-
chines in the given FMU (this is the case for operation O1

32 and ma-
chine M11). Also, some FMUs cannot process some jobs, for
example, J5 and U2. Different production technologies are also in-
volved: for example, J3 is performed by two operations in U2, in-
stead of the three required by the other FMUs.

The specifications of the DFJS given above allow the FJS and the
JS to be derived as special cases: FJS is a DFJS where jUj ¼ 1; JS is a
DFJS where jUj ¼ 1 and, for all operations O1

ij , jM
1
ijj ¼ 1. It directly

follows that DFJS is NP-Hard, given that JS is NP-Hard [16].
3. An Improved Genetic Algorithm for DFJS

Genetic Algorithms (GA) are adaptive methods which may be
used to solve optimization problems [5]. They are based on the ge-
netic process of biological organisms. Over many generations, nat-
ural populations evolve according to the principle of natural
selection, i.e. survival of the fittest. At each generation, every
new individual (chromosome) corresponds to a solution, that is,
a schedule for the given DFJS instance. Before a GA can be run, a
suitable encoding (or representation) of the problem must be
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devised. The essence of a GA is to encode a set of parameters
(known as genes) and to join them together to form a string of val-
ues (chromosome). A fitness function is also required, which as-
signs a figure of merit to each encoded solution. The fitness of an
individual depends on its chromosome and is evaluated by the fit-
ness function. During the run, parents must be selected for repro-
duction and recombined to generate offspring. Parents are
randomly selected from the population, using a scheme which fa-
vours fitter individuals. Having selected two parents, their chromo-
somes are combined, typically by using crossover and mutation
mechanisms to generate better offspring, that means better solu-
tions. The process is iterated until a stopping criterion is satisfied.

In the DFJS, where jobs can be dispatched to many FMUs and
where job’s operations can be dispatched to many machines within
a given FMU, the encoding of the scheduling problem becomes
more complex with respect to FJS or JS, since the chromosome
has to comprise more information, including the selected FMU
for every job and the related job routing, as well as operation
sequence.

The overall structure of the Improved Genetic Algorithm (IGA)
that we propose for the DFJS can be described as follows:

1. Coding: the genes of the chromosome describe the assignment
of jobs to FMUs, and the order in which they appear in the chro-
mosome describes the sequence of operations and determines
the job routings. Each chromosome represents a potential solu-
tion for the problem.

2. Initial population: the initial chromosomes are obtained by a
random permutation of jobs on FMUs and a random dispatching
rule for sequencing operations on machines.

3. Fitness evaluation: the global makespan is computed for each
chromosome of the current population.

4. Selection: at each iteration, the best chromosomes are chosen
for reproduction by a linear ranking method.

5. Offspring generation: the new generation is obtained by two
types of crossover operators (one-point crossover and two-
points crossover) based on exchanging partial strings, and by
four types of mutation operators: local mutation, global muta-
tion, a new machine mutation and a new refinement mutation.
The refinement mutation applies a local search to refine the job
routing and the operation sequencing in the critical FMUs (that
is, the ones determining the current global makespan) with the
aim of improving the offspring generation. The genetic opera-
tors are designed to preserve feasibility of new individuals.
New individuals are generated until a fixed maximum number
of individuals is reached.

6. Stop criterion: the algorithm stops if a predefined number of
iterations is reached or the best solution found so far has not
changed during a predefined number of the last iterations. As
the stop criterion is satisfied, the best chromosome, together
with the corresponding schedule, is given as output. Otherwise
the algorithm iterates through steps 3–5.

In the following, the different steps of IGA are detailed. We de-
scribe: in Section 3.1 the adopted coding and decoding schemes, in
Section 3.2 the population initialization and the chromosome
Fig. 2. A sample chrom
selection strategy, in Section 3.3 the crossover operators, in Section
3.4 the global mutation operator for changing the assignment of
jobs, the local mutation operator for changing operations sequence
and the new machine mutation operator for changing job routing,
in Section 3.5 the new refinement mutation to improve job routing
and machine sequencing by local search and finally, in Section 3.6,
the stopping criterion and the overall structure of IGA.

3.1. Chromosome encoding and decoding

The information to be encoded into the chromosomes of a GA
for the DFJS has to specify the allocation of each job to FMUs, the
routing of each job through machines and the priority of each oper-
ation. In this work, we use a simple operation-based encoding
method, which is basically the one proposed by Jia et al. [19] for
distributed scheduling problems without routing flexibility, and
we extend it to take into account the flexibility issues of the DFJS.
The number of genes in a chromosome is equal to the total number
of operations of all the jobs. As the number of operations for a gi-
ven job may depend on the FMU the job is assigned to, the length
of chromosomes would depend on job assignment. In order to keep
the same number of genes in each chromosome, job production
plans are completed, where necessary, with dummy operations
to be executed on a dummy machine with processing time equal
to zero. For example, a third dummy operation O2

33 will be added
in the sample instance of Table 1. Each gene represents an opera-
tion and consists of two parameters reporting, respectively, the
FMU number and the job number. Note that all the operations of
the same job are represented by the same allele (same FMU and
same job) and then interpreted according to the order they occur
in a given chromosome, given that the order for the operations of
a job is fixed. As we keep the same simple representation as Jia
et al. [19], no information about alternative machine routes is
explicitly encoded into genes: as we will see hereafter, this infor-
mation will be retrieved during the decoding phase. A sample indi-
vidual is given in Fig. 2, where the DFJS instance of Table 1 is
considered.

