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a b s t r a c t

In this paper, we set out to compare several techniques that can be used in the analysis of imbalanced
credit scoring data sets. In a credit scoring context, imbalanced data sets frequently occur as the number
of defaulting loans in a portfolio is usually much lower than the number of observations that do not
default. As well as using traditional classification techniques such as logistic regression, neural networks
and decision trees, this paper will also explore the suitability of gradient boosting, least square support
vector machines and random forests for loan default prediction.

Five real-world credit scoring data sets are used to build classifiers and test their performance. In our
experiments, we progressively increase class imbalance in each of these data sets by randomly under-
sampling the minority class of defaulters, so as to identify to what extent the predictive power of the
respective techniques is adversely affected. The performance criterion chosen to measure this effect is
the area under the receiver operating characteristic curve (AUC); Friedman’s statistic and Nemenyi post
hoc tests are used to test for significance of AUC differences between techniques.

The results from this empirical study indicate that the random forest and gradient boosting classifiers
perform very well in a credit scoring context and are able to cope comparatively well with pronounced
class imbalances in these data sets. We also found that, when faced with a large class imbalance, the C4.5
decision tree algorithm, quadratic discriminant analysis and k-nearest neighbours perform significantly
worse than the best performing classifiers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of credit scoring is essentially to classify loan appli-
cants into two classes, i.e., good payers (i.e., those who are likely
to keep up with their repayments) and bad payers (i.e., those
who are likely to default on their loans). In the current financial cli-
mate, and with the recent introduction of the Basel II Accord, finan-
cial institutions have even more incentives to select and
implement the most appropriate credit scoring techniques for their
credit portfolios. It is stated in Henley and Hand (1997) that com-
panies could make significant future savings if an improvement of
only a fraction of a percent could be made in the accuracy of the
credit scoring techniques implemented. However, in the research
literature, portfolios that can be considered as very low risk, or
low default portfolios (LDPs), have had relatively little attention
paid to them in particular with regards to which techniques are
most appropriate for scoring them. The underlying problem with
LDPs is that they contain a much smaller number of observations
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in the class of defaulters than in that of the good payers. A large
class imbalance is therefore present which some techniques may
not be able to successfully handle. Typical examples of low default
portfolios include high-quality corporate borrowers, banks, sover-
eigns and some categories of specialised lending (Van Der Burgt,
2007) but in some countries even certain retail lending portfolios
could turn out to have very low numbers of defaults compared
to the majority class. In a recent FSA publication regarding conser-
vative estimation of low default portfolios, regulatory concerns
were raised about whether firms can adequately asses the risk of
LDPs (Benjamin, Cathcart, & Ryan, 2006).

A wide range of classification techniques have already been pro-
posed in the credit scoring literature, including statistical tech-
niques, such as linear discriminant analysis and logistic regression,
and non-parametric models, such as k-nearest neighbour and deci-
sion trees. But it is currently unclear from the literature which tech-
nique is the most appropriate for improving discrimination for LDPs.
Table 1 provides a selection of techniques currently applied in a
credit scoring context, along with references showing some of their
reported applications in the literature.

Hence, the aim of this paper is to conduct a study of various
classification techniques based on five real-life credit scoring data
sets. These data sets will then have the size of their minority class
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Table 1
Credit scoring techniques and their applications.

Classification techniques Application in a credit scoring context

Logistic regression (LOG) Arminger, Enache, and Bonne (1997), Baesens et al. (2003), Desai et al. (1996), Steenackers and Goovaerts (1989), West
(2000), Wiginton (1980)

Decision trees (C4.5, CART, etc.) Arminger et al. (1997), Baesens et al. (2003), West (2000), Yobas et al. (2000)

Neural networks (NN) Altman (1994), Arminger et al. (1997), Baesens et al. (2003), Desai et al. (1996), West (2000), Yobas et al. (2000)

Linear discriminant analysis (LDA) Altman (1968), Baesens et al. (2003), Desai et al. (1996), West (2000), Yobas et al. (2000)

Quadratic discriminant analysis (QDA) Altman (1968), Baesens et al. (2003)

k-Nearest neighbours (k-NN) Baesens et al. (2003), Chatterjee and Barcun (1970), West (2000)

Support vector machines (SVM, LS-
SVM, etc.)

Baesens et al. (2003), Yang (2007)
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of defaulters further reduced by decrements of 5% (from an original
70/30 good/bad split) to see how the performance of the various
classification techniques is affected by increasing class imbalance.

The five real-life credit scoring data sets used in this empirical
research study include two data sets from Benelux (Belgium, Neth-
erlands and Luxembourg) institutions, the German Credit and Aus-
tralian Credit data sets which are publicly available at the UCI
repository (http://kdd.ics.uci.edu/), and the fifth data set is a
behavioural scoring data set, which was also obtained from a Ben-
elux institution.

