
Review

A comprehensive view of Hadoop research—A systematic
literature review

Ivanilton Polato a,b,n, Reginaldo Ré b, Alfredo Goldman a, Fabio Kon a

a Department of Computer Science, University of São Paulo, São Paulo, Brazil
b Department of Computer Science, Federal University of Technology - Paraná, Campo Mourão, Brazil

a r t i c l e i n f o

Article history:
Received 9 January 2014
Received in revised form
25 June 2014
Accepted 21 July 2014
Available online 1 August 2014

Keywords:
Systematic literature review
Apache Hadoop
MapReduce
HDFS
Survey

a b s t r a c t

Context: In recent years, the valuable knowledge that can be retrieved from petabyte scale datasets –

known as Big Data – led to the development of solutions to process information based on parallel and
distributed computing. Lately, Apache Hadoop has attracted strong attention due to its applicability to
Big Data processing. Problem: The support of Hadoop by the research community has provided the
development of new features to the framework. Recently, the number of publications in journals and
conferences about Hadoop has increased consistently, which makes it difficult for researchers to
comprehend the full body of research and areas that require further investigation. Solution: We
conducted a systematic literature review to assess research contributions to Apache Hadoop. Our
objective was to identify gaps, providing motivation for new research, and outline collaborations to
Apache Hadoop and its ecosystem, classifying and quantifying the main topics addressed in the
literature. Results: Our analysis led to some relevant conclusions: many interesting solutions developed
in the studies were never incorporated into the framework; most publications lack sufficient formal
documentation of the experiments conducted by authors, hindering their reproducibility; finally, the
systematic review presented in this paper demonstrates that Hadoop has evolved into a solid platform to
process large datasets, but we were able to spot promising areas and suggest topics for future research
within the framework.

& 2014 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . 2
2. Research method . 3

2.1. Objectives and research questions . 3
2.2. Search strategies . 3
2.3. Selection of studies . 4

3. Characterization of the selected studies . 4
4. Contributions to Apache Hadoop and its ecosystem . 5

4.1. Scheduling . 5
4.2. Data flow . 8
4.3. Storage & replication . 10
4.4. Cloud computing . 11
4.5. DBMS, indexing, queries, and random access. 12
4.6. The Hadoop ecosystem: Hive, Pig, HBase . 13
4.7. Energy management . 14
4.8. GPGPU . 14
4.9. Data security and cryptography . 15

5. Discussion . 15
5.1. Hadoop evolution . 15
5.2. Overview and studies interaction . 16

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.07.022
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: Department of Computer Science, Federal University of Technology - Paraná, Campo Mourão, Brazil. Tel./fax: þ55 44 3518 1449.
E-mail address: ipolato@utfpr.edu.br (I. Polato).

Journal of Network and Computer Applications 46 (2014) 1–25

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.07.022
http://dx.doi.org/10.1016/j.jnca.2014.07.022
http://dx.doi.org/10.1016/j.jnca.2014.07.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.022&domain=pdf
mailto:ipolato@utfpr.edu.br
http://dx.doi.org/10.1016/j.jnca.2014.07.022

5.3. Taxonomy. 18
5.4. Results and findings . 18

6. Related work . 19
7. Conclusion, research opportunities, and future work . 20
Acknowledgments . 21
Appendix A. Validation techniques used in the selected studies . 21
References . 23

1. Introduction

One of the largest technological challenges in software systems
research today is to provide mechanisms for storage, manipula-
tion, and information retrieval on large amounts of data. Web
services and social media produce together an impressive amount
of data, reaching the scale of petabytes daily (Facebook, 2012).
These data may contain valuable information, which sometimes is
not properly explored by existing systems. Most of this data is
stored in a non-structured manner, using different languages and
formats, which, in many cases, are incompatible (Bakshi, 2012;
Stonebraker et al., 2010).

Take, for instance, Facebook, which initially used relational data-
base management systems (DBMS) to store its data. Due to the
increasingly large volume of information generated on a daily basis
(from a 15TB dataset in 2007 to a 700TB dataset in 2010) (Thusoo et
al., 2010), the use of such infrastructure became impracticable.
Specially because, most of its data is unstructured, consisting of logs,
posts, photos, and pictures. One of the Facebook's largest clusters holds
more than 100 PB of data, processing more than 60,000 queries a day
(Facebook, 2012). Having achieved in September 2012 more than
1 billion active users, Facebook may be considered one of the largest
and most valuable social networks.

Companies holding large amounts of user data started to be
evaluated not just by their applications but also by their datasets,
specially the information that can be retrieved from them. Big
companies like Google, Facebook and Yahoo! have an aggregate
value not only for their provided services but also for the huge
amount of information kept. This information can be used for
numerous future applications, which may allow, for example,
personalized relationships with users.

The “Big Data” (Zikopoulos and Eaton, 2011; White, 2012) term
is used to refer to a collection of large datasets that may not be
processed using traditional database management tools. Some of
the challenges involved when dealing with Big Data goes beyond
processing, starting by storage and, later, analysis. Concerning data
analysis and Big Data, the need for infrastructures capable of
processing large amounts of data, within an acceptable time and
on constrained resources, is a significant problem. Plausible solu-
tions make use of parallel and distributed computing. This model
of computation has demonstrated to be essential nowadays to
extract relevant information from Big Data. Such processing is
accomplished using clusters and grids, which use, generally,
commodity hardware to aggregate computational capacity at a
relatively low cost.

Although parallel and distributed computing may be one of the
most promising solutions to store and manipulate Big Data, some
of its characteristics may inhibit its use by common users. Data
dependency and integrity, cluster load balancing and task sche-
duling are major concerns when dealing with parallel and
distributed computing. Adding the possibility of an almost certain
machine failure, the use of these concepts becomes non-trivial to
inexperienced programmers. Several frameworks have been
released to abstract these characteristics and provide high level
solutions to end users (DeWitt et al., 2008; Battré et al., 2010;

Malewicz et al., 2010; Isard et al., 2007); some of them were built
over programming paradigms, such as MPI and MapReduce.

The MapReduce programming paradigm, now highly used in
the context of Big Data, is not new. One of the first uses of this
paradigm was on the LISP programming language. It relies basi-
cally on two functions, Map and Reduce. The first generates maps
based on a given user defined function and the second groups Map
outputs together to compute an answer. The paradigm is very
useful when dealing with batch programs where data is manipu-
lated in a sequential way. Recently the MapReduce paradigm
attracted attention because of its applicability to parallel comput-
ing. Google's MapReduce composed initially of the GFS distributed
filesystem (Ghemawat et al., 2003) and the implementation of
MapReduce (Dean and Ghemawat, 2004, 2008), brought to the
fore the use of the simple and consolidated functions Map and
Reduce in parallel and distributed computing using Java and Cþþ
libraries. This approach feeds the Reduce function with the Map
function results. This enables parallelism since partitioned por-
tions of data may be fed into different instances of Map tasks
throughout the cluster. The results are gathered, used as inputs to
the Reduce instances, and the computation is accomplished. The
great novelty here is that the approach hides from users a lot of
the complexity of parallelization and distribution. Users can focus
on the functionality of their programs and the framework
abstracts the complexity and controls the infrastructure.

Based on this novel approach, Doug Cutting, an employee of
Yahoo! at the time, and Mike Cafarella, a professor at University of
Michigan, developed Hadoop, later called the Apache Hadoop
framework. It is an open source implementation of the Google's
MapReduce approach. It uses the same idea from Google's: hiding
complexity from users allowing them to focus on programming.
Mostly known by its MapReduce implementation, Apache Hadoop
also has an ecosystem composed of several applications ranging
from data warehousing to a data flow oriented programming
language. The Apache Hadoop framework provides solutions to
store, manipulate and extract information from Big Data in several
ways. The framework has evolved over the last few years and
promotes data integrity, replication, scalability, and failure recover
in a transparent and easy-to-use way. All these factors have made
Apache Hadoop very popular both in academia and in industry.

The early adoption of Hadoop by the research community has
provided rapid evolution and development of new features to the
framework. Over the last five years, the framework received
numerous contributions from researchers, most of them published
worldwide in journals and conferences. The large number of
publications makes it difficult for researchers to find specific
topics or areas that still need further investigation, resulting in a
need for an unbiased analysis of the scientific and technological
research results obtained in this field in the past years. Thus, this
paper is mainly directed to

� Researchers and graduate students willing to carry out new
research around Hadoop, which can use the current paper as a
guide to which areas have been covered in past research and
which areas deserve more attention.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–252

� Practitioners, and users interested in knowing what are the
major technological features incorporated into Hadoop and
how they evolved over time.

� Researchers interested in having an overall panorama of the
research that has been carried out around the field.

This work is also an opportunity to map publications and
classify them into categories, which indicates possible promising
areas in which contributions are needed. In this paper we present
the results of a systematic literature review on Hadoop research.
Our objectives include reviewing the literature on the framework
to find out which topics have been researched over the last few
years. We want to discover which areas have received improve-
ments and solutions from academic research and which areas still
have room for advancements. Thus, our main contributions are

� A systematic literature review pointing out which studies have
directly contributed to the Apache Hadoop.

� A taxonomy of the selected studies to allow an in-depth
analysis of the more active areas regarding the framework.

� Pointing out the main research areas that still need and have
room for improvements around Hadoop.

The rest of the paper is organized as follows. We start
presenting our research method and protocol used to develop this
systematic review. Section 3 presents the characterization of the
selected studies. In Section 4, we classify the selected studies
describing and presenting the contributions of each one to the
Apache Hadoop project. We discuss the findings in Section 5 and
analyze the results to point out hot and cold zones in the project.
Related papers are presented in Section 6 and finally, in Section 7
we present our conclusions and discuss opportunities for future
research.

2. Research method

Systematic reviews provide a way to execute in-depth unbiased
literature reviews, aggregating scientific value to its results. The
objective of a systematic review is to present a correct assessment
regarding a research topic through the application of a reliable,
rigorous, and auditable methodology, for example as proposed by
Kitchenham and Charters (2007). The systematic review starts
with the definition of a protocol that will guide the progress of the
research, including research questions and methods used during
the revision process. According to those authors, the protocol must
include

� The research questions that the study aims to respond.
� Strategies used in the searches for the primary studies like

search strings and selected digital libraries, journals, and
conferences.

� Inclusion and exclusion criteria for primary studies.
� Quality assessment procedure for selected studies.
� Strategy for data extraction and subsequent synthesis of

extracted data.

In this section, we present the protocol we used in our Apache
Hadoop systematic review. The main objective of this review was
to elucidate both fundamental aspects and contributions to
Apache Hadoop, including its programming paradigm, MapRe-
duce, its storage file system, the Hadoop Distributed File System
(HDFS), and the rest of its ecosystem.

2.1. Objectives and research questions

Parallel and distributed computing currently has a fundamental
role in data processing and information extraction of large
datasets. Over the last few years, commodity hardware became
part of clusters, since the x86 platform cope with the need of
having an overall better cost/performance ratio, while decreasing
maintenance cost.

Apache Hadoop is a framework developed to take advantage of
this approach, using such commodity clusters for storage, proces-
sing and manipulation of large amounts of data. The framework
was designed over the MapReduce paradigm and uses the HDFS as
a storage file system. Hadoop presents key characteristics when
performing parallel and distributed computing, such as data
integrity, availability, scalability, exception handling, and failure
recovery. Even more, these features are presented in a transparent
manner to the user, which represents a novel approach to
newcomers.

In this context, the objective of this work is to answer the
question: What are the main topics of investigation related to
Apache Hadoop and its programming paradigm, MapReduce?
Although Hadoop is a fairly adopted platform for distributed
processing of large datasets, it still has room for improvements
and we want to discover what are these areas. To achieve our goal,
it is necessary to evaluate the aspects addressed in the studies of
the academic community. This is our Research Question 1:

RQ1: What are the main research topics and aspects covered by
publications concerning the Apache Hadoop framework and
the MapReduce paradigm?

Our second objective is to organize the selected studies in a
structured taxonomy. Thus, our Research Question 2 must also be
answered during our research.

RQ2: How to organize the main aspects covered by the recent
studies about Apache Hadoop in a taxonomy?

This question aims to classify the recent studies according to
their collaboration with the Apache Hadoop framework, and
to answer RQ2 we could subdivide the question into three items
that will help the classification of the selected studies and the
formalization of the taxonomy:

� RQ2.1: How to create categories from the selected studies to
classify them into a taxonomy?

� RQ2.2: What kind of validation is performed in each study?
Simulation, analytical model, and experimentation?

� RQ2.3: The proposed approaches take into account whether the
problem being solved is application/data-specific or more
generic?

2.2. Search strategies

Having the research questions established, the search strategies
and search string were defined. We also defined the search scope
and the consulted digital libraries.

Research keywords: We identified the keywords based on the
research questions. There was no need to consider synonyms to
the keywords since the names were predefined based on the
names defined by the project developers. The search terms
identified were “Hadoop” and “MapReduce” written exactly as
defined by the developers in the Apache Hadoop website (http://
hadoop.apache.org).

Search strings: The search strings were built based on the
research questions using the selected keywords. Sometimes search

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 3

http://www.hadoop.apache.org
http://www.hadoop.apache.org

strings have to be adapted according to the specific needs of digital
libraries, but this was not necessary in our case. The search string
used to obtain the initial results of this review was “(Hadoop) OR
(MapReduce)”. This type of expression, more generic, may be used
in almost all digital libraries.

Sources: The criteria used to select sources of studies were must
have web search mechanism; search mechanisms must allow
customized searches by title and abstract; full articles must be
available for download using available contracts between our
university and the digital library; importance and relevance of
sources. With the search string defined, we chose the following
digital libraries as sources:

� ACM Digital Library.
� IEEEXplore Digital Library.
� ScienceDirect.

2.3. Selection of studies

Studies selected for further analysis on this systematic review
must be published as full papers in Journals or in Conferences
indexed by the selected digital libraries. After obtaining the results
from the digital libraries, all studies have to be analyzed indivi-
dually to confirm the relevance in the context of our review. This
way, we composed a group of primary papers that were reviewed
during our research. To select or discard studies, inclusion and
exclusion criteria were defined as follows. Table 1 shows the stages
involved in the selection of papers.

Inclusion criteria: The inclusion of a work is made based on its
relevance to the research questions. First, we analyzed title, key-
words and abstract of the studies obtained from the initial search
on the libraries. The selected studies from this stage were analyzed
again, this time by its introduction and conclusions. If at any time
one of the inclusion criteria was broken, the study was discarded.

The inclusion criteria were the following:

1. Studies dealing primarily with concepts related to the devel-
opment of solutions for the Apache Hadoop MapReduce plat-
form and its ecosystem.

2. Studies having Hadoop/MapReduce as a final objective (as an
end) and not as a means (infrastructure) to accomplish com-
putations for other areas.

3. Studies that present complementary approaches that extend
Hadoop/MapReduce and/or its ecosystem.

4. Studies published in Journals and/or Conferences.

Exclusion criteria: Exclusion of studies was made by the analysis
of title, keywords, abstract, and later by introduction and conclu-
sions when necessary, observing the following criteria:

1. Studies published in Workshops, since they are very numerous
and normally represent less mature work that later, after
refinement, are enhanced and published in conferences and
journals.

2. Studies that make use of Hadoop as an infrastructure platform
to obtain results without modifying or proposing new solutions
directly related to Hadoop.

3. Studies that do not cite Hadoop although citing MapReduce, i.
e., other MapReduce frameworks.

4. Studies that present complementary approaches that do not
extend Hadoop/MapReduce and/or its ecosystem.

5. Studies that do not have the complete full text available at the
source.

6. Studies that do not answer or are irrelevant to the research
questions.

7. Repeated studies that were published in more than one source.
8. Short papers, talks, demonstrations, or tutorials.
9. Similar studies published by the same authors. In this case, the

most recent or most complete one was considered.

3. Characterization of the selected studies

This systematic review follows a protocol developed based on
Kitchenham and Charters's (2007) methodology. This section
presents the characterization of the selected studies according to
our protocol.

Selected studies were obtained from three digital libraries:
IEEEXplore, ACM, and ScienceDirect. Searches were conducted in
the beginning of 2013 and later updated in June, 2014; in both
cases, the search was limited to papers published until December
31, 2013. Table 2 shows the numbers of studies selected from each
digital library. Our final selection resulted in 38 studies from the
ACM Digital Library, 63 from the IEEE Xplore Digital Library, and
5 from the ScienceDirect Digital Library, totaling 106 studies that
were reviewed.

Table 3 presents the results separated by source and type of
publication. Note that our protocol focused on selecting only
studies published in Journals and Conferences. We also have
limited the initial search to studies published since 2008 since

Table 2
Number of selected papers per source.

Source Query results Stage 2 Stage 3 Stage 4

ACM 634 347 70 38
IEEE 966 630 94 63
ScienceDirect 84 15 9 5

Table 3
Studies by type.

Paper type Journal Conference

Initial Selected Initial Selected

ACM 105 10 344 28
IEEE 37 2 763 61
ScienceDirect 84 5 0 0
Total 226 17 1107 89

Table 1
Studies selection stages.

Stage 1 Apply the search query to all the sources, gathering the results
Stage 2 Exclude invalid and duplicated papers
Stage 3 Apply inclusion/exclusion criteria to the papers titles, keywords, and abstracts
Stage 4 Apply inclusion/exclusion criteria to introductions and conclusions
Stage 5 Review the selected studies applying, when necessary, inclusion/exclusion criteria to the text

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–254

Hadoop became a major project at the Apache Software Founda-
tion in 2008. The difference on totals from Table 2 is explained by
the Workshop papers, discarded by our research protocol. Table 4
shows the year distribution of the selected papers.

With the selection stage complete, each study was analyzed
and reviewed, being also classified into one or more categories of
our taxonomy, presented in the next section.

4. Contributions to Apache Hadoop and its ecosystem

Apache Hadoop is best known for being the open source
implementation of Google's MapReduce computing model. Being
an open source solution, Hadoop attracted the attention of both
the academic and industrial communities. Yet, the major reasons
for its wide adoption are related to its intrinsic characteristics,
namely scalability, fault tolerance, and the ability to perform
parallel and distributed computations on low-end computing
clusters. This section presents the papers selected via our research
protocol, which are somehow related to these Hadoop
characteristics.

One of the objectives of this systematic literature review is to
propose a taxonomy and classify the related research literature
into categories. Our taxonomy creation methodology was based on
the project structure proposed by the Apache Hadoop developers.
After careful review of the selected papers, we developed our
proposed taxonomy, in which we classified the studies into four
major categories related to the Hadoop framework architecture:

MapReduce, Storage, Ecosystem, and Miscellaneous. The first
category, MapReduce, includes studies that develop some solution
involving the paradigm and its associated concepts, like schedul-
ing, data flow, and resource allocation. The Data Storage &
Manipulation category includes studies comprising HDFS, gather-
ing studies involving storage, replication, indexing, random access,
queries, research involving DBMS infrastructure, Cloud Computing,
and Cloud Storage. The third category includes studies containing
new approaches to the Hadoop Ecosystem, including papers
related to both existing and new components created to cope
with specific classes of problems. Finally, the last category received
studies that did not fit well in the other three categories, including
research involving GPGPU, cluster energy management, data
security, and cryptography. Our taxonomy was then structured
as shown in Fig. 1.

Each study was placed into one or more categories, since most
of the selected papers involve one or more concepts of Hadoop.
These intersecting areas are specially represented in the projection
graphs presented in Section 5, which show a relationship among
several studies from different categories. Now, we present the
main contributions observed in the selected studies, classified
according to our taxonomy. Note that some categories were
grouped here to promote a better organization and comprehen-
sion in this section.

Each of the following subsections presents the concepts and
issues involved in key areas, as well the published approaches
with enhancements to Apache Hadoop. Readers interested in the
details of specific aspects of Hadoop research shall read the
corresponding subsections below. Readers interested in having
only a general overview of Hadoop research may skip now to the
discussion in Section 5.

