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a b s t r a c t

In 1962 Hough earned the patent for a method [1], popularly called Hough Transform (HT) that
efficiently identifies lines in images. It is an important tool even after the golden jubilee year of
existence, as evidenced by more than 2500 research papers dealing with its variants, generalizations,
properties and applications in diverse fields. The current paper is a survey of HT and its variants, their
limitations and the modifications made to overcome them, the implementation issues in software and
hardware, and applications in various fields. Our survey, along with more than 200 references, will help
the researchers and students to get a comprehensive view on HT and guide them in applying it properly
to their problems of interest.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the challenges of automated digital image analysis is
shape detection, which is an important part of object recognition.
Unfortunately, direct searching and detection of a class of even
simple geometric patterns like straight lines, circles and ellipses in
an image are very computation intensive. Besides, occlusion of
curves or missing and spurious data pixels due to noise arising
from either the imperfection of image data or edge detector makes
this task non-trivial. To address this problem, nearly 50 years ago,
Hough [1] while trying to detect and plot the tracks of subatomic
particles in bubble chamber photographs, devised the Hough
Transform (HT), an ingenious method that converts such global
curve detection problem into an efficient peak detection problem
in parameter space. Rosenfeld [2] popularized it in main stream
computer vision society by giving the first algebraic form for the
transform and proposed a simple digital implementation of the
transform space as an array of counters. An interesting history
about the invention of HT has been narrated in Hart [188].

For illustration, consider the problem of detecting straight lines for
which Hough chose the slope-intercept parametric equation of line:

f ðx; yÞ ¼ y�mx�c¼ 0 ð1Þ

where the parametersm and c are the slope and y-intercept of the line
respectively. The transformation is done on a binary image, obtained

after processing the original image by an edge detector. The parameter
space is quantized in intervals of Δm and Δc and corresponding bins
are created to collect the evidence (or vote) of object pixels satisfying
Eq. (1). Consider the (k, n)th bin corresponding to intervals [(k�1)Δm,
k Δm) and [(n � 1)Δc, n Δc ) where k;nAZþ . For each object pixel
satisfying Eq. (1) with parameters in the above range, the vote in the
(k, n)th bin is incremented by 1. In the peak detection phase, the bins
having number of votes above a critical threshold correspond to
straight lines in the image. This set of bins is also called the
accumulator. A more precise definition of accumulator will be given
in Section 4.5.

This approach can also be extended to any parametric analytic
curve with expression f ðX; aÞ ¼ 0 where XARd is the variable
co-ordinate vector and aARn denote the constant parameter
vector. Its dual (projection equation) in the parameter space may
be expressed as gða;XÞ ¼ 0 where a is the variable parameter
vector and X is the constant co-ordinate vector. Thus, the inter-
section point of the n hypersurfaces defined by the projection
equations determines the parameters of the given curve. This
approach limited to parametric analytic curve detection is usually
referred to as the Standard Hough Transform (SHT) (Fig. 1).

Two comprehensive surveys of the HT have been made in the
past [34,77]. But newer studies are being conducted continuously
on this topic, newer implementations are being proposed and
applications in various fields are being researched. Since 2012 was
the golden jubilee year of the patent granted to Hough, we
planned to prepare another survey on HT. Available literature on
HT is quite vast. So it was not possible for us to cover every aspect
with equal depth keeping in mind space constraints. We have tried
to state and elaborate a bit on the aspects we thought were
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important and we sincerely hope that it benefits the students and
research community on this useful tool. We start by discussing the
various HT formulations in Section 2 before describing its major
variants in Section 3. In Section 4 we discuss various limitations of
HT and the modifications made to overcome them. Section 5 deals
with implementation issues, while in Section 6 we discuss in brief
a few applications of HT in some selected fields.

2. Formulation

Since straight line detection is the most popular and widely
studied application of HT, we begin this section with some of its
parametric formulations.

2.1. Straight line parameterization

The slope-intercept form discussed in Section 1 is one of the
earliest parametric forms used for straight line detection. The dual
of Eq. (1) is also that of a straight line:

gðm; cÞ ¼ y0 �mx0 �c¼ 0 ð2Þ
where ðx0; y0Þ is the co-ordinate of the pixel being mapped. Since
collinear pixels in image space are mapped to concurrent straight
lines in the parameter space, this approach is a Point-to-Line
Mapping (PTLM). Unfortunately, this method is sensitive to the
choice of co-ordinate axes on the image plane because both the
parameters become unbounded when the detectable line is at π=2
with respect to the abscissa. In fact, Bhattacharya et al. [137] have
shown that any one-to-one PTLM must be linear and cannot map
all the sets of collinear points lying in a bounded region (such as
an image) into sets of concurrent lines intersecting on a bounded
region. Hence if such a PTLM defines an HT, it cannot be practical
to search for all the accumulator peaks. This problem can be
tackled by defining a second parameter space, rotated from the
first by 901, as envisioned by Rosenfeld [2]. Somewhat on the same
line, Tuytelaars et al. [115] proposed a variant by splitting the (m, c)
space into three bounded subspaces.

Duda and Hart [3] lucidly resolved the issue of unboundedness
by mapping a point in image space to a sinusoidal curve in
parameter space:

f ðx; yÞ ¼ ρðθÞ ¼ x cos ðθÞþy sin ðθÞ ð3Þ
This function has period 2π and obeys the relation

ρðθÞ ¼ �ρðθþπÞ ð4Þ
A parameter subspace is redundant if it contains points, which

can be mapped to each other using this relation. Immerkaer [112]
has shown that the parameter subspace ðθ; ρÞA ½0; π½���1;1½ is
non-redundant and sufficient to construct the entire parameter
space. Memory requirement of the accumulator array is reduced to
59% when the image center, instead of corner, is used as the origin.

Other features can also be used for mapping like the foot of
normal from a chosen origin [22] and the neighborhood of a
straight line [194]. The former maps to a space congruent to the
image space and does not require the computation of trigono-
metric functions, thus saving time. Unlike SHT, which puts more

emphasis on parameter domain resolutions, the latter represents
the image space resolution explicitly.

2.2. Parameterization for circle and ellipse detection

Often in image analysis, the detection of circles and ellipses
before the objects themselves is profitable. A significant portion of
man-made and natural objects has a circular profile like disc, coin,
button, celestial body, biscuit, and biological part. Oblique projec-
tion of these objects makes elliptical shape on a 2-D space. The
ellipse parameters give an estimate of the relative orientation
between the object and the camera.

The parameterization of circle used in [1,3] is

f cðx; yÞ ¼ ðx�aÞ2þðy�bÞ2�r2 ¼ 0 ð5Þ
where (a, b) denote the center and r is the radius of the circle. Thus
each pixel in the image plane is transformed to a cone (Fig. 3) in a
3-D parameter space.

This process is also known as the Circle HT (CHT) [87].
Kerbyson and Atherton [87] show that a substantial improvement
in positional accuracy can be achieved by using orientation and
distance information coded as a complex phase.

The general equation of an ellipse is

x2þb0y2þ2d0xyþ2e0xþ2g0yþc0 ¼ 0 ð6Þ
where b0; c0; d0; e0; g0 are constant coefficients normalized with
respect to the coefficient of x2. Direct application of HT [3] to the
detection of elliptical objects in a digitized picture requires a 5-D
array of accumulator; the array is indexed by 5 parameters
specifying location (co-ordinates of center), shape and orientation
of an ellipse.

More on dimension of circular and elliptical HT has been
presented in Section 4.2.2.

2.3. HT kernel

HT can be formulated as the integral of a function [71] that
represents the data points with respect to a kernel function. This
kernel function has dual interpretations as a template in the
feature space and as a point spread function in the parameter
space: HðΩÞ ¼ R

pðX;ΩÞIðXÞ dX where HðΩÞ is the value of the HT at
the point Ω and the integral is assumed to be over the whole
feature space. The function pðX;ΩÞ is the HT kernel that deter-
mines the particular HT being implemented and is defined jointly
on the feature space and parameter space. IðXÞ is the function that
represents the feature set. In discrete HT implementation we have
HðΩÞ ¼∑ipðXi;ΩÞ where Xi ¼ ½x1i; ::xNi� are feature points defined
in an N-D feature space and Ω¼ ½a1; ::an� defines a point in the n-D
parameter space.