Jobs are composed of, respectively, three, two, three, one and
two operations, so that a chromosome is a sequence of 11 genes.
Genes are of five types: ‘‘1;1”, ‘‘2;2”, ‘‘1;3”, ‘‘2;4” and ‘‘3;5”, mean-
ing that jobs J1 and J3 are processed by U1, J2 and J4 are processed
by U2 and J5 by U3.

The decoding process exploits the information provided by each
chromosome to generate a schedule plan and evaluate the fitness
of each individual. The objective of the DFJS is to minimize the glo-
bal makespan of the FMUs system so that the fitness of an individ-
ual is inversely related to the global makespan.

As we have mentioned above, chromosomes explicitly repre-
sent information on job assignment to FMUs and the order of the
genes is relevant to determine the priority of each operation, while
no information on job routing is given. Instead of complicating
gene encoding, we consider the flexibility issue in the decoding
phase, that is able to dispatch job operations to one of the alterna-
tive machines of the selected FMU. The information on job routing
is thus implicit in the decoding process, acting as follows. Opera-
tions are considered one by one, according to the order determined
osome encoding.



Table 2
Decoding the chromosome of Fig. 2: job routing

U1 U2 U3

M11 M12 M13 M21 M22 M23 M31 M32

J1 O11 2 1 3 3 – 2 2 4
O12 3 5 – 3 3 3 3 –
O13 3 3 2 2 1 – – 3

J2 O21 4 6 2 5 4 5 4 5
O22 3 2 7 5 4 3 4 3

J3 O31 3 1 4 3 6 4 4 3
O32 – 3 4 5 3 4 2 2
O33 4 4 2 – – – 2 3

J4 O41 5 4 5 6 3 5 3 4

J5 O51 – 5 8 – – – 5 4
O52 2 1 2 – – – 2 3
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by the chromosome, and dispatched to a machine, with starting
time equal to the completion time of the last operation assigned
to the machine itself. In case one operation may be performed by
more than one machine, the decoding process selects the routing
that guarantees the lowest current local makespan, that means
the one giving the lowest completion time for the operations as-
Fig. 4. A new chromosome obtai

Fig. 3. Decoding the chromosome
signed so far. If different routings lead to the same current make-
span, the machine with the smallest processing time is chosen.
In case more machines have the same smallest current makespan
and processing time, one of them is selected at random, to give
the optimization algorithm the opportunity to search different re-
gions of the solution space. Once all the operations have been
scheduled, the decoding process is completed by adding the deliv-
ery time (according to the FMU the job is assigned to), thus obtain-
ing the local makespans and the global one. Table 2 and Fig. 3 show
the results of the decoding process applied to the chromosome of
Fig. 2. Table 2 reports the job routing in all the FMUs, squared en-
tries denoting the operation-to-machine assignments. Fig. 3 re-
ports the Gantt chart of the operation schedule. After considering
the job-to-FMU distances, local makespans of 12 (9 + 3), 9 (7 + 2)
and 9 (6 + 3) time units are obtained for U1, U2 and U3, respectively,
and the global makespan of the FMUs system is 12.

In order to show how the proposed simple encoding is able to
represent implicitly alternative machine routes, we consider the
individual of Fig. 4, obtained by swapping two genes of the chro-
mosome of Fig. 2. The decoding process considers the second oper-
ation of J3 before the first operation of J1, so that O1

32 is scheduled
one time unit in advance on machine M12 (instead of M13), allowing
like this the completion of J3 at time 8 instead of 9. After including
ned by swapping two genes.

of Fig. 2: operation schedule.



Table 3
Decoding the chromosome of Fig. 4: new job routing.

U1 U2 U3

M11 M12 M13 M21 M22 M23 M31 M32

J1 O11 2 1 3 3 – 2 2 4
O12 3 5 – 3 3 3 3 –
O13 3 3 2 2 1 – – 3

J2 O21 4 6 2 5 4 5 4 5
O22 3 2 7 5 4 3 4 3

J3 O31 3 1 4 3 6 4 4 3
O32 – 3 4 5 3 4 2 2
O33 4 4 2 – – – 2 3

J4 O41 5 4 5 6 3 5 3 4

J5 O51 – 5 8 – – – 5 4
O52 2 1 2 – – – 2 3
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the job-to-FMU distances, the local makespan of U1 is 11 (8 + 3, see
Table 3 and Fig. 5), and the global makespan is reduced by one time
unit.