4.1. Scheduling

Scheduling, alongside with storage, is one of the most critical
aspects of highly concurrent parallel systems and was a topic
addressed by a large number of the studies we analyzed. Origin-
ally, Hadoop comes with three schedulers: FIFO, Fair, and Capacity.
The default Hadoop scheduler is the FIFO, where jobs are loaded
into a queue and scheduled to execute according to their order in

Fig. 1. Taxonomy hierarchical organization.

Table 4
Studies by year.

Publication year Journal Conference

ACM IEEE SD ACM IEEE

2013 0 1 5 2 3
2012 4 0 0 12 17
2011 1 1 0 8 23
2010 3 0 0 4 15
2009 2 0 0 1 3
2008 0 0 0 1 0

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 5

the queue. The Fair Scheduler was originally developed by Face-
book and later released to the Hadoop community. It gives a fair
share of the cluster capacity over time, thus its name. Jobs are put
into allocated pools, which receive a guaranteed minimum num-
ber of Map and Reduce slots. Using preemption, the scheduler
manages the cluster to assure a fair share of resources to each job.
The third scheduler, named Capacity Scheduler, was developed by
Yahoo! to guarantee a fair allocation of computational resources to
a large number of cluster users. To do so, it uses queues with a
configurable number of task (Map or Reduce) slots. Resources are
shared among queues according to its priority. Free resources from
empty queues are temporarily allocated to other queues. While
FIFO was the first and most simple scheduler implemented, the
Fair and the Capacity scheduler were created to address the
problem of managing multiple users sharing the same resources.
We now present schedulers and new approaches designed to
enhance the performance or to solve untreated classes of problems
in Hadoop.

Regarding the original schedulers, Tan et al. (2012a) propose
analytical models for FIFO and Fair schedulers, based on extensive
measurements and source code investigations. For a class of
heavy-tailed Map service time distributions, authors derive the
distribution tail of the job processing delay under the three
schedulers. Analytically analyzing the delays under different
schedulers for MapReduce, the authors discovered an interesting
starvation problem with the widely used Fair Scheduler due to its
greedy approach to launch Reduce tasks. To address this issue, the
Coupling Scheduler was designed and implemented. This schedu-
ler couples the progresses of Mappers and Reducers and jointly
optimize the placements for both of them. This mitigates the
starvation problem and improves the overall data locality. Tao
et al. (2011) propose an improved FAIR scheduling algorithm,
which takes into account job characteristics and data locality. This
scheduler kills tasks to free slots for new users. It adopts different
policies for I/O- and CPU-bound jobs based on data locality. Results
demonstrate that the improved version decreases both data
transfer and the execution time of jobs. Similarly, Nguyen et al.
(2012) propose a hybrid scheduler based on dynamic priority
aimed to reduce the latency for variable length concurrent jobs.
This algorithm is designed for data intensive workloads and tries
to maintain data locality during job execution.

Other concern regarding schedulers is the heterogeneity of the
hardware within clusters, which is discussed by some authors. The
LATE (Longest Approximate Time to End) scheduler proposed by
Zaharia et al. (2008) addresses the problem of speculative execu-
tion of straggling tasks while still concerned with performance.
Zaharia et al. (2010) also developed another technique named
delay scheduling, which intends to address the problem of data
locality while keeping fairness during task execution. In the work
of Zhao et al. (2012), a new job scheduling based on the Fair
scheduler is presented. The scheduler takes into account job
characteristics and, similar to the Fair Scheduler, allocates them
into queues. The scheduler manages three queues: one for large
jobs, another one for small jobs, and a third one for priority jobs.
The authors claim that, compared to the Fair scheduler, tasks of
large jobs could be executed with higher parallelism; short jobs
will not starve and long jobs can still finish in a reasonable time;
and higher priority jobs that come up may be computed as soon as
possible. Ibrahim et al. (2012) developed a scheduling algorithm
called Maestro to alleviate the non-local Map tasks execution
problem that relies on replica-aware execution of Map tasks. To
accomplish this, Maestro keeps track of the chunks and replica
locations, along with the number of other chunks hosted by each
node. This way, Maestro can schedule Map tasks with low impact
on other nodes’ local Map tasks execution by calculating the
probabilities of executing all the hosted chunks locally.

Lei et al. (2011) propose a novel approach, CREST (Combination
Re-Execution Scheduling Technology), which can achieve the
optimal running time for speculative Map tasks and decrease the
response time of MapReduce jobs. To mitigate the impact of
straggler tasks, it is common to run a speculative copy of the
straggler task. The main idea is that re-executing a combination of
tasks on a group of cluster nodes may progress faster than directly
speculating the straggler task on a target node, due to data locality.
The evaluation conducted demonstrates that CREST can reduce the
running time of speculative Map tasks by 70% on the best cases
and 50% on average, compared to LATE.

Kumar et al. (2012) propose a context-aware scheduler. The
proposed algorithm uses the existing heterogeneity of most
clusters and the workload mix, proposing optimizations for jobs
using the same dataset. Although still in a simulation stage, this
approach seeks performance gains by using the best of each node
on the cluster. The design is based on two key insights. First, a
large percentage of MapReduce jobs are run periodically and
roughly have the same characteristics regarding CPU, network,
and disk requirements. Second, the nodes in a Hadoop cluster
become heterogeneous over time due to failures, when newer
nodes replace old ones. The proposed scheduler is designed to
tackle this, taking into account job characteristics and the available
resources within cluster nodes. The scheduler uses then three
steps to accomplish its objective: classify jobs as CPU or I/O bound;
classify nodes as Computational or I/O good; and map the tasks of
a job with different demands to the nodes that can fulfill the
demands. Chen et al. (2010) propose another approach for hetero-
geneous environments. The SAMR (Self-Adaptive MapReduce)
scheduling algorithm improves MapReduce by saving execution
time and system resources. On MapReduce, slow tasks prolong the
execution time of an entire job. In heterogeneous clusters, nodes
require different times to accomplish the same tasks due to their
differences, such as computation capacities, communication,
architectures, memory, and power. The scheduler uses historical
information of each cluster node to tune parameters and discover
slow tasks. This way, the scheduler is able to classify certain nodes
as slow, launching backup tasks using the data locality principle.

A different approach to heterogeneity is presented by Rasooli
and Down (2011), which propose a Hadoop scheduling algorithm
that uses system information such as estimated job arrival rates
and mean job execution times to make scheduling decisions. Using
system information, the algorithm classifies jobs into classes and
matches them with available resources. Priority, minimum share
required, and fair share of users are also considered when making
a scheduling decision. The proposed algorithm is dynamic and
updates its decisions based on changes in these parameters.
Another approach was proposed by You et al. (2011), a Load-
Aware scheduler (LA scheduler) used in heterogeneous environ-
ments with dynamic loading. The scheduler consists of a data
collection module, which gathers the system-level information of
the TaskTrackers periodically, and a task assignment module,
which makes scheduling decisions according to the information
previously collected.

Polo et al. (2010) implemented an application-centric task
scheduler to predict the performance of concurrent MapReduce
jobs dynamically and adjust resource allocation for them. It uses
estimates of individual job completion times given a particular
resource allocation. The scheduler tries to maximize each job's
chance of meeting its performance goal by dynamically estimating
the completion time for each MapReduce job. It benefits from
MapReduce jobs composition of a large number of tasks, which is
known in advance, during the job initialization phase, and from
the job progression that can be observed during runtime. Similarly,
Tang et al. (2012) propose an algorithm to satisfy the users job
deadline requirements in the cloud environment. The MTSD

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–256

(MapReduce Task Scheduling for Deadline) algorithm uses the data
locality and cluster heterogeneity information to classify nodes
and improve the Map tasks data locality. Authors also present a
task execution model based on the node classification algorithm.
Differently from Polo et al., the authors consider Map and Reduce
tasks differently, since their execution times are not correlated,
and could not be accurate to compute average task execution time
using Map and Reduce tasks together.

Ahmad et al. (2012) propose an implementation called Tarazu,
comprising a suite of optimizations to improve MapReduce per-
formance on heterogeneous clusters. The proposed optimizations
are a communication-aware load balancing scheme of Map com-
putations across the nodes, a communication-aware scheduling of
Map computations to avoid bursty network traffic, and a predic-
tive load balancing of Reduce computations across the nodes.
Finally, the authors also propose online measurement-based
heuristics to estimate the information needed for making applica-
tion- and cluster-aware decisions. Focusing on the same problem,
Wang et al. (2012) propose Predator, an experience guided
configuration optimizer, which uses a MapReduce cost model
to estimate jobs execution times and classifies MapReduce
parameters into groups by their different tunable levels, using
the most adequate to achieve better performance.

Concerning not only heterogeneous environments but also
heterogeneous MapReduce workloads, Tian et al. (2009) propose
another dynamic scheduler integrated to Hadoop. The main goal is
to improve the hardware utilization rate when different MapRe-
duce workloads run on the cluster. Originally, Hadoop schedulers
are not aware of differences among MapReduce workloads, e.g.,
CPU-bound or I/O-bound workloads. The proposed scheduler
studies as a workload prediction mechanism, distributing work-
loads into three queues: CPU-bound, I/O-bound, and Wait-queue.
The authors proposed an analytical model to calculate and classify
the workloads at runtime. First, new jobs are put into the waiting
queue. Next, the scheduler assigns one Map task to every Task-
Tracker for predicting the job type. An analytical model is used to
classify the job and allocate it to the other two queues to finish its
execution. The triple-queue scheduler can balance the usage of
both CPU and disk I/O, improving Hadoop throughput by about
30% under heterogeneous workloads.

Data locality as a performance issue has also been recently
studied in Hadoop. He et al. (2011a) propose a new scheduler with
the premise that local Map tasks are always preferred over non-
local Map tasks, no matter which job a task belongs to. A locality
marker is used to classify nodes and to ensure each node has a fair
chance to grab its local tasks. To accomplish this, the scheduler
relaxes the job order for task scheduling. Doing so, it improves
performance by avoiding data transfer in Map tasks, which may
degrade job execution performance. This scheduler also tries to
guarantee, besides high data locality, high cluster utilization. This
is achieved by minimizing data transfer so nodes can maximize
the use of its resources for computation. Zhang et al. (2011c)
propose a scheduling method called next-k-node scheduling (NKS)
that improves the data locality of Map tasks. The scheduler
calculates a probability for each Map task in a job, generating
low probabilities for tasks that have its input data stored on the
next node. Following, the method preferentially schedules the task
with the highest probability. Thus, it reserves tasks with lower
probabilities to the nodes holding their input data, improving data
locality.

Scheduling Map tasks on a Hadoop instance deployed in a
heterogeneous environment may degrade system performance.
This happens because the schedulers may not be able to Reduce
the occurrence of Map tasks not scheduled to the nodes storing
the input data. Zhang et al. (2011b) propose a data-locality-aware
scheduling method to address this problem. After receiving a

compute request from an idle node, the method preferably
schedules the task whose input data is stored on this requesting
node. If there are no such tasks, it selects the task whose input
data is nearest to the requesting node. The scheduler also makes a
decision on whether to reserve a certain task for the node storing
its input data or scheduling it on a requesting node by transferring
its input data on the fly. Although the former decision may
improve data locality, it may incur on runtime overhead, e.g.,
waiting time. This overhead may also occur when adopting the
latter decision, when the transmission time for copying the input
data to the requesting node may overcome the waiting time.

The Hadoop original schedulers neither exploit data locality
nor addresses partitioning skew (the case where the computa-
tional load is unbalanced among Map and/or Reduce tasks,
generally causing performance degradation) present in some
MapReduce applications. Hammoud and Sakr (2011) present
another approach discussing the data locality problem. It deals
specifically with Reduce tasks. The Reduce phase scheduling is
modified to become aware of partitions, locations, and size, to
decrease network traffic. The scheduler, named Locality-Aware
Reduce Task Scheduler (LARTS), uses a practical strategy that
leverages network locations and sizes of partitions to exploit data
locality. LARTS attempts to schedule Reducers as close as possible
to their maximum amount of input data and conservatively
switches to a relaxation strategy seeking a balance among sche-
duling delay, scheduling skew, system utilization, and parallelism.
The work of Zhang et al. (2012a) also deals with the Reduce tasks
data locality. The authors propose a two-phase execution engine of
Reduce tasks to cope with massive remote data access delays that
may degrade system performance. The degradation is related to
massive remote I/O operations to copy the intermediate results of
Map tasks. In the first phase, the engine selects the nodes to run
Reduce tasks and then informs the selected nodes to prefetch
intermediate results for Reduce tasks. In the second phase, the
selected nodes allocate computing and memory resources to
execute the Reduce tasks.

Hammoud et al. (2012) propose another approach named
Center-of-Gravity Reduce Scheduler (CoGRS). The work designs a
locality-aware, skew-aware Reduce task scheduler for saving
MapReduce network traffic. The proposed scheduler attempts to
schedule every Reduce task at its center-of-gravity node deter-
mined by the network locations. By scheduling Reducers at their
center-of-gravity nodes, they argue for decreased network traffic,
which may possibly allow more MapReduce jobs to co-exist on the
same system.

Seo et al. (2009) present a prefetching and a pre-shuffling
scheme that can improve the overall performance in shared
MapReduce computation environments. The prefetching scheme
exploits data locality, while pre-shuffling is designed to reduce the
network overhead required to shuffle key-value pairs. The pro-
posed prefetching scheme is subdivided in two types. First, intra-
block prefetching, which prefetches data within a single block
while performing a complex computation. Second, inter-block
prefetching runs in the block level, by prefetching an entire
block replica to a local rack. In the pre-shuffling scheme, the task
scheduler looks into the input splits of the Map phase and predicts
how to partition the key-value pairs considering the Reducer
locations. The expected data are assigned to a Map task near the
future Reducer before the execution of the Mapper. The proposed
schemes are implemented in HPMR (High Performance MapRe-
duce Engine), as a plug-in type component for Hadoop.

Task splitting is another relevant issue around scheduling. Guo
et al. (2011) propose a mechanism to dynamically split and
consolidate tasks to cope with load balancing and break through
the concurrency limit resulting from fixed task granularity. The
default strategy of Map operation organization in Hadoop is that

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 7

each Map task processes key-value pairs contained in one block.
The sizes of key-value pairs may vary so that the numbers of key-
value pairs stored in different blocks may differ. The proposed task
splitting tackles these problems. For single-job scheduling, Aggres-
sive Scheduling with Prior Knowledge and Aggressive Scheduling
were proposed for both cases, first with prior knowledge and then
without it. For multi-job scheduling, the authors present the
Overlapped Shortest-Job-First Scheduling, which invokes the basic
short-job-first scheduling algorithm periodically and schedules all
waiting jobs in each cycle. Combined with a task splitting
mechanism, it gives an optimal average job turnaround time if
tasks are arbitrarily splittable.

Finally, Inter-job parallelism may also be interesting to enhance
MapReduce performance, although its data flow was not originally
designed to do it. All intermediate results belong to the jobs that
have created and used them. One relatively common situation
happens when multiple jobs access the same file. Nykiel et al.
(2010) propose a module named MRShare to approach this
problem. MRShare transforms a batch of queries into a new batch
that is executed more efficiently, by merging jobs into groups and
evaluating each group as a single query. Merging multiple jobs
allows the entire batch of jobs to be analyzed to maximize the
degree of resource sharing, minimizing resource consumption.
Another approach is proposed by Shi et al. (2011). The Shared Scan
Scheduler, named S3 and developed as a plugin to Hadoop, shares
the scanning of a common file for multiple jobs. The scheduler is
designed to deal with jobs arriving at different times, processing
them as early as possible. This is the main difference between the
two approaches: MRShare operates before the job execution starts
and S3 processes jobs at different times. Both approaches can
enhance the performance of Hadoop when dealing with single
data being used by multiple jobs.

4.2. Data flow

The data processing strategy employed by MapReduce consists
of two primitive functions: Map and Reduce. Behind this simple
abstraction is a single fixed data flow. A MapReduce job is divided
into Map and Reduce tasks, and assigned to idle slots of workers
according to these two stages. Thus, there are two types of
workers, Mappers to Map tasks and Reducers to Reduce tasks. In
the beginning of the Map phase, the input data is loaded into
HDFS. To ensure fault tolerance, the input data are partitioned into
equal sized blocks and replicated according to a replication factor.
Each block will be processed by a Mapper, resulting in intermedi-
ate outputs, which are locally sorted, optionally combined from
key-value pairs sharing the same key, and stored in local disks of
the Mappers. The Reduce phase starts as soon as there are enough
Map outputs to start a Reduce task. In this moment, the scheduler
assigns Reduce tasks to workers. The data transfer is performed by
each Reducer that pulls and shuffles intermediate results using a
one-to-one shuffling strategy. Reducers are responsible to read
intermediate results and merge them to group all values with the
same keys. Subsequently, each Reducer applies Reduce to the
intermediate values considering these keys to produce the final
output that is stored in HDFS.

Leo and Zanetti (2010) implemented a solution to make
Hadoop available to Python programmers called Pydoop. A Python
package based on CPython provides an API for MapReduce and
HDFS. This works as an alternative to Hadoop Streaming or Jython.
Hadoop Streaming uses a communication protocol to execute a
Python script as the Mapper or Reducer via the standard input and
output. Therefore, it cannot process arbitrary data streams, and the
user directly controls only the Map and Reduce parts, except for
HDFS operations.

There are some papers that alter the Hadoop MapReduce data
flow to improve performance (Wang et al., 2011; Vernica et al.,
2012; Ho et al., 2011; Ibrahim et al., 2010; Kwon et al., 2012;
Verma et al., 2011, 2012; Zhu and Chen, 2011; Lin et al., 2010;
Ahmad et al., 2013) or to augment features to meet specific
requirements (Elnikety et al., 2011; Li et al., 2011; Bu et al., 2012;
Elteir et al., 2010; Grover and Carey, 2012; Laptev et al., 2012;
Bhatotia et al., 2011; Zhang et al., 2011d). Wang et al. (2011)
propose Hadoop-A, an acceleration framework that optimizes the
efficiency of Hadoop using plugin components for fast data move-
ment. It addresses the performance issues in multiple ways. First,
the authors developed a novel merge algorithm that avoids
multiple rounds of disk accesses to merge the same intermediate
data segments from Map tasks. Second, the original architecture of
Hadoop ensures the correctness of the two-phase MapReduce
protocol by forbidding Reduce tasks to start before all intermedi-
ate data have been merged together. This results in a serialization
barrier that significantly delays the Reduce phase. This barrier is
broken by a full redesigned pipeline of shuffle, merge, and Reduce
phases for Reduce tasks. In this pipeline, Map tasks map data splits
as soon as they can. Finally, they propose a novel algorithm that
merges data without the use of disks and enables data movement
via RDMA (Remote Direct Memory Access). Using these techni-
ques, Hadoop-A is capable of increasing the throughput of Hadoop
and reduce the CPU utilization.

Similarly, the proposal of Vernica et al. (2012) also describes
solutions to improve Hadoop's performance. Differently from
Wang et al., who overlap the Shuffle, Merge, and Reduce phases,
Vernica et al. focus on the interaction of Mappers, introducing an
asynchronous communication channel between Mappers. In the
current implementation of Hadoop, Mappers are completely
independent. Using a transactional distributed meta-data store
(DMDS), Mappers can post metadata about their state and check
the state of all other Mappers. The authors argue that this
“situation-aware Mappers” (SAMs) make Hadoop more flexible
and adaptive, since optimizations can be done based on the
Mappers global state. SAMs are used in a number of adaptive
techniques: Adaptive Mappers (AM) dynamically control the
checkpoint interval, Adaptive Combiners (AC) use best-effort
hash-based aggregation of Map outputs, Adaptive Sampling (AS)
uses some early Map outputs to produce a global sample of their
keys, and Adaptive Partitioning (AP) dynamically partitions Map
outputs based on the sample.