Princen [83] shows that the SHT can be considerably improved
if the vote of a pixel for a given line depends, in a continuous way,
upon the distance of the pixel from the line and becomes zero
when that distance exceeds a certain threshold. Since they did not
consider line orientations, the kernel of this variant of HT (1-D
kernel HT) is a ridge of unit height over orientations, falling
smoothly to zero at some finite separation value. It is particularly
good at distinguishing between lines. Palmer et al. [72] improved
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Fig. 1. Block diagram of HT for parameterized curves.
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upon this method and introduced 2-D voting kernels which
depend both on the distance of the pixel from the hypothesized
line, and on the difference in orientation between the edge pixel
(as determined by the edge detector) and the hypothesized line.
This helps us to separate closely parallel lines, while keeping
interference effects small. An unsupervised statistical kernel
modeling of the HT has been proposed in [184], where the
resulting estimate is continuous and includes as much information
as possible. However, it is more expensive because all image pixels
are used (instead of only the edges) and the tails of the kernels are
also needed in computing the estimates.

2.4. HT as template matched filter

The equivalence of HT and matched filtering technique has been
shown by many authors [5,34]. In the generalized HT [9] (see Section
3.1) the shape is represented by a list of boundary points (template)
and is an instance of boundaries for the same shape class. Other
examples of this class, i.e. other templates can be generated by
translating, rotating or scaling on the basic list (Fig. 4).

The difference between template matching and HT is that the
former is carried out entirely in the image domain. In most cases a
corresponding image point does not exist and the effort in
calculating this template point is irrelevant to calculating the
degree of match between model and image. In contrast, HT always
assumes a match between given basic template point and a
selected image point and then calculates the transformation
parameters which connect them.

Pao et al. [73] introduced the scalable translation invariant
rotation-to-shifting (STIS) signature where rotation in image space
corresponds to circular shifting of the signature space. Matching in
this signature space only involves computing a 1-D correlation of
the reference template with the test template.

2.5. Relation between Radon Transform and straight line HT

It can be shown [10] that HT is a special case of Radon
Transform [84,26,102,168].

The n-dimensional Radon Transform R maps a function on Rn

into the set of its integrals over the hyperplanes of Rn. If θASn�1

and sAR1 then Rf ðθ; sÞ is the integral of f over the hyperplane

Fig. 2. (a) A set of collinear points in image plane; (b) concurrent straight lines in parameter space when slope-intercept parameterization is used; (c) set of sinusoidal curves
in parameter plane after ρ–θ parameterization is used.

Fig. 3. Each pixel of a circle is transformed to a cone in the 3D parameter space.
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perpendicular to θ with (signed) distance s from the origin:

Rf ðθ; sÞ ¼
Z
x:θ ¼ s

f ðxÞ dx¼
Z
θ?

f ðsθþyÞ dx ð7Þ

Though Radon Transform can be defined over spaces of
arbitrary dimensions, to understand how it relates to HT, it is
sufficient to consider the special case of two-dimensional Eucli-
dean plane. If f ðx; yÞ is a continuous two-dimensional function
then the Radon Transform is found by integrating values of f along
slanted lines:

Rf ¼ gðm; cÞ ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞδðy�mx�cÞ dx dy ð8Þ

where δ is the Dirac delta function.
According to Eq. (8) the parameter space should be updated

with a vote that is proportional to the function value f ðx; yÞ. Thus
viewing in this way, HT can be regarded as a special case of the
Radon Transform in the continuous form. The (m,c) formulation
can be written also as ðρ; θÞ formulation:

Rf ¼ gðρ; θÞ ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞδðρ�x cos θ�y sin θÞ dx dy ð9Þ

Though equivalent in the continuous form, it has been demon-
strated in [102] that HT differs from Radon Transform considerably
in the discrete form. HT in most cases is used in the discrete form.
In the (m,c) parameterization scheme discrete HT can be defined
by suitable choice of sampling intervals such that it gives the same
discrete parameter space as found with the nearest neighbor
approximation of the discrete Radon Transform. But for the ðρ; θÞ
parameterization scheme this cannot be done.

HT can also be viewed as a subtask of Radon Transform
inversion. The Radon Transform defined in (8) over two-
dimensional Euclidean plane has an exact and linear inverse. The
inverse transform maps points in ðρ; θÞ space to straight lines in the
original f ðx; yÞ image space. It is given by [161]

f ðx; yÞ ¼ Cgðρ; θÞ ¼
Z π

0
z½x cos θþy sin θ; θ� dθ ð10Þ

zðρ; θÞ ¼Δ
Z þ1

�1
jωjXðω; θÞej2πωt dω ð11Þ

where Xðω; θÞ is the one-dimensional Fourier transform (with
respect to ρ co-ordinate) of gðρ; θÞ at a fixed angle θ and C ¼ R�1

is the inverse Radon operator.
For most practical purposes, a discrete form of Eq. (10) is used.

In this case, a sampled parameter space u is related to image data
v through the equation

v¼Du ð12Þ
where the discrete operator D, representing the inverse Radon
Transform or filter-backprojection operation, is found by discretiz-
ing equations (10) and (11). HT can be viewed as reconstructing u
from data v, given the inverse Radon Transform relation (12). The
advantage of this inverse problem perspective is that it allows the
incorporation of prior information directly into the estimation of
the Hough parameter space u.

The Radon Transform is usually treated in the reading paradigm
[146], where how a data point in the destination space is obtained
from the data in the source space is considered. That is, here a
shape in the image is transformed into a single pixel in the
parameter space. On the contrary, HT is treated in the writing
paradigm, where it is considered how a data point in the source
space maps onto data points in the destination space. Thus HT
maps individual pixels in the image space into a shape in the
parameter space.

The relation between HT and Radon Transform has inspired
several modified algorithms [85,140,161] for shape detection.

3. Some major variants

In spite of the robustness of SHT [1,3] to discontinuity or
missing data on the curve, its use is limited by a number of
drawbacks. (a) The computation time and memory requirements
grow exponentially with the number of curve parameters because
n parameters, each resolved into m quantized intervals (bins),
require an n-D accumulator of mn elements. (b) For high accuracy
of localization, finer parameter quantization is required, that
entails higher processing time and memory requirements. There
is no clear-cut way to optimize the trade-off between accuracy and
computation cost for a particular image. (c) A uniform quantiza-
tion of the parameter space means a non-uniform precision in
detecting the curve in the image space. (d) Due to various sources
of error, votes in the vicinity of the true parameter vector will
increase, leading to peak spreading, which hampers precise
detection of maxima in the accumulator. (e) For the detection of
each new feature, a separate transformation process has to be
initiated. (f) Irrespective of noise, voting contribution of each pixel
in the parameter bins is exactly the same (blind voting), resulting
in reduction of detection accuracy. (g) SHT cannot automatically
detect the end points of line segments.

To overcome these limitations, modifications have been made
in one or more stages. Some of these algorithms have introduced
features that are significantly distinct from the SHT. In this section
we categorize some of these major variants of HT.

3.1. Generalized Hough Transform (GHT)

The two-phase learning-and-recognition process, Generalized
HT (GHT), introduced by Ballard [9] is the generalization of SHT to
detect non-parametric curves. In the learning phase of GHT a
model object is used to construct an R-table. A polar co-ordinate
system is established in the model object by fixing a reference
point and using it as the origin the R-table records the position of
all boundary points by their polar co-ordinate values. The rows of
the table are indexed by the gradient directions of the edge points
on the boundary. During the object recognition or detection phase,

Fig. 4. Rotation and translation of a template.
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a 2D array can be used as an accumulator, called the Hough
Counting Space (HCS) or parameter space. Edge points will cast
votes to the hypothetical reference point in the HCS according to
their gradient directions and the corresponding R-table entries.
If the object in the image is identical to the model, then the cell in
the accumulator array that corresponds to the reference point will
obtain the highest number of votes. The peak value would be equal
to the number of boundary points of the object when the model
and the object match perfectly.