3.2. Population initialization and chromosome selection

The initial population is determined in two phases: the first
phase assigns jobs to FMUs at random and creates one gene for
each operation with information on jobs and related FMU; the sec-
ond phase combines genes in a random sequence and it is repeated
until a predefined number of individuals (denoted by N) is gener-
ated. Note that just the second phase is iterated and all the chro-
mosomes in the initial population have the same assignment of
jobs to FMUs.

During the selection phase, a set of individuals from the current
population is chosen in order to apply genetic operators and gen-
erate the offspring to include in the next generation. Among alter-
native strategies, linear ranking has been adopted [1], according to
the results emerged during our computational tests. The linear
ranking strategy sorts individuals by decreasing makespan (from
the worst to the best individual). If ri 2 f1;2; . . . ;Ng is the position
of individual i, the probability of selecting it is given by
Fig. 5. Decoding the chromosome of
pi ¼
2ri

NðN þ 1Þ ; i ¼ 1 . . . N:

For example, the probability of selecting the best chromosome ( 2
Nþ1)

is twice the probability of selecting the median one ( 1
Nþ1).

The reason is to give good chromosomes more chances to trans-
fer their genes, while allowing even to less promising individuals
the opportunity of participating to the evolution: the search will
move towards most promising regions while guaranteeing a cer-
tain diversity of the solution pool and preventing a premature con-
vergence of the method.

3.3. Crossover operators

Crossover operators recombine the genes of two selected chro-
mosomes to generate two new chromosomes to include in the next
generation. We have tested two types of crossover based on
exchanging partial strings: a one-point crossover and a two-points
crossover.

The one-point crossover is illustrated in Fig. 6. It randomly di-
vides the two parent chromosomes into two substrings and two
new chromosomes are obtained by exchanging the first substring
and maintaining the second one.

Once strings are exchanged, offspring may not represent a legal
encoding, as they may have an uncorrect number of genes per job.
It is thus necessary to legalize the offspring: starting from a ran-
dom position of each chromosome (in the example we start from
position 1), we delete the redundant genes (underlined in Fig. 6)
and compensate the missing ones, in order each chromosome to
comprise all the operations of all the jobs. We note that the cross-
over operator assumes that all the chromosomes of the same gen-
eration refer to the same job assignment, so that no further
legalization process is necessary.

The two-points crossover is similar to the previous operator
and is illustrated in Fig. 7. Two cut points are randomly chosen
and three substrings are determined for each parent. The
first and the third pair of substrings are exchanged. Also in this
case, the legalization procedure is necessary to generate feasible
offspring.
Fig. 4: new operation schedule.



Fig. 6. One-point crossover.

Fig. 7. Two-points crossover.
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Crossover operators have the effect of changing the processing
sequence of operations and job routes, according to the chromo-
some decoding scheme. Because all the chromosomes of the cur-
rent generation refer to the same job assignment, the dispatching
of jobs to FMUs does not change after the crossover, as single genes
remain unaffected.

3.4. Mutation operators

Mutation is designed to let the genetic algorithm explore a wider
region of the solution space, generally by introducing random gene
or chromosome changes. Following the scheme in Jia et al. [19], we
consider two operators: local and global mutation. We also intro-
duce a third machine mutation operator, to take into account the
job-routing flexibility, as from the definition of the DFJS.

Local mutation aims at preventing the genetic approach from
premature convergence towards low-quality solutions. It is applied
to the offspring generated by crossover and acts on one chromo-
some at a time (local effects). It consists in randomly choosing a
pre-defined number of pairs of genes within the same chromosome
and permuting their positions (Fig. 8). Two parameters are related
to local mutation: the probability of being applied to a new



Fig. 8. Local mutation.
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offspring chromosome (qL
p) and the number of permutations to

execute (qL
q).

Global mutation takes into account the peculiarity of DFJS with
respect to non-distributed scheduling problems, as it tries to ex-
plore solutions with different assignments of jobs to FMUs. Global
mutation is applied at the end of each iteration yielding a new gen-
eration of individuals and consists of randomly changing the FMUs
of a given number of jobs. Note that, in order to keep consistency
with the remaining genetic operators, all the chromosomes have
to reflect the new job assignments, that means that all the genes
related to the selected job in all the chromosomes have to be up-
dated (global effects). Global mutation has a significant impact
on operation scheduling, so that it is not applied at every iteration,
in order to let the algorithm explore solutions with a given job
assignment before changing it. As a consequence, two parameters
are defined: the probability of applying global mutation to the cur-
rent generation (qG

p ) and the number of jobs undergoing a random
FMU change (qG

q ).
We observe that, in general, the proposed simple encoding is

not able to span all the solution space with relation to the job rout-
ing. Indeed, the decoding phase is guided by the minimum current
makespan criterion and it is not possible to assign operations to an
arbitrary machine. For this reason, the machine mutation operator
is introduced: after a given number of not-improving iterations
(qM

q ), an operation is randomly assigned to a machine able to pro-
cess it, with a probability qM

p . IGA is thus able to explore solutions
with different job routings and to reduce the risk of premature con-
vergence due to poor operations assignment.