The solution of Wang et al. focuses on tasks executed by
Reducers, while the work of Vernica et al. focuses on tasks
executed by Mappers. Similarly, Ahmad et al. (2013) proposed
MaRCO (MapReduce with communication overlap), which is
directed to the overlapping of the Shuffle with the Reduce
computation. The original Hadoop data flow was modified allow-
ing the operation of Reduce tasks on partial data. MaRCO breaks
Reduce into many smaller invocations on partial data from some
map tasks, and a final reducing step re-reduces all the partial
reduce outputs to produce the final output. Lin et al. (2013) have
proposed an overlapping model between map and shuffle phases.
The approach is based on two complementary scheduling algo-
rithms called MaxSRPT and SplitSRPT. MaxSRPT minimizes the
average response time of the queue, while SplitSRPT addresses the
poor performance of MasSRPT when jobs are more unbalanced.
Moreover, this study presents an analytical model proving that the
problem of minimizing response time in the proposed model is
strongly NP-hard. Yet on the data flow modifications, Mohamed
and Marchand-Maillet (2013) have proposed to change the
Hadoop data flow by using MPI to overlap Map and Reduce
phases. Thus, Map and Reduce phases are executed in a concurrent
parallel manner by exchanging partial intermediate data through a
pipeline provided by MPI. In the proposed model Map and Shuffle

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–258

phases are merged and work as a single phase. The authors also
have proposed a scheduler to improve the performance of the
prototype. The work of Xie et al. (2013) uses a preshuffling
approach to reduce the network overload imposed by shuffle-
intensive applications. To accomplish this, a push model using
in-memory buffer and a 2-stage pipeline in the preshuffling
scheme to exchange partial data between map and reduce tasks
are implemented.

Ho et al. (2011) and Ibrahim et al. (2010) concentrate their
efforts on improving performance by changing the data flow in the
transition between Mappers and Reducers. Originally, Hadoop
employs an all-to-all communication model between Mappers
and Reducers. This strategy may result in saturation of network
bandwidth during the shuffle phase. This problem is known as the
Reducers Placement Problem (RPP). Ho et al. modeled the traffic in
a multiple-racks environment. Two algorithms and an analytical
method were proposed as a solution to the RPP. The approach uses
optimization techniques to formulate the problem. They devel-
oped a greedy algorithm to find the optimal solution for the
problem. Ibrahim et al. address the problem of how to efficiently
partition the intermediate keys to decrease the amount of shuffled
data. This guarantees fair distribution of the Reducers' inputs,
improving the overall performance. The correct partition of the
intermediate key may also solve the RPP. The locality-aware and
fairness-aware key partitioning (LEEN) algorithm was developed
to decrease partitioning skew, reducing also data transfer while
balancing the data distribution among nodes. LEEN improves the
data locality of the MapReduce execution efficiency with the use of
an asynchronous Map and Reduce scheme.

On the other hand, instead of considering the lack of flexibility
of data flow as the main problem, Zhu and Chen (2011) and Kwon
et al. (2012) change the data flow to solve problems that degrades
the Hadoop performance. Zhu and Chen propose two mechanisms
to cope with the problem of detection of the failed worker.
The proposed Adaptive Interval tries to configure dynamically
the expiration time, which is adaptive on the job size. In turn, the
Reputation-based Detector tries to evaluate the reputation of each
worker. Once the reputation of a worker is lower than a threshold,
the worker will be considered as a failed worker. The skew
problem is characterized when the Reduce phase cannot start
until straggling Map tasks have been completed. Kwon et al.
present a system called SkewTune, which mitigates skew due to
an uneven distribution of data between Map and Reduce phases. It
also mitigates skew due to some subsets of the data taking longer
to process than others.

Lin et al. (2010) proposed a framework called MOON to
improve Hadoop performance introducing several modifications.
MOON uses a hybrid resource architecture that comprises a set of
dedicated reliable computers to overcome higher rates of node
unavailability in volunteer computing systems, and adaptive task
and data scheduling algorithms to offer reliable MapReduce
services. The main problems tackled by MOON are the prohibi-
tively high replication cost of HDFS to provide reliable storage in
volatile systems, the lack of replication of intermediate outputs
produced by Map tasks resulting in task re-execution, and the
inability of schedulers to handle suspended or interrupted tasks on
volunteer computing systems.

Hadoop was not originally developed to support iterative
computing, which represents an important class of applications.
Machine learning, among other data analysis algorithms and
techniques, makes use of iterative computing to obtain results.
One example is the Apache Mahout library, which is meant to
develop scalable machine learning applications using collaborative
filtering, recommenders, clustering, and others. Mahout is able to
promote iterative computing by grouping together a series of
chained jobs to obtain the results. The results of each job are fed

into the next chained job until final results are obtained. In the
MapReduce paradigm, each iteration must wait until the previous
one finishes completely and have its output entirely written and
committed to the underlying file system. Elnikety et al. (2011)
proposed iHadoop. It modifies the data flow techniques and task
scheduling to make them aware of the nature of iterative compu-
tations. The framework tries to achieve better performance by
executing iterations asynchronously, where an iteration starts
before its preceding iteration finishes. This way, outputs of itera-
tions (as they progress) are fed to the following ones, allowing
processing their data concurrently.

In the same manner, Liang et al. (2011) propose a Hadoop
extension called Dacoop to cope with data-iterative applications.
However, Dacoop uses cache mechanisms to treat the repeatedly
processing of data shared among jobs. Dacoop extends the
MapReduce programming interface by introducing the shared
memory-based data cache mechanism and caching the data on
the file split level, providing the extended programming interface
with the explicit specification of the repeatedly processed data
files and the data caching management model, and adopting
a data-caching-aware task scheduling, which schedules tasks
following cache-level and disk-level data locality.

Similarly, the HaLoop approach (Bu et al., 2012) proposes a new
system that modifies Hadoop to support large-scale, iterative data
analysis applications. Although built on top of Hadoop, HaLoop
proposes a new loop-aware task scheduler. This, together with
loop-invariant data caching, improves the performance of iterative
jobs. MapReduce frameworks generally are capable of performing
large-scale data processing in a single pass and are not suited to
iterative programming. Two known examples that may obtain
better performances using such approaches are page ranking and
social graph analysis.

Bhatotia et al. (2011) propose a MapReduce framework called
Incoop to process datasets that evolve over time. The work of
Bhatotia et al. changes the Reduce phase of the Hadoop data flow
introducing a contraction phase, more precisely altering the
Combiner functions. This phase is responsible for controlling the
granularity of tasks, dividing large tasks into subtasks to reuse
them appropriately during iterations. However, different from
other approaches, Bhatotia et al. do not make use of cache
mechanisms between processing iterations; instead, Incoop runs
a daemon process on the NameNode machine that acts as a
memoization server that stores intermediate results. Another key
point on the work of Bhatotia et al. is Inc-HDFS, a modified version
of HDFS that identifies similarities in input data of consecutive job
runs splitting the input into chunks based on their content instead
of using a fixed-size.

Zhang et al. (2011d) propose a framework called iMapReduce
that uses Hadoop to process structured data iteratively. iMapRe-
duce tackles some Hadoop problems to process iterative computa-
tion: the waste of resources to create, schedule, and destroy jobs
that perform constant functions in each iteration; the performance
penalty to load and shuffle immutable data that remains the same
through the iterations; and the serial execution of jobs in each
iteration, resulting in synchronism in Map and Reduce tasks.
iMapReduce introduces the concept of persistent tasks to cope
with the problem of waste of resources, avoiding unnecessary
creation, scheduling, and destruction of tasks. This mechanism
also avoids repeatedly data load and shuffle operations between
iterations. To break the synchronism and allow the execution of
Map tasks as soon as possible, iMapReduce implements a persis-
tent socket connection, keeping alive communication between
tasks to store transient data.

Notwithstanding the importance of improving the performance
of Hadoop, some studies change the data flow to meet specific
requirements. Elteir et al. (2010) propose modifications to start the

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 9

Reduce phase before the end of the Map phase, to cope with a
specific class of problems called recursively reducible MapReduce
jobs. Problems of this category do not impose synchronization on
the processing of data. The authors present two different
approaches to cope with the problem by changing the data flow
in the Reduce phase. First, the Reduce phase is executed hier-
archically after a number of Map tasks have been completed. In the
second approach, a predefined number of Reduce tasks incremen-
tally process records collected from Map tasks. Grover and Carey
(2012) and Laptev et al. (2012) focus on sampling issues of
workflows. Grover and Carey's approach provides ways to sample
a massive dataset to produce a fixed-size sample whose contents
satisfy a given predicate. The proposed model allows data to be
incrementally processed. This gives the job the ability to control its
growth. Laptev et al. propose the incremental computation of early
results for arbitrary workflows estimating the degree of accuracy
achieved in the computation. The proposal provides approximate
results based on samples in advanced analytical applications on
very massive datasets with the objective of satisfying time and
resource constraints.

Finally, Verma et al. (2011) propose a framework called ARIA that,
given a job completion deadline, is capable of dynamically allocating
the appropriate amount of resources to the job so that it meets the
required Service Level Objective (SLO). ARIA builds a job profile from a
job that is routinely executed on a new dataset. Using the profile and
the SLO-based scheduler, ARIA can estimate the amount of resources
required for job completion and it determines job ordering and the
amount of resources to allocate to meet the job deadlines. Verma et al.
(2012) evolved ARIA to enhance workload management decision in
jobs with deadlines. That evolution includes three complementary
mechanisms: an ordering policy for the jobs in the processing queue
based on the EDF policy (Earliest Deadline First); a mechanism for
allocating a tailored number of Map and Reduce slots to each job with
a completion time requirement; and a mechanism for allocating and
deallocating spare resources. The authors implemented a deadline-
based scheduler which integrates all the three mechanisms.

4.3. Storage & replication

The Hadoop Distributed File System is the block storage layer
that Hadoop uses to keep its files. HDFS was designed to hold very
large datasets reliably using data replication (Shvachko et al.,
2010). This allows HDFS to stream large amounts of data to user
applications in a reasonable time. Its architecture is composed of
two main entities: NameNode and DataNodes, which work in a
master-slave fashion. NameNode is responsible for keeping the
metadata about what and where the files are stored in the file
system. DataNodes are responsible for storing the data itself. HDFS
works as a single-writer, multiple-reader file system. When a
client opens a file for writing, it is granted a lease for the file and
no other client can write to the file until the operation is complete.
Additionally, after the file is closed, the bytes written cannot be
altered or removed except that new data can be added to the file
by reopening the file for append. HDFS have received several
contributions that implements enhancements so that it can be
used in different type of approaches in MapReduce computations.

A particular study that contributes in different ways to the
framework was developed specifically to improve Hadoop's per-
formance. The work of Jiang et al. (2010) presents a MapReduce
performance study, using Hadoop as basis to tackle its perfor-
mance bottlenecks. Jiang et al. propose known alternative meth-
ods as solutions to tuning MapReduce performance. They
enhanced the way a reader retrieves data from the storage system
with a direct I/O support, which outperforms streaming I/O by 10%.
They implemented a simple range-indexing scheme for sorted
files, improving the Hadoop performance. Finally, the authors also

proposed an optimization to the HDFS to deal with small files;
HDFS may have loss of performance when dealing with a large
group of small files due to its strategy of keeping all metadata in
the master node memory. This approach allows DataNodes to save
some metadata of small files in their memory, improving perfor-
mance when dealing with small files. Similarly, Shafer et al. (2010)
analyze the HDFS performance bottlenecks under concurrent
workloads. The authors claim that HDFS performance can be
improved using application-level I/O scheduling and still preserve
the portability. Authors also explore solutions like pre-allocating
file space on disk, adding pipelining and prefetching to both task
scheduling and HDFS clients, and modifying or eliminating the
local file system as a way to improve HDFS performance. But, since
portability is a project premise in Hadoop, some of these changes
may not be fully convenient, because of the portability reduction
they may cause.

Being designed to store and keep large files/datasets, Dong et al.
(2010) propose a novel approach to improve the efficiency of storing
and accessing small files on HDFS. In this approach, characteristics of
file correlations and access locality of small files. The approach is
addressed to solve the small file problems of a specific resource
sharing system, to store and share courseware majorly in the form of
presentation files and video clips. Performance is also affected by file
correlations for data placement, and without a prefetching mechanism
for reads, a considerable overhead may be generated.

Focusing on the same problem of correlated data placement,
Eltabakh et al. (2011) propose CoHadoop, a extension of Hadoop
that allows applications to control where data are stored. CoHa-
doop addresses Hadoop's lack of ability to collocate related data on
the same set of nodes. The approach is designed such that the
strong fault tolerance properties of Hadoop are retained. Coloca-
tion can be used to improve the efficiency of many operations,
including indexing, grouping, aggregation, columnar storage, and
joins. Additionally, the authors propose efficient Map-only
algorithms that exploit collocated data partitions. Exploiting data
placement on HDFS, Xie et al. (2010) propose a new strategy to
HDFS running on a heterogeneous cluster. The approach focuses
on distributing a large dataset to the nodes according to the
computing capacity of each one. Two algorithms were implemen-
ted and incorporated into HDFS. The first one initially distributes
the file blocks from a dataset to the cluster nodes. The second data
placement algorithm is used to solve data skew problems, reorga-
nizing the file blocks distribution along the cluster.

Hadoop may work using a replacement file system, when
changes in HDFS are not possible or practicable to be made.
Mikami and Ohta (2011) proposes the use of a new file system
named GFarm. It is POSIX compliant and uses data locality, which
makes it suitable to be used on Hadoop. GFarm can also be used to
run MPI applications. Thus, the same data used on MapReduce
applications can be used on different applications such as POSIX
compliant and MPI applications. This would not be possible when
using HDFS without generating extra copies of these data. To
integrate GFarm into Hadoop, a plugin named Hadoop-GFarm was
designed, implemented, and tested with MapReduce applications.

Concerned with Byzantine fault-tolerance, Costa et al. (2013)
implemented a new Hadoop version incorporating Byzantine
fault-tolerance to MapReduce. Initially, the approach runs f þ1
map tasks, f being the maximum number of faulty replicas. This
was the minimum number of replicas the authors reached by
considering the expected low probability of arbitrary faults. The
model also achieves better performance by using speculative
execution of reduce tasks. Although the resources used practically
doubles in this approach, this cost may be acceptable for a large
number of applications handling critical data.

The use of Solid State Disks (SSDs) as a storage solution is
increasing as the cost/MB is decreasing. The use of these technologies

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2510

on clusters is such a recent trend in industry that the first solutions
regarding its use on MapReduce clusters start to surface. Most of the
research up to date tends to analyze whether MapReduce can
benefits in terms of performance when deploying HDFS on SSDs.
The work of Jeon et al. (2013) analyzes the Flash Translation Layer
(FTL) – the core engine for the SSDs – to understand the endurance
implications of such technologies on Hadoop MapReduce workloads.
As a result, the research presents the behavior of SSD for Hadoop-
based workloads including wear-leveling details, garbage collection,
translation and block/page mappings. The research of Kang et al.
(2013) explores the benefits and limitations of in-storage processing
on SSDs (the execution of applications on processors in the storage
controller). This approach benefits from characteristics such as high
performance on concurrent random writes, powerful processors,
memory, and multiple I/O channels to flash memory provided by
the SSDs, enabling in-storage processing with small hardware
changes. The authors implemented a model (Smart SSD model) that
uses an object-based protocol for low-level communication with the
host, extending the Hadoop MapReduce framework to support a
Smart SSD. Experiments shows benefits such as increase of perfor-
mance and reduce of total energy consumption.

4.4. Cloud computing

Although designed to be applied on distributed environments,
Hadoop was not originally conceived to work using Cloud Computing
concepts. In this sense, some approaches try to cope with these needs.
Regarding Cloud Computing management, Kousiouris et al. (2011)
design a data management system to enable Storage as a Service
transparently using Hadoop. To do so, the authors developed a new
file system, ODFS (OPTIMIS Data Manager and Distributed File
System), using HDFS as a base. The file system adds RESTful interfaces
to expose critical functionalities from Hadoop as services and extends
HDFS. These components are used to enrich security, logging, and data
analysis features. Components also provide data access compati-
bility between federated Clouds. The main contribution resides in
the fact that ODFS enables suitable interfaces with the external
infrastructure providers to launch storage VMs and extend the
distributed file system, creating a transparent cloud federation to the
user. Kondikoppa et al. (2012) designed and implemented a network-
aware scheduler to be used on federated clusters, improving the map
tasks scheduling in such environment and, consequently, achieving
better performance. Using the previously presented GFarm file system,
Wang et al. (2013) have proposed G-Hadoop, a MapReduce framework
that enables large-scale distributed computing across multiple clus-
ters. It replaces HFDS for the Gfarm file system and schedules tasks
across multiple nodes of multiple clusters controlled by different
organizations.

To provide a Byzantine Fault Tolerance (BFT) model into Hadoop,
Clement et al. (2009) propose UpRight-Zookeeper and UpRight-HDFS
using the Zookeeper (a centralized service for maintaining configura-
tion information, naming, providing distributed synchronization, and
providing group services) and HDFS open source code bases. Zoo-
keeper was modified, adding authenticators to messages and to send/
receive them to/from the right quorums of nodes. These modifications
allow Zookeeper to protect its clusters against a wider range of faults.
Concerning HDFS, it was modified to remove its single points of
failure. UpRight-HDFS also provides end-to-end BFT against faulty
clients, DataNodes, and NameNodes.

Data transfer between nodes in a Cloud Computing environ-
ment may consume large bandwidth and time. The use of such
resources represents an elevation of cost to users. An approach to
solve these problems, HadoopRSync, is presented by Zhang et al.
(2011a). Such an approach uses an incremental update derived
from the original RSync, which minimizes the data transferred by

transmitting only an encoding of the changes to the file instead of
the whole file itself. An upload algorithm to update files on
Hadoop and a download algorithm to renew files on user side
composes HadoopRsync. The asymmetric scheme is employed
because file synchronization in both directions have different
characteristics. This approach seems to be suitable for file hosting
services using HDFS, which can lower the bandwidth usage and
speed up file updates. Following the cloud data transfer problem
and concerned with the cloud intermediate data problem, Ko et al.
(2010) implement a new storage system (ISS—Intermediate Sto-
rage System) that implements three techniques designed to store
cloud intermediate data while maintaining performance. In a
summarized view, the three techniques consist of an asynchronous
replication of intermediate data, a replication of selective intermediate
data, and, finally, the exploitation of bandwidth heterogeneity of
datacenter topology applied to the cloud environment. The system
replicates intermediate data fromMap and Reduce outputs preventing
re-execution of multi-stage applications.

Regarding cloud storage and data availability, QDFS (Guang-hua
et al., 2011) is an HDFS replacement that employs a backup policy
based on recovery volumes and a quality-aware DataNode selec-
tion strategy to store files. The idea is to develop a reliable file
system under unstable network environments. HDFS assumes that
each DataNode have analogous storage characteristics and all
DataNodes are connected within a reliable network. Therefore, to
store data blocks, HDFS select DataNodes that have enough storage
space to ensure that all DataNodes have balanced workload. The
QDFS approach selects DataNodes based on their quality of service
(QoS), which is calculated using characteristics such as transfer
bandwidth, availability of service, and free storage space. QDFS
enforces a data redundancy policy based on recovery volumes,
reducing the used storage space. It also evaluates the QoS of a
DataNode dynamically, making it more suitable for dynamic net-
work environments.

Yet on availability and replication, Wei et al. (2010) present a cost-
effective dynamic replication management scheme referred to as
CDRM to provide cost-effective availability and improve performance
and load balancing of cloud storage. The work addresses two issues:
how many minimal replicas should be kept in the system to satisfy
availability requirements and how to place these replicas to effectively
distribute workloads over the data nodes. A novel model is proposed
to capture the relationship between availability and number of
replicas, and the replica placement is based on capacity and blocking
probability of data nodes. By adjusting the replica label and location
according to workload changes and node capacity, CDRM can dyna-
mically redistribute workloads among data nodes in a heterogeneous
cloud.