An initial approach towards a generalized version was made by
Merlin and Farber [4] where it was assumed that the target object
was the result of translation of the model object but in [9] the idea
was extended by including rotations, scale changes. Also local
information of object edge points like direction along with posi-
tion was incorporated. This made the algorithm faster and more
accurate. To get stronger constraints for matches, local properties
have been extended in [19] to include contrast, position and
curvature of contour points. The Dynamic GHT (DGHT) due to
Leavers [54] optimizes the computation by using information
available in the relative distribution of feature points.

GHT retains the robustness of SHT but cannot detect end points
of line segments and require a large number of elements for
parallel processing. Further, (a) if the orientation and scale of a
new shape is unknown in advance, brute force is usually employed
to enumerate all possible orientations and scales for the input
shape in the GHT process, thus increasing the number of para-
meters. As a result, arbitrary shape extraction under similarity or
affine transformation leads irremediably to 4D (similarity) or 6D
(affine) accumulator spaces, and Oðn4Þ or Oðn6Þ complexity algo-
rithms, making the idea impractical. (b) Though the GHT is quite
robust for detecting a large class of rigid objects, it cannot
adequately handle shapes that are more flexible, i.e. different
instances of the same shape are similar, but not identical, e.g.
flowers and leaves. (c) In the real world, most objects are
perspectively transformed when imaged. The conventional GHT
cannot detect perspectively transformed planar shapes.

To reduce the dimensionality of parameter space, researchers
have taken recourse to multi-stage voting. For example, in the
two-stage GHT by Tsai [108] each boundary point in the image is
described by three features namely concavity, radius and normal
direction of the curve segment in the neighborhood of the point.
The first stage of the voting process determines the rotation angle
of the object w.r.t the model by matching the points having the
same concavity and radii. The second stage then determines the
centroid of the sensory object by matching those points having the
same radii, concavity and rotational angles. The affine GHT in [139]
positively utilizes pair-wise parallel tangents and basic properties
of an affine transformation. After an initial 2-D HT to obtain
candidate positions of a target shape, at the second stage a 4-D
HT is applied to obtain the remaining four parameters. Since a 4-D
parameter space is searched in the second stage, the Adaptive
HT [29] is adopted to improve the processing efficiency. A double

increment process (Scale and Orientation Invariant GHT (SOIGHT))
has been used in [61], where the accumulator array stores scale
and orientation pairs for the points.

For recognition of articulated objects (consisting of rigid parts
connected by joints allowing relative motion of neighboring parts),
the GHT voting paradigm has been extended in [59] by introdu-
cing a new indexing scheme which exploits reference frames
located at joints. For natural shape recognition, a supervised HT
for Natural Shapes (HNS) has been proposed in [107], where
instead of updating the vote at a single point in the accumulator,
the GHT has been modified to update for all points that fall on a
line segment. This method has been extended in [136] to situa-
tions where only one object of the class is available as reference.
Two variants of the method based on (a) Binary Mathematical
Morphology (BMM) and (b) Gray-Level Mathematical Morphology
(GLMM) were suggested in [136].

Olson [123] has analyzed the improvements in accuracy and
efficiency that can be gained through the use of imperfect
perceptual grouping techniques. Perspective-Transformation-
Invariant GHT (PTIGHT) has been proposed in [105], where a
Perspective-Reference (PR) table, that contains all perspective
transformation information of the template shape, is constructed.

3.2. Probability based HT

Several authors have developed approaches of speeding up HT
by choosing a subset of data points so that the accuracy of curve
detection is reduced by a very small amount. Two such popular
algorithms are Probabilistic HT (PHT) and Randomized HT (RHT).

3.2.1. Probabilistic Hough Transform (PHT)
In line detection by SHT [3], for an N � N image with M object

pixels and the ðρ; θÞ plane divided into Nρ � Nθ rectangular bins,
the incrementation phase takes OðM � NθÞ operations and the peak
searching phase takes OðNρ � NθÞ operations. In typical applications
M is a magnitude higher than Nρ or Nθ , hence incrementation
(voting) stage dominates the execution time. One approach of
reducing the complexity of the algorithm is to replace the full-
scale voting in the incrementation stage by a limited pool of
mðoMÞ randomly selected object pixels. This class of HT algo-
rithms is referred to as Probabilistic HT (PHT).

The voting phase complexity is now significantly reduced to
Oðm � NθÞ. Kiryati et al. [63] showed analytically and experimen-
tally that it creates little impairments, even in the presence of
distracting features, significant noise and other errors. The optimal
choice of m and the resulting computational savings are applica-
tion dependent.

It is intuitively obvious that for long lines only a small fraction
of its supporting points have to vote before the corresponding
accumulator bin reaches a count that is non-accidental. For shorter
lines a much higher proportion of supporting points must vote. For
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lines with support size close to counts due to noise, a full trans-
form must be performed. An adaptive form called Progressive PHT
(PPHT), where this is achieved by dynamically controlling the line
acceptance threshold (derived theoretically) as a function of total
number of votes cast is presented in [120]. In [127] gradient
information has been used to control the voting process, thus
improving the performance of PPHT. Though PPHT is capable of
dealing with multiple curves, it can admit false positives and miss
signals.

3.2.2. Randomized HT (RHT)
The SHT and PHT are divergent one-to-many mapping, that is, a

single pixel can contribute to many ðρ; θÞ values in the parameter
space. Another popular probabilistic algorithm, the Randomized
HT (RHT) proposed by Xu et al. [56,190], also uses a subset m of M
object pixels, but it is a convergent many-to-one mapping. Two
randomly selected pixels are used to define a straight line. Here
convergent and divergent are used in the sense of many-to-one
and one-to-many mapping respectively. For a curve with n para-
meters, n points are selected at random to calculate the n
parameter values of a specific curve. A dynamic accumulator
containing a real valued vector and an integer vote value is
maintained. For a calculated set of parameters, if it matches an
existing set within a tolerance value, the vote is incremented by
one; else a new set of values is added with vote 1. In the end,
accumulators with votes above the threshold are candidates for
detected curves. Since no discretization is performed in the
parameter space, high resolution is obtained.

In a theoretical framework, Kiryati et al. [125] have shown that
RHT is faster than PHT in high quality images but PHT is more
robust than RHT in images contaminated by noise and errors.
A brief overview on the developments and applications of RHT for
detecting shapes, curves and object motion is given in [190]. The
convergent mapping can be altered by varying either the way of
getting samples or the way of computing value of set of n
parameters, or both. Relying on random points often increase
unimportant samples. Instead samples can be obtained by search-
ing a candidate solution via local connectivity and neighbor-
orientation [88,124,104], applying relation between line points
and chain code direction [193] or by using a priori information
about curves [145]. Instead of solving joint equations [175],
a solution can also be obtained by least square fitting [156], an
Lp norm fitting, or by maximum likelihood estimation.

For a non-linear curve like circle or ellipse arbitrary n points
may not uniquely define an n-D curve. To detect ellipses in this

probabilistic framework, McLaughlin [99] selects three points at a
time. Estimates of the tangents to the (possible) ellipse at these
points are then calculated and used to interpolate the center of the
ellipse. Given the location of the ellipse center the remaining
parameters are easily determined. Due to the fact that usually
more “virtual” ellipses are detected for one “real” ellipse, a data
clustering scheme is used in [154]. The algorithm in [190] detects
line segments in an edge image and selects every pair of them to
test whether they pertain to the same ellipse. If they pass the test,
they are merged. For the detection of incomplete ellipses in images
with strong noise, the Iterative RHT (IRHT) developed in [180]
“zooms in” on the target curve by iterative parameter adjustments
and reciprocating use of the image and parameter spaces. During
the iteration, noise pixels are gradually excluded from the region
of interest, and the estimate becomes progressively close to the
target.