3.5. Chromosome refinement by local search

A fourth mutation operator, the refinement mutation, is designed
to have an intensive search strategy. Given an individual of the cur-
rent generation, the refinement mutation applies a local search
Fig. 9. The refinement
algorithm in order to explore efficiently different gene sequencing
and determine a locally optimal one. Starting from a chromosome
(center solution), new neighbor chromosomes are obtained by
swapping one pair of genes, thus perturbing the priority of jobs
and the related schedule. For each neighbor chromosome, the
decoding process computes the global makespan. As far as a neigh-
bor chromosome exists which has a better fitness than the current
center one, it is selected as the center of a new neighborhood and
the process is iterated until no neighbor chromosome gives a better
fitness. The center of this last neighborhood represents a locally
optimal individual, with respect to gene sequencing, and it re-
places the original chromosome in the current generation. Accord-
ing to computational evidence, it is important to achieve a good
trade-off between quality of individuals and running times. For this
reason, besides considering perturbations as simple as the straight-
forward pairwise swap, the refinement mutation is applied to just
a restricted number of most promising individuals, that means
individuals with the smallest global makespan. This number is a
parameter of the algorithm to be calibrated and is denoted by qR

q .
Also, just a subset of the possible gene swaps are considered, which
reduces the number of neighbor solutions to be evaluated at each
iteration. In particular, we determine the critical FMU, that is, the
FMU with the maximum local makespan, and we consider only
swaps between genes related to the critical FMU itself. Note that
the critical FMU could dynamically change during the search: the
local makespan of the current critical FMU may be reduced so that
a new FMU becomes critical. In this case, the local search considers
swap moves related to the new critical FMU, and the process is
iterated until no further local improvements are possible. Finally,
running times are further reduced by adopting a first improvement
exploration strategy: the center for the next local search iteration
is the first neighbor chromosome yielding a lower makespan
(neighborhoods are explored in a random order). The pseudo-code
of the refinement operator is shown in Fig. 9.
mutation operator.
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In the following example, the refinement operator is applied to
the chromosome of Fig. 2, represented by the string

S ¼ ½ð1;3Þ; ð2;2Þ; ð2;2Þ; ð1;1Þ; ð3;5Þ; ð2;4Þ; ð1;1Þ;
ð3;5Þ; ð1;1Þ; ð1;3Þ; ð1;3Þ�:

As from Fig. 3, the critical FMU is U1 with a local makespan of 12
time units, so that we restrict to the string

S1 ¼ ½ð1;3Þ; ð1;1Þ; ð1;1Þ; ð1;1Þ; ð1;3Þ; ð1;3Þ�:

By swapping the first two genes, we obtain

S2 ¼ ½ð1;1Þ; ð1;3Þ; ð1;1Þ; ð1;1Þ; ð1;3Þ; ð1;3Þ�

corresponding to the schedule of Fig. 10a, with a local makespan of
8 + 3 = 11 time units. A better makespan is obtained and the critical
FMU does not change. Starting from S2, a new swapping neighbor-
hood is generated. In particular, when swapping the third and the
sixth genes, the refinement operator obtains

S3 ¼ ½ð1;1Þ; ð1;3Þ; ð1;3Þ; ð1;1Þ; ð1;3Þ; ð1;1Þ�:

The decoding process provides the schedule of Fig. 10b, with a
makespan of 7 + 3 = 10 time units which cannot be further im-
proved by the refinement operator. Indeed, we can show that 10
represents a lower bound for the makespan of U1, given the current
job assignments. As the lowest processing time for the first opera-
tion of both J1 and J3 is one time unit and it is given by the same
machine M12, the completion time of one among O1

11 and O1
31 is at

least two. As the minimum processing time for the remaining oper-
ations of J1 and J3 is five, a lower bound for the completion time of
both J1 and J3 on U1 (excluding the delivery time) is seven. We recall
that the refinement operator does not change the job assignment
and the related job delivery time. As a consequence, if we add three
(the delivery time of J3 on U1) we obtain 10 time units, which is a
Fig. 10. Example of local search-
lower bound for the local makespan of U1, given the current job
assignment. Also, no new critical FMU emerges, as the makespans
for both U2 and U3 is nine time units (see Fig. 3), and the local
search stops providing a new locally optimal chromosome.

3.6. The Improved Genetic Algorithm for DFJS

The IGA is summarized in Fig. 11. After encoding job and oper-
ation information into genes, the population is initialized by com-
bining this information into N chromosomes, each determined by a
random gene sequence. The local and global makespans of individ-
uals are then evaluated according to the decoding process and the
algorithm enters two nested loops. The inner loop generates new
individuals by crossover between selected pairs of chromosomes
and by applying local and machine mutations to the offspring.
Then, global and refinement mutations are applied within the out-
er loop, that controls the population evolution from a generation to
the next one, until the termination conditions are satisfied. The IGA
terminates if a predefined number qI of iteration is reached or the
best solution found has not changed within the last qS iterations
(qS < qI). Then, the best found schedule is output and the algo-
rithm ends.