Resource virtualization is a strong trend industry. The work of
Mao et al. (2011) proposes a system named EHAD (Elastic Hadoop
Auto-Deployer) that integrates and shares resources among users
on a Hadoop cluster. Virtualization technologies are used to gather
physical resources and allocate virtual machines to users. The
authors designed a request handler to deploy multithreaded
virtual machine nodes for users. Cluster resources such as com-
puting power, storage, and network composes a resource pool.
This pool is allocated for user virtual machines on demand. The
created environment automatically deploys the Hadoop frame-
work according to the needs described on user requests. This is a
similar approach to Hadoop On Demand (HOD), which is a system
for provisioning and managing independent Hadoop MapReduce
and Hadoop Distributed File System (HDFS) instances on a shared
cluster environment. The main difference relies on the fact that
the EHAD approach claims to create, deploy, and destroy Hadoop
environments automatically and on demand.

A similar approach is presented in the work of Mandal et al.
(2011). The difference here is the use of Hadoop clusters across

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 11

multiple cloud domains. Hadoop clusters are created on-demand
and are composed of virtual machines from different available
clouds. The concept of virtual pools of heterogeneous resources
like computing power, storage, and networks orchestrated
through a common interface is also used here. This way, cloud-
integrated Hadoop workflows read and write data repositories
co-located with cloud sites out in the network. The prototype was
developed using a cloud framework called Open Resource Control
Architecture (ORCA), which is responsible for managing available
resources. The prototype is capable of providing sets of resources
from multiple cloud and network domains and runs Hadoop
automatically in these resources. This approach may also be
considered similar to the Hadoop On Demand. The difference here
is the use of multiple cloud domains, instead of a single local
cluster.

AROMA (Lama et al., 2012) is another approach to automated
allocation of heterogeneous Cloud resources. The system also
configures Hadoop parameters for achieving quality of service
goals while minimizing the incurred cost. AROMA addresses the
challenge of provisioning ad hoc jobs that have performance
deadlines in Clouds through a novel two-phase machine learning
and optimization framework.

Data transfer in virtualized environments is addressed in the
work of Lee et al. (2013), which propose an adaptive data transfer
algorithm in virtual MapReduce clusters. The algorithm is capable
of moving files across different virtual machines located at the
same physical machine without any network transfers between
virtual machines. The work is specially useful to transfer the
output of each map task to the appropriate reducer without using
network bandwidth, which reduces overall job completion time.

Park et al. (2012) propose an important contribution to virtua-
lization. They developed a dynamic virtual machine reconfigura-
tion technique (DRR—Dynamic Resource Reconfiguration) for
distributed data-intensive platforms on virtualized cloud environ-
ments running Hadoop. The dynamic reconfiguration of virtual
machines improves the overall job throughput by improving the
input data locality of a virtual MapReduce cluster. DRR temporarily
increases the number of cores to virtual machines to run local
tasks. It also schedules tasks based on data locality and adjusts the
computational capability of the virtual nodes to accommodate the
scheduled tasks. The idea is that different resource requirements
by different tasks or jobs may cause each virtual node to under-
utilize its resources. With the virtual machine reconfiguration,
each node can be adjusted to provide only the necessary amount
of resources demanded from the node.

Related to Cloud Computing, the approach of He et al. (2012)
runs Hadoop MapReduce distributed on the Open Science Grid,
which uses multiple clusters geographically distributed. Hadoop
on the Grid claims to provide elastic MapReduce environment on
opportunistic resources available. The goal is to improve Hadoop
fault tolerance for wide area data analysis by mapping the
distributed data centers to virtual racks, transparent to MapReduce
applications.

4.5. DBMS, indexing, queries, and random access

Although HDFS shows good performance on scalability, fault
tolerance, high throughput, and flexibility to handle unstructured
data, it presents drawbacks in some contexts when compared with
Data Base Management Systems (DBMS) and other approaches.
Several studies intend to improve Hadoop's performance altering
or replacing HDFS with other solutions as presented before. Some
approaches intend to develop indexing, query processing, hybrid
solutions using DBMS and structured data processing inside
Hadoop. Further, most studies present advanced solutions com-
prising more than one of these strategies as follows.

Liao et al. (2010) and Dittrich et al. (2012) propose improve
Hadoop's performance by means of a complete new indexing
manner, while An et al. (2010) and Dittrich et al. (2010) suggest
alter existing indexing mechanisms as their strategy. Liao et al.
(2010) propose the use of built-in hierarchical indexing to support
complex type queries in HDFS. The method of hierarchical struc-
tures is applied to B-tree, R-tree and their variants to optimize
queries. Several enhancements of index structure with respect to
node size, buffer strategy, and query processing were developed
using properties of HDFS. Dittrich et al. (2012) propose an
enhancement of HDFS and Hadoop MapReduce that improves
runtimes of several classes of MapReduce jobs. The approach,
named HAIL (Hadoop Aggressive Indexing Library), changes the
upload pipeline of HDFS in order to create different clustered
indexes on each data block replica. HAIL keeps the existing
physical replicas of an HDFS block in different sorted orders and
with different clustered indexes. Hence, for a default replication
factor of three at least three different sort orders and indexes are
available. Thus, the likelihood to find a suitable index increases,
improving the runtimes for workloads.

In the system proposed by An et al. (2010), a global index access
mechanism was adopted. The Bþ-tree index data is stored in
HDFS and distributed across all the nodes. Thus, the index access is
parallelized following the MapReduce execution style. Part of the
work of Dittrich et al. (2010) comprises a Trojan index used to
co-partition the data at load time. This indexing technique is the
used solution to integrate indexing capability in a non-invasive
and DBMS-independent manner.

Indeed, Hadoopþþ (Dittrich et al., 2010) concentrates on
query processing, particularly query execution plan. The proposed
system boosts task performance without changing the Hadoop. To
reach this goal, 10 UDFs (User Defined Functions) were injected
into Hadoop source code, affecting it from inside. Thus,
Hadoopþþ do a hard-coded query processing pipeline explicit
and represent it as a DB-style physical query execution plan.

The HDFS has been designed originally to support sequential
queries. Zhou et al. (2012a) propose an approach to enable random
queries to the file system. Accessing small data on HDFS may cause
unnecessary data transfer, once the size of the packet may be
bigger than the data packet being sent. The approach presents a
data transfer policy that support both sequential and random
access. It uses a dynamic method to set the size of data packet. If a
random access is requested, the data packet is set to be equal to or
less than the required data size. Otherwise the default data packet
size will be used. Similar to Zhou et al., Buck et al. (2011) propose a
query processing solution to compute a specific type of data. A
plugin to Hadoop, named SciHadoop, is intended to process
scientific structured data using a simple query language. Thus,
the query processing in SciHadoop is expressed entirely at the
level of scientific data models.

Iu and Zwaenepoel (2010) propose a query optimizer called
HadoopToSQL to work especially when only a subset of the data
should be processed. HadoopToSQL is a hybrid system that seeks
to improve Hadoop performance by transforming MapReduce
queries to use the indexing, aggregation and grouping features
provided by DBMS. The authors proposes two algorithms that
generate SQL code from MapReduce queries: one algorithm can
extract input set restrictions from MapReduce queries and the
other can translate entire MapReduce queries into equivalent SQL
queries. The HadoopToSQL is able to take a compiled MapReduce
program generated by the Java compiler and analyze it to find
ways to run it efficiently on an SQL database.

A Hadoop-DBMS hybrid system is presented by Abouzeid et al.
(2009). This work completely replaces HDFS by a parallel DBMS.
HadoopDB approaches parallel databases in performance and
efficiency, yet still yields the scalability, fault tolerance, and

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2512

flexibility of Hadoop. The basic idea behind HadoopDB is to use
MapReduce as the communication layer above multiple nodes
running single-node DBMS instances. Queries are expressed in
SQL, translated into MapReduce by extending existing tools, and as
much work as possible is pushed into the higher performing
single-node databases. An et al. (2010) propose a new Hadoop-
DBMS hybrid communication layer as well. In that work, DBMS
engines are read-only execution layer into Hadoop. In this
approach the DBMS is used to provide efficient operators while
the HDFS is responsible for managing the data providing a fault
tolerance environment in the data layer. The modified database
engine is able to process data from HDFS file at the block level,
which makes it suitable to the MapReduce paradigm.

Similarly, Bajda-Pawlikowski et al. (2011) also propose a
Hadoop-DBMS hybrid system, in addition to addressing query
processing. The work offers extensions in HadoopDB to process
efficiently data warehousing queries. The authors discuss more
advanced execution plans where some joins access multiple
database tables within the Map phase of a single job. After
repartitioning on the join key, related records are sent to the
Reduce phase where the actual join is computed.

In some ways, the work of Abouzeid et al. (2009) deals on
processing of structured data. As well as that research, the partially
outlined work of Buck et al. (2011) and the approach of Kaldewey
et al. (2012) also deal with structured data processing. The
proposal of Buck et al. is intended to process array-based queries.
The array-based model used by SciHadoop is defined by two
properties: the shape of an array, which is given by the length
along each of its dimensions, and the corner point of an array,
which defines the array's position within a larger space. SciHadoop
was designed to accept queries expressed in a query language
developed by the authors. The plugin implemented modifies the
standard task scheduler to function at the level of scientific data
models using arrays, rather than low-level byte streams, used
regularly by the HDFS.

In turn, the Kaldewey et al. (2012) objective is to cope with
structured datasets that fit a star schema. The research prototype
for structured data processing can achieve performance improve-
ments over existing solutions, without any changes to the Hadoop
implementation. This prototype, called Clydesdale, inherits the
fault-tolerance, elasticity, and scalability properties of MapReduce.
This is also of significant practical value since it allows to run
Clydesdale on future versions of Hadoop without having to
re-compile and re-test Hadoop with a set of custom changes.
Clydesdale achieves this through a novel synthesis of several
techniques from the database literature and carefully adapting
them to the Hadoop environment.

4.6. The Hadoop ecosystem: Hive, Pig, HBase

The MapReduce paradigm is not suitable for all problems
involving large datasets. The four modules that currently compose
the Apache Hadoop core (Hadoop Common, HDFS, MapReduce
and YARN) are well suitable for unstructured data. However, when
processing common old-fashioned structured data, Hadoop may
suffer from performance issues since the framework was not
originally developed to process these data. To overcome these
problems, several Apache Hadoop related projects have been
developed over the past years. For example: Pig, a high-level
data-flow language and execution framework for parallel compu-
tation; Mahout, a scalable machine learning and data mining
library; Hive, a data warehouse infrastructure that provides data
summarization and ad hoc querying; and, HBase, a scalable
distributed database inspired on Google BigTable that supports
structured data storage for large tables.

Konishetty et al. (2012) propose the implementation of the Set
data structure and operations of union, intersection, and differ-
ence in a scalable manner on top of Hadoop HBase. The work
presents optimizations for three Set operations and also limita-
tions on implementing this data structure in the Hadoop ecosys-
tem. Zhang and De Sterck (2010) propose CloudBATCH, a new
Hadoop component that enables it to function as a traditional
batch job queuing system with enhanced functionality for cluster
resource management. The approach allows the cluster manage-
ment using only Hadoop to discover hybrid computing needs
involving both MapReduce and legacy applications. CloudBATCH
runs on top of HBase and includes a set of tables used for storing
resource management information, globally accessible across all
nodes to manage metadata for jobs and resources.

Among the Apache Hadoop ecosystem projects, Pig (Gates et
al., 2009) has received relevant contributions recently. Pig is a
high-level data flow system that fills the existent gap between SQL
and MapReduce. Pig offers SQL-style high-level data manipulation
constructs, such as filter and join, which can be assembled in an
explicit data flow and interleaved with custom Map- and Reduce-
style functions or executables. Pig programs are compiled into
sequences of MapReduce jobs to be executed. Pig uses Pig Latin
(Olston et al., 2008), a language that combines the best of both
worlds: high-level declarative querying in the spirit of SQL and
low-level procedural programming using MapReduce. Pig com-
piles Pig Latin into physical plans that are executed over Hadoop.

A Pig Latin program is a sequence of steps, much like in a
programming language, each of which carries out a single data
transformation. Writing a Pig Latin program is similar to specifying
a query execution plan. Tanimura et al. (2010) propose an exten-
sion to Pig. The approach implements a RDF data processing
framework built on top of Hadoop. Pig has received additional
extensions to support RDF data processing, providing a scalable
architecture, a set of data processing tools and a general query
optimization framework. These enhancements allow users to
perform efficient integrated data processing using RDF data.

Since Pig brought support to query like languages to Hadoop,
the reuse of intermediate results may be an interesting technique
to save processing time and enhance performance on similar jobs.
Elghandour and Aboulnaga (2012) present ReStore, an extension to
Pig that enables it to manage the storage and reuse of intermediate
results of the MapReduce workflows executed in the Pig data
analysis system. This maximizes data reuse opportunities between
MapReduce jobs which are independently executed by the system.
ReStore matches input workflows of MapReduce jobs with pre-
viously executed jobs and rewrites these workflows to reuse the
stored results of the positive matches. According to Elghandour
and Aboulnaga, even though ReStore has been developed as an
extension to Pig, its techniques may be applied in any data flow
system that generates workflows of MapReduce jobs for input
queries such as Hive (Thusoo et al., 2009) and Jaql (Beyer et al.,
2011).

Similarly, Olston et al. (2011) propose a workflow manager
called Nova, which pushes continually arriving data through
graphs of Pig programs being executed on Hadoop clusters. Nova
is like data stream managers in its support for statefull incre-
mental processing, but unlike them, it deals with data in large
batches using disk-based processing. The proposal of a workflow
manager enables key scheduling and data handling capabilities
such as continuous processing; independent scheduling, where
different portions of a workflow may be scheduled at different
times/rates; and, cross-module optimization in which a workflow
manager can identify and exploit certain optimization opportu-
nities, e.g., common input being consumed by two different
workflows. It is different from ReStore because Nova is supposed
to deal with different workflows that may use common input data,

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 13

while ReStore is supposed to keep intermediate results from
workflows executions to future reuse.

Zhang et al. (2012b) present a performance modeling frame-
work for Pig programs. The idea is to suggest a solution for two
common problems regarding Cloud Computing and Pig programs.
First, estimating the completion time of such programs as a
function of allocated resources. Second, estimating the amount
of resources (number of task slots) to complete a Pig program in a
given deadline. The approach forces Pig to use the optimal
schedule of its concurrent jobs, the authors were able to eliminate
the existing non-determinism in Pig program execution of con-
current jobs, achieving better performance predictions.

Finally, another important concern when dealing with struc-
tured data inside Hadoop is data placement, as mentioned before.
Hadoop components such as Hive and Pig rely on the HDFS to
store its data and cannot directly control this storage. Based on
conventional data placement structures, an approach named
RCFile (Record Columnar File) (He et al., 2011b) presents a solution
to this problem. Since RCFile is developed and integrated to Hive, it
stores tables by horizontally partitioning them into multiple row
groups. Following, each group is vertically partitioned so that each
column is stored independently. Columns may also be compressed
and grouped according to the needs. RCFile promotes four desir-
able requirements for data placement in MapReduce environ-
ments: fast data loading, fast query processing, efficient storage
space utilization, and adaptivity to dynamic workload patterns
enhancing Hive performance.

4.7. Energy management

The reduction in cost of hardware enabled corporations to
increase the number of data centers and machines. Consequently,
energy consumption has become a vital issue regarding costs of
data storing and its processing. Several papers discuss the cluster
energy management problem generically. Regarding Apache
Hadoop clusters, Li et al. (2011) propose an algorithm for max-
imizing throughput of a rack of machines running a MapReduce
workload, subject to a total power budget. The main idea is to
optimize the trade-off between job completion time and power
consumed. The novelty in the approach relies on the accounting
for thermally induced variations in machine power consumption.
The algorithm minimizes job completion time (or equivalently,
maximizes the computational capacity of a cluster) for any given
power budget.

GreenHadoop, proposed by Goiri et al. (2012), is an Apache
Hadoop variant for data centers powered by photovoltaic solar
(green energy) arrays and electrical grid (brown energy) as a
backup. The objective is to investigate how to manage the
computational workload to match the green energy supply in
small/medium data centers running data-processing frameworks.
However, scheduling the energy consumption of MapReduce jobs
is challenging because they do not specify the number of servers
to use, their run times, or their energy needs. Moreover, power-
managing servers should guarantee that the data to be accessed by
the jobs remain available. GreenHadoop seeks to maximize the
green energy consumption of the MapReduce workload, or equiva-
lently to minimize its brown energy consumption. GreenHadoop
predicts the amount of solar energy that is likely to be available in
the future, using historical data and weather forecasts. By using
these predictions, it may then decide to delay some (low-priority)
jobs to wait for available green energy, but always within their
time bounds. If brown energy must be used to avoid bound
violations, it schedules the jobs at times when brown energy is
cheaper, while also managing the cost of peak brown power
consumption.

Another approach to energy management in clusters is the
GreenHDFS (Kaushik et al., 2010, 2011). Instead of dealing with the
MapReduce component of Apache Hadoop, it deals with the HDFS.
GreenHDFS partitions cluster servers into Hot zones, used for
frequently accessed files, and Cold zones, for rarely used files. This
approach enables energy saving by putting Cold zones servers to
sleep. To do so, a migration policy moves files between zones
accordingly. Initially, this policy was reactive and used historical
data to move files between zones. This approach was improved
creating a predictive file zone placement, which defines the initial
placement of a file, and then uses a predictive file migration policy.
This approach uses supervised machine learning to train its file
attribute component and to manage changes between zones.

GreenPipe, presented by Mao et al. (2012), provides a specific
solution to bioinformatics, but its main objective is related to
energy consumption problems. GreenPipe is a MapReduce-
enabled high-throughput workflow system for applications of
bioinformatics, which defines a XML based workflow and executes
it on Hadoop. The workflow execution is divided in two modes. In
the first one, called physical mode, the XML workflow is translated
into MapReduce jobs and launched on a physical Hadoop cluster.
The second mode, called virtual mode, works with virtualization,
obtaining virtual machines from IaaS (Infrastructure as a Service)
platforms and running Hadoop jobs in the VM cluster. Authors also
address the optimizations of the planning and job priority, and
energy efficiency by introducing a power-aware scheduling algo-
rithm in the workflow engine. The scheduler tries to allocate VM
resources based on the power consumed by the applications. It
also tries to group similar energy trace VMs in a physical machine,
reducing the energy consumption without sacrificing the applica-
tion performance.

4.8. GPGPU

GPGPU (General-purpose computing on graphic processing
units) (Owens et al., 2008) is a technique to use commodity GPUs
to perform general purpose computing in applications tradition-
ally handled by CPUs. CUDA and OpenCL are examples of inte-
grated development environments that may be used to such
purposes. Shirahata et al. (2010) presents a hybrid Map task
scheduling technique for GPU-based heterogeneous computer
clusters. The developed job scheduler assigns the Map tasks onto
CPU cores and GPU devices in order to minimize the overall
MapReduce job execution time. The scheduler uses profiles col-
lected from dynamic monitoring of Map task's behavior to decide
where to schedule a task. Jobs containing tasks that have data
parallelism may be suitable for GPU execution, while tasks con-
taining many branches or synchronizations are not recommended
to be executed using this approach. The model uses Hadoop Pipes,
a Cþþ interface to Hadoop MapReduce. Hadoop Pipes uses
sockets as the channel over which the TaskTracker communicates
with the process running the Cþþ-based Map and Reduce
functions. Its use is justified because other native methods such
as Hadoop Streaming and Java Native Interface may introduce
significant overhead, representing loss of performance.