The techniques that will be applied in this paper are logistic
regression (LOG), linear and quadratic discriminant analysis (LDA,
QDA), least square support vector machines (LS-SVM), decision
trees (C4.5), neural networks (NN), nearest-neighbour classifiers
(k-NN10, k-NN100), a gradient boosting algorithm and random for-
ests. We are especially interested in the power and usefulness of
the gradient boosting and random forest classifiers which have
yet to be thoroughly investigated in a credit scoring context.

All techniques will be evaluated in terms of their area under the
receiver operating characteristic curve (AUC). This is a measure of
the discrimination power of a classifier without regard to class dis-
tribution or misclassification cost (Baesens et al., 2003).

To make statistical inferences from the observed difference in
AUC, we followed the recommendations given in a recent article
(Demšar, 2006) that looked at the problem of benchmarking clas-
sifiers on multiple data sets. The recommendations given were
for a set of simple robust non-parametric tests for the statistical
comparison of the classifiers (Demšar, 2006). The AUC measures
will therefore be compared using Friedman’s average rank test,
and Nemenyi’s post hoc test will be employed to test the signifi-
cance of the differences in rank between individual classifiers. Fi-
nally, a variant of Demšar’s significance diagrams will be plotted
to visualise their results.

The organisation of this paper is as follows. Section 2 will begin
by providing a literature review of the work that has been con-
ducted on the topic of classification for imbalanced data sets. A
brief explanation will then be given for the ten classification tech-
niques to be used in the analysis of the data sets. Secondly, the
empirical set up and criteria used for comparing the classification
performance will be described. Thirdly, the results of our experi-
ments are presented and discussed. Finally, conclusions will be
drawn from the study and recommendations for further research
work will be outlined.

2. Literature review

A wide range of different classification techniques for scoring
credit data sets has been proposed in the literature, a non-exhaus-
tive list of which was provided earlier in Table 1. In addition, some
benchmarking studies have been undertaken to empirically
compare the performance of these various techniques (e.g., Bae-
sens et al., 2003), but they did not focus specifically on how these
techniques compare on heavily imbalanced samples, or to what ex-
tent any such comparison is affected by the issue of class imbal-
ance. For example, in Baesens et al. (2003) seventeen techniques
including both well-known techniques such as logistic regression
and discriminant analysis and more advanced techniques such as
least square support vector machines were compared on eight
real-life credit scoring data sets. Although more complicated tech-
niques such as radial basis function least square support vector
machines (RBF LS-SVM) and neural networks (NN) yielded good
performances in terms of AUC, simpler linear classifiers such as lin-
ear discriminant analysis (LDA) and logistic regression (LOG) also
gave very good performances. However, there are often conflicting
opinions when comparing the conclusions of studies promoting
differing techniques. For example, in Yobas, Crook, and Ross
(2000), the authors found that linear discriminant analysis (LDA)
outperformed neural networks in the prediction of loan default,
whereas in Desai, Crook, and Overstreet (1996), neural networks
were reported to actually perform significantly better than LDA.
Furthermore, many empirical studies only evaluate a small number
of classification techniques on a single credit scoring data set. The
data sets used in these empirical studies are also often far smaller
and less imbalanced than those data sets used in practice. Hence,
the issue of which classification technique to use for credit scoring,
particularly with a small number of bad observations, remains a
challenging problem (Baesens et al., 2003).

The topic of which good/bad distribution is the most appropri-
ate in classifying a data set has been discussed in some detail in the
machine learning and data mining literature. In Weiss and Provost
(2003) it was found that the naturally occurring class distributions
in the 25 data sets looked at, often did not produce the best-per-
forming classifiers. More specifically, based on the AUC measure
(which was preferred over the use of the error rate), it was shown
that the optimal class distribution should contain between 50% and
90% minority class examples within the training set. Alternatively,
a progressive adaptive sampling strategy for selecting the optimal
class distribution is proposed in Provost, Jensen, and Oates (1999).
Whilst this method of class adjustment can be very effective for
large data sets, with adequate observations in the minority class
of defaulters, in some low default portfolios there are only a very
small number of loan defaults to begin with.