4. Numerical experiments

The performance of the IGA has been tested on several in-
stances. We consider two groups of tests. The first group aims at
comparing IGA with other algorithms designed for distributed
scheduling and, in particular, Jia et al. [19], Chan et al. [7,9]. The
second group of tests enlarges the benchmark to further instances
of DFJS obtained from some FJS literature instances adapted to the
distributed scheduling case. IGA has been implemented in C++ and
based refinement mutation.



Fig. 11. The improved genetic algorithm.

Table 5
First group instances: IGA parameters.

Parameter DFJS FJS DJS JS

Number of individuals per generation N 100 100 100 30
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compiled with Gnu compiler. The results described in the following
sections have been obtained on a personal computer equipped
with a 2.0 GHz Intel Core2 processor and 2 GB RAM.

4.1. Comparison with other algorithms designed for distributed
scheduling

The instances used to compare IGA with other algorithms de-
signed for distributed scheduling are summarized in Table 4. For
each instance, columns report, in the order, the type of the problem
they refer to, the name, the number of FMUs (1 for non-distributed
problems), the maximum number of machines able to perform a
given operation (1 if job routing is fixed), the number of jobs, the
maximum number of operations per job and the reference where
it was introduced and/or tested. Note that Chan et al. [7,9] provide
results for further instances with up to 10 factories and 50 jobs, but
it was not possible to retrieve a full description of them. Note also
that the cited works test their algorithms on single FMU as well as
fixed routing settings, that is, instances of the FJS and JS problems.

IGA parameters have been calibrated by preliminary tests on
both the instances described above and the other instances derived
from literature. The values used for different types of instances
(columns DFJS, FJS, DJS and JS) are reported in Table 5.

IGA has a non-deterministic nature and hence, as for the com-
putational tests described in [9], it has been run 50 times on each
problem instance, to measure the average performance and the
deviation of the obtained solutions. Results are shown in Table 6.
We consider three cases: results reported in literature (as from col-
Table 4
First group instances.

Type Instance jUj m/o jJj ops/job Reference

DFJS dfjs01 2 3 6 4 [9]
dfjs02 2 3 10 4 [7]

FJS fjs01 1 3 5 4 [22]

DJS djs01 3 1 6 4 [19]

JS mt06 1 1 6 6 [15]
mt10 1 1 10 10 [15]
mt20 1 1 20 5 [15]
umn Reference), IGA with no refinement mutation and IGA with
refinement mutation. For each instances, we report the best ob-
tained makespan during the 50 runs (MK), the average makespan
(Av.), the per-cent standard deviation (Dev%) and the average com-
putational time in seconds (s, not available for literature results).

The results of IGA (with or without refinement mutation) dom-
inate the other algorithms designed for distributed scheduling.
Concerning the two DFJS instance, significant improvements are
obtained in terms of best makespan as well as algorithm reliability,
as the average makespan and the standard deviation are sensibly
smaller. Also results for the FJS instance are improved both in
terms of best schedule and average performance. For the DJS in-
stance, IGA obtains the same minimum makespan as GADG or
MGA (corresponding to the optimal value, as it is equal to the low-
er bound described in the next section) with a standard deviation
under the 2%. Finally, concerning the Fisher–Thompson JS in-
stances (mt06, mt10 and mt20), IGA sensibly improves over the
makespan obtained by MGA.

Comparing the results of IGA with and without refinement, we
observe that, thanks to the refinement operator, IGA is able to find
always better solution and to improve the average performance. In
particular, for the JS instances, IGA with refinement finds the opti-
Maximum number of generations qI 5000 800 5000 100
Number of generation without improvement (%

referred to qI)
qS 75 75 75 75

Type of crossover (‘one-’ or ‘two-’ points) Two Two Two One
Probability of applying local mutation qL

p 0.9 0.9 0.75 0.25
Number of permutations in local mutation (%

referred to N)
qL

q 20 20 20 5

Probability of applying global mutation qG
p 0.5 – 0.4 –

Number of job-assignment changes in global
mutation (% referred to the number of jobs)

qG
q 20 20 20 –

Number of not improving iterations before
applying machine mutation

qM
q 200 200 – –

Probability of changing the assignment of an
operation in machine mutation

qM
p 0.02 0.02 – –

Number of individuals to refine qR
q 3 3 3 3



Table 6
First group instances: results (obtained optimal values in bold).