Xin and Li (2012) have successfully demonstrated that the use
of OpenCL in commodity Hadoop clusters may outperform regular
clusters significantly. Their approach concerns to both data- and
compute-intensive applications. Grossman et al. (2013) also inte-
grated OpenCL into Hadoop to enable the use of heterogeneous
processors, such as the CPU and GPU combination. The extension
supports the execution of user-written Java kernels on hetero-
geneous devices, optimizes communication through asynchronous
transfers and dedicated I/O threads. Authors claim that the
approach can achieve nearly 3x overall speedup for some specific
Hadoop MapReduce applications.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2514

Another approach proposed by Fang et al. (2011) is named
Mars, a MapReduce runtime system accelerated with GPUs to
improve Hadoop performance. Mars runs on NVIDIA GPUs (Mars-
CUDA), AMD GPUs (MarsBrook) as well as multicore CPUs
(MarsCPU). Mars was integrated into Hadoop, being called Mar-
sHadoop. In this scenario, each machine in a network can utilize
its GPU with MarsCUDA or MarsBrook in addition to its CPU with
the original Hadoop. By using both the GPU and the CPU, GPU-only
performance was improved by 40 percent for some applications
tested by the authors. Finally, Tan et al. (2012b) introduce a new
framework capable of using both GPU and CPU processing ele-
ments collaboratively in MapReduce jobs. The framework named
Pamar (Processing Element Aware MapReduce) was designed to
clusters having asymmetry in GPGPU/CPU node configurations. It
automatically detects the type of processing elements available on
each node. Pamar also scans for the processing elements require-
ments of submitted jobs. The authors also implemented a sche-
duler called HPE (Heterogeneous Processing Element) that uses
the job requirements to make scheduling decisions. After the
integration into Hadoop, the framework has demonstrated
improvement in job queue completion time.

4.9. Data security and cryptography

In the cloud computing era, data security, privacy, and integrity
became important features to be supported by frameworks and
service providers. In Apache Hadoop, data is stored according to
user accounts. This mechanism may not be secure enough when
dealing with data spread across multiple datacenter and cloud
providers. Some studies addresses these problems, presenting
solutions to enhance both Hadoop data security and confidenti-
ality. Wei et al. (2009) design a model that enhances the basic
MapReduce framework with a set of security components. In open
systems, MapReduce faces a data processing service integrity
problem since service providers may come from different admin-
istration domains that are not always trustworthy. The approach is
meant to provide a service integrity assurance framework for
MapReduce, replicating some tasks and assigning them to differ-
ent Mappers/Reducers. This is achieved by using a decentralized
replication-based integrity verification scheme for running
MapReduce in open systems. It uses a set of security properties
such as non-repudiation and resilience to DoS attacks and replay
attacks while maintaining the data processing efficiency of
MapReduce.

Another approach proposed by Lin et al. (2012) addresses the
data confidentiality issue in Hadoop by enhancing HDFS. Two
hybrid encryption schemes were implemented and integrated into
HDFS to achieve data confidentiality: the HDFS-RSA, which uses
the RSA encryption and AES and the HDFS-Pairing, which uses a
pairing-based encryption scheme and AES. As expected, both
schemes introduce overhead on reading and writing operations.
The biggest overhead is on writing, because the encrypting process
is accomplished in two parts. Reading operations also have an
overhead, although it is much lower and acceptable than the
writing overhead.

Regarding cloud security, Shen et al. (2011) focus on the
problem of data migration between public and private clouds.
The authors discuss the potential threats that may occur when
migrating data between clouds. Based on these threats, a model
was developed to secure the data transfer. The model uses SSL,
tickets and data encryption. A module named MDM (Migration
Decision Module) was developed and used in the HDFS. Results
and validation show that, although secure, the encryption process
generates a considerable overhead in the transfer process, which
may reach up to nine times the time cost without using the MDM.
Cloud security is also addressed by Zhou et al. (2013), but instead

of using encryption, it uses the principle of sensitive data splitting,
where sensitive data is kept in trusted private cloud, while
insensitive data may be moved to public cloud. The system called
Prometheus is able to properly work on the semi-honest cloud
model as well as on the malicious cloud model.

Khaled et al. (2010) propose a token-based access control
system for RDF Data in a cloud implemented using Hadoop. One
of the most efficient ways to handle RDF data is to store it in cloud
computers. However, access control is a major concern for cloud-
resident RDF data. The proposed mechanism defines six types of
access levels and one enforcement strategy for the resulting access
control policies. The enforcement strategy is implemented at three
levels: Query Rewriting (preprocessing phase), Embedded Enfor-
cement (MapReduce execution phase), and Post-processing Enfor-
cement (data display phase). This way, users are granted tokens
based on their business needs and authorization levels previously
determined.

Concerning problems with data integrity in the cloud, Nguyen
and Shi (2010) propose a model called Opera (Open Reputation
Model) that employs reputation-based trust management to
improve Hadoop computational efficiency. In general, the existing
methods rely on a single-value reputation to capture the differ-
ences between the Service Providers in terms of properties such as
performance or availability. The approach tracks node trust as a
vector of efficiency-related considerations, such as node downtime
and failure frequency. Users are allowed to query the reputation
vector of any registered component. This model is associated to
the use of the proposed scheduler, which may improve the
performance of jobs and reduce the number of failed/killed tasks.

While the Opera approach is intended to achieve better
performance on Hadoop, malicious behaviors (e.g., falsified com-
putation) are not considered, making it unsuitable for protection
against data integrity attacks. Khan and Hamlen (2012) present a
solution to this problem. Hatman (Hadoop Trust Manager) con-
siders a reputation-based trust management approach to detect
integrity violation in Hadoop clouds. It augments Hadoop Name-
Nodes with reputation-based trust management of their slave
DataNodes. NameNodes maintain a trust matrix that keeps trust
and reputation information used to dispatch jobs to DataNodes. To
obtain high scalability, all trust management computations are
formulated as distributed cloud computations. This approach
increases the computing power and improves the data integrity
of cloud computations.

5. Discussion

In this section, we discuss the results and findings of our
analysis and classification of the selected studies. First, we intro-
duce an overview of the Hadoop evolution, presenting its main
features that have changed over time. Following, we discuss an
overview of the selected studies and some interactions among the
taxonomy categories, presented further ahead.

5.1. Hadoop evolution

Since its initial release, Hadoop changed constantly and con-
siderably in 59 releases – the last one was version 2.2.0 on October
15, 2013 – over six years of development. Besides bug fixes,
present in each one of these releases, new features and modules
were developed and incorporated, consolidating the framework as
the main solution to process large amounts of data using the
MapReduce paradigm. Some releases deserve special attention.
From the initial releases, versions 0.20.x were the first ones
considered more stable, which could be used on production
environments. The first one was released in April 2009, and this

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 15

branch was one of the longest active branches in the history of
Hadoop. This release missed and important feature present on
subsequent releases: support for file appending on HDFS. A couple
years later, versions 0.23.x were released. Albeit being considered
alpha-quality releases, they included two important features to
present Hadoop versions: HDFS federation and the initial release
of Hadoop NextGen MapReduce, also known as YARN.

In 2011, after years of development, Hadoop reached the 1.0.0
version. This release included webHDFS and security features on
HBase, besides performance enhancements. Being a cut from the
0.20.x branch, it did not include some bug fixes and features
incorporated between 0.20.x and 0.23.x releases, which missed
some important security features. This was fixed on later 1.x
releases.

On May 2012, Hadoop 2.0.x was first released. The 2.0.0-alpha
included significant major features over the 1.x series. Derived
from the 0.23.x branch, the most important features included were
the HDFS HA (High Availability), YARN and HDFS federation,
besides some performance tuning. This version is considered as
a consolidated release from the 0.23.x branch.

These two branches, 1.x and 2.x, are the major branches on
Hadoop releases and have significant differences that deserve
some observations. The first one was the introduction of the YARN,
or Nextgen MapReduce (initially present on 0.23.x releases). YARN
proposes a separation between two major functions of the
JobTracker: resource management and job scheduling/monitoring.
In 2.x releases, YARN is a distributed application management
framework while Hadoop MapReduce remains as a pure distrib-
uted computation framework. Another inclusion was the HDFS HA
(Oriani and Garcia, 2012), which promotes the high availability of
HDFS. Prior to the 2.0.0 release, the NameNode was a single point
of failure in an HDFS cluster. A failure on the NameNode machine
would make the entire HDFS cluster unavailable. The HDFS High
Availability feature provides the option of running two redundant
NameNodes in the same cluster in an Active/Passive configuration
with a hot standby. Finally, the third feature is the HDFS Federa-
tion, which supports multiple Namenodes in a HDFS file system.

Theoretically, although still supported in versions 2.x, the
distance between version 1.x tends to increase and, in the future,
backwards compatibility in version 2.x will no longer be sup-
ported. This is reasonable, since the separation between resource
management and job/task allocation benefits the cluster infra-
structure in terms of use and flexibility. As shown next, we have
been able to identify several interrelated studies, which evolved
over the last five years using Apache Hadoop and its ecosystem.

5.2. Overview and studies interaction

Scheduling is considered crucial to Hadoop performance. In
this sense, the selected papers that were allocated in the schedul-
ing, data flow, and resource allocation categories are majorly
concerned with this issue. Some works propose multi-queue
schedulers to improve performance (Zhao et al., 2012; Tian et al.,
2009; Kumar et al., 2012). Other authors use different approaches
to achieve it, such as the data locality aware schedulers (Zaharia et
al., 2010; He et al., 2011a; Hammoud and Sakr, 2011; Zhang et al.,
2011b, 2012a, 2011c; Hammoud et al., 2012; Ibrahim et al., 2012;
You et al., 2011; Tao et al., 2011), which are concerned with the
correct allocation and placement of Map and Reduce tasks.
Performance problems may also be tackled by using historical
data from cluster nodes, which allows, e.g., the speculative execu-
tion of MapReduce tasks (Zaharia et al., 2008; Lei et al., 2011;
Rasooli and Down, 2011; Chen et al., 2010). Although concerned
with performance, some papers present solutions covering impor-
tant correlated areas, for example, Cloud Computing resource
allocation (Hammoud et al., 2012; Tang et al., 2012; Zhang et al.,

2011b, 2012b; Park et al., 2012), which reflects directly on Hadoop
performance in such environments. Thus, scheduling in hetero-
geneous clusters is also an important topic addressed by some
studies (Tian et al., 2009; Ahmad et al., 2012; Kumar et al., 2012).
Ultimately, some approaches develop mechanisms of reuse of
intermediate data among MapReduce jobs using common datasets
(Kumar et al., 2012; Nykiel et al., 2010; Shi et al., 2011).

As discussed earlier, changes in data flow, manipulation, and
resource allocation are mainly made to address performance or to
meet specific requirements. When dealing with improving perfor-
mance, some studies break the synchronization barrier between
phases of the Map and Reduce stages (Wang et al., 2011; Ibrahim
et al., 2010). While Wang et al. (2011) propose a full pipeline to
overlap the shuffle, merge and Reduce phases, Ibrahim et al. (2010)
focus on data locality, altering only the partitioning of intermedi-
ate keys on the Map phase. Although Vernica et al. (2012) do not
directly alter the synchronism of the phases, they introduce a
communication channel among Mappers, breaking its isolated
execution. Besides Ibrahim et al. (2010), other studies deal with
data locality (Kwon et al., 2012; Zhu and Chen, 2011; Ho et al.,
2011). Kwon et al. (2012) propose a skew mitigation approach to
UDOs (User Defined Operations), which resplits input data when
failed workers are detected. Failed workers are detected on Zhu
and Chen's (2011) studies by two mechanisms called adaptive
interval and reputation-based detector. In contrast, Ho et al. (2011)
tackle the RPP (Reducer Placement Problem) problem caused by
all-to-all communication between Mappers and Reducers. This
work proposes algorithms to place Reducers in correct racks to
minimize the saturation of network bandwidth.

The proposal of Verma et al. (2011) is slightly different from the
aforementioned, since they suggest a framework named ARIA that
can allocate the appropriate amount of resources to execute a job,
meeting a soft deadline, which is routinely executed on a new
dataset. To do this, the framework uses a scheduler based on
earliest deadline first policy. Verma et al. (2012) evolve ideas used
in ARIA to propose a better solution based on other mechanisms.
On the other hand, Lin et al. (2010) propose changes in data flow
and resource allocation to accommodate reliable nodes, categor-
ized as dedicated or volatile, which store reliable or temporary
files. Furthermore, the authors implement schedulers particularly
to that scenario. Although Hadoop was not originally developed to
support iterative computing, some efforts have been made to give
it this capability (Elnikety et al., 2011; Liang et al., 2011; Bu et al.,
2012; Bhatotia et al., 2011; Zhang et al., 2011d). Except for the
proposals presented by Bhatotia et al. (2011) and Zhang et al.
(2011d), research studies presented by Elnikety et al. (2011), Liang
et al. (2011), and Bu et al. (2012) use different cache levels to treat
the repeatedly processing and schedulers which are loop or cache-
aware. Other papers (Elteir et al., 2010; Grover and Carey, 2012;
Laptev et al., 2012) deal with very specific problems, such as
recursively reducible jobs, early results, and sampling issues.

Storage is another intersection point in selected papers concerning
the framework. HDFS wasmodified to increase performance, as for the
case of its I/O mode (Jiang et al., 2010; Zhang et al., 2011a; Shafer et al.,
2010), solving data placement problems (Xie et al., 2010), or adapting
it to deal with small files (Jiang et al., 2010; Dong et al., 2010) since
HDFS was not originally designed to store such files. Some works
replace the original HDFS with a more suitable solution for specific
compatibility problems (Mikami and Ohta, 2011; Kousiouris et al.,
2011) or to support areas such as Cloud Computing (Kousiouris et al.,
2011; Guang-hua et al., 2011). Cloud Computing has received con-
siderable attention in research studies trying to improve performance
and resource usage (Zhang et al., 2011a; Wei et al., 2010; Mao et al.,
2011; Mandal et al., 2011; Ko et al., 2010) while using Hadoop.

In order to improve Hadoop performance, several approaches
make modifications in how data is indexed, recovered by query

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2516

processing, and stored. Indeed, most studies suggest the use of
more than one strategy to boost Hadoop performance. Liao et al.
(2010) and Dittrich et al. (2012) propose a completely new
indexing technique, while An et al. (2010) and Dittrich et al.
(2010) propose changes in Hadoop's original indexing. Liao et al.
(2010) and Bajda-Pawlikowski et al. (2011) change query proces-
sing in order to cope with complex type queries and warehouse
queries. Other studies approach query processing in different
ways, like query optimization (Dittrich et al., 2010; Iu and
Zwaenepoel, 2010), query languages (Abouzeid et al., 2009; Buck
et al., 2011), and random queries (Zhou et al., 2012a). Some of
these works (An et al., 2010; Iu and Zwaenepoel, 2010; Abouzeid

et al., 2009; Bajda-Pawlikowski et al., 2011) use hybrid solutions
(DBMS based) to support indexing methods and modifications in
query processing. Finally, two studies focus on structured data
(Buck et al., 2011; Kaldewey et al., 2012).

The Apache Hadoop ecosystem is composed of parallel projects
that intend to provide support to specific areas in which the
MapReduce paradigm would not be suitable or would have
performance issues. The most known ones are Pig, Hive, and
HBase. Pig – a high-level data flow language that runs on top of
MapReduce – received contributions that enabled the support to
RDF data (Tanimura et al., 2010), the reuse of intermediate
processing results (Elghandour and Aboulnaga, 2012), and contin-
uous streaming of newly arrived data into Pig programs that are
already in execution (Olston et al., 2011). Pig, Hive, and HBase have
received many other contributions, since they are used as infra-
structure for several research projects around Scheduling, DBMS,
Indexing, Random Data Access, Storage, and Cloud Computing.

Some areas, although not directly related to the framework,
developed several contributions to Apache Hadoop, including
themes such as energy management, the use of GPUs and data
integrity/security. Energy management has demonstrated to be an
important research topic as the number of data centers has
increased consistently over the last few years. The demand for
electric power to such computing facilities has been addressed in
some studies, including the use of green energy (Goiri et al., 2012;
Kaushik et al., 2010, 2011), energy efficiency (Mao et al., 2012), and
power budget directed data processing (Li et al., 2011). In the case
of GPU use, papers addressed the increase on performance (Xin
and Li, 2012; Fang et al., 2011; Tan et al., 2012b) by using the GPU
shipped as part of x86 hardware nodes compounding commodity
clusters. Finally, researchers developed approaches concerning
data security, privacy, and integrity within the framework (Wei
et al., 2009; Lin et al., 2012), some of them were specifically

Fig. 2. Comparison of two clusterization steps using the neighborhood join projection technique.

Table 5
Research topics addressed in selected studies.

Taxonomy category Subcategory Number of studies Percent

MapReduce Scheduling 42 40
Resource allocation 40 38
Data flow 28 26

Data storage Storage and replication 18 17
& manipulation Cloud computing 17 16

Queries 16 15
Cloud storage 8 8
DBMS 8 8
Indexing 7 7
Random access 3 3

Ecosystem New component 23 22
Hive. Pig. HBase 12 11

Miscellaneous Data security & Crypto 7 7
Energy management 6 6
GPGPU 4 4

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 17

designed to be used with Cloud Computing technologies (Shen et
al., 2011; Khaled et al., 2010; Nguyen and Shi, 2010; Khan and
Hamlen, 2012).

5.3. Taxonomy

We placed all studies into one or more categories of our
taxonomy. These categories were created based on the Apache
Hadoop project and considering the context of the selected papers.
The framework is divided into subprojects, which initially guided
early versions of our taxonomy. Key areas such as scheduling,
resource allocation, and storage were first selected. When the
analysis of the selected studies began, new categories were created
in our taxonomy based on the new topics found. The final set of
categories and their subdivision were presented in the previous
section.

Another way to analyze the grouping of studies is to use
specific visualization tools. We created a corpus using title, key-
words, and abstract from the selected studies and we used a tool
called Projection Explorer (PEx) (Paulovich et al., 2007; Cuadros et
al., 2007) to create a set of visualizations for our work. PEx is able
to create and explore visual representations of document collec-
tions. Each document is represented as a circle in a plane and the
distance between circles in subtrees represents their similarity.
The closer the circles are in the same subtree, the similar the
documents are. By using these tools we were able to group
documents into categories and to visualize the results as shown
in Fig. 2. The figure shows two clusterization steps. In the first step,
represented in the subgraph on the left, we used 8 clusters. In the
second step, represented in the subgraph on the right, we used 15
clusters. We understand from the figure that with more clusters,
there are more terms that group the articles into specific branches,
which shows the correlation among works. The use of such
visualizations helps to confirm studies placement into categories.
Also, the results were close to our manual classification. To
generate the visualizations, we conducted a series of experiments,
varying the number of groups, and the best results were achieved
using eight groups, the number of subsections previously pre-
sented in Section 4.

5.4. Results and findings

Our taxonomy was created to help answer our first research
question, RQ1: “What are the main research topics and aspects
covered by publications concerning the Apache Hadoop frame-
work and the MapReduce paradigm?”. We were able to classify the
studies and their contributions into categories. This classification
gives a visualization of which areas are well explored in Hadoop.
Table 5 and Fig. 3 show that the MapReduce paradigm within

Hadoop aggregates more contributions to the framework. Sche-
duling and data flow, and consequently, resource allocation, have
major roles on Hadoop performance. In fact, all the papers in this
category are concerned with performance improvements in
MapReduce applications. Also, most proposals changing the
MapReduce data flow are related to achieving better application
runtimes. This is accomplished by breaking existing paradigm
enforced barriers, such as the isolation between the Map and
Reduce phases. Yet, on the MapReduce category, some papers are
not concerned with performance. By altering the MapReduce data
flow, some approaches extend the applicability of Apache Hadoop
to support, e.g., iterative applications, originally not suitable to use
the framework.