Various kinds of techniques have been compared in the litera-
ture to try and ascertain the most effective way of overcoming a
large class imbalance. Chawla, Bowyer, Hall, and Kegelmeyer
(2002) proposed a synthetic minority over-sampling technique
(SMOTE) which was applied to example data sets in fraud, tele-
communications management, and detection of oil spills in satel-
lite images. In Japkowicz (2000), over-sampling and downsizing
were compared to the author’s own method of ‘‘learning by recog-
nition’’ in order to determine the most effective technique. The
findings, however, were inconclusive but demonstrated that both
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over-sampling the minority class and downsizing the majority
class can be very effective. Subsequently, Batista (2004) identified
ten alternative techniques in dealing with class imbalances and tri-
aled them on thirteen data sets. The techniques chosen included a
variety of under-sampling and over-sampling methods. Findings
suggested that generally over-sampling methods provide more
accurate results than under-sampling methods. Also, a combina-
tion of either SMOTE (Chawla et al., 2002) and Tomek links or
SMOTE and ENN (a nearest-neighbour cleaning rule), were
proposed.
3. Overview of classification techniques

This study aims to compare the performance of a wide range of
classification techniques within a credit scoring context, thereby
assessing to what extent they are affected by increasing class
imbalance. For the purpose of this study, ten classifiers have been
selected which provide a balance between well-established credit
scoring techniques such as logistic regression, decision trees and
neural networks, and newly developed machine learning tech-
niques such as least square support vector machines, gradient
boosting and random forests. A brief explanation of each of the
techniques applied in this paper is presented below.

3.1. Logistic regression

For this paper, we will be focusing on the binary response of
whether a creditor turns out to be a good or bad payer (i.e., non-de-
faulter vs. defaulter). For this binary response model, the response
variable, y, can take on one of two possible values; i.e., y = 0 if the
customer is a bad payer, y = 1 if he/she is a good payer. Let us as-
sume x is a column vector of M explanatory variables and
p = Pr(y = 1|x) is the response probability to be modelled. The num-
ber of observations is denoted by N. The logistic regression model
then takes the form:

logitðpÞ � log
p

1� p

� �
¼ aþ bT x; ð1Þ

where a is the intercept parameter and bT contains the variable
coefficients (Hosmer & Stanley, 2000).

3.2. Linear and quadratic discriminant analysis

Discriminant analysis assigns an observation to the response,
yðy 2 f0;1gÞ, with the largest posterior probability; i.e., classify
into class 0 if pð0jxÞ > pð1jxÞ, or class 1 if the reverse is true.
According to Bayes’ theorem, these posterior probabilities are gi-
ven by

pðyjxÞ ¼ pðxjyÞpðyÞ
pðxÞ : ð2Þ

Assuming now that the class-conditional distributions p(x|y = 0),
p(x|y = 1) are multivariate normal distributions with mean vector
l0, l1, and covariance matrix R0, R1, respectively, the classification
rule becomes: classify as y = 0 if the following is satisfied:

x� l0

� �T X�1

0

x� l0

� �
� x� l1

� �T X�1

1

x� l1

� �
< 2 log Pðy ¼ 0Þ � logðPðy ¼ 1ÞÞð Þð Þ þ log jR1j � log jR0j

ð3Þ

Linear discriminant analysis is then obtained if the simplifying
assumption is made that both covariance matrices are equal, i.e.,
R0 = R1 = R, which has the effect of cancelling out the quadratic
terms in the expression above.
3.3. Neural networks (Multi-layer perceptron)

Neural networks (NN) are mathematical representations mod-
elled on the functionality of the human brain (Bishop, 1995). The
added benefit of a NN is its flexibility in modelling virtually any
non-linear association between input variables and target variable.
Although various architectures have been proposed, our study fo-
cuses on probably the most widely used type of NN, i.e., the mul-
tilayer perceptron (MLP). A MLP is typically composed of an
input layer (consisting of neurons for all input variables), a hidden
layer (consisting of any number of hidden neurons), and an output
layer (in our case, one neuron). Each neuron processes its inputs
and transmits its output value to the neurons in the subsequent
layer. Each such connection between neurons is assigned a weight
during training. The output of hidden neuron i is computed by
applying an activation function f(1) (for example the logistic func-
tion) to the weighted inputs and its bias term bð1Þi :

hi ¼ f ð1Þ bð1Þi þ
XM

j¼1

Wijxj

 !
; ð4Þ

where W represents a weight matrix in which Wij denotes the
weight connecting input j to hidden neuron i. For the analysis con-
ducted in this paper, a binary prediction will be made; hence, for
the activation function in the output layer, we will be using the lo-
gistic (sigmoid) activation function, f ð2ÞðxÞ ¼ 1

1þe�x to obtain a re-
sponse probability:

p ¼ f ð2Þ bð2Þ þ
Xnh

j¼1

vjhj

 !
; ð5Þ

with nh the number of hidden neurons and v the weight vector
where vj represents the weight connecting hidden neuron j to the
output neuron. During model estimation, the weights of the net-
work are first randomly initialised and then iteratively adjusted
so as to minimise an objective function, e.g., the sum of squared er-
rors (possibly accompanied by a regularisation term to prevent
over-fitting). This iterative procedure can be based on simple gradi-
ent descent learning or more sophisticated optimisation methods
such as Levenberg–Marquardt or Quasi-Newton. The number of
hidden neurons can be determined through a grid search based
on validation set performance.