For circle detection, Guo et al. [164] proposed an adaptive RHT
where the parameters are detected adaptively through a moving
window. RHT is relatively difficult for multi-circle detection
because random sampling leads to considerable invalid accumula-
tion. To improve this target distribution is specified and the
sampled parameters are weighted in [141]. Li and Xie [142]
analyzed the error propagation and sampled the points that were
most likely to be located on the circle. Jiang [217] used probability
sampling and optimized methods for determining sample points
and finding candidate circles, improving sampling validity and
preventing false detections. Based on a parameter-free approach
without using any accumulator arrays, the RCD method proposed
in [126] first randomly samples four edge pixels of which three
pixels are used to construct a possible circle, and the remaining
one is used to confirm whether it can be promoted to a candidate
circle or not. A multi-evidence-based sampling strategy which
used three evidences to discard a large number of invalid possible
circles is presented in [214].

3.2.3. Other probabilistic approaches
Another probabilistic approach (Monte Carlo HT) was sug-

gested in [58] using Monte Carlo algorithms. They used random
sampling partially similar to RHT but the accumulator space is
fixed. The probability of failure of this algorithm is within
tolerance in most applications.

Although RHT and PHT are computationally very fast, they are
prone to noise because the local gradient information is affected
by noise or distorted shapes.

Fig. 6. Divergent mapping of SHT vs convergent mapping of RHT [190].
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3.3. Digital Hough Transform (DHT)

The SHT variants detect straight lines in the analog pre-image.
Kiryati et al. [64] refer to them as “Analog HT”. These variants do
not consider location errors due to image digitization.

The Analytic Hough Transform (AHT) [49] addresses the pro-
blem of determining whether a given set of pixels has the digital
straight line (DSL) property. A DSL is the result of digitization of a
straight line segment. Any digital arc S is a DSL iff it satisfies the
chord property [147]. Let p; q be two points of a digital image
subset S. pq is the continuous line joining p and q. pq lies near S if
for every real point ðx; yÞ on pq; ( a point ði; jÞ on S such that
maxfji�xj; jj�yjgo1. S has the chord property if for every p; q on
S, the chord pq lies near S.

AHT [49] employs the slope-intercept parameterization and a
non-uniform parameter space quantization scheme, where the
ðm; cÞ space is partitioned into four subspaces called the Analytic
Hough Region (AHR). If several pixels are collinear with a set of
lines, their AHT regions will overlap on a small polygon in one of
the four AHRs. Such domains were originally described and

characterized in [18]. Lindenbaum et al. [55] proved that the
maximum number of possible DSLs in an N � N digital binary
image is OðN4Þ. Analog HTs, which employ analog equations of
straight line, yield approximate solution to the problem of finding
DSLs, while the AHT gives exact solutions. The Inverse AHT (IAHT)
converts these parameter space polygons into a pair of convex
hulls in image space. A real line passes through these hulls iff it
passes through every pixel connected with the parameter space
polygon. Thus the IAHT generates a pair of simple geometric
boundaries in image space that associate pixels with polygonal
AHT solution regions.

In [46] the effect of the implicit line quantization on the
parameterization of the HT is presented and the sensitivity of
the discrete HT line detection has been formulated. The distribu-
tion of lines in the natural set determines the precision and
reliability with which straight lines can be measured on a discrete
imaging array.

Kiryati et al. [64] have compared and analyzed Digital HT (they
have mainly considered the Analytic HT [49]) and the conven-
tional, i.e. Analog HTs . Resolution has been defined as the worst
case ambiguity in the location of straight lines that intersect
opposite sides of the image and set all pixels in between. In the
DHT, the resolution and the required number of accumulators are
fixed and governed by the dimensions of the digital image, which
can only be coarsely modified by decimation. In Analog HT the
number of accumulators (and the resulting resolution) can be set
by design according to specifications. Also, DHT implicitly assumes
that the discretization of the image is the dominant source for
edge-point location errors. Thus, in a noisy image or in high
resolution applications, Analog HTs score higher.

3.4. Fuzzy Hough Transform

The Fuzzy HT, introduced by Han et al. [81], is based on the
realization that a shape does not lend itself to a precise definition
because of grayness and spatial ambiguities, and therefore can be
considered as a fuzzy set. Fuzzy HT detects shapes by approxi-
mately fitting the data points to some given parametric shapes. For
this purpose, around each point on the perfect shape defined by
the parametric form, a small region is defined, and each pixel in
this region, i.e. each pixel in the vicinity of the perfect shape
contributes to the accumulator space. Thus the accumulator values
exhibit a smooth transition from the higher to lower values so that
the peaks can be identified unambiguously even for certain
distorted image shapes. A theoretical quantification of shape
distortion of the Fuzzy HT has been provided in [153].

Bhandarkar [79] presented a fuzzy-probabilistic model of the
GHT called Weighted GHT (WGHT) where each match of a scene
feature with a model feature is assigned a weight based on the

Table 1
Comparison of SHT, GHT and RHT [96].

ALGORITHM SHT GHT RHT

Image type
Binary √ √ √
Grayscale � √ �
Target
Line √ � √
Circle √ √ √
Parametric √ √ √
Arbitrary � √ �
Speed Slow Slow Fast
Storage High High Low
Accuracy Medium Medium High
Resolution low low Any

Table 2
Comparison of characteristic features of SHT, PHT and RHT [88].

Method Line
parameters

Mapping Accumulator Sampling Detection

SHT ρ; θ One-to-many 2D array All points All lines
PHT ρ; θ One-to-many 2D array Subset All lines
RHT m; c Many-to-one 2D linked list Enough Line by line

Fig. 7. Generation of DSL.

INPUT

RULE BASE

DEFUZZIFIER

FUZZIFIER

OUTPUT

FIS

Fig. 8. The scheme of a fuzzy inference system (FIS) [189].
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qualitative attributes assigned to the scene feature. This approach
is effective in pruning the search space of possible scene inter-
pretations and also reducing the number of spurious interpreta-
tions explored by the GHT. The Fuzzy GHT (FGHT) [189] employs
the concept of fuzzy inference system in constructing the R-table,
which consists of a set of fuzzy rules which fuzzifies the votes of
edge pixels for the possible location of the center.

4. Characteristics, limitations and improvements

The characteristics and limitations of HT have been widely
studied and many methods have been proposed to improve the
performance. We have pointed out some limitations in Sections 2
and 3. Also, some limitations and remedies are presented in
Table 3. Here we analyze these limitations in terms of parameter-
ization, mapping, quantization, voting and peak detection. We also
throw some light on the remedial measures advocated in the
literature.

4.1. Parameterization and mapping

A type of noise called “process” or “model” noise arises from
inadequate parameterization, sensor distortions and parameter
space quantization. By suitable parameterization of the HT, favor-
able properties like boundedness and discretization and theore-
tical insights like parameter space geometry can be achieved.
A general parameterization based on homogeneous co-ordinates is
presented in [51]. It has been shown that the various parameter-
izations published in the literature can be obtained from this
scheme. A description of some of the popular parameterizations is
given in Section 2.1.

Most parameter transforms are local in the sense that a small
neighborhood operator is used to detect possible instances of a
feature in the image data. The local estimates are then combined
globally to find the geometric features. But to extract complex

features, higher order geometric properties have to be extracted
using small neighborhood operators, making the process highly
noise-sensitive. Califano et al. [39] introduced generalized neigh-
borhood techniques which exploit the correlated information
contained in distant parts of the same image. Unfortunately, the
response also becomes more complicated because false features
may be detected due to a peculiar form of correlated noise.
Another cause of concern is the isotropic nature of SHT in
image-parameter mapping. As a remedy the Weighted Polarized
HT (WPHT) [37] restricts the mapping in a polarizing zone,
eliminating the mappings which are ineffective. In addition,
window centroids are transformed instead of the original edge
points, leading to a more condensed distribution on Hough space.

4.2. Problem of dimensionality

With increasing curve parameters, dimensions of parameter
space increase, resulting in an exponential increase in computa-
tion. This is further augmented by the process of pixel-wise
mapping in HT. To overcome these drawbacks decomposition of
parameter space and applying a divide and conquer approach in
the image plane (sub-image method) are used.