Inst. Literature IGA (no refinement) IGA (refinement)

Ref. MK Av. Dev% MK Av. Dev% s MK Av. Dev% s

dfjs01a [9] 42 43.1 n.a. 39 40.7 2.1 8.5 37 38.6 1.9 156.0
dfjs02a [7] 49 51.0 25.2 39 40.3 1.9 8.5 37 38.3 1.9 145.5

fjs01a [9] 36 37.4 2.8 35 35.4 1.4 0.0 35 35.1 0.9 1.0

djs01b [9] 11 11.0 n.a. 11 11.0 1.8 5.8 11 11.0 1.8 5.8

mt06b [19] 55 n.a. n.a. 55 57.6 2.3 0.0 55 55.0 0.0 0.9
mt10b [19] 972 n.a. n.a. 1139 1209.3 2.6 0.0 930 947.4 0.9 114.8
mt20b [19] 1207 n.a. n.a. 1435 1513.3 2.1 0.0 1172 1181.1 0.3 96.4

n.a.: not available.
a Results from GADG.
b Results from MGA.

Table 8
IGA computational results: DFJS instances with two FMUs.

Inst. Jobs Ops. MK Av. Dev% T (s) LB Gap%

la01 10 5 413 413.0 0.0 12.0 413 0.0
la02 10 5 394 394.0 0.0 11.2 394 0.0
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mal solutions for mt06 and mt10 (as retrieved from [24]) and the
gap for mt20 is 1% (1172 instead of 1160 [24]). The better results
are obtained at the cost of sensibly increasing the running time.
Concerning this last issues, we observe that running times can be
sensibly reduced. Indeed, tests have considered the maximum
number of iterations and the population size as from Chan et al.
[9]. Computational evidence show that IGA normally converges
in less than 1000 generations for DFJS and DJS instances (instead
of 5000) and less than 100 iterations for FJS instance (instead of
800).

4.2. Test on further DFJS instances

In order to test IGA on a larger test set, we have considered sev-
eral instances derived from classical scheduling benchmarks. In
particular, we have obtained instances for the DFJS starting from
23 of the problems proposed by Hurink et al. [18] for the FJS (set
rdata), which in turn are based on the well known Fisher and
Thompson [15] problems (mt06, mt10 and mt20) and on the Law-
rence [21] benchmark (la01-20) for the classical JS. Each DFJS in-
stance has been obtained by supposing that all the FMUs share
the same characteristics and by replicating the data describing
the related flexible job shop for each FMU. Cases with two, three
or four FMUs have been taken into account, leading to a total of
69 instances. The distance from FMUs to jobs has been considered
negligible. All the basic JS and FJS instances are available in Mastro-
lilli [23].

IGA parameters have been calibrated by preliminary tests on
the instances described above and the best estimated values are
summarized in Table 7: column DFJS-2 refers to the parameters
Table 7
Parameter summary for DFJS instances.

Parameter DFJS-2 DFJS-3/4

Number of individuals per generation N 50 50
Maximum number of generations qI 300 250
Number of generation without improvement

(% referred to qI)
qS 75 75

Type of crossover (‘one-’ or ‘two-’ points) Two Two
Probability of applying local mutation qL

p 0.9 0.9
Number of permutations in local mutation

(% referred to N)
qL

q 20 20

Probability of applying global mutation qG
p 0.5 0.5

Number of job-assignment changes in global mutation
(% referred to the number of jobs)

qG
q 20 20

Number of not improving iterations before applying
machine mutation

qM
q 40 40

Probability of changing the assignment of an
operation in machine mutation

qM
p 0.02 0.02

Number of individuals to refine qR
q 3 3
used for instances of the DFJS with 2 FMUs and column DFJS-3/4
refers to the parameters used for instances of the DFJS with 3 or
4 FMUs. Note that, in order to achieve a good trade-off between
the quality of the results and the computational effort, we have re-
duced both the population size, the maximum number of genera-
tions and the interval for applying machine mutation with
respect to those in Table 5, while the remaining parameters keep
the same values. Indeed, as observed before, IGA normally con-
verges in a number of generations smaller than shown in Table
5. Also we can reduce the population size thanks to the local-
search-based refinement operator, able to let a set of chromosomes
converge towards a local optimal one: if a larger population is con-
sidered, some of the individuals are likely to be redundant, being
related to the same local optimum.

Table 8 shows the results obtained by the IGA for the DFJS in-
stances with two FMUs. The first three columns give the name of
the FJS instance used to derive the DFJS instance together with
the number of jobs and operations per job. Columns MK, Av.,
Dev% and T report, respectively, the best global makespan obtained
by IGA during five runs, the average makespan, the percent stan-
dard deviation and the average computational time in seconds.
The best global makespan is compared with the lower bound re-
ported in column LB. As no lower bound for DFJS is available from
la03 10 5 349 349.0 0.0 10.8 349 0.0
la04 10 5 369 369.0 0.0 11.4 369 0.0
la05 10 5 380 380.0 0.0 8.0 380 0.0
la06 15 5 445 449.6 0.6 45.8 413 7.7
la07 15 5 412 419.2 1.1 50.2 376 9.6
la08 15 5 420 427.8 1.6 53.8 369 13.8
la09 15 5 469 474.6 0.8 45.2 382 22.8
la10 15 5 445 448.6 0.5 45.0 443 0.5
la11 20 5 570 571.6 0.3 126.0 413 38.0
la12 20 5 504 508.0 0.4 116.0 408 23.5
la13 20 5 542 552.2 1.0 125.4 382 41.9
la14 20 5 570 576.0 1.2 122.2 443 28.7
la15 20 5 584 588.8 0.7 119.6 378 54.5
la16 10 10 717 717.0 0.0 140.2 717 0.0
la17 10 10 646 646.0 0.0 112.6 646 0.0
la18 10 10 663 663.0 0.0 132.4 663 0.0
la19 10 10 617 617.2 0.1 147.2 617 0.0
la20 10 10 756 756.0 0.0 99.8 756 0.0