We can also see in Table 5 and in Fig. 4 that research studies
enhancing HDFS and approaches to create or develop query
strategies are relatively common. At least one out of five papers
in this review cover data storage and manipulation. The HDFS file
system was developed to have high throughput storing large
datasets. Most of the papers in the area alter HDFS to store other
types of datasets, e.g., small files such as RDF files, or scattered
datasets, in a more efficient way. Additionally, works enhancing or
developing new techniques to query data on HDFS are present.
This is reflected in the Ecosystem category (Fig. 5), since several
approaches are developed as new components being placed on top
of Hadoop. Although most of these approaches do not result in
significant changes in Hadoop, some contributions in the DBMS
area demand several changes to the framework, making it difficult
to use them with a new Hadoop version as soon as it is released.
We may still see some categories with few contributions, e.g.,
indexing and random access, which have partial support from
Apache Hadoop and have received contributions to solve specific
classes of problems. Finally, recent research areas, such as green
computing, energy management, GPGPU, Cloud Computing, and

Fig. 3. Number of studies by year—MapReduce category.

Fig. 4. Number of studies by year—data storage & manipulation category.

Fig. 5. Number of studies by year—ecosystem category.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2518

Cloud Storage, are promising but few works were published
involving Hadoop (Fig. 6). Works intersecting these areas may be
more likely to be developed, since the framework became more
stable along the last two years and the MapReduce paradigm was
rethought as a support to unprecedented areas. They have a direct
impact in Table 5, where most studies have been placed into more
than one category.

With the selected papers organized into the taxonomy, we
were able to show more clearly how the proposals were validated
and what were real contributions to the Apache Hadoop. The
validation methods used in the work proposed in the selected papers
are discussed in RQ2.2 “What kind of validation is performed in each
study? Simulation, analytical model, experimentation?”. Tables A1–A3
in Appendix A shows the validation techniques used in each topic of
our taxonomy.

Source code contributions to the Apache Hadoop and its ecosystem
are proofs of a concept that validates the proposals. Hence, we
consider that implementation is the most valuable form of validation.
Also, the proposals, including the ones containing implementations,
can be additionally validated by experiments, simulations and, more
formally, using analytical models. Indeed, we can conclude that most
studies (88%) use more than one form of validation.

As described in 2.2, our search strategies prioritize studies
presenting concrete contributions to the Apache Hadoop, i.e.,
source code contributions. Only 5% of the papers do not contain
any implementation (Guo et al., 2011; Kaushik et al., 2011; Lei et
al., 2011; Rasooli and Down, 2011; Jeon et al., 2013). Even without
implementation into Hadoop, these works were included because
they present other important contributions. Guo et al. (2011), Lei
et al. (2011), and Rasooli and Down (2011) propose schedulers and
validate their proposals using simulations. Kaushik et al. (2011)
present new ecosystem components. It is interesting to notice that
these studies are not present in the column “Implementation” of
Tables A1 and A2 because they do not contribute directly to
Hadoop. Thus, the other 95% of the works contain source code
contributions to Hadoop. In contrast, 8% of the proposals only
contain implementation, without any other form of validation
(Olston et al., 2008; Wei et al., 2009; Zhang and De Sterck, 2010;
Kousiouris et al., 2011; Shi et al., 2011). The majority of the
implementations is originated from academic works. Some of
these proposals intend to provide source code and evolve the
Hadoop project. Others use the implementation only as a proof of
concept. In contrast, few papers aim to solve specific industry
problems.

Experimentation is the second validation technique most used
by researchers to evaluate the proposals (82%). In fact, the
combination of experimentation and implementation is the most
used, and was observed in 80% of the papers. It shows the
attention employed by researchers to validate the proposed
implementations. However, it is important to highlight some

problems encountered during this systematic literature review.
Many of the experiments conducted by the researchers cannot be
fully reproduced, since we did not identify any formal experiment
explicitly described. For some research studies, even more trou-
bling, datasets and/or benchmarks used in experiments are una-
vailable to other researchers. The absence of a package and/or
dataset may precludes the quality assessment of the original
experiments and their replication. For example, experiments
containing very specific benchmarks and/or datasets, or experi-
ments inadequately designed may introduce biases or even
influence the results obtained. A real example of this problem
can be noted comparing the proposals of Wang et al. (2011) and
Ho et al. (2011). The proposal of Wang et al. (2011) tries to solve
the problem caused by repetitive merges and disk access in the
Reduce phase using a network-levitated merge algorithm. How-
ever, they do not discuss the Reducer Replacement Problem (RPP),
caused by an increase of network traffic. In turn, Ho et al. (2011)
attack the RPP problem minimizing the network traffic, but they
do not mention the impact on disk access. In both cases, the
experiments conducted do not refer to threats of validity.

Finally, analytical models and simulations were used to validate
few studies, 25% and 13% respectively. Analytical models are a
formal way to validate the studies and are generally used in
conjunction with implementation. Only 3 out of 18 studies pre-
senting analytical models do not contain implementation (Rasooli
and Down, 2011; Guo et al., 2011; Ho et al., 2011). Proposals
regarding scheduling, data flow, resource allocation, data storage,
and replication were mostly the ones validated by analytical
models. On the other hand, simulation is more used in papers
involving scheduling. Surely, scheduling is an appropriate subject
to be validated both with analytical models and with simulation,
since it is a widely studied topic in Computer Science and well
understood from a theoretical point of view. In fact, 7 out of
9 papers presenting simulations were related to scheduling
proposals which are also concerned with resource allocation. As
well as analytical models, simulations were generally used in
conjunction with another validation technique. Just three propo-
sals were validated exclusively via simulation.

Another way of viewing the proposals is to consider the focus of
the provided solution. This is addressed by RQ2.3 “The proposed
approaches take into account whether the problem being solved is
application/data-specific or more generic?”. Specific solutions are
proposed by 21% of the studies while 79% are general solutions.
Specific and general solutions encompass indifferently all topics in our
taxonomy. Similarly, specific and general solutions were indistinctly
validated by the techniques aforementioned. However, we can point
out that all specific solutions were validated at least via an
implementation.

6. Related work

Although some surveys about the MapReduce paradigm may
be found in the literature, up to this date, no other systematic
literature review specifically about the Apache Hadoop framework
was found. Concerning parallel data processing using MapReduce,
Lee et al. (2012) present a survey focused on this paradigm. The
authors present the MapReduce architecture, its advantages and
pitfalls. This survey is not specifically focused on Hadoop, but on
the paradigm itself. Therefore, other approaches such as Dryad
(Isard et al., 2007), Nephele/PACTs (Battré et al., 2010) and Clustera
(DeWitt et al., 2008) are considered in the MapReduce context.
The work of Lee et al. lists improvements and variants made on
these frameworks in terms of high-level languages, data flow,
schema, I/O optimizations, scheduling, performance, energy
issues, and hybrid systems.

Fig. 6. Number of studies by year—miscellaneous category.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 19

Other surveys approach specific areas in Hadoop, such as
scheduling. Yoo and Sim (2011) review a collection of approaches
for scheduling jobs for MapReduce considering scheduling issues
such as locality, synchronization overhead, and fairness con-
straints. The work presents two main schedulers, including
Hadoop approaches, comparing their features, strengths, and
weaknesses. Rao and Reddy (2011) present a similar approach.
Dealing with scheduling, the authors present improvements and
guidelines on how to improve it in Hadoop on Cloud
Environments.

7. Conclusion, research opportunities, and future work

The Apache Hadoop framework has been widely adopted by both
the industry and research communities. A proof of this is the number
of publications about the framework, which amounts to a very large
number over the past five years. We conducted a systematic literature
review as a mean to map the contributions made by several authors to
Hadoop. From more than 1500 papers, we have selected 106 that
contributed directly to the project. We classified the papers into a
taxonomy, which helped to observe areas that are well explored, as
well as more recent topics. Hadoop performance, scheduling, data
flow modifications, and resource allocation management are the
topics that have received the majority of contributions.

After analyzing the selected papers, we were able to draw
important conclusions regarding Hadoop development. First of all,
we have noticed that the number of publications has increased
constantly over the last few years, but the main focus on the papers
have changed. Since our major concern is the analysis of studies that
have Hadoop as an end/final objective, according to the second
inclusion criteria, we have selected papers with contributions to the
framework. According to our research, the number of publications
seems to have reached its peak in 2012, and probably will not
experience another peak in the future. That may be explained for
several reasons:

� Apache Hadoop has overcome its initial “unstable” phase. The
framework have grown solid and stable. HDFS is a reality used
to store large files. Performance issues were addressed. MapRe-
duce was consolidated as a distributed computing paradigm.

� Hadoop early adoption by several big companies (Yahoo!,
Facebook, Ebay, Amazon, Adobe, among many others) drew
attention of many IT companies. Due to its key concept of
parallel and distributed abstraction, Hadoop was widely
adopted to process data using the MapReduce paradigm. The
major Apache Hadoop premise that “users should be writing
their programs and obtaining results from their data” became a
reality. Aside from configuring correctly the cluster (which,
actually is not an easy task), users should not be concerned
with task distribution, load balancing, and failures.

� The growth on Hadoop adoption have consolidated because users
were able to understand what Apache Hadoop MapReduce is
designed for. Applying MapReduce to the appropriate classes of
problems yields the expected performance and results.

This arises from the effort made by academia and industry,
which have, over the last six years, developed a solid solution to
process Big Data. The last three years were the apex of Hadoop
development, incorporating new projects to its ecosystem,
upgrading its architecture, and reaching stability. That is one of
the reasons we have seen the number of studies in our research
increase constantly from 2010 up to 2012 and decreasing in 2013.
But we noticed that from 2012 on, papers are focused on using
Hadoop as a consolidated infrastructure to solve existent pro-
blems, without significant modifications to the framework; a proof

of that is the large number of solutions produced over the last
three years that can be applied to different problems.

Another consideration is that Cloud Computing platforms have
also consolidated and provided correct support for Hadoop and its
ecosystem. On the one hand, projects such as Savanna from
OpenStack and Apache Mesos are providing support for Hadoop
in the Cloud. OpenStack's Savanna provides a means to provision
Hadoop clusters on top of OpenStack according to the users needs,
while Apache Mesos provides resource isolation, sharing them
across distributed applications of frameworks, which enables the
possibility to run, e.g., Apache Hadoop and MPI on the same
cluster, bringing flexibility to the infrastructure. Both projects are
open source and are evolving rapidly. On the other hand, platforms
such as the well-established Amazon Elastic MapReduce, and
products from several other companies provide ready-to-go plat-
forms (Hortonworks, EMC, Cloudera, MapR, and many others),
bringing to reality the possibility of Hadoop over Cloud Computing
tailored to user's needs and budget.

With this in mind, it is worth to notice that several research
efforts conducted by academics do not become direct contribu-
tions to Hadoop. Even tough, Apache Hadoop managed to become
a stable platform. In general, approaches developed by companies
related to the Apache Hadoop project, such as Yahoo! and Face-
book are incorporated into the project at some time. On the other
hand, although some approaches mentioned in this study could be
released as an extra ecosystem component, this step most of the
times is not accomplished by researchers. Being an open source
framework, the Apache Hadoop community should try to reduce
this gap with academic researchers. Solutions described in several
of the papers we analyzed could be useful if provided as alter-
native approaches to different classes of problems in Apache
Hadoop. At this point, we can affirm that more generic solutions
have a better chance to be incorporated into the Hadoop project
than solutions to specific problems. Another point that deserves
attention is that the separation between Hadoop 1.x and 2.x in
terms of architectural changes may have impact on this generic/
specific solutions statement, e.g., the separation between resource
management and scheduling in Hadoop 2.x, may have effects on
some studies that were concerned with both topics, such as Zhang
et al. (2012b), Nguyen and Shi (2010) and Verma et al. (2011). Most
of the scheduling works were developed on Hadoop 0.20.x, before
the introduction of MapReduce NextGen, which affects its applic-
ability. Even so, we were able to observe that most studies that
were tied to a particular version of Hadoop evolved their works,
either implementing new versions or developing new approaches/
components that could take a better advantage of the new Hadoop
architecture.

A second point to be observed is the absence of formal
documentation in the experiments conducted by the authors. This
is a problem that was already described in some publications
concerning the quality of the research that we were able to
confirm. We observed a focus in almost all studies on the
infrastructure used in the experiments. Data used on experiments
sometimes are not clearly described and, most of the times, are not
publicly available. This could be considered a threat to validity of
many works, since experiments cannot be fully reproduced. This
problem could be solved by using concepts such as open data or
data provenance. In this case, approaches proposed by Zhou et al.
(2012b) and Akoush et al. (2013) are bringing data provenance to
the Hadoop platform. Another concern are the benchmarks used
in experiments. The absence of publicly available data for experi-
ments, could lead to the use of specific biased datasets, which
could favor specific approaches. But, as different areas require
different kinds of benchmarks, they would have to be developed
according to the area of application, e.g., scheduling, resource
allocation, file system, and network communication. Even with the

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2520

development of new tools, authors should register their experi-
ments in a formal way and make them available for further
evolution of their research, using adequate data provenance.

Finally, this reviewwas also conducted trying to find out promising
areas for research in the MapReduce paradigm, specially in the
Hadoop framework. The storage and cloud computing areas have
consistently raised the number of publications and new improvements
have already been achieved. Although we observed a great evolution,
this area is likely to be further explored to enhance the performance in
specific areas, such as the HDFS file system. Low-latency times for
random reads are still a challenge, since the distributed file systemwas
not originally developed with these features in focus. Another inter-
esting area is the flash storage. These technologies are being intro-
duced into clusters and grids, but their full potential is not explored
yet. The analysis of workloads and behavior of Hadoop MapReduce are
beginning to be explored and can bring another rush of performance
to the framework. Linked to these technologies is the green comput-
ing area, which could definitely benefit from the low-power con-
sumption from solid state disks. We did not find a high number of

publications in the green computing field. This may represent a gap in
the area that needs further research, or because research being
conducted are in an initial stage and were not published yet. With
new storage technologies becoming cheaper, the intersection among
storage, cloud, and green computing will probably deserve further
exploration and development, presenting new challenges to the
research community.

Acknowledgments

This work was partially funded by Fundação Araucária and
NAPSoL-PRP/USP.

Appendix A. Validation techniques used in the selected studies

Table A1 and A2

Table A1
Studies with implementation and/or experiments (MapReduce and data storage & manipulation categories).

Implementation Experiments

Scheduling Tian et al. (2009), Zhang et al. (2011b, 2011c, 2012a, 2012b),
Vernica et al. (2012), Verma et al. (2011), Kumar et al.
(2012), Hammoud et al. (2012), Zhang and De Sterck (2010),
Liang et al. (2011), Tan et al. (2012a), Goiri et al. (2012), Seo
et al. (2009), Shirahata et al. (2010), Elnikety et al. (2011),
Nguyen and Shi (2010), Ibrahim et al. (2010), Hammoud
and Sakr (2011), He et al. (2011a), Nykiel et al. (2010), Shi
et al. (2011), Chen et al. (2010), Ahmad et al. (2012), Zhao
et al. (2012), Bu et al. (2012), Bhatotia et al. (2011), Lin et al.
(2010), Verma et al. (2012), Ibrahim et al. (2012), Mao et al.
(2012), Polo et al. (2010), Tan et al. (2012b), Tang et al.
(2012), Tao et al. (2011), You et al. (2011), Kondikoppa et al.
(2012), Nguyen et al. (2012), Wang et al. (2012), Lin et al.
(2013), Mohamed and Marchand-Maillet (2013)

Tian et al. (2009), Vernica et al. (2012), Zhang et al.
(2011b, 2011c, 2012b), Verma et al. (2011), Guo et al.
(2011), Kumar et al. (2012), Hammoud et al. (2012), Liang
et al. (2011), Tan et al. (2012a), Goiri et al. (2012), Seo
et al. (2009), Shirahata et al. (2010), Elnikety et al. (2011),
Nguyen and Shi (2010), Ibrahim et al. (2010), Hammoud
and Sakr (2011), Nykiel et al. (2010), Ahmad et al. (2012),
Zhao et al. (2012), Bu et al. (2012), Bhatotia et al. (2011),
Lin et al. (2010), Verma et al. (2012), Ibrahim et al. (2012),
Mao et al. (2012), Polo et al. (2010), Tan et al. (2012b),
Tang et al. (2012), Tao et al. (2011), You et al. (2011),
Kondikoppa et al. (2012), Nguyen et al. (2012), Wang
et al. (2012), Lin et al. (2013), Mohamed and Marchand-
Maillet (2013)

Data flow Zhu and Chen (2011), Vernica et al. (2012), Liang et al.
(2011), Tan et al. (2012a), Laptev et al. (2012), Elteir et al.
(2010), Grover and Carey (2012), Wang et al. (2011), Seo
et al. (2009), Shirahata et al. (2010), Elnikety et al. (2011),
Ibrahim et al. (2010), Hammoud and Sakr (2011), He et al.
(2011a), Olston et al. (2011), Ho et al. (2011), Shi et al.
(2011), Buck et al. (2011), Kwon et al. (2012), Bu et al.
(2012), Bhatotia et al. (2011), Lin et al. (2010), Verma et al.
(2012), Zhang et al. (2011d), Ahmad et al. (2013), Lin et al.
(2013), Mohamed and Marchand-Maillet (2013), Xie et al.
(2013)

Zhu and Chen (2011), Vernica et al. (2012), Liang et al.
(2011), Tan et al. (2012a), Laptev et al. (2012), Elteir et al.
(2010), Grover and Carey (2012), Wang et al. (2011), Seo
et al. (2009), Shirahata et al. (2010), Elnikety et al. (2011),
Ibrahim et al. (2010), Hammoud and Sakr (2011), Olston
et al. (2011), Ho et al. (2011), Buck et al. (2011), Kwon
et al. (2012), Bu et al. (2012), Bhatotia et al. (2011), Lin
et al. (2010), Verma et al. (2012), Zhang et al. (2011d),
Ahmad et al. (2013), Lin et al. (2013), Mohamed and
Marchand-Maillet (2013), Xie et al. (2013)

Resource allocation Tian et al. (2009), Zhang et al. (2011b, 2011c, 2011d, 2012a,
2012b), Zhu and Chen (2011), Verma et al. (2011), Kumar
et al. (2012), Hammoud et al. (2012), Zhang and De Sterck
(2010), Liang et al. (2011), Grover and Carey (2012), Goiri
et al. (2012), Seo et al. (2009), Shirahata et al. (2010),
Nguyen and Shi (2010), Hammoud and Sakr (2011), He et al.
(2011a), Nykiel et al. (2010), Mandal et al. (2011), Chen et al.
(2010), Li et al. (2011), Ahmad et al. (2012), Zhao et al.
(2012), Mao et al. (2011), Lin et al. (2010), Verma et al.
(2012), Ibrahim et al. (2012), Mao et al. (2012), Park et al.
(2012), Polo et al. (2010), Tan et al. (2012b), Tang et al.
(2012), Tao et al. (2011), You et al. (2011), Costa et al. (2013),
Kondikoppa et al. (2012), Lama et al. (2012), Wang et al.
(2013)

Tian et al. (2009), Zhu and Chen (2011), Zhang et al.
(2011b, 2011c, 2011d, 2012b), Verma et al. (2011), Guo
et al. (2011), Kumar et al. (2012), Hammoud et al. (2012),
Liang et al. (2011), Grover and Carey (2012), Goiri et al.
(2012), Seo et al. (2009), Shirahata et al. (2010), Nguyen
and Shi (2010), Hammoud and Sakr (2011), Nykiel et al.
(2010), Mandal et al. (2011), Ahmad et al. (2012), Zhao
et al. (2012), Mao et al. (2011), Lin et al. (2010), Verma
et al. (2012), Ibrahim et al. (2012), Mao et al. (2012), Park
et al. (2012), Polo et al. (2010), Tan et al. (2012b), Tang
et al. (2012), Tao et al. (2011), You et al. (2011), Costa et al.
(2013), Kondikoppa et al. (2012), Lama et al. (2012), Wang
et al. (2013)