3.4. Least square support vector machines (LS-SVMs)

Support vector machines (SVMs) are a set of powerful super-
vised learning techniques used for classification and regression.
Their basic principle is to construct a maximum-margin separating
hyperplane in some transformed feature space. Rather than requir-
ing one to specify the exact transformation though, they use the
principle of kernel substitution to turn them into a general (non-
linear) model. The least square support vector machine (LS-SVM)
proposed by Suykens, Van Gestel, De Brabanter, De Moor, and Van-
dewalle (2002) is a further adaptation of Vapnik’s original SVM for-
mulation which leads to solving linear KKT (Karush–Kuhn–Tucker)
systems (rather than a more complex quadratic programing prob-
lem). The optimisation problem for the LS-SVM is defined as:

min
w;b;e

Jðw; b; eÞ ¼ 1
2

wTwþ c
1
2

XN

i¼1

e2
i ; ð6Þ

subject to the following equality constraints:

yi wTuðxiÞ þ b
� �

¼ 1� ei; i ¼ 1; . . . ;N; ð7Þ

Where w is the weight vector in primal space, c is the regularisation
parameter, and yi = +1 or �1 for good (bad) payers, respectively
(Suykens et al., 2002). A solution can then be obtained after
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constructing the Lagrangian, and choosing a particular kernel func-
tion K(x,xi) that computes inner products in the transformed space,
based on which a classifier of the following form is obtained:

yðxÞ ¼ sign
XN

i¼1

aiyiKðx;xiÞ þ b

" #
;

where by Kðx;xiÞ ¼ uðxÞTuðxiÞ is taken to be a positive definite ker-
nel satisfying the Mercer theorem.The hyper parameter c for the LS-
SVM classification technique is tuned using 10-fold cross validation.

3.5. C4.5. decision trees

A decision tree consists of internal nodes that specify tests on
individual input variables or attributes that split the data into
smaller subsets, and a series of leaf nodes assigning a class to each
of the observations in the resulting segments. For our study, we
chose the popular decision tree classifier C4.5, which builds deci-
sion trees using the concept of information entropy (Quinlan,
1993). The entropy of a sample S of classified observations is given
by

Entropy ðSÞ ¼ �p1log2ðp1Þ � p0log2ðp0Þ; ð8Þ

where p1(p0) are the proportions of the class values 1(0) in the sam-
ple S, respectively. C4.5 examines the normalised information gain
(entropy difference) that results from choosing an attribute for
splitting the data. The attribute with the highest normalised infor-
mation gain is the one used to make the decision. The algorithm
then recurs on the smaller subsets.

3.6. k-NN (memory based reasoning)

The k-nearest neighbours algorithm (k-NN) classifies a data
point by taking a majority vote of its k most similar data points
(Hastie, Tibshirani, & Friedman, 2001). The similarity measure used
in this paper is the Euclidean distance between the two points:

d xi; xj
� �

¼ kxi � xjk ¼ xi � xj
� �T xi � xj

� �h i1=2
: ð9Þ
Table 2
Characteristics of credit scoring data sets.

Inputs Data set
size

Training set
size

Test set
size

Goods/
bads

Bene1 27 2974 1984 990 70/30*

Bene2 27 7190 4795 2395 70/30
Austr 14 547 366 181 70/30*

Behav 60 1197 799 398 70/30*

Germ 20 1000 668 332 70/30

* Altered data set class distribution, Bene1 original distribution was 66.6% good
observations, 33.3% bad observations, Austr original distribution was 55.5% good
observations, 44.5% bad observations and the Behav original distribution was 80%
good observations, 20% bad observations.
3.7. Random forests

Random forests are defined as a group of un-pruned classifica-
tion or regression trees, trained on bootstrap samples of the train-
ing data using random feature selection in the process of tree
generation. After a large number of trees have been generated,
each tree votes for the most popular class. These tree voting proce-
dures are collectively defined as random forests. A more detailed
explanation of how to train a random forest can be found in Brei-
man (2001). For the Random Forests classification technique two
parameters require tuning. These are the number of trees and
the number of attributes used to grow each tree.