mt06 6 6 47 47.0 0.0 2.0 47 0.0
mt10 10 10 655 655.0 0.0 173.0 655 0.0
mt20 20 5 560 566.0 0.9 121.2 387 44.7

Average 0.4 79.6 12.4
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literature, we compute it by keeping the precedence constraints for
operations of the same job and by eliminating the constraint saying
that a machine can process just one operation at a time. For each
job, we determine the lowest possible time to complete it: for each
FMU, we consider that all the operations are carried out by the ma-
chine with the smallest processing time, and we sum up these val-
ues and the delivery time due to the distance of between the job
and the FMU obtaining the best completion time for a job within
a given FMU; then we consider the minimum completion time
among all FMUs. Finally, LB is obtained by considering the maxi-
mum value over all of these job completion times. This process is
synthesized by the following formula:

LB ¼max
i2J

min
l2Ui

Xnl
i

j¼1

min
k2Ml

ij

plk
ij

n o
þ dl

i

8<
:

9=
;
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:

9=
;:

Note that the proposed lower bound may be very poor. As a
matter of fact, just one single job determines LB, that means that
LB is not influenced by the distribution of jobs among the different
Fig. 12. IGA computational results: global makespans for

Table 9
IGA computational results: DFJS instances with three FMUs.

Inst. Jobs Ops. MK Av. Dev% T (s) LB Gap%

la01 10 5 413 413.0 0.0 4.6 413 0.0
la02 10 5 394 394.0 0.0 3.6 394 0.0
la03 10 5 349 349.0 0.0 3.8 349 0.0
la04 10 5 369 369.0 0.0 3.8 369 0.0
la05 10 5 380 380.0 0.0 2.6 380 0.0
la06 15 5 413 413.0 0.0 17.4 413 0.0
la07 15 5 376 376.0 0.0 18.2 376 0.0
la08 15 5 369 369.0 0.0 19.6 369 0.0
la09 15 5 382 387.4 1.3 17.8 382 0.0
la10 15 5 443 443.0 0.0 17.0 443 0.0
la11 20 5 425 436.8 1.7 50.6 413 2.9
la12 20 5 408 408.0 0.0 44.6 408 0.0
la13 20 5 419 430.2 1.6 45.8 382 9.7
la14 20 5 443 448.8 1.2 48.8 443 0.0
la15 20 5 451 456.0 1.6 42.2 378 19.3
la16 10 10 717 717.0 0.0 36.0 717 0.0
la17 10 10 646 646.0 0.0 31.6 646 0.0
la18 10 10 663 663.0 0.0 36.8 663 0.0
la19 10 10 617 617.0 0.0 62.4 617 0.0
la20 10 10 756 756.0 0.0 34.2 756 0.0

mt06 6 6 47 47.0 0.0 1.0 47 0.0
mt10 10 10 655 655.0 0.0 50.0 655 0.0
mt20 20 5 439 442.6 0.6 48.2 387 13.4

Average 0.4 27.9 2.0
FMUs: according to LB hypothesis, machines are able to carry out
all the operations simultaneously and the number of jobs assigned
to a FMU does not influence the time required to process them. The
last column of Table 8 reports a measure of the quality of the best
global makespan, obtained as per-cent error related to LB:

Gap% ¼ MK� LB
LB

� 100

In many cases (13 out of 23), the global makespan obtained by IGA
is proven to be optimal (MK ¼ LB) or very close to the optimal one
(the gap is less than 0.5%). For the remaining instances, the gap can
be high, but we recall that the LB is very poor. Of course, given the
lower bound definition, better gaps are obtained if we consider the
distribution of jobs among more than two FMUs. IGA applied to in-
stances with three FMUs (see Table 9) is able to find the optimal
global makespan in 19 out of 23 instances, and just in two cases
the gap is over 10%.

Finally, with four FMUs (see Table 10), IGA finds the optimal
solution in all the tested instances but one with a 5% gap.
DFJS instances with one two, three and four FMUs.

Table 10
IGA computational results: DFJS instances with four FMUs.