Storage & replication Wei et al. (2010), Eltabakh et al. (2011), Zhou et al. (2012a),
Bajda-Pawlikowski et al. (2011), Goiri et al. (2012), Dittrich
et al. (2012), Guang-hua et al. (2011), He et al. (2011b), Wei
et al. (2009), Lin et al. (2012), Mikami and Ohta (2011),
Verma et al. (2012), Clement et al. (2009), Ko et al. (2010),
Shafer et al. (2010), Xie et al. (2010), Costa et al. (2013),
Kang et al. (2013)

Dong et al. (2010), Wei et al. (2010), Eltabakh et al. (2011),
Zhou et al. (2012a), Bajda-Pawlikowski et al. (2011), Goiri
et al. (2012), Dittrich et al. (2012), Guang-hua et al.
(2011), He et al. (2011b), Lin et al. (2012), Mikami and
Ohta (2011), Verma et al. (2012), Clement et al. (2009), Ko
et al. (2010), Shafer et al. (2010), Xie et al. (2010), Costa
et al. (2013), Jeon et al. (2013), Kang et al. (2013)

Cloud storage Kousiouris et al. (2011), Wei et al. (2010), Zhang and De
Sterck (2010), Zhang et al. (2011a), Guang-hua et al. (2011),

Wei et al. (2010), Zhang et al. (2011a), Guang-hua et al.
(2011), Dong et al. (2010), Ko et al. (2010), He et al. (2012),
Lee et al. (2013)

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 21

Table A1 (continued)

Implementation Experiments

Shen et al. (2011), Dong et al. (2010), Ko et al. (2010), He
et al. (2012), Lee et al. (2013)

Cloud computing Khaled et al. (2010), Zhang et al. (2011a, 2011b, 2012b),
Hammoud et al. (2012), Khan and Hamlen (2012), Nguyen
and Shi (2010), Mandal et al. (2011), Guang-hua et al.
(2011), Shen et al. (2011), Ko et al. (2010), Mao et al. (2012),
Park et al. (2012), Tang et al. (2012), He et al. (2012), Lama
et al. (2012), Zhou et al. (2013), Wang et al. (2013), Ahmad
et al. (2013)

Zhang et al. (2011a, 2011b, 2012b), Hammoud et al.
(2012), Khan and Hamlen (2012), Nguyen and Shi (2010),
Mandal et al. (2011), Guang-hua et al. (2011), Ko et al.
(2010), Mao et al. (2012), Park et al. (2012), Tang et al.
(2012), He et al. (2012), Lama et al. (2012), Zhou et al.
(2013), Wang et al. (2013), Ahmad et al. (2013)

Indexing Dong et al. (2010), Dittrich et al. (2010), An et al. (2010),
Liao et al. (2010), Dittrich et al. (2012)

Dong et al. (2010), Dittrich et al. (2010), An et al. (2010),
Liao et al. (2010), Dittrich et al. (2012)

Random access Dong et al. (2010), Zhou et al. (2012a), Liao et al. (2010) Dong et al. (2010), Zhou et al. (2012a), Liao et al. (2010)
DBMS Kaldewey et al. (2012), Bajda-Pawlikowski et al. (2011),

Tanimura et al. (2010), Dittrich et al. (2010), Abouzeid et al.
(2009), Konishetty et al. (2012), An et al. (2010), He et al.
(2011b)

Kaldewey et al. (2012), Bajda-Pawlikowski et al. (2011),
Tanimura et al. (2010), Dittrich et al. (2010), Abouzeid
et al. (2009), Konishetty et al. (2012), An et al. (2010), He
et al. (2011b)

Table A2
Studies with implementation and/or experiments (ecosystem and miscellaneous categories).

Implementation Experiments

Queries Vernica et al. (2012), Gates et al. (2009), Kaldewey et al.
(2012), Bajda-Pawlikowski et al. (2011), Tanimura et al.
(2010), Dittrich et al. (2010), Abouzeid et al. (2009), Iu and
Zwaenepoel (2010), An et al. (2010), Nykiel et al. (2010),
Liao et al. (2010), Olston et al. (2011), Dittrich et al. (2012),
Olston et al. (2008), He et al. (2011b), Buck et al. (2011)

Vernica et al. (2012), Gates et al. (2009), Kaldewey et al.
(2012), Bajda-Pawlikowski et al. (2011), Tanimura et al.
(2010), Dittrich et al. (2010), Abouzeid et al. (2009), Iu
and Zwaenepoel (2010), An et al. (2010), Nykiel et al.
(2010), Liao et al. (2010), Olston et al. (2011), Dittrich et al.
(2012), He et al. (2011b), Buck et al. (2011)

Hadoop ecosystem Kousiouris et al. (2011), Gates et al. (2009), Bajda-
Pawlikowski et al. (2011), Grover and Carey (2012),
Tanimura et al. (2010), Iu and Zwaenepoel (2010),
Konishetty et al. (2012), Olston et al. (2011), Olston et al.
(2008), He et al. (2011b), Elghandour and Aboulnaga
(2012), Clement et al. (2009), Zhang et al. (2012b)

Gates et al. (2009), Bajda-Pawlikowski et al. (2011),
Grover and Carey (2012), Tanimura et al. (2010), Iu and
Zwaenepoel (2010), Konishetty et al. (2012), Olston et al.
(2011), He et al. (2011b), Elghandour and Aboulnaga
(2012), Clement et al. (2009), Zhang et al. (2012b)

New ecosystem component Kaldewey et al. (2012), Zhou et al. (2012a), Bajda-
Pawlikowski et al. (2011), Wang et al. (2011), Dittrich et al.
(2010), Abouzeid et al. (2009), Nguyen and Shi (2010), An
et al. (2010), Fang et al. (2011), Olston et al. (2011), Guang-
hua et al. (2011), Elghandour and Aboulnaga (2012), Buck
et al. (2011), Wei et al. (2009), Mao et al. (2011), Mikami
and Ohta (2011), Bhatotia et al. (2011), Leo and Zanetti
(2010), Lin et al. (2010), Clement et al. (2009), Zhang et al.
(2011d)

Kaldewey et al. (2012), Zhou et al. (2012a), Bajda-
Pawlikowski et al. (2011), Wang et al. (2011), Dittrich
et al. (2010), Abouzeid et al. (2009), Nguyen and Shi
(2010), An et al. (2010), Fang et al. (2011), Olston et al.
(2011), Guang-hua et al. (2011), Elghandour and
Aboulnaga (2012), Buck et al. (2011), Mao et al. (2011),
Mikami and Ohta (2011), Bhatotia et al. (2011), Leo and
Zanetti (2010), Lin et al. (2010), Clement et al. (2009),
Zhang et al. (2011d)

Green computing & energy Goiri et al. (2012), Shirahata et al. (2010), Nguyen and Shi
(2010), Li et al. (2011), Mao et al. (2012)

Goiri et al. (2012), Shirahata et al. (2010), Nguyen and Shi
(2010), Mao et al. (2012)

GPGPU Xin and Li (2012), Shirahata et al. (2010), Fang et al. (2011),
Tan et al. (2012b), Grossman et al. (2013)

Xin and Li (2012), Shirahata et al. (2010), Fang et al.
(2011), Tan et al. (2012b), Grossman et al. (2013)

Data security & Crypto Khaled et al. (2010), Zhang and De Sterck (2010), Khan and
Hamlen (2012), Shen et al. (2011), Wei et al. (2009), Lin
et al. (2012), Zhou et al. (2013)

Khan and Hamlen (2012), Lin et al. (2012), Zhou et al.
(2013)

Table A3
Studies with analytical models and/or simulation.

Analytical Model Simulation

Scheduling Tian et al. (2009), Zhang et al. (2012a, 2012b), Rasooli and
Down (2011), Verma et al. (2011), Guo et al. (2011), Tan
et al. (2012a), Nykiel et al. (2010), Ahmad et al. (2012), Zhao
et al. (2012), Bhatotia et al. (2011), Ibrahim et al. (2012),
Tang et al. (2012), Tao et al. (2011), Nguyen et al. (2012),
Wang et al. (2012), Lin et al. (2013)

Rasooli and Down (2011), Verma et al. (2011), Guo et al.
(2011), Kumar et al. (2012), Lei et al. (2011), He et al.
(2011a), Chen et al. (2010), Kondikoppa et al. (2012),
Nguyen et al. (2012), Lin et al. (2013)

Data flow Zhu and Chen (2011), Tan et al. (2012a), Elteir et al. (2010),
Ho et al. (2011), Kwon et al. (2012), Bhatotia et al. (2011),
Zhang et al. (2011d), Lin et al. (2013)

He et al. (2011a), Lin et al. (2013)

Resource allocation Tian et al. (2009), Zhang et al. (2012a, 2012b), Zhu and Chen
(2011), Rasooli and Down (2011), Verma et al. (2011), Guo

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2522

References

Abouzeid A, Bajda-Pawlikowski K, Abadi D, Silberschatz A, Rasin A. HadoopDB: an
architectural hybrid of MapReduce and DBMS technologies for analytical
workloads. Proc VLDB Endow 2009;2(1):922–33.

Ahmad F, Chakradhar ST, Raghunathan A, Vijaykumar TN. Tarazu: optimizing
MapReduce on heterogeneous clusters. SIGARCH Comput Archit News
2012;40(1):61–74.

Ahmad F, Lee S, Thottethodi M, Vijaykumar T. MapReduce with communication
overlap (MARCO). J Parallel Distrib Comput 2013;73(5):608–20.

Akoush S, Sohan R, Hopper A. HadoopProv: towards provenance as a first class
citizen in MapReduce. In: Proceedings of the fifth USENIX conference on theory
and practice of provenance, TaPP'13. Berkeley, CA, USA: USENIX Association;
2013. p. 1–4.

An M, Wang Y, Wang W, Sun N. Integrating DBMSs as a read-only execution layer
into Hadoop. In: International conference on parallel and distributed comput-
ing, applications and technologies; 2010. p. 17–26.

Bajda-Pawlikowski K, Abadi DJ, Silberschatz A, Paulson E. Efficient processing of
data warehousing queries in a split execution environment. In: Proceedings of
the international conference on management of data. New York, NY, USA: ACM;
2011. p. 1165–76.

Bakshi K. Considerations for big data: architecture and approach. In: Aerospace
conference. IEEE; 2012. p. 1–7.

Battré D, Ewen S, Hueske F, Kao O, Markl V, Warneke D. Nephele/PACTs: a
programming model and execution framework for web-scale analytical proces-
sing. In: Proceedings of the first symposium on cloud computing. New York, NY,
USA: ACM; 2010. p. 119–30.

Beyer KS, Ercegovac V, Gemulla R, Balmin A, Eltabakh MY, Kanne CC, et al. Jaql: a
scripting language for large scale semistructured data analysis. Proc VLDB
Endow 2011;4(12):1272–83.

Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R. Incoop: MapReduce for
incremental computations. In: Proceedings of the second symposium on cloud
computing. New York, NY, USA: ACM; vol. 7; 2011. p. 1–14.

Bu Y, Howe B, Balazinska M, Ernst MD. The HaLoop approach to large-scale iterative
data analysis. VLDB J 2012;21(2):169–90.

Buck JB, Watkins N, LeFevre J, Ioannidou K, Maltzahn C, Polyzotis N, et al.
SciHadoop: array-based query processing in Hadoop. In: Proceedings of
international conference for high performance computing, networking, storage
and analysis. New York, NY, USA: ACM; vol. 66; 2011. p. 1–11.

Chen Q, Zhang D, Guo M, Deng Q, Guo S. SAMR: a self-adaptive MapReduce
scheduling algorithm in heterogeneous environment. In: The 10th international
conference on computer and information technology. IEEE; 2010. p. 2736–43.

Clement A, Kapritsos M, Lee S, Wang Y, Alvisi L, Dahlin M, et al. Upright cluster
services. In: Proceedings of the 22nd symposium on operating systems
principles. New York, NY, USA: ACM; 2009. p. 277–90.

Costa P, Pasin M, Bessani A, Correia M. On the performance of byzantine
faulttolerant MapReduce. IEEE Trans Dependable Secure Comput 2013;10
(5):301–13.

Cuadros A, Paulovich F, Minghim R, Telles G. Point placement by phylogenetic trees
and its application to visual analysis of document collections. In: Symposium
on visual analytics science and technology. IEEE; 2007. p. 99–106.

Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. In:
Proceedings of the sixth conference on operating systems design and imple-
mentation. Berkeley, CA, USA: USENIX Association; vol. 6; 2004. p. 137–150.

Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.
Commun ACM 2008;51(1):107–13.

DeWitt DJ, Paulson E, Robinson E, Naughton J, Royalty J, Shankar S, et al. Clustera:
an integrated computation and data management system. Proc VLDB Endow
2008;1(1):28–41.

Dittrich J, Quiané-Ruiz JA, Jindal A, Kargin Y, Setty V, Schad J. Hadoopþþ: making a
yellow elephant run like a cheetah (without it even noticing). Proc VLDB Endow
2010;3(1–2):515–29.

Dittrich J, Quiané-Ruiz JA, Richter S, Schuh S, Jindal A, Schad J. Only aggressive
elephants are fast elephants. Proc VLDB Endow 2012;5(11):1591–602.

Dong B, Qiu J, Zheng Q, Zhong X, Li J, Li Y. A novel approach to improving the
efficiency of storing and accessing small files on Hadoop: a case study by
PowerPoint files. In: International conference on services computing. IEEE;
2010. p. 65–72.

Elghandour I, Aboulnaga A. ReStore: reusing results of MapReduce jobs. Proc VLDB
Endow 2012;5(6):586–97.

Elnikety E, Elsayed T, Ramadan H. iHadoop: asynchronous iterations for MapRe-
duce. In: The third international conference on cloud computing technology
and science. IEEE; 2011. p. 81–90.

Eltabakh MY, Tian Y, Özcan F, Gemulla R, Krettek A, McPherson J. CoHadoop:
flexible data placement and its exploitation in Hadoop. Proc VLDB Endow
2011;4(9):575–85.

Elteir M, Lin H, Chun Feng W. Enhancing MapReduce via asynchronous data
processing. In: The 16th international conference on parallel and distributed
systems. IEEE; 2010. p. 397–405.

Facebook. Under the hood: Scheduling MapReduce jobs more efficiently with
Corona; 2012.

Fang W, He B, Luo Q, Govindaraju N. Mars: accelerating MapReduce with graphics
processors. IEEE Trans Parallel Distrib Syst 2011;22(4):608–20.

Gates AF, Natkovich O, Chopra S, Kamath P, Narayanamurthy SM, Olston C, et al.
Building a high-level dataflow system on top of Map-Reduce: the Pig experi-
ence. Proc VLDB Endow 2009;2(2):1414–25.

Ghemawat S, Gobioff H, Leung ST. The Google file system. ACM SIGOPS Oper Syst
Rev 2003;37(5):29–43.

Goiri In, Le K, Nguyen TD, Guitart J, Torres J, Bianchini R. GreenHadoop: leveraging
green energy in data-processing frameworks. In: Proceedings of the seventh
European conference on computer systems. New York, NY, USA: ACM; 2012. p.
57–70.

Grossman M, Breternitz M, Sarkar V. HadoopCL: MapReduce on distributed
heterogeneous platforms through seamless integration of Hadoop and OpenCL.
In: 2013 IEEE 27th international parallel and distributed processing symposium
workshops PhD forum (IPDPSW); 2013. p. 1918–27.

Grover R, Carey M. Extending Map-Reduce for efficient predicate-based sampling. In:
The 28th international conference on data engineering. IEEE; 2012. p. 486–97.

Guang-hua S, Jun-na C, Bo-wei Y, Yao Z. QDFS: a quality-aware distributed file
storage service based on HDFS. In: International conference on computer
science and automation engineering. IEEE; vol. 2; 2011. p. 203–7.

Guo Z, Pierce M, Fox G, Zhou M. Automatic task re-organization in MapReduce. In:
International conference on cluster computing. IEEE; 2011. p. 335–43.

Hammoud M, Rehman M, Sakr M. Center-of-Gravity reduce task scheduling to
lower MapReduce network traffic. In: International conference on cloud
computing. IEEE; 2012. p. 49–58.

Hammoud M, Sakr M. Locality-aware reduce task scheduling for MapReduce. In:
The third international conference on cloud computing technology and science.
IEEE; 2011. p. 570–6.

He C, Lu Y, Swanson D. Matchmaking: a new MapReduce scheduling technique. In:
The third international conference on cloud computing technology and science.
IEEE; 2011a. p. 40–7.

He Y, Lee R, Huai Y, Shao Z, Jain N, Zhang X, et al. RCFile: a fast and space-efficient
data placement structure in MapReduce-based warehouse systems. In: The
27th international conference on data engineering. IEEE; 2011b. p. 1199–208.

He C, Weitzel D, Swanson D, Lu Y. Hog: distributed Hadoop MapReduce on the grid.
In: High performance computing, networking, storage and analysis (SCC), 2012
SC Companion; 2012. p. 1276–83.

Table A3 (continued)

Analytical Model Simulation

et al. (2011), Nykiel et al. (2010), Li et al. (2011), Ahmad
et al. (2012), Zhao et al. (2012), Mao et al. (2011), Ibrahim
et al. (2012), Tang et al. (2012), Tao et al. (2011), Zhang et al.
(2011d), Costa et al. (2013), Lama et al. (2012)

Rasooli and Down (2011), Verma et al. (2011), Guo et al.
(2011), Kumar et al. (2012), Lei et al. (2011), He et al.
(2011a), Chen et al. (2010), Kondikoppa et al. (2012)

Storage &replication Wei et al. (2010), Eltabakh et al. (2011), Guang-hua et al.
(2011), Lin et al. (2012), Costa et al. (2013)

Kaushik et al. (2011), Jeon et al. (2013)

Cloud storage Wei et al. (2010), Guang-hua et al. (2011), Lee et al. (2013) Shen et al. (2011)
Cloud computing – –

Indexing – –

Random access – –

DBMS – –

Queries Nykiel et al. (2010) –

Hadoop ecosystem – –

New ecosystem component – –

Green computing & energy Li et al. (2011) Kaushik et al. (2011)
GPGPU – –

Data security & Crypto Lin et al. (2012), Zhou et al. (2013) Shen et al. (2011)

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 23

http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref1
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref1
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref1
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref2
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref2
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref2
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref3
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref3
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref9
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref9
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref9
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref11
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref11
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref15
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref15
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref15
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref18
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref18
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref19
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref19
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref19
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref20
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref21
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref21
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref23
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref23
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref25
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref25
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref25
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref28
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref28
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref29
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref29
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref29
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref30
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref30

Ho LY, Wu JJ, Liu P. Optimal algorithms for cross-rack communication optimization
in MapReduce framework. In: International conference on cloud computing.
IEEE; 2011. p. 420–7.

Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Maestro: replica-aware map
scheduling for MapReduce. In: The 12th international symposium on cluster,
cloud and grid computing. IEEE/ACM; 2012. p. 435–42.

Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L. LEEN: Locality/fairness-aware key
partitioning for MapReduce in the cloud. In: The second international con-
ference on cloud computing technology and science; 2010. p. 17–24.

Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel
programs from sequential building blocks. ACM SIGOPS Operat Syst Rev
2007;41(3):59–72.

Iu MY, Zwaenepoel W. HadoopToSQL: a MapReduce query optimizer. In: Proceed-
ings of the fifth European conference on computer systems. New York, NY, USA:
ACM; 2010. p. 251–64.

Jeon H, El Maghraoui K, Kandiraju GB. Investigating hybrid SSD FTL schemes for
Hadoop workloads. In: Proceedings of the ACM international conference on
computing frontiers, CF'13. New York, NY, USA: ACM; 2013. p. 20:1–10.