4.2.1. Sub-image method and divide and conquer approaches
Sub-division of image space has been done by authors like

Olson [123], who constrained each sub-problem to consider only
those curves that pass through some subset of the edge pixels up
to the localization error. Using it for industrial images, Davies [22]
was able to locate objects within 1 pixel and orientation within
about 11. In [95] the image is decomposed into rectangular blocks
and the contribution of each whole block to the HT space is
evaluated, rather than the contribution of each image point. In the
Concurrent Modified Algorithm for GHT, the authors [135] sub-
divided both the target and template images and the allocation of

Table 3
Some major disadvantages of SHT and their popular remedies.

Disadvantage Short description Remedy

Parametric curve
detection

SHT detects curves with an analytic equation. Using GHT [9] and its variants.

Dimensionality Dimension of parameter space increases with number of
parameters and unknown scale and orientation ) More
computation.

Divide and conquer approach.

Inaccurate
parameterization

Results in process noise or model noise. Suitable parameterization and mapping.

Uniform quantization Results in reduced precision of curve detection. Sub-unity quantization step for intercept [113],uniform quantization
(Diagonal [78], hifi [45], Yuen's [67]), non-uniform quantization
[169,181].

Blind voting Each pixel contributes equally for a feature detection. Probabilistic vote [129], bandlimiting the parameter plane [62], non-
voting approach (Hough-Green Transform) [166], surround suppression
[187], voting kernels [114], voting in image space [80].

Peak spreading A number of cells in the neighborhood of the actual parameter
cell gets accumulated.

Proper voting.

Line segment and line
length detection

SHT can detect straight lines with infinite length and negligible
width, while actually they are at least 1 pixel thick and of finite
length.

Using additional information like connectivity [206] and degree of vote
spread [86], utilizing image and parameter space [160], rotation
transform method [65], dual Hough space [162].

Noise and distortion HT performance degraded by inherent bias of ðρ; θÞ parameter
space, statistical noise due to irrelevant structures, background
noise, feature distortion.

Suitable parameterization scheme, Iterative RHT [180].

Flexible object and
perspectively
transformed shape
detection

HT cannot detect perspectively transformed and flexible shapes. HT for Natural Shapes (HNS) [107], Perspective-Transformation-Invariant
GHT (PTIGHT) [105], imperfect perceptual grouping technique [123].
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sub-images to processors is managed through a variant of the
manager/worker technique (Fig. 9).

To avoid pixel-wise processing of each subregion, Ser and
Siu [74] evaluated only the shaded pixel with the Sobel operator,
while the neighboring 8 pixels are evaluated only if the gradient
magnitude of the shaded pixel is greater than a pre-defined
threshold. In a different algorithm the authors [91] introduced a
Region-Bit-Map (RBM) for each sub-image to identify peaks
contributed from a particular region. To overcome redundancies,
Chau and Siu [118] determined the characteristic angle that can
lead to a number of index entries in the R-table, a small number of
entries per index and reduction of the number of spurious
assessments of boundary points.

An alternative divide-and-conquer approach is parameter
space decomposition. Pao et al [73] have shown that the Straight
Line HT (SLHT) of closed smooth curves offers a natural way to
decompose the parameter space into three subspaces, namely the
translation, rotation and intrinsic space. The curve detection
procedure only involves searching the orientation of the curve,
the intrinsic curve parameters and translation of the curve can be
determined by analyzing the transform space representation.
In the Fast HT (FHT) developed by Li et al. [23,24] the parameter
space, represented by a k-tree, is divided recursively into hyper-
cubes from low to high resolution and HT is performed only on the
hypercubes with votes exceeding a certain threshold. A hypercube
receives a vote only when a hyperplane intersects it.

The Fuzzy Cell HT (FCHT) [94] iteratively splits the Hough
Parameter Space into fuzzy instead of crisp cells which are defined
as fuzzy numbers with a membership function of n parameters
(n¼no of curve parameters). After each iteration, the fuzziness of
the cells is reduced and the curves are estimated with better
accuracy. The uncertainty of the contour location is transferred to
the parameter space and helps us to estimate curves with better
accuracy than classical HT especially when dealing with noisy
images. The RHT is combined with the FCHT (Randomized FCHT
(RFCHT)) in [103] to obtain the advantages of both.

4.2.2. Handling the problem of dimensionality for circles and ellipses
Most researchers follow a multi-stage divide and conquer

strategy in which the parameter space of dimension N is decom-
posed into several subspaces of respective dimension nd (generally
∑nd ¼N) using geometric constraints which define relative posi-
tion between a set of points. The first stage is usually the center-
finding stage and the remaining stages are aimed at finding the

remaining parameters of the best fitting ellipse or circle after the
candidate points have been selected.

In [15,30] a 2-D array is used in the first stage to determine the
mid-points of lines joining two object points with parallel tangent.
Then a 1-D array is used for testing candidate points of an ellipse.
These points follow the equation

x2þb0y2þ2d0xyþc0 ¼ 0; b0 �d0240 ð13Þ

This method of center-detection can be inaccurate for partially
occluded ellipses where they do not contain sufficient points that
are symmetrical about the center. Wallace [17] estimates the
3 parameters of (13) in two further steps using the following
equation obtained after differentiating (13) with respect to x:

xþb0yðdy=dxÞþd0ðxðdy=dxÞþyÞ ¼ 0 ð14Þ

The disadvantage of this approach is that though dimension of
accumulator is reduced, a large amount of storage is required.
Also, due to decomposition into several steps, the chance of
error propagation rises. Tsuji and Matsumoto [8] used a least
mean squares method to evaluate all 5 ellipse parameters at a
time. The use of least square procedure makes it sensitive to
noise. In [186] the image is sub-divided based on convexity of
ellipse edge.

In [48] the center of ellipse is found as follows: let P and Q be
two points on an ellipse with non-parallel tangents intersecting at
T. Let M be the mid-point of PQ. Then the center of the ellipse
(O) must lie on TM (Fig. 10). To improve the speed of this method,
in [44] ellipse orientation is extracted and then the major and
minor radii are found in a 2D accumulator array.

Estimating the parameters based on local geometric properties
often suffer from poor consistency and locating accuracy because
of noise and quantization error. That is why, the global geometric
symmetry of ellipses is used in [103] to reduce the dimension of
the parameter space. After locating possible centers of ellipses
using a global geometric symmetry, all feature points are parti-
tioned into several subimages according to these centers and then
geometric properties are applied in each subimage to find possible
sets of three parameters (major and minor axis length and the
orientation) for ellipses.

For circle detection, a pair of 2-D accumulator arrays are used
in [60]. The first 2-D array represents the x and y co-ordinates of
the centers of the predicted circles and those of the second
represent the co-ordinate of the center and radius of the predicted
circles. The size invariant method in [143] is based on the
symmetry of the gradient pair vectors and it can detect circles
that are brighter or darker than their backgrounds. In [121] a two-
part algorithm is used. The first part is a 2-D bisection based HT
that relies on the property that perpendicular bisector of any
chord of a circle passes through its center. The second part is a 1-D
radius histogramming that validates the existence of these circles
and calculates their radii.
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WORKER
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Fig. 9. Manager–worker model [135].
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Fig. 10. Construction used for ellipse center-finding in [86,104].
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4.3. Quantization issues

A major problem with HT arises from the effects of image
quantization, uniform parameter space sampling and discretiza-
tion, that makes the distribution of parameters non-homogeneous
and non-equiprobable [36]. This is aggravated by the presence of
sensor noise and optical distortions, resulting in a spread of votes
around the actual bin in the parameter space and hence leading to
inaccuracy in peak detection.

In [13] it is shown that a decrease of Δρ and Δθ not only
reduces the spread but also enhances the effect of image quantiza-
tion. For digital straight lines formed by concatenation of short
horizontal and vertical line segments, Guo and Chutatape [117]
have shown that for lines oriented around π=4 or 3π=4 radian the
accumulation result is better. Peak distortion increases for lines
around horizontal and vertical directions. However for a precisely
horizontal or vertical line, the peak distortion does not occur.
Consequently, a new approach called a variable Δρ HT having Δρ as
a function of θ has been proposed. In [92,113] it is shown that a
sub-unity quantization step for the intercept is a necessary and
sufficient condition for the members of the parameter space to
represent subsets of discrete straight lines (DSLs).

Several authors have proposed uniform quantization like the
hifi quantization by Risse [45], that gives the coarsest quantization
such that no two realizable lines in the image correspond to the
same accumulator cell. Yuen and Hlavac [67] suggested that it is
meaningless to quantize any variable finer than the uncertainty of
the variable. Thus the diagonal quantization technique in [78]
defines quantization intervals of the parameter space by consider-
ing only the greatest of the y or x component in the back
transformation of the HT.

Due to non-uniformity of angle and distance spacing between
adjacent straight lines in an image (Fig. 11), a non-uniform
quantization is used in [169,181]. Experimental results show that
the non-uniform quantization of Hough space improves the
accuracy of line segments detection substantially with no effi-
ciency loss.

4.4. Clutter in image plane vs cluster in parameter space

Some factors that influence the performance of the HT are
(1) number of points in the image plane, (2) size of clusters
associated with the sought after curve; (3) spatial distribution of
the clusters in the parameter space when both the correct and the
incorrect transform are applied. Intensive study on the character-
istics of the HT and Hough-like transforms [6,7] showed that
points tend to cluster in parameter space (packing) if and only if
the corresponding points in image plane lie on the same under-
lying curve. The transform method works well when the clusters
in parameter space are well-separated. Given a transform, if the
parameters of the underlying curves are uniformly distributed and
the appropriate transform is applied, then the resulting parameter
points should again be uniformly distributed. If this does not

hold, artificial clusters will appear in parameter space, where
a bunching of parameter points will occur. This feature is called
“homogeneity”.

4.5. Accumulation or voting and peak detection

It has already been shown in Section 2.5 that the classical
Radon transform on the two dimensional Euclidean plane trans-
forms a function f into a function g defined on the set of all straight
lines of the plane. The domain of g, that is the set of all straight
lines, is the accumulator [76]. The topological structure of this
space is such that the graph K3;3 can be embedded into it and
hence by Kuratowski theorem the accumulator cannot be
embedded into the plane. This poses a major problem in the
accumulation phase.

Another reason for the inaccuracy of HT is the “blind” nature of
voting phase where each object pixel contributes one vote. This
approach helps us to handle line discontinuities but is a major
source of inaccuracy because each pixel may carry different
uncertainties. It is shown in [6,7] that the popular accumulator
method implies sampling of a non-bandlimited signal. The result-
ing aliasing accounts for several familiar difficulties in the algo-
rithm. Bandlimiting the parameter plane would allow Nyquist
sampling, thus aliasing could be avoided. A non-voting alternative,
the Hough–Green Transform (HGT) is suggested in [166], whose
accuracy is close to HT and has other advantages like non-
occurrence of offset dependence and/or vote-splitting artifacts
and near perfect isotropy.

For voting, Guo and Chutatape [119] considered only candidate
patterns that cross at least two feature points, so that much of the
unnecessary computation can be avoided. This method is com-
bined with the Windowed RHT in [195] employing many-to-one
mapping and sliding window neighborhood technique to alleviate
the computational and storage load. The high-resolution para-
meter space requirement for high accuracy has the disadvantage
that votes will be sparsely distributed in parameter space and
therefore a reliable means of clustering them is needed. This leads
to multi-resolution schemes that use reduced information content
of multi-resolution images and parameter arrays at different
iterations. For example, the iterative coarse-to-fine search strategy
(Adaptive HT) of [29] used a small accumulator array which is
thresholded and then analyzed by a connected components
algorithm which determine the parameter limits used in the next
iteration. This method, however, produces spurious peaks at
coarse resolution when applied to complex images. A Fast Adap-
tive HT (FAHT) is developed in [42] where at each resolution a
strategy is employed to analyze the parameter space so that more
appropriate parameter limits for subsequent processing can be
defined. A logarithmic range reduction for faster convergence is
proposed in [68]. A two-phase adaptive method is proposed in

Table 4
Quantization Interval.

Parameters Diagonal
quantization [78]

Hifi quantization [45] Yuen's
quantization [67]

ρ; θ Δdρ¼ 1=2
ffiffiffi
2

p
Δhρ¼ 1=NðN�1Þ2 Δyρ¼ 1

Δdθ¼ 1=2N Δhθ¼ 1=2ðN�1Þ2 Δyθ¼ 2=N

m; c Δdm¼ 1=N Δhm¼ 1=NðN�1Þ Not defined
Δdc¼ 1 Δhc¼ 1=NðN�1ÞðN�2Þ

γ; c Δdγ ¼ 1=2N Δhγ ¼ 1=2ðN�1Þ2 Not defined

Δdc¼ 1 Δhc¼ 1=ðN�1ÞðN�2Þ

Fig. 11. Non-uniformity of angle and distance spacing between adjacent
straight lines.
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[163] where the authors applied a criterion derived from the
observed stability of the peak position in the parameter space to
stop the transform calculation.

Voting kernels and voting weights have been used to take care
of pixel uncertainties towards object detection. The kernel
designed in [114] depends on appropriate shape descriptors of
the connected regions while [187] introduced an efficient measure
of isotropic surround suppression.

Toronto et al. [174] proved that HT is implicitly a Bayesian
process – given some feature points it computes an unnormalized
posterior distribution over the parameters of a single shape.
The probabilistic scheme in [129] analytically estimates the
uncertainty of the line parameters derived from each feature
point, based on which a Bayesian accumulator updating scheme
is used to compute the contribution of the point to the accumu-
lator. The error propagation technique for uncertainty computa-
tion of this paper was improved by Bonci et al. [152] by the
characterization of the covariance matrix and inference of joint
probability by the normal joint distribution.

Chang and Hashimoto [80] made the voting process on the
image space rather than normal parameter space, then converted
the peak detection in the parameter space into a parameter
optimization problem. Since large memory for the discrete para-
meter space is not needed, it requires much lower storage and
execution time than the conventional HT.

4.6. Line segment, line length detection and influence of line
thickness on detection

Line segments are much more meaningful in feature extraction
because they form the boundary of objects like buildings, fields,
and box. Improving the accuracy of line segment detection may
reduce the complexity of subsequent high-level processing, com-
mon in cartographic feature detection algorithms.

The algorithm STRAIGHT (Segment exTRAction by connectivity-
enforcInG HT) [205] extracts long connected segments by incor-
porating connectivity in the voting procedure by only accounting
for the contributions of edge points lying in increasingly larger

neighborhoods. Yang et al. [111] use a weighting scheme based on
the likelihood ratio test statistics to detect short, thick and
connected line segments. Ioannou [86] has used information like
amount of spread of votes in the accumulator.

In the rotation transform method of [65] the edge image is
rotated about the center of the image plane by a fixed angle step,
and in each rotated image, search is carried out in the horizontal
and vertical directions to find the end points of horizontal and
vertical line segments. Cha et al. [162] split the Hough space
into two linear sub-spaces, simplifying the search algorithms.
Augmenting the dual space HT with a 3rd parameter (the x- or
the y-axis of image space) helps us to determine the length of line
segments.

According to Song and Lyu [160] limitations of most variants of
HT to detect line thickness in large images like engineering
drawing arise because they only work on the HT parameter space.
So the method in [160] utilized both the parameter space and the
image space.

4.7. Noise and distortion

Analyses show that the presence of a large number of noise
edge pixels, unimportant image structures or textual-like regions
greatly contribute to the deterioration of the performance.

Brown [14] analyzed HT behavior in various forms of noise and
concluded that the ðρ; θÞ parameter space has inherent bias. Real
point spread functions have a central peak and non-zero side-
lobes that contribute to bias. This bias has been treated as the
appearance of white noise in the image space by Maitre [25].
Wada and Matsuyama [75] first showed that the bias is caused by
the uniform quantization of the parameter space. To eliminate the
bias, a new parameter γ representing a non-uniform quantization
along the ρ-axis is introduced and uniform quantization is done on
the γ–θ parameter space. Hunt et al. [53] have proposed a
statistical signal detection theory for curve detection in noisy
images. Detection performance is measured using Receiver Oper-
ating Characteristics (ROC).

Fig. 12. Shape of bins for (a) uniform quantization and (b) non-uniform quantization of parameter space.

Fig. 13. Peak spread corresponding to a straight line segment (left).
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Eric et al. [50] concluded that GHT does not scale well for
recognition of occluded or noisy objects because of the following
reasons. First, the range of transforms specified by a given pair of
model and image features can be quite large. Second, the percen-
tage of buckets specified by a single data-model pair increases
with increasing sensor uncertainty and reduces (i.e. increase of
coarseness of Hough space) with increased occlusion. Third, the
number of model-image pairs likely to fall into the same Hough
bucket at random can be quite high, resulting in larger random
clusters.

The noisy pixels have even more serious impacts on rando-
mized algorithms. Guo et al. [178] proposed a PHT for line
detection utilizing surround suppression, which reduces the
weight of noisy pixels in complex background or texture-like
regions, suppresses the peaks produced by these pixels, and
subsequently put emphases on peaks formed mainly by pixels
on the boundaries between significantly different objects. The
Iterative RHT (IRHT) [180] detects incomplete ellipses in images
with strong noise by “zooming in” on the target curve by iterative
parameter adjustments and reciprocating the use of image and
parameter spaces.

5. Implementation issues

The implementation of a method should satisfy the constraints
of the applications in terms of time and memory needs. We
discuss some implementation issues in this section.

5.1. Software solutions

The software solutions for a high-precision, high-dimen-
sional, fast and less space consuming HT range from new data
structure to the formulation of a known algorithm in a
computer-friendly way.

5.1.1. Data structures
To represent accumulator array O'Rourke [11] used Dynamically

Quantized Space (DQS) that allocates resources where they are
most needed to detect the parameter space peak. Though a little
inefficient in space, the Dynamically Quantized Pyramid (DQP)
used in [12] has the advantage of fixed resource allocation and
convenient hardware implementation (e.g VLSI). Kim et al. [35]
represented an n-D parameter space with m discrete values for
each parameter by n1-D arrays of length m each. Thus space
complexity reduces from mn to mn. To construct each AHR for
Analytic HT [49], a linked line list instead of polygons is employed
in [66]. Also, all floating point computations are replaced by faster,
fixed word-size, integer operations because all values may be
stored as rational numbers.

5.1.2. Neural network (NN)
To increase speed, implementation of HT with neural networks

has been suggested in [43,69,116]. These approaches mainly accept
image co-ordinates as the input and learn the parametric forms of
the lines adaptively.

5.1.3. Other computer-friendly algorithms
Shapiro [6] and Satzoda et al. [182] proposed parallel imple-

mentation by dividing the picture plane in small areas and
processing each area in parallel. The parallel guessing principle
of [28] computes the HT incrementally and terminates computa-
tion when a significant parameter peak is identified. The gradient
based HT in [98] avoids the use of a large 2-D Hough Space and can
be implemented in parallel. By keeping transformed data packed

closely together in lists and accessing only small, 1-D data
structures, memory requirements are significantly reduced.

Pavel and Akl [101] examine the possibility of implementing
the HT for line and circle detection in an N�N image on Arrays
with Reconfigurable Optical Buses (AROBs) in a constant number
of steps. An Integer HT (IHT) which allows efficient integer
operations only is proposed in [85]. Olmo and Magli [132] have
shown that IHT is 2–3.5 times faster than the HT since floating
point operations are avoided.

5.2. Hardware solutions

There can be more than one approach to achieve real-time
implementation. In this paper we mainly discuss about parallel
processing, one of the most popular among these.

5.2.1. Parallel implementation among processing elements
There are various configurations for parallel implementation of

HT [110,38], differing in the way the image and the transform
spaces are distributed among the processing elements (PEs).
In Global image memory and distributed transform memory all PEs
have access to all image pixel points with each computing the HT
for a different segment of the transform space. In contrast, in
Distributed image memory and global transform memory, each PE
has access to a different segment of the pixels in the image but
computes the HT for the entire transform space. Finally in
Distributed image memory and distributed transform memory each
PE has access to the image and to a segment of the transform
space.

The parallel implementation scheme of Merlin and Farber [4]
had the advantage that the same system can do other tasks like
edge detection or thinning. The drawback lies in the speed, to
compensate for which the number of processing elements can be
increased, making a large and expensive system. Efficient parallel
image processing pipeline architecture has been used in [27,33].

The SIMD (Single Instruction Multiple Data) consists of square
arrays of simple processing elements (PEs) which can commu-
nicate with 4 or 8 neighbors. In this parallel architecture all PEs
concurrently execute the same instructions on different items of
data. The mapping of HT onto these architectures was first
considered by both Silberberg [21] and Li [23,24]. In [21] each PE
is assigned both an image feature and a cell of parameter space
while in [23,24] each PE is assigned an image feature and the co-
ordinates of a parameter cell are broadcast simultaneously to
every PE by a central controller. These steps speed up the HT by
a factor of O(n). However, the votes have to be routed to their
correct places in the accumulator and on a simple 2-D square
mesh with only local shifting operations, which requires
Oð ffiffiffi

n
p Þ steps.
The SLAP (Scan Line Array Processor) [41], a system having a

linear array of SIMD vector processors, assigns a single PE to each
column of the image and the array moves over the image and
processes all pixels of a row concurrently. Some SIMD instructions
were proposed in [179] to speedup the calculation of HT specific
elementary functions using a specialized look-up table. A Multiple
SIMD (MIMD) array was used in [52] where tasks of calculating the
accumulator array and finding the peaks are performed together.

5.2.2. Dedicated hardware and VLSI implementation
The HT processor can be implemented in real-time on different

bases like application oriented VLSI components or special pur-
pose component like Histogram/Hough Transform Processor [32]
(the earliest commercial hardware implementation of HT).

Most Hough-based methods encounter the evaluation of impli-
cit trigonometric and transcendental functions. This makes the
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monolithic implementation of the entire algorithm very complex.
To overcome this problem, the Co-Ordinate Rotation Digital
Computer (CORDIC) based architectures [47,93] were used to
generate the vote address in parameter space. Also, a CORDIC-
based asynchronous HT architecture suitable for VLSI implemen-
tation was proposed in [131].

Lin and Jain [82] proposed a multi-chip-module (MCM) con-
struction which can be configured to have eight HOUGH modules.
Systolic arrays consisting of time-delay processing elements
and adders can be used to reduce n-D feature space to 2-D.
Epstein et al. [138] presented the application-specific integrated
circuit (ASIC) implementation of the HT as a systolic array for real-
time recognition of curved tracks in multi-wire drift chambers.

A real-time Content Addressable Memory (CAM)-based HT
algorithm is proposed in [100] where both voting and peak
extraction are directly executed by CAM. The CAM acts as a PE
array that performs highly parallel processing tasks for the HT and
also acts as a memory for 2-D Hough space. Strzodka et al. [144]
have employed an inexpensive, consumer-market graphics card as
the parallel processing system for GHT. From known object
geometry, their hardware accelerated GHT algorithm is capable
of detecting an object's 3-D pose, scale and position in the image
within less than 1 min. Ito et al. [209] used GPUs (Graphics
Processing Unit) for up to 4 times faster ellipse detection.

Field Programmable Gate Arrays (FPGA) have high specificity of
an ASIC. But since they target smaller markets they require much
less development time while avoiding the development costs,
design risks and inflexibility of a custom solution. They are also
faster than general purpose processors and high throughput is
more often achieved by exploiting the parallelism of the architec-
ture than by operating it at higher clock frequency.

Mayasandra et al. [158] used FPGAs and proposed a Distributed
Arithmetic (DA) approach to the SHT. Its use completely eliminates
the need for multipliers, by modifications at the bit serial level.
Tagzout et al. [134] combined an incremental method with the
usual HT to overcome space requirements of FPGA. In [215] both
pixel-level and angle-level parallelism have been exploited to
reduce resources. Parallel PEs can be used to compute different θ
in parallel. For a given θ, if p1 ¼ ðx; yÞ and p2 ¼ ðxþdx; yþdyÞ are
two points in the image, then ρ2 corresponding to p2 is related to
ρ1 corresponding to p1 as

ρ2 ¼ ρ1þdx cos θþdy sin θ

This offset relation is made use of in the pixel-level parallelism.
Thus dividing the image into blocks, the ρ value of all neighboring
pixels of a central pixel can be calculated by the above offset
relation. Also in [215] non-feature pixels have been avoided by a
clever use of run-length encoding.

6. Real life applications

HT has found immense practical applications in vision pro-
blems like object detection, motion detection, biometric authenti-
cation, medical imaging, remote data processing, and robot
navigation. In this section we review some of these applications.

6.1. 3-D object detection

3-D object description has at least two parts: (a) the internal
description of the object itself (with respect to an object-centered
frame); and (b) the transformation of the object-centered frame to
the viewer-centered (image) frame. Often the former is known
beforehand and the task reduces to finding the latter.

Silberberg et al. [20] describe an iterative Hough procedure
where initially, a sparse, regular subset of parameters and trans-
formations is evaluated for goodness-of-fit, and then the proce-
dure is repeated by successively subdividing the parameter space
near current best estimates of peaks. For object detection in 3D
scenes with significant occlusion and clutter, a Hough voting
approach is used in [201], while Tong and Kamata [200] used a
3D HT to obtain a spectrum on which 3D features are concentrated
on the sphere and employ Hilbert scanning to match the objects
globally.

6.2. Motion detection

Motion estimation is important in video processing tasks like
standards conversion, frame-rate up-conversion, noise reduction,
artifact suppression and video compression.

A 2D non-model based motion detection algorithm, called
Motion Detection using RHT (MDRHT), suggested in [70], detects
the motion of a single object exploiting edge pixels only as feature
points. Kalviainen [97] extended it to use both edge pixels and the
intensity-gradient vector at edge pixels and generalized it to
detect multiple moving objects. For multiple-motion analysis, the
essential part is segmentation of independently moving objects. It
is determined by Tian and Shah [109] based on a 3D rigidity
constraint. The global Hough based evidence gathering technique
to extract concurrently the structural and motion parameters of a
feature from a temporal sequence of images is reported in
[106,130].

Given an unstable video, image stabilization aims at synthesiz-
ing a new image sequence such that the unwanted image motion
caused by camera motion is removed. Chuang et al. [192] pre-
sented a digital image stabilization involving multiple objects
motion detection based on block-based HT.

6.3. Medical imaging

Automatic object recognition is one of the main tasks in
modern medical image (e.g. computer tomography (CT), X-ray
radiographs, echocardiographs, and mammograms) analysis
problems.

Golemati et al. [155] studied the application of HT to detect
diastolic and systolic diameters of the carotid artery. A two-step
HT to find an annular approximation of the myocardium in short-
axis echo slices is proposed in [219]. A 3-D implementation of GHT
to localize the heart [177] and the liver [202] in 3-D CT has been
proposed recently. Brummer [57] used 3-D HT for automatic
detection of the Longitudinal Fissures (LF) in tomographic scans
of the brain. The 3-D vertebra orientation estimation technique in
[220] is based on HT to match the projections of the standard 3D
primitive with the vertebral contours in biplanar radiographs.
Using HT for blood cell segmentation is reported in [207]. Tino
et al. [213] formulated a dedicated probabilistic model-based HT to
be applied to hexaMplot to detect groups of coexpressed genes in
the normal-disease-drug samples.

6.4. Biometric authentication

Biometric authentication like finger-print and palm-print
matching, and iris detection are done for security purpose.

Fingerprint matching is a difficult task due to large variability in
impressions of the same finger. Qi et al. [149] proposed a HT-based
fingerprint registration where discretization of the Hough space is
not needed under rigid transformation between two fingerprint
impressions. To enhance the performance of minutiae based
matching in poor quality images, Tong et al. [167] developed a
HT-based algorithm where minutiae vectors are established and
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classified according to vector modules. Ridge features instead of
minutiae are used in [157] for fingerprint matching algorithm
while in [199] both ridge and minutiae are used to reduce the false
matching. For matching smudgy transparent latents Paulino et al.
[211] used descriptor-based HT to align fingerprints and measure
similarity by considering both minutiae and orientation field
information.

Dai et al. [216] studied quantitatively the major features in
palm print and used GHT at various steps of their segment based
matching and fusion algorithm. A line-based HT is used in [165],
which extracts global features for coarse-level filtering in hier-
archical palmprint identification system.

A classical way to do iris localization employs edge detection
techniques plus a HT to fit a circle for each boundary. Modified HT
techniques have been used in many papers like [150,171,183,196].
Jalil et al. [218] present a comparison of techniques namely
Circular HT (CHT), Daugman's Integro Differential Operator (DIDO)
and Circular Boundary Detector (CBD) for localization of iris
region.

6.5. Remote sensing

The linear shapes in SAR (Synthetic Aperture Radar) images
may correspond to roads, rivers, railways, hedges or forest rides
and thus many authors like Cross and Wadge [31] and Tian et al.
[212] use HT to extract them. Xu and Jin [176] developed a
technique for automatic reconstruction of 3-D building objects,
modeled as cuboids, from multiaspect SAR images in one meter
resolution.

In a HRR (High Range Resolution) RADAR the size of target is
larger than wavelength of the RADAR and RADAR range resolution
cells. An approach for noncoherent integration of HRR pulses
based on HT has been proposed in [208]. To deal with the scaling
of ISAR image and phase wrapping in interferometric ISAR, a cross-
range scaling algorithm of interferometric ISAR based on RHT has
been proposed in [204].

6.6. Robot navigation

Autonomous navigation of robots requires effective and robust
self-localization techniques. A probabilistic approach to self-
localization that integrates Kalman filtering with map matching
based on HT is described in [128]. In [172] the position and the
orientation of a mobile robot are estimated from the Hough
parameters of several flat surfaces in the environment. Kim et al.
[210] used HT for vision based direction determination algorithm
of a mobile robot in indoor environment. For automated guidance
for agricultural machinery Jiang et al [198] used HT for robust
recognition of crop rows. The correlation scan matching method
based on matching consecutive readings of Laser Range Finder
(LRF) by Graovac et al. [197] uses HT and the Hough spectrum for
determining the relative rotation.

6.7. Optical Character Recognition (OCR) and document processing

OCR (Optical Character Recognition) is a software tool that has
been used to convert image of text from camera, handwritten,
scanned or printed materials into say Unicode representation of
corresponding characters. Many papers have reported use of HT
for character recognition in different scripts like [16] for Hebrew,
[151,173] for Arabic, [185] for Persian, [40,89] for Chinese.

An OCR system segments the text image into physical compo-
nents before performing symbol recognition. A text has a linear
structure which can be described, at the symbol level, by a string
of characters or words. The physical components corresponding to
this linear structure are the lines of text. Thus authors like

Likforman-Sulem et al. [90] used HT to detect text lines on
hand-written pages which may include either lines oriented in
several directions, erasures or annotations between main lines.

Skew angle estimation is also an important component of an
OCR and Document Analysis Systems (DAS). HT has been used for
this purpose by many researchers [203,206,159]. Ma and Yu [122]
consider the lowermost pixels of some selected characters of the
text, which may be subject to HT for skew angle detection.
Xiangyu et al. [191] proposed a method for aligning lecture slides
with lecture videos using a combination of Hough transform,
optical flow and Gabor analysis.

7. Conclusion

This paper presents a comprehensive and up-to-date survey on
various issues of HT which even after 51 years of discovery is a
lively topic of research and applications. This is remarkable in
technical field where tools become outdated in 5 years. A large
amount of work has piled up since the last survey published on HT
about 20 years ago. In this paper we have discussed most of them
so that the researchers get an overview of the domain and choose
the adequate technique for their problem of interest. A list of more
than 200 references will help them to know the technique/analysis
in detail and guide them to develop their required software. Some
packages like MATLAB support conventional HT, but they are not
enough for some specialized need.

Apart from its widespread applications in pattern recognition
and image processing, there exists scope for further theoretical
research on speed, accuracy and resolution of shape detection
especially for partial, perspectively distorted and complex curves
in 2-D and 3-D. It is hoped that this survey will simulate further
interest in attacking such problems.
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