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Building recognition in urban environments aims to identify different buildings in a large-
scale image dataset. This identification facilitates the annotation of any visual object to a
building’s façade and is an essential step in a variety of applications, such as automatic tar-
get detection in surveillance, real-time robot localization and visual navigation, architec-
tural design, and 3D city reconstruction. Because of its importance, a significant number
of building recognition systems have been proposed in recent years. Nevertheless, there
is no systematic survey of building recognition in urban environments yet. To this end,
we present a comprehensive review of the dominant building recognition systems by first
grouping them into two categories: (i) effectiveness approaches that mainly focus on the
improvement of recognition performance and (ii) efficiency methods that attempt to
enhance the recognition speed. Effectiveness approaches are further categorized into two
different groups: (i) feature representation-based algorithms and (ii) wide baseline match-
ing-based methods. Efficiency methods are divided into: (i) dimensionality reduction-
based methods and (ii) clustering-based algorithms. We provide analysis and discussions
on each type of method and summarize their advantages and weaknesses in depth. Fur-
thermore, we outline future research directions and associated challenges in this promising
area. This survey can serve as a starting point for new researchers in building recognition to
generate new ideas according to their specific requirements.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Building recognition in urban environments aims to distinguish between different buildings in a large-scale image data-
set. The identification of buildings can contribute to various applications, such as automatic target detection in surveillance,
real-time robot localization [47] and visual navigation [14,30], architectural design, and 3D city reconstruction [1,36,41,50],
as shown in Fig. 1. Building recognition enables robots to easily and accurately localize themselves in outdoor scenes and
therefore is helpful for robot localization and navigation; in traffic monitoring, moving vehicles are usually detected under
the circumstances in urban area; building recognition allows building designers or developers to efficiently search the most
desirable building models from the Internet or databases when designing a new building; building recognition also plays a
fundamental part in 3D city reconstruction for urban planning or augmented reality in video games. Having become such an
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Fig. 1. Different applications of building recognition. These pictures are taken from [59–62], respectively.
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important computer vision task, building recognition has attracted considerable attention from both aerial images [55] and
city building images.

Building images can be separated into two types: (i) aerial images and (ii) city building images. These two kinds of images
are fundamentally different in appearance, as shown in Fig. 2. Aerial images of a particular scene comprise a number of over-
lapping digital photographs taken by different video cameras or sensors fitted on a plane or other high-altitude platform that
flies back and forth above a city. The images are usually of high-resolution and can be affected by the speed and altitude of
the aircraft, weather conditions, the type of data, and the post-processing methods applied. Compared with low-resolution
imagery, ultra-high resolution datasets of aerial images require enormous amounts of storage space and computational costs
for building recognition. City building images are usually collected by taking pictures with a digital camera/video camera
from a street-level view and from different viewing angles. Mayer [31] presented a review on building recognition ap-
proaches applied to aerial images; nevertheless, there is no survey paper about city building images. To this end, this paper
surveys the state-of-the-art building recognition techniques on city building images from different aspects, covering a vari-
ety of knowledge in the computer vision research field, especially on effective features for building recognition.

Building recognition is usually deemed to be an object recognition or a content-based image retrieval problem [21,27] for
a specific category. Compared to general object recognition tasks [51–54] on both images and videos, city building recogni-
tion is more challenging because most building images contain both human-made objects (e.g., walls, doors, and windows)
and natural scenes (e.g., trees), and they often exhibit repetitions and planar surfaces. Moreover, images taken from the same
building could demonstrate a wide range of variability – they may be taken from different viewpoints, under different light-
ing conditions, or suffer from partial occlusions from trees, moving vehicles, other buildings or themselves. Therefore, an
ideal building recognition technique should be sensitive enough to identify an individual building while robust to different
geometric and photometric image transformations (e.g., rotation, scaling, viewpoint changes, and different lighting
Fig. 2. Examples of an aerial image and a city building image, respectively.
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conditions). Furthermore, it should be efficient enough for real-time applications in large-scale databases. These character-
istics of building recognition have led to research on the following aspects: (1) feature representations of visual models that
can accurately describe buildings and are robust to small image transformations and (2) fast indexing that can improve an
algorithm’s efficiency while alleviating data storage space and computational complexity.