3.8. Gradient boosting

Gradient boosting (Friedman, 2001, 2002) is an ensemble algo-
rithm that improves the accuracy of a predictive function through
incremental minimisation of the error term. After the initial base
learner (most commonly a tree) is grown, each tree in the series
is fit to the so-called ‘‘pseudo residuals’’ of the prediction from
the earlier trees with the purpose of reducing the error. This leads
to the following model:

FðxÞ ¼ G0 þ b1T1ðxÞ þ b2T2ðxÞ þ � � � þ bnTnðxÞ; ð10Þ

where G0 equals the first value for the series, T1, . . . ,Tn are the trees
fitted to the pseudo-residuals, and bi are coefficients for the
respective tree nodes computed by the gradient boosting algorithm.
A more detailed explanation of gradient boosting can be found in
Friedman (2001, 2002). The gradient boosting classifier requires
tuning of the number of iterations and the maximum branch size
used in the splitting rule.

4. Experimental set-up and data sets

4.1. Data set characteristics

The characteristics of the data sets used in evaluating the per-
formance of the aforementioned classification techniques are given
below in Table 2. The Bene1 and Bene2 data sets were obtained
from two major financial institutions in the Benelux region. For
these two data sets, a bad customer was defined as someone
who had missed three consecutive months of payments. The Ger-
man credit data set and the Australian Credit data set are publicly
available at the UCI repository (http://www.kdd.ics.uci.edu/). The
Behav data set was also acquired from a Benelux institution. As
all the data sets used have a reasonable number of observations
they will each be split into a training (two thirds) and a test set
(one third). This test set will remain unchanged throughout the
analysis of the techniques.

4.2. Re-sampling setup and performance metrics

In order for the percentage reduction in the bad observations, in
each data set, to be relatively compared, the Bene1 set, Australian
credit and the Behavioural Scoring set have first been altered to give
a 70/30 class distribution. This was done by either under-sampling
the bad observations (from a total of 1041 bad observations in the
Bene1 data set, only 892 observations have been used; and from a
total of 307 bad observations in the Australian credit data set, only
164 observations have been used) or under-sampling the good
observations in the behavioural scoring data set, (from a total of
1436 good observations, only 838 observations have been used).

For this empirical study, the class of defaulters in each of the
training data sets was artificially reduced, by a factor of 5% up to
95% then by 2.5% and 1%, so as to create a larger difference in class
distribution. As a result of this reduction, eight data sets were cre-
ated for each of the five original data sets. The percentage splits cre-
ated were 75%, 80%, 85%, 90%, 95%, 97.5%, 99% good observations.
For this empirical study our focus is on the performance of classifi-
cation techniques on data sets with a large class imbalance. There-
fore detailed results will only be presented for the data set with the
original 70/30 split, as a benchmark, and data sets with 85%, 90%
and 99% splits. By doing so, it is possible to identify whether tech-
niques are adversely affected in the prediction of the target variable
when there is a substantially lower number of observations in one
of the classes. The performance criterion chosen to measure this ef-
fect is the area under the receiver operator characteristic curve
(AUC) statistic as proposed by Baesens et al. (2003).

http://www.kdd.ics.uci.edu/
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The receiver operating characteristic curve (ROC) is a two-
dimensional graphical illustration of the trade-off between the true
positive rate (sensitivity) and false positive rate (1-specificity). The
ROC curve illustrates the behaviour of a classifier without having to
take into consideration the class distribution or misclassification
cost. In order to compare the ROC curves of different classifiers,
the area under the receiver operating characteristic curve (AUC)
must be computed. The AUC statistic is similar to the Gini coeffi-
cient which is equal to 2 � (AUC � 0.5). An example of an ROC
curve is depicted in Fig. 1:

The diagonal line represents the trade-off between the sensitiv-
ity and (1-specificity) for a random model, and has an AUC of 0.5.
For a well performing classifier the ROC curve needs to be as far to
the top left-hand corner as possible. In the example shown in Fig. 1,
the classifier that performs the best is the ROC1 curve.

4.3. Parameter tuning and input selection

The linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA) and logistic regression (LOG) classification tech-
niques require no parameter tuning. The LOG model was built in
SAS using proc logistic and using a stepwise variable selection
method. Both the LDA and QDA techniques were run in SAS using
proc discrim. Before all the techniques were run, dummy variables
were created for the categorical variables. The AUC statistic was
computed using the ROC macro by DeLong, DeLong, and Clarke-
Pearson (1988), which is available from the SAS website (http://
.support.sas.com/kb/25/017.html).

For the LS-SVM classifier, a linear kernel was chosen and a grid
search mechanism was used to tune the hyper-parameters. For the
LS-SVM, the LS-SVMlab Matlab toolbox developed by Suykens et al.
(2002) was used.