Jiang D, Ooi BC, Shi L, Wu S. The performance of MapReduce: an in-depth study.
Proc VLDB Endow 2010;3(1–2):472–83.

Kaldewey T, Shekita EJ, Tata S. Clydesdale: structured data processing on MapRe-
duce. In: Proceedings of the 15th international conference on extending
database technology. New York, NY, USA: ACM; 2012. p. 15–25.

Kang Y, suk Kee Y, Miller E, Park C. Enabling cost-effective data processing with
smart ssd. In: 2013 IEEE 29th symposium on mass storage systems and
technologies (MSST); 2013. p. 1–12.

Kaushik R, Abdelzaher T, Egashira R, Nahrstedt K. Predictive data and energy
management in GreenHDFS. In: International green computing conference and
workshops; 2011. p. 1–9.

Kaushik R, Bhandarkar M, Nahrstedt K. Evaluation and analysis of GreenHDFS: a
self-adaptive, energy-conserving variant of the Hadoop distributed file system.
In: The second international conference on cloud computing technology and
science. IEEE; 2010. p. 274–87.

Khaled A, Husain M, Khan L, Hamlen K, Thuraisingham B. A token-based access
control system for RDF data in the clouds. In: The second international
conference on cloud computing technology and science; 2010. p. 104–11.

Khan S, Hamlen K. Hatman: Intra-cloud trust management for Hadoop. In:
International conference on cloud computing. IEEE; 2012. p. 494–501.

Kitchenham B, Charters S. Guidelines for performing systematic literature reviews
in software engineering. Technical Report EBSE 2007-001; Keele University and
Durham University Joint Report; 2007.

Ko SY, Hoque I, Cho B, Gupta I. Making cloud intermediate data fault-tolerant. In:
Proceedings of the first symposium on cloud computing. New York, NY, USA:
ACM; 2010. p. 181–92.

Kondikoppa P, Chiu CH, Cui C, Xue L, Park SJ. Network-aware scheduling of
MapReduce framework ondistributed clusters over high speed networks. In:
Proceedings of the 2012 workshop on cloud services, federation, and the 8th
open cirrus summit. New York, NY, USA: ACM; FederatedClouds '12; 2012. p.
39–44. Scheduling, Cloud Computing.

Konishetty VK, Kumar KA, Voruganti K, Rao GVP. Implementation and evaluation of
scalable data structure over HBase. In: Proceedings of the international
conference on advances in computing, communications and informatics. New
York, NY, USA: ACM; 2012. p. 1010–8.

Kousiouris G, Vafiadis G, Varvarigou T. A front-end, Hadoop-based data manage-
ment service for efficient federated clouds. In: The third international con-
ference on cloud computing technology and science. IEEE; 2011. p. 511–6.

Kumar KA, Konishetty VK, Voruganti K, Rao GVP. CASH: context aware scheduler for
Hadoop. In: Proceedings of the international conference on advances in computing,
communications and informatics. New York, NY, USA: ACM; 2012. p. 52–61.

Kwon Y, Balazinska M, Howe B, Rolia J. SkewTune: mitigating skew in MapReduce
applications. In: Proceedings of the international conference on management of
data. New York, NY, USA: ACM; 2012. p. 25–36.

Lama P, Zhou X. Aroma: Automated resource allocation and configuration of
MapReduce environment in the cloud. In: Proceedings of the ninth interna-
tional conference on autonomic computing. New York, NY, USA: ACM; ICAC'12;
2012. p. 63–72. Cloud Computing, Resource Allocation.

Laptev N, Zeng K, Zaniolo C. Early accurate results for advanced analytics on
MapReduce. Proc VLDB Endow 2012;5(10):1028–39.

Lee K, Nam Y, Kim T, Park S. An adaptive data transfer algorithm using block device
reconfiguration in virtual MapReduce clusters. In: Proceedings of the 2013 ACM
cloud and autonomic computing conference, CAC'13. New York, NY, USA: ACM;
2013. p. 1–8.

Lee KH, Lee YJ, Choi H, Chung YD, Moon B. Parallel data processing with
MapReduce: a survey. SIGMOD Record 2012;40(4):11–20.

Lei L, Wo T, Hu C. CREST: Towards fast speculation of straggler tasks in MapReduce.
In: The eighth international conference on e-business engineering. IEEE; 2011.
p. 311–6.

Leo S, Zanetti G. Pydoop: a Python MapReduce and HDFS API for Hadoop. In:
Proceedings of the 19th international symposium on high performance
distributed computing. New York, NY, USA: ACM; 2010. p. 819–25.

Li, S., Abdelzaher, T., Yuan, M., TAPA: temperature aware power allocation in data
center with Map-Reduce. In: International green computing conference and
workshops; 2011. p. 1–8.

Liang Y, Li G, Wang L, Hu Y. Dacoop: accelerating data-iterative applications on
map/reduce cluster. In: The 12th international conference on parallel and
distributed computing, applications and technologies; 2011. p. 207–14.

Liao H, Han J, Fang J. Multi-dimensional index on Hadoop distributed file system. In:
The fifth international conference on networking, architecture and storage.
IEEE; 2010. p. 240–9.

Lin H, Ma X, Archuleta J, Feng Wc, Gardner M, Zhang Z. MOON: MapReduce on
opportunistic environments. In: Proceedings of the 19th international sympo-
sium on high performance distributed computing. New York, NY, USA: ACM;
2010. p. 95–106.

Lin HY, Shen ST, Tzeng WG, Lin BS. Toward data confidentiality via integrating
hybrid encryption schemes and Hadoop Distributed File System. In: The 26th
international conference on advanced information networking and applica-
tions. IEEE; 2012. p. 740–7.

Lin M, Zhang L, Wierman A, Tan J. Joint optimization of overlapping phases in
MapReduce. Perform Eval 2013;70(10):720–35 [Proceedings of {IFIP} perfor-
mance 2013 conference].

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system
for large-scale graph processing. In: Proceedings of the international confer-
ence on management of data. New York, NY, USA: ACM; 2010. p. 135–46.

Mandal A, Xin Y, Baldine I, Ruth P, Heerman C, Chase J, et al. Provisioning and
evaluating multi-domain networked clouds for Hadoop-based applications. In:
The third international conference on cloud computing technology and science.
IEEE; 2011. p. 690–7.

Mao H, Zhang Z, Zhao B, Xiao L, Ruan L. Towards deploying elastic Hadoop in the
cloud. In: International conference on cyber-enabled distributed computing
and knowledge discovery; 2011. p. 476–82.

Mao Y, Wu W, Zhang H, Luo L. GreenPipe: a Hadoop based workflow system on
energy-efficient clouds. In: The 26th international parallel and distributed
processing symposium workshops PhD forum. IEEE; 2012. p. 2211–9.

Mikami S, Ohta K, Tatebe O. Using the Gfarm File System as a POSIX compatible
storage platform for Hadoop MapReduce applications. In: Proceedings of the
12th international conference on grid computing. Washington, DC, USA: IEEE/
ACM; 2011. p. 181–9.

Mohamed H, Marchand-Maillet S. MRO-MPI: MapReduce overlapping using {MPI}
and an optimized data exchange policy. Parallel Comput 2013;39(12):851–66
[Programming models, systems software and tools for high-end computing].

Nguyen P, Simon T, Halem M, Chapman D, Le Q. A hybrid scheduling algorithm for data
intensive workloads in a MapReduce environment. In: Proceedings of the 2012 IEEE/
ACM fifth international conference on utility and cloud computing. Washington, DC,
USA: IEEE computer society; UCC'12; 2012. p. 161–7. ACM, Scheduling.

Nguyen T, Shi W. Improving resource efficiency in data centers using reputation-
based resource selection. In: International green computing conference; 2010.
p. 389–96.

Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: sharing across
multiple queries in MapReduce. Proc VLDB Endow 2010;3(1–2):494–505.

Olston C, Chiou G, Chitnis L, Liu F, Han Y, Larsson M, et al. Nova: continuous Pig/
Hadoop workflows. In: Proceedings of the international conference on manage-
ment of data. New York, NY, USA: ACM; 2011. p. 1081–90.

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: a not-so-foreign
language for data processing. In: Proceedings of the international conference
on management of data. New York, NY, USA: ACM; 2008. p. 1099–110.

Oriani A, Garcia I. From backup to hot standby: high availability for HDFS. In: IEEE
31st symposium on reliable distributed systems (SRDS); 2012. p. 131–40.

Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J. GPU Computing. Proc
IEEE 2008;96(5):879–99.

Park, J., Lee, D., Kim, B., Huh, J., Maeng, S., Locality-aware dynamic VM reconfigura-
tion on MapReduce clouds. In: Proceedings of the 21st international sympo-
sium on high-performance parallel and distributed computing. New York, NY,
USA: ACM; 2012. p. 27–36.

Paulovich FV, Oliveira MCF, Minghim R. The projection explorer: a flexible tool for
projection-based multidimensional visualization. In: Proceedings of the XX
Brazilian symposium on computer graphics and image processing. Belo
Horizonte, Brazil: IEEE; 2007. p. 27–36. PeX.

Polo J, Carrera D, Becerra Y, Torres J, Ayguade, E., Steinder M, et al. Performance-
driven task co-scheduling for MapReduce environments. In: Network opera-
tions and management symposium. IEEE; 2010. p. 373–80.

Rao B, Reddy DL. Survey on improved scheduling in Hadoop MapReduce in cloud
environments. Int J Comput Appl 2011;34(9):29–33.

Rasooli A, Down DG. An adaptive scheduling algorithm for dynamic heterogeneous
Hadoop systems. In: Proceedings of the conference of the center for advanced
studies on collaborative research. Riverton, NJ, USA: IBM Corp.; 2011. p. 30–44.

Seo S, Jang I, Woo K, Kim I, Kim JS, Maeng S. HPMR: prefetching and pre-shuffling in
shared MapReduce computation environment. In: International conference on
cluster computing and workshops. IEEE; 2009. p. 1–8.

Shafer J, Rixner S, Cox A. The Hadoop Distributed Filesystem: balancing portability
and performance. In: International symposium on performance analysis of
systems software. IEEE; 2010. p. 122–33.

Shen Q, Zhang L, Yang X, Yang Y, Wu Z, Zhang Y. SecDM: securing data migration
between cloud storage systems. In: The ninth international conference on
dependable, autonomic and secure computing. IEEE; 2011. p. 636–41.

Shi L, Li X, Tan KL. S3: an efficient shared scan scheduler on MapReduce framework.
In: International conference on parallel processing; 2011. p. 325–34.

Shirahata K, Sato H, Matsuoka S. Hybrid map task scheduling for GPU-based
heterogeneous clusters. In: Second international conference on cloud comput-
ing technology and science; 2010. p. 733–40.

Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file system. In:
Proceedings of the 26th symposium on mass storage systems and technologies.
Washington, DC, USA: IEEE; 2010. p. 1–10.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–2524

http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref44
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref44
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref44
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref47
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref47
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref62
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref62
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref64
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref64
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref72
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref72
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref72
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref78
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref78
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref78
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref81
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref81
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref85
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref85
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref89
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref89

Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E, Pavlo A, et al. MapReduce
and parallel DBMSs: friends or foes?. Commun ACM 2010;53(1):64–71.

Tan J, Meng X, Zhang L. Delay tails in MapReduce scheduling. In: Proceedings of the
12th joint international conference on measurement and modeling of computer
systems. New York, NY, USA: ACM; 2012a. p. 5–16.

Tan YS, Lee BS, He B, Campbell R. A Map-Reduce based framework for hetero-
geneous processing element cluster environments. In: The 12th international
symposium on cluster, cloud and grid computing. IEEE/ACM; 2012b. p. 57–64.

Tang Z, Zhou J, Li K, Li R. MTSD: a task scheduling algorithm for MapReduce base on
deadline constraints. In: The 26th international parallel and distributed
processing symposium workshops PhD forum. IEEE; 2012. p. 2012–8.

Tanimura Y, Matono A, Lynden S, Kojima I. Extensions to the Pig data processing
platform for scalable RDF data processing using Hadoop. In: The 26th interna-
tional conference on data engineering workshops. IEEE; 2010. p. 251–56.

Tao Y, Zhang Q, Shi L, Chen P. Job scheduling optimization for multi-user
MapReduce clusters. In: The fourth international symposium on parallel
architectures, algorithms and programming. IEEE; 2011. p. 213–17.

Thusoo A, Sarma J, Jain N, Shao Z, Chakka P, Zhang N, et al., Hive—a petabyte scale
data warehouse using Hadoop. In: The 26th international conference on data
engineering. IEEE; 2010. p. 996–1005.

Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, et al. Hive: a warehousing
solution over a Map-Reduce framework. Proc VLDB Endow 2009;2(2):1626–9.

Tian C, Zhou H, He Y, Zha L. A dynamic MapReduce scheduler for heterogeneous
workloads. In: The eighth international conference on grid and cooperative
computing; 2009. p. 218–24.

Verma A, Cherkasova L, Campbell RH. ARIA: automatic resource inference and allocation
for MapReduce environments. In: Proceedings of the eighth international con-
ference on autonomic computing. New York, NY, USA: ACM; 2011. p. 235–44.

Verma A, Cherkasova L, Kumar V, Campbell R. Deadline-based workload manage-
ment for MapReduce environments: pieces of the performance puzzle. In:
Network operations and management symposium. IEEE; 2012. p. 900–5.

Vernica R, Balmin A, Beyer KS, Ercegovac V. Adaptive MapReduce using situation-
aware mappers. In: Proceedings of the 15th international conference on
extending database technology. New York, NY, USA: ACM; 2012. p. 420–31.

Wang K, Lin X, Tang W. Predator an experience guided configuration optimizer for
Hadoop MapReduce. In: 2012 IEEE fourth international conference on cloud
computing technology and science (CloudCom); 2012. p. 419–26.

Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, et al. G-Hadoop: MapReduce
across distributed data centers for data-intensive computing. Future Gener
Comput Syst 2013;29(3):739–50 [Special section: recent developments in high
performance computing and security].

Wang Y, Que X, Yu W, Goldenberg D, Sehgal D. Hadoop acceleration through
network levitated merge. In: Proceedings of international conference for high
performance computing, networking, storage and analysis. New York, NY, USA:
ACM; vol. 57; 2011. p. 1–10.

Wei Q, Veeravalli B, Gong B, Zeng L, Feng D. CDRM: a cost-effective dynamic
replication management scheme for cloud storage cluster. In: International
conference on cluster computing. IEEE; 2010. p. 188–96.

Wei W, Du J, Yu T, Gu X. SecureMR: a service integrity assurance framework for
MapReduce. In: Annual computer security applications conference; 2009. p. 73–82.

White T. Hadoop: the definitive guide. 3rd ed. O'Reilly Media, Inc.; 2012.
Xie J, Tian Y, Yin S, Zhang J, Ruan X, Qin X. Adaptive preshuffling in Hadoop clusters.

Procedia Comput Sci 2013;18(0):2458–67 [2013 international conference on
computational science].

Xie J, Yin S, Ruan X, Ding Z, Tian Y, et al. Improving MapReduce performance
through data placement in heterogeneous Hadoop clusters. In: International

symposium on parallel distributed processing, workshops and Phd forum. IEEE;
2010. p. 1–9.

Xin M, Li H. An implementation of GPU accelerated MapReduce: using Hadoop with
OpenCL for data- and compute-intensive jobs. In: International joint conference
on service sciences; 2012. p. 6–11.

Yoo D, Sim KM. A comparative review of job scheduling for MapReduce. In:
International conference on cloud computing and intelligence systems. IEEE;
2011. p. 353–8.

You HH, Yang CC, Huang JL. A load-aware scheduler for MapReduce framework in
heterogeneous cloud environments. In: Proceedings of the symposium on
applied computing. New York, NY, USA: ACM; 2011. p. 127–32.

Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoica I. Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the fifth European conference on computer
systems. New York, NY, USA: ACM; 2010. p. 265–78.

Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce
performance in heterogeneous environments. In: Proceedings of the eighth
conference on operating systems design and implementation. Berkeley, CA,
USA: USENIX Association; vol. 8; 2008. p. 29–42.

Zhang C, De Sterck H. CloudBATCH: a batch job queuing system on clouds with
Hadoop and HBase. In: The second international conference on cloud comput-
ing technology and science; 2010. p. 368–75.

Zhang J, Yu X, Li Y, Lin L. HadoopRsync. In: International conference on cloud and
service computing; 2011a. p. 166–73.

Zhang X, Feng Y, Feng S, Fan J, Ming Z. An effective data locality aware task
scheduling method for MapReduce framework in heterogeneous environments.
In: Proceedings of the international conference on cloud and service comput-
ing. Washington, DC, USA: IEEE; 2011b. p. 235–42.

Zhang X, Zhong Z, Feng S, Tu B, Fan J. Improving data locality of MapReduce by
scheduling in homogeneous computing environments. In: The ninth interna-
tional symposium on parallel and distributed processing with applications.
IEEE; 2011c. p. 120–6.

Zhang Y, Gao Q, Gao L, Wang C. iMapReduce: a distributed computing framework
for iterative computation. In: International symposium on parallel and dis-
tributed processing workshops and Phd forum. IEEE; 2011d. p. 1112–121.

Zhang X, Wang G, Yang Z, Ding Y. A two-phase execution engine of reduce tasks in
Hadoop MapReduce. In: International conference on systems and informatics.
2012a. p. 858–64.

Zhang Z, Cherkasova L, Verma A, Loo BT. Optimizing completion time and resource
provisioning of Pig programs. In: The 12th international symposium on cluster,
cloud and grid computing. IEEE/ACM; 2012b. p. 811–6.

Zhao Y, Wang W, Meng D, Lv Y, Zhang S, Li J. TDWS: A job scheduling algorithm
based on MapReduce. In: 7th International Conference on Networking, Archi-
tecture and Storage. IEEE; 2012. p. 313–19.

Zhou W, Han J, Zhang Z, Dai J. Dynamic random access for Hadoop Distributed File
System. In: 32nd International Conference on Distributed Computing Systems
Workshops. 2012a. p. 17–22.

Zhou W, Mapara S, Ren Y, Li Y, Haeberlen A, Ives Z, et al. Distributed time-aware
provenance. Proc VLDB Endow 2012b;6(2):49–60.

Zhou Z, Zhang H, Du X, Li P, Yu X. Prometheus: privacy-aware data retrieval on
hybrid cloud. In: 2013 Proc IEEE INFOCOM; 2013. p. 2643–51.

Zhu H, Chen H. Adaptive failure detection via heartbeat under Hadoop. In: Asia-
Pacific services computing conference. IEEE; 2011. p. 231–8.

Zikopoulos P, Eaton C. Understanding big data: analytics for enterprise class
Hadoop and streaming data. McGraw-Hill; 2011.

I. Polato et al. / Journal of Network and Computer Applications 46 (2014) 1–25 25

http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref97
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref97
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref104
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref104
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref110
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref110
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref110
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref110
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref114
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref115
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref115
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref115
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref131
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref131
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref134
http://refhub.elsevier.com/S1084-8045(14)00163-5/sbref134

	A comprehensive view of Hadoop research—A systematic literature review
	Introduction
	Research method
	Objectives and research questions
	Search strategies
	Selection of studies

	Characterization of the selected studies
	Contributions to Apache Hadoop and its ecosystem
	Scheduling
	Data flow
	Storage & replication
	Cloud computing
	DBMS, indexing, queries, and random access
	The Hadoop ecosystem: Hive, Pig, HBase
	Energy management
	GPGPU
	Data security and cryptography

	Discussion
	Hadoop evolution
	Overview and studies interaction
	Taxonomy
	Results and findings

	Related work
	Conclusion, research opportunities, and future work
	Acknowledgments
	Validation techniques used in the selected studies
	References