Generally, a building recognition system consists of three parts: (i) feature representation; (ii) feature matching; and (iii)
classification. Feature representation usually serves as the first step in the whole building recognition process and directly
affects the subsequent recognition performance. It describes different objects in an image by extracting either global features
[26,45,22,19,28] or local features [29,23,33,23,2,39], which are considered as two types of complementary features. Global
features are extracted from all pixels in a whole image; local features, referring to image patterns (e.g., a local image region
or an object of interest) that are different from those in their neighborhoods, could describe local information of an image
and tend to be invariant to both geometric and photometric image transformations. To identify buildings in the building rec-
ognition task, global features refer to a building’s color, shape, texture, etc.; while local features can be deemed as salient
points and descriptors calculated on the neighborhoods of them for distinguishing different parts of a building, e.g., walls,
doors, windows, etc. After feature representation for every image, feature matching is conducted to find the correspondences
between a pair of building images, i.e., the query image and a reference image in the database via distance metrics (e.g.,
Euclidean or Mahalanobis distance). Finally, classification is conducted to determine the best match, where classifiers
[11,48] over statistical models combine the outputs of either global or local appearance feature vectors to maximize the
quality of the output on a training set. Recognition performance is usually evaluated by precision and recall, where precision
is defined as the percentage of the relevant images in top retrieved images and recall is defined as the percentage of the rel-
evant images in all positive images in the database.

A number of building recognition systems [34,42,24,45,14,18,22,15,25,26,25,19,28,57,34,58,10,2] have been proposed in
the last few years. In this survey, we first classify them into two categories: (i) effectiveness approaches that mainly focus on
the improvement of recognition performance and (ii) efficiency methods that speed up the recognition system. Effectiveness
approaches can be further categorized into two different groups: (i) feature representation-based algorithms and (ii) wide
baseline matching-based methods. Efficiency methods are divided into: (i) dimensionality reduction-based methods and
(ii) clustering-based algorithms.

The objective of this survey is to introduce representative building recognition techniques on city building images and
give researchers who are interested in building recognition an overview of the state-of-the-art methods. The remainder
of this survey is as follows. In Section 2, we describe current city building datasets and their complexity. In Section 3, we
review representative building recognition approaches in terms of their effectiveness and efficiency. Finally, we summarize
the paper and suggest promising future directions of building recognition from a wider variety of real-world data in
Section 4.
2. Datasets and their complexity

To date, most of the building recognition techniques have been evaluated on the following datasets: (i) Zurich building
database (ZuBuD) [37]; (ii) Sheffield Building Image Dataset (SBID) [26]; and (iii) Oxford Buildings Dataset (OBD) [34]. The
complexity of different datasets is mainly due to the image contents and resolutions. In the following sub-sections, these
datasets and their associated complexity will be introduced. Furthermore, we point out the challenges of the building rec-
ognition task for various types of data, such as surveillance videos, Google Street View images, and satellite images.

2.1. Zurich building database

Zurich Building Database (ZuBuD) [37], generated in 2003, contains 201 buildings of Zurich City. Each building was
viewed from five arbitrary angles, resulting in 1005 images in total. The size of each image is fixed at 640 � 480. Sample
images of three different buildings are given in Fig. 3. As we can see, the images in ZuBuD lack large viewpoint and illumi-
nation changes, and this dataset does not consider the combination of different types of variance. What is more, query
images of ZuBuD are too easy to differentiate between simple methods and advanced algorithms [15]. As a result, although
ZuBuD has been widely used in the literature [38,15,57], it is insufficient to serve as a good benchmark for evaluating the
performance of different building recognition algorithms.

2.2. Sheffield building image dataset

Sheffield Building Image Dataset (SBID) [26] makes the building recognition task more challenging by combining different
types of variations together, including highly variable lighting conditions and large viewpoint changes. As we can see in
Fig. 4, the images in SBID possess various challenges, i.e., rotation, scaling, different lighting conditions, viewpoint changes,
occlusions, and vibration – even humans cannot easily tell whether the images in the second row are from the same building
or not. SBID consists of 3192 images taken from 40 buildings, which include churches and a variety of modern buildings,
such as exhibition halls and office buildings. Still images and video clips were taken around the University of Sheffield
and the Sheffield City centre at different times on separate days in 2008, where different times cover early morning, noon,



Fig. 3. Example images of the ZuBuD database. Each row shows images from the same building.