Inst. Jobs Ops. MK Av. Dev% T (s) LB Gap%

la01 10 5 413 413.0 0.0 1.8 413 0.0
la02 10 5 394 394.0 0.0 1.8 394 0.0
la03 10 5 349 349.0 0.0 2.2 349 0.0
la04 10 5 369 369.0 0.0 2.0 369 0.0
la05 10 5 380 380.0 0.0 1.0 380 0.0
la06 15 5 413 413.0 0.0 9.0 413 0.0
la07 15 5 376 376.0 0.0 9.6 376 0.0
la08 15 5 369 369.0 0.0 12.6 369 0.0
la09 15 5 382 382.0 0.0 11.6 382 0.0
la10 15 5 443 443.0 0.0 7.8 443 0.0
la11 20 5 413 413.0 0.0 29.6 413 0.0
la12 20 5 408 408.0 0.0 26.6 408 0.0
la13 20 5 382 386.0 9.9 27.6 382 0.0
la14 20 5 443 443.0 0.0 29.8 443 0.0
la15 20 5 397 402.0 2.3 28.8 378 5.0
la16 10 10 717 717.0 0.0 20.2 717 0.0
la17 10 10 646 646.0 0.0 16.4 646 0.0
la18 10 10 663 663.0 0.0 24.4 663 0.0
la19 10 10 617 617.0 0.0 33.0 617 0.0
la20 10 10 756 756.0 0.0 18.0 756 0.0

mt06 6 6 47 47.0 0.0 0.2 47 0.0
mt10 10 10 655 655.0 0.0 31.2 655 0.0
mt20 20 5 387 388.4 2.0 27.0 387 0.0

Average 0.6 16.2 0.2
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According to the tables above, IGA is very robust, as shown by
the very small values of the standard deviation. This is mostly
due to the refinement operator, able to make the algorithm con-
verge towards a local minimum, if a near enough individual is gen-
erated. The IGA finds optimal or near-optimal solutions with
reduced computational times: most of the instances are solved in
a few seconds and in less than three minutes in the worst case.
Note that computational times decrease as the number of FMUs in-
crease: in fact, the average number of jobs per FMUs decrease and,
as a consequence, the refinement operator (acting on just one crit-
ical FMU at a time) has to deal with a smaller number of genes,
meaning that smaller swap-based neighborhoods have to be
analyzed.

Fig. 12 summarizes the global makespans obtained by the IGA
for the DFJS with two, three and four FMUs. For the special one-
FMU case the best available results in literature are reported [25].

Results show that, in most of the tested instances, there is a rel-
evant improvement of the global makespan when considering two
FMUs instead of one, while the difference is not always appreciable
when a third or a fourth FMU is considered. By providing similar
reports, IGA could support the production management in deciding
the number of FMUs to assign to each production lot.
5. Conclusions and future work

In this paper, the DFJS arising in systems of FMUs has been stud-
ied. Most of the literature about the scheduling of Flexible Manu-
facturing Systems at the operational level is concerned with the
FJS, where a single FMU is considered and just two decisional levels
are involved: choosing the most suitable multipurpose machine for
each job operation (routing problem) and sequencing the opera-
tions assigned to each machine over time span (sequencing prob-
lem). FMUs systems give the opportunity of distributing the total
workload of a production lot among several FMUs, so that a third
decisional level has to be addressed by DFJS: choosing the FMU
to process each job (job assignment problem).

The IGA presented in this paper is able to take the three deci-
sional levels simultaneously into account and to provide a produc-
tion scheduling aiming at minimizing the global makespan of
FMUs systems. IGA starts from the same simple chromosome
encoding of MGA [19] and extends it to the flexible case, thanks
to a special decoding scheme able to choose among alternative ma-
chine routes. IGA exploits also a new mutation operator (refine-
ment) to improve locally the best individuals of each generation
by means of a neighborhood search based on gene swapping.

IGA has been compared with previous algorithm designed for
distributed scheduling problems and tested on a large set of DFJS
instances derived from well-known scheduling benchmarks, pro-
viding satisfactory results and proving the effectiveness of the
new decoding scheme and refinement operator. The efficiency of
the approach allows IGA to be used as the base for a tool to support
FMUs systems scheduling.

The results provided by the genetic approach proposed in this
paper are promising and further research on DFJS could extend
it. For example, the greedy algorithm solving the job routing prob-
lem during the chromosome decoding phase may be improved,
taking into account the trade-off with the efficiency of the decod-
ing process in term of impact on the overall computational time.
Another approach may decompose DFJS into two subproblems:
the assignment of jobs to FMUs and the FJS related to each FMU.
Based on this decomposition, a hybrid genetic procedure could
be used where individuals would represent candidate job-to-
FMU assignments. Genetic operators may be used to evolve the
population and provide good hypothesis on job distribution among
different FMUs. A neighborhood search procedure would evaluate
the fitness of each individual by effectively solving the FJS related
to each FMU. Finally, the definition of a better lower bound for DFJS
is an open question. These lines are the object of ongoing research.
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