The NN classifiers were trained after selecting the best perform-
ing number of hidden neurons based on a validation set. The neural
networks were trained in SAS Enterprise Miner using a logistic hid-
den and target layer activation function.

The confidence level for the pruning strategy of C4.5 was varied
from 0.01 to 0.5, and the most appropriate value was selected for
each data set based on validation set performance. The tree was
built using the Weka (Witten & Frank, 2005) package.
Fig. 1. Example ROC curve.
Two parameters have to be set for the Random Forests tech-
nique: these are the number of trees and the number of attributes
used to grow each tree. A range of [10,50,100,250,500,1000] trees
has been assessed, as well as three different settings for the num-
ber of randomly selected attributes per tree ð½0:5;1;2�:

ffiffiffiffiffi
M
p
Þ, where-

by M denotes the number of attributes within the respective data
set (Breiman, 2001). As with the C4.5 algorithm, Random Forests
were also trained in Weka (Witten & Frank, 2005), using 10-fold
cross-validation for tuning the parameters.

The k-Nearest Neighbours technique was applied for both k = 10
and k = 100, using the Weka (Witten & Frank, 2005) IBk classifier.
For the gradient boosting classifier a partitioning algorithm was
used as proposed by Friedman (2001). The number of iterations
was varied in the range [10,50,100,250,500,1000], with a maxi-
mum branch size of two selected for the splitting rule (Friedman,
2001). The gradient boosting node in SAS Enterprise Miner was
used to run this technique.

4.4. Statistical comparison of classifiers

We used Friedman’s test (Friedman, 1940) to compare the AUCs
of the different classifiers. The Friedman test statistic is based on
the average ranked (AR) performances of the classification tech-
niques on each data set, and is calculated as follows:

v2
F ¼

12D
KðK þ 1Þ

XK

j¼1

AR2
j �

KðK þ1Þ2

4

" #
; where ARj ¼

1
D

XD

i¼1

rj
i: ð11Þ

In (13), D denotes the number of data sets used in the study, K is the
total number of classifiers and rj

i is the rank of classifier j on data set
i. v2

F is distributed according to the Chi-square distribution with
K � 1 degrees of freedom. If the value of v2

F is large enough, then
the null hypothesis that there is no difference between the tech-
niques can be rejected. The Friedman statistic is well suited for this
type of data analysis as it is less susceptible to outliers (Friedman,
1940).

The post hoc Nemenyi test (Nemenyi, 1963) is applied to report
any significant differences between individual classifiers. The
Nemenyi post hoc test states that the performances of two or more
classifiers are significantly different if their average ranks differ by
at least the critical difference (CD), given by

CD ¼ qa;1;K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 1Þ

12D

r
: ð12Þ

In this formula, the value qa,1,K is based on the studentised range
statistic (Nemenyi, 1963). Finally, the results from Friedman’s sta-
tistic and the Nemenyi post hoc tests are displayed using a modified
version of Demšar (2006) significance diagrams (Lessmann,
Baesens, Mues, & Pietsch, 2008). These diagrams display the ranked
performances of the classification techniques along with the critical
difference to clearly show any techniques which are significantly
different to the best performing classifiers.

5. Results and discussion

The table on the following page (Table 3) reports the AUCs of all
ten classifiers on the five credit scoring data sets at varying degrees
of class imbalance. For each level of imbalance, the Friedman test
statistic and corresponding p-value is shown. As these were all sig-
nificant (p < 0.005) a post hoc Nemenyi test was then applied to
each class distribution. The technique achieving the highest AUC
on each data set is underlined as well as the overall highest ranked
technique. Table 3 shows that the gradient boosting algorithm has
the highest Friedman score (average rank (AR)) on two of the five
different percentage class splits. However at the extreme class split
(99% good, 1% bad) Random Forests provides the best average
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Table 3
Area under the receiver operating characteristic curve (AUC) results on test set data sets.

30% Bad 15% Bad 10% Bad
Friedman test statistic = 31.86 (p < 0.005) Friedman test statistic = 29.23 (p < 0.005) Friedman test statistic = 26.37 (p < 0.005)

Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR

LOG 79.6 78.7 76.7 90.6 63.4 5.4 79.4 78.0 74.0 91.8 67.8 4.5 78.1 78.8 76.6 50.0 65.4 4.4
C4.5 71.4 71.0 71.2 91.8 61.9 9.1 69.7 60.9 65.2 91.6 61.6 8.2 64.7 64.0 64.1 91.9 50.3 8.4
NN 78.6 78.1 72.7 92.1 72.1 5.7 75.5 77.6 70.1 92.1 70.0 5.7 75.1 76.4 72.4 89.7 68.8 5.8
Gradient boosting 78.2 81.2 77.2 94.9 72.1 3.7 79.8 80.3 75.0 94.8 70.7 2.3 78.0 80.2 75.3 93.8 63.3 3.2

LDA 79.2 78.0 79.1 94.4 75.6 3.8 78.6 77.4 76.0 93.8 76.6 3.2 77.9 77.3 74.2 94.5 70.1 3.2

QDA 75.4 73.7 71.8 85.5 63.0 8.5 68.4 72.5 59.7 65.4 51.4 9.2 67.2 70.8 52.8 84.9 50.7 8.4
Random forests 78.5 79.0 80.0 93.7 76.2 3.2 77.9 78.0 76.9 94.1 76.5 2.7 78.6 76.9 77.2 93.2 74.7 2.2
k-NN10 76.2 71.0 75.0 92.8 61.8 7.7 75.5 68.1 71.7 90.3 58.7 7.9 70.4 64.4 68.8 92.5 56.3 6.8
k-NN100 75.4 73.9 79.3 93.0 56.0 6.7 75.8 73.6 78.1 92.6 62.9 4.6 75.3 72.9 78.5 92.3 61.7 4.6

Lin LS-SVM 80.3 80.6 81.9 95.1 82.9 1.2 50.0 54.4 75.0 91.0 90.0 6.7 50.0 50.0 76.8 90.6 50.0 8.0

5% Bad 2.5% Bad 1% Bad
Friedman test statistic = 26.29 (p < 0.005) Friedman test statistic = 27.43 (p < 0.005) Friedman test statistic = 30.86 (p < 0.005)

Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR

LOG 75.0 75.4 75.7 50.0 50.0 5.5 72.7 73.9 55.1 50.0 50.0 6.3 50.0 64.7 50.0 50.0 50.0 7.7

C4.5 58.6 64.9 56.5 75.4 55.0 7.6 65.8 67.9 61.4 58.7 53.9 7.0 50.0 55.5 64.2 50.0 50.0 6.9
NN 68.4 70.7 68.3 89.4 64.4 5.0 71.2 70.2 59.2 70.0 62.3 4.6 50.0 62.5 54.2 86.7 54.0 5.6

Gradient boosting 70.8 78.0 76.6 93.1 52.7 3.4 68.1 74.7 71.4 88.3 55.6 2.8 58.1 69.1 59.4 74.5 51.0 3.5

LDA 74.1 76.1 73.8 93.5 63.5 2.6 75.7 72.2 62.6 81.8 60.6 3.0 50.2 69.0 58.3 86.8 54.6 3.4

QDA 63.8 72.0 50.0 59.7 50.5 7.9 66.5 65.3 50.0 51.6 50.5 8.3 50.0 50.0 50.0 52.0 50.7 7.9
Random forests 73.2 75.8 75.2 93.2 63.1 3.2 69.2 71.3 69.1 87.9 68.7 3.0 61.9 67.4 67.1 90.1 60.0 1.6
k-NN10 65.2 62.0 67.1 88.6 53.5 7.0 59.0 56.3 59.3 72.8 54.7 7.0 52.5 52.3 54.8 67.2 50.0 6.5
k-NN100 74.7 71.3 75.8 92.3 59.8 3.6 70.6 68.8 69.3 87.8 58.3 3.8 67.2 63.2 63.6 90.0 51.0 3.1

Lin LS-SVM 50.0 50.0 50.0 87.8 50.0 9.2 50.0 50.0 50.0 65.2 50.0 9.2 50.0 50.0 50.0 50.0 50.0 8.8
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ranking across the five data sets (Random Forests also ranks first
on the 10% data set).

In the majority of the class splits, the AR of the QDA and Lin LS-
SVM classifiers are statistically worse than the AR of the Random
Forests classifier at the 5% critical difference level (a = 0.05), as
shown in the significance diagrams included next. Note that, even
though the differences between the classifiers are small, it is
important to note that in a credit scoring context, an increase in
the discrimination ability of even a fraction of a percent may trans-
late into significant future savings (Henley & Hand, 1997).

The following significance diagrams display the AUC perfor-
mance ranks of the classifiers, along with Nemenyi’s critical differ-
ence (CD) tail. The CD value for all the following diagrams is equal
to 6.06. Each diagram shows the classification techniques listed in
ascending order of ranked performance on the y-axis, and the clas-
sifier’s mean rank across all five data sets displayed on the x-axis.
Two vertical dashed lines have been inserted to clearly identify the
end of the best performing classifier’s tail and the start of the next
significantly different classifier.

The first significance diagram (see Fig. 2) displays the average
rank of the classifiers at the original class distribution of a 70%
good, 30% bad split:

At this original 70/30% split, the linear LS-SVM is the best per-
forming classification technique with an AR value of 1.2. This dia-
gram clearly shows that the k-NN10, QDA and C4.5 techniques
perform significantly worse than the best performing classifier
with values of 7.7, 8.5 and 9.1 respectively.

The following significance diagram displays the average rank of
the classifiers at an 85% good, 15% bad class split:

At the level where only 15% of the data sets are bad observa-
tions, it is shown in the significance diagram that gradient boosting
becomes the best performing classifier (see Fig. 3). The gradient
boosting classifier performs significantly better than the quadratic
discriminant analysis (QDA) classifier. From these findings we can
make a preliminary assumption that when a larger class imbalance
is present, the QDA classifier remains significantly different to the
gradient boosting classifier. All the other techniques used are not
significantly different.

At a 90% good, 10% bad class split the significance diagram
shown in Fig. 4 indicates that the C4.5 and QDA algorithms are sig-
nificantly worse than the random forests classifier. It can be noted
that the Linear LS-SVM classifier however is progressively becom-
ing less powerful as a large class imbalance is present (see Fig. 5).

The final split, displaying a 99% good, 1% bad class split, indi-
cates that, at the most extreme class distribution analysed, two
classification techniques are significantly worse (Lin LS-SVM and
QDA). This displays an interesting finding that at the extreme split,
LOG is now close to being significantly worse than the Random
Forests algorithm. The logistic regression technique therefore
shows limited power in correctly classifying observations where
only a small number of bad observations exist. It can also be con-
cluded that the random forests classifier performs surprisingly well
given a large class imbalance.

In summary, when considering the AUC performance measures,
it can be concluded that the gradient boosting and random forest
classifiers yield a very good performance at extreme levels of class
imbalance, whereas the Lin LS-SVM sees a reduction in perfor-
mance as a larger class imbalance is introduced. However, the sim-
pler, linear classification techniques such as LDA and LOG also give
a relatively good performance, which is not significantly different
from that of the gradient boosting and random forest classifiers.
This finding seems to confirm the suggestion made in Baesens
et al. (2003) that most credit scoring data sets are only weakly
non-linear. However, techniques such as QDA, C4.5 and k-NN10
perform significantly worse than the best performing classifiers
at each percentage reduction. The majority of classification tech-



Fig. 2. AR comparison at a 70/30% split of good/bad observations.

Fig. 3. AR comparison at an 85/15% split of good/bad observations.

Fig. 4. AR comparison at a 90/10% split of good/bad observations.

Fig. 5. AR comparison at a 99/1% split of good/bad observations.
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niques yielded classification performances that are quite competi-
tive with each other.

6. Conclusions and recommendations for further work

In this comparative study we have looked at a number of credit
scoring techniques, and studied their performance over various
class distributions in five real-life credit data sets. Two techniques
that have yet to be fully researched in the context of credit scoring,
i.e., gradient boosting and random forests, were also chosen to give
a broader review of the techniques available. The classification
power of these techniques was assessed based on the area under
the receiver operating characteristic curve (AUC). Friedman’s test
and Nemenyi’s post hoc tests were then applied to determine
whether the differences between the average ranked performances
of the AUCs were statistically significant. Finally, these significance
results were visualised using significance diagrams for each of the
various class distributions analysed.

The results of these experiments show that the gradient boost-
ing and random forest classifiers performed well in dealing with
samples where a large class imbalance was present. It does appear
that in extreme cases the ability of random forests and gradient
boosting to concentrate on ‘local’ features in the imbalanced data
is useful. The most commonly used credit scoring techniques, lin-
ear discriminant analysis (LDA) and logistic regression (LOG), gave
results that were reasonably competitive with the more complex
techniques and this competitive performance continued even
when the samples became much more imbalanced. This would
suggest that the currently most popular approaches are fairly ro-
bust to imbalanced class sizes. On the other hand, techniques such
as QDA and C4.5 were significantly worse than the best performing
classifiers. It can also be concluded that the use of a linear kernel
LS-SVM would not be beneficial in the scoring of data sets where
a very large class imbalance exists.

Further work that could be conducted, as a result of these find-
ings, would be to firstly consider a stacking approach to classifica-
tion through the combination of multiple techniques. Such an
approach would allow a meta-learner to pick the best model to
classify an observation. Secondly, another interesting extension
to the research would be to apply these techniques on much larger
data sets which display a wider variety of class distributions. It
would also be of interest to look into the effect of not only the per-
centage class distribution but also the effect of the actual number
of observations in a data set.

Finally, as stated in the literature review section of this paper,
there have been several approaches already researched in the area
of over-sampling techniques to deal with large class imbalances.
Further research into this and their effect on credit scoring model
performance would be beneficial.
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