Fig. 4. Sample images of the SBID dataset. These three rows show sample images from Categories 1, 10, and 38, respectively.
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mid-afternoon, and early evening. Still images for each building were taken from different viewpoints, varying from three to
nine views; video clips were also obtained with multiple views by moving the camera from side to side. Furthermore, some
videos were captured by walking from one side to another, which creates the challenge of movement/camera-shake. The size
of both still images and sampling frames of video clips is fixed to 160 � 120 in order to ensure computational efficiency and
low memory requirements.
2.3. Oxford buildings dataset

Oxford Buildings Dataset (OBD) [34] consists of a variety of real-world images from Internet photo collections, which
were taken from different kinds of cameras under varying lighting conditions. It is composed of 5063 high-resolution images
of 17 different Oxford landmarks, i.e., the size of each image is either 1024 � 768 or 768 � 1024. Sample images are shown in
Fig. 5. Different from above-mentioned databases, images in OBD were obtained by searching query keywords of Oxford
landmarks (such as ‘‘Oxford All Souls’’ and ‘‘Oxford Christ Church’’) from Flickr [63] – one of the largest Internet photo-sharing
websites. Therefore, not only building images were collected, but also distractors, i.e., images containing other objects were
collected when searching query keywords. For the evaluation of object retrieval systems, OBD has been manually annotated
to generate a comprehensive ground truth for 11 different landmarks, each of which is represented by 5 possible queries.
Each image and landmark in the dataset is assigned to one of the following labels: (i) Good; (ii) OK; (iii) Junk; and (iv) Absent,
depending on the quality of images and whether the object/building is present or not.



Fig. 5. Sample images of the OBD dataset. Each row shows sample images collected by searching ‘‘All Souls Oxford’’, ‘‘Ashmolean Oxford’’, and ‘‘Oxford’’ as
queries, respectively.
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Systems relying on photos captured with the same calibrated camera at a regular sampling rate may not perform well
because images collected from the web have none of these simplified characteristics. Consequently, OBD is a challenging
dataset for evaluating the effects of different visual vocabularies and spatial ranking in object retrieval and can distinguish
simple algorithms from robust ones. However, photographs from the Internet are inherently redundant since many of them
were taken from nearby viewpoints. Besides, it is not easy to recover 3D geometry from this large collection of images.

However, the above-mentioned datasets contain only images. Although SBID captured some videos, it sampled these vi-
deo clips into frames, which also fall into the image type. Except for images stored in databases, building recognition may be
directly conducted on various types of data (e.g., surveillance videos, Google Street View (GSV) images, and satellite images):
each with different challenges. For surveillance videos in cities, lower quality videos introduce more challenges for the build-
ing recognition task. Moreover, desirable building recognition techniques should be especially robust to illumination
changes and occlusions in crowded scenarios. For GSV images, one challenge is how to efficiently collect GSV images we need
from the web; the other challenge is that the images may not contain the targets (buildings) or they are taken from very large
viewing angles. Satellite imagery entails similar challenges with aerial images: the images are usually of high-resolution
which requires large amounts of storage space and computational costs. In summary, different data types may bring varying
degrees of challenges for building recognition.
3. Existing techniques for building recognition

In this section, we separate existing building recognition techniques into two main categories: (1) effectiveness
approaches and (2) efficiency approaches. Based on the procedure of building recognition, we roughly divide effectiveness
approaches into two categories: (i) feature representation-based algorithms; (ii) wide baseline matching-based approaches;
and (iii) others. Efficiency approaches are further categorized into three classes: (i) dimensionality reduction-based
methods; (ii) clustering-based algorithms; and (iii) others. In the following sub-sections, we give a brief overview of the
underlying algorithms.
3.1. Effectiveness approaches for building recognition

Effectiveness approaches are divided into two categories: (i) feature representation-based algorithms [34,42,24,45] and
(ii) wide baseline matching-based methods [14,18,22]. Feature representation-based algorithms focus on the process of fea-
ture extraction in building recognition; wide baseline matching-based approaches identify corresponding building facades
from two different views by efficiently matching corresponding feature points between a query image and a reference image.
Representative algorithms for these two categories will be introduced in separate sub-sections.
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3.1.1. Feature representation-based algorithms
In [38], an indexing method, called hyper-polyhedron with adaptive threshold (HPAT), was proposed to reduce the num-

ber of feature vectors in searching for the nearest neighbors. It approximates the hyper-sphere with a hyper-polyhedron
rather than a hyper-cube, where the illustrations of the hyper-cube and hyper-polyhedron in 2D space and 3D space are gi-
ven in Figs. 6 and 7, respectively. As we can see, the hype-cube approximation includes more useless corner points (the cor-
ner pc falls within the hyper-cube, but not within the hyper-sphere), which results in more search space than the hyper-
polyhedron approximation. To be more precise, the volume of the hype-cube is (2r)n given r as the radius of the hype-sphere;

while the volume of the hyper-polyhedron is ð2rÞnð
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which grows slowly with the increasing

number of dimensions and keeps the volume of the hyper-sphere relatively constant.
The procedure of building recognition is carried out as follows. Intensity-based regions [46] are extracted at multi-scale

intensity extrema of a Gaussian scale space, and then each region is described by a set of nine generalized color moment
invariants. The extracted local features are robust to illumination and viewpoint changes. Nevertheless, they lead to feature
matching in a higher dimensional space compared with global features. To this end, HPAT can improve the efficiency in local-
izing the nearest neighbors in the feature space and so reduce computational time, where the Mahalanobis distance is uti-
lized by taking into account the differences and correlation among the elements of a feature vector. For building recognition,
this model was tested on ZuBuD [37] and the recognition rate was 77.3%. It can identify pictures of the same building from a
wide range of viewpoints in a large image database. However, this model embeds the following shortcomings: (1) compu-
tational time is mainly spent on the extraction of invariant regions, which indicates simple and effective features can alle-
viate the whole computational cost; (2) ZuBuD is a relatively small building image dataset, so the model may not work well
for larger databases since recognition rates decline due to too many similar regions found in other images, especially for
building images that have similar colors; and (3) it does not determine the query pose.

Motivated by the robustness of local features to different geometric and photometric transformations, Li and Allinson [24]
proposed the steerable filter-based building recognition (SFBR) model which is able to select oriented features with arbitrary
orientations and thus can deal with edge information with varying angles. To achieve invariance to small shifts in position
and changes in lighting conditions, max-pooling [44,8] – a key mechanism for object recognition in the cortex, is used to
preserve discriminative information by searching the max value of the steerable responses over local patches. Afterwards,
linear discriminant analysis (LDA) [32] is applied to reduce the dimensionality of feature vectors via projecting data points
into a lower subspace. Finally, a support vector machine (SVM) [48], maximizing the margin between positive examples and
negative examples, is used to discriminate different buildings because of its good generalization abilities and no requirement
for prior knowledge about the data. The SFBR model demonstrates the promising properties and capabilities of local features
for describing the characteristics of the components of a building (e.g., windows, doors, and bricks). Although it is simple, it
offers a modular, computationally efficient, and effective alternative to other building recognition techniques.

Suleiman et al. [42] utilized the SIFT operator [29] as an image texture descriptor to identify building façades and esti-
mate the calibrated camera geolocation (i.e., absolute camera position and orientation) in building images. The aim is to
Fig. 6. Hyper-cube and hyper-polyhedron in two dimensions, the corner pc falls within the hyper-cube, but not within the hyper-sphere. The images are
from [38].

Fig. 7. Reduction of the volume from hyper-cube approximation to hyper-polyhedron approximation by using more planes – illustration in 3D space. The
images are from [38].
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enhance and complement a registered geographic information systems (GIS) database of 70 façade images taken from 20
buildings in the city center of Saint Etienne. The procedure of this method contains the following steps:

(1) automatically crop the whole building façade for each image in the database. For non-accurate cropped images, the
real boundaries are manually extracted;

(2) extract SIFT image features for each cropped façade;
(3) find correspondences between the query image and the reference facades in the 3D GIS database by calculating the

distances between their descriptors;
(4) eliminate false matches by calculating the homography constraints by direct linear transformation (DLT) and minimiz-

ing the geometrical distance for all the 2D/3D correspondences using a nonlinear iterative Levenberg–Marquardt
approximation; and

(5) add SIFT descriptors with the 3D positions of the interest points and four corner points of each cropped building façade
to the GIS database.

The 3D positions of the 2D interest points and four corners of the query image can be determined in this way and this can
be used as an initialization phase in the automatic registration process. Nevertheless, the estimation of camera position and
orientation depends on affine rotation and the performance drops significantly if the angle between the discovered facade
and the image projection plane is larger than 40�. Therefore, the estimation using multiple non-coplanar facades is rather
bad when the rotation angle is large in most urban pictures. Moreover, it does not perform well for a building that has similar
textures or a building with a glass facade that could reflect the facades of other buildings.

Zhang et al. [56] recognized building architecture styles based on their morphological characteristics captured by highly
discriminative blocklets, which represent basic architecture components as well as their spatial arrangements and are quan-
tized by a hierarchical sparse coding method. The effectiveness of this approach was validated over 10,000 buildings from
nine categories of architecture styles, and experimental results demonstrate that the approach outperforms some specific
building/place recognition models.

While most of the above-mentioned building recognition algorithms focus on single-building recognition, i.e., each image
only contains one dominant building, Trinh et al. [45] proposed a method to recognize multiple buildings in the image data-
base of Ulsan metropolitan city in South Korea. Since the main part of a building consists of windows, doors, and walls, facets
of each building are extracted based on line segments and vanishing point detection. Afterwards, wall color histograms are
first computed on the pixels satisfying some constraints for selecting candidate models that are robust for the multi-building
recognition task or a single building containing several faces. SIFT features [29] are utilized to describe each building while
only those detected keypoints with scales above 2 are further represented by the SIFT descriptor. For each test image, its
closest model is selected according to the nearest neighbor rule. Basically, multi-building recognition is more challenging
than that only considers a single building in an image. Nevertheless, by testing the proposed method for building recognition
and segmentation of building images from non-building images, this algorithm is claimed to outperform all other ap-
proaches and serves as the only current method that is able to recognize multiple buildings in an image.

3.1.2. Wide baseline matching-based approaches
In building recognition, wide baseline matching [14,30,46] identifiers corresponding building facades from two different

views by efficiently finding corresponding feature points between a query image and a reference image that were taken with
significant viewpoint changes and under different lighting conditions. They follow the basic scheme of local feature repre-
sentation which is briefly described as follows. Firstly, interest points are detected by corner detectors or region detectors.
Afterwards, a local region is constructed around each interest point, in such a way as to adapt its shape to the viewing angle
and keep the part of the scene it encloses fixed. All regions are then described by a local descriptor, and finally, the best
match is determined using a voting scheme based on a distance measure between calculated descriptors. Fig. 8 gives an
exemplar of wide baseline matching between two views, where SIFT features [29] were extracted and the correspondences
were matched by the homography that maps pixels between two views of the same plane.
Fig. 8. An exemplar of wide baseline matching between two views.
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A fast wide baseline matching algorithm [14], which allows for fast matching for the localization and recognition of nat-
ural landmarks, was developed for semi-automatic visual navigation. In every image, affine invariant column segments, i.e.,
vertical columns of pixels between a consecutive pair of local gradient maxima, are extracted. For each column segment, a
descriptor vector is computed based on geometrical, color and intensity information. Afterwards, the Mahalanobis distance
between the descriptor vectors and the horizontal distance between line segments are utilized for matching. Because of
repetitive elements in an image, the column segments are grouped into clusters, each of which is represented by a prototype
column segment associated with the average descriptor vector. In support of fast matching, a kd-tree of the reference image
data is built of the cluster prototypes. Finally, RANSAC is applied to filter out mismatches.

Hutchings and Mayol-Cuevas [18] designed a building recognition system for mobile devices by locating a building from
its position in world space. Given a query image, its local features are first extracted by the Harris corner detector [17] and
then described by the SIFT descriptor [29]. Afterwards, they are matched with extracted features of every reference image in
the database. Since building images are usually taken from different distances, scaling is not a trivial issue. To ensure there
are enough matches between two images from the same building (even if the building is far away from the camera), a scale is
selected for each query image by utilizing its GPS position in the matching process. This results in the reduction of search
space and computational cost. To cope with viewpoint changes, homography that maps pixels between two views of the
same plane is estimated by RANSAC and the structural resemblance is measured by the angle error of the spatial arrange-
ment of matches. As seen in Fig. 9, p is a pixel of a view from camera A and q is a pixel of a view from camera B. The relation
between them can be modeled by p = Hq with H = K(R � (tnT)/d)K�1 being the homography matrix calculated by rotating and
translating camera B with respect to A, where R is the rotation matrix, t is the translation, K is the camera calibration matrix,
n is the plane normal, and d is the distance to the view from A. Most outliers can be removed with these steps, but the system
fails in dealing with very large viewpoint changes.

For augmented reality-based navigation systems, Kim et al. [22] detected building locations based on edge and block
information from video clips captured in Dajeon City (Korea) by a camera equipped in a moving vehicle. The process is con-
ducted as follows:

(1) detect edges for each image frame;
(2) use the predefined mask to filter out vehicles and road areas;
(3) divide each image frame into small-sized blocks;
(4) for each block, calculate slopes and length of the edge segments in horizontal and vertical directions respectively;
(5) determine the search region by detecting and removing trees and background regions based on the calculated slopes

in Step 5; and
(6) determine the building area and recognize buildings by performing block-based edge tracing in adjacent blocks.

This building recognition technique is performed only within the search region, which significantly reduces the process-
ing time and makes the algorithm focus on highly possible areas in an image frame. The algorithm was tested on 42 video
clips and the overall recognition performance is 88.9%. However, the detection rate for clips with more complex environ-
ments is only 62.3% since buildings in these image frames may be overlapped by other objects, e.g., trees, traffic signals,
and street lights. This means the algorithm cannot deal with occlusions.

3.1.3. Summary
Most effectiveness approaches for building recognition are based on local features that are not only very effective to

capture discriminative information for building recognition, but also invariant to geometric and photometric changes. The
differences among these approaches lie in the way that interest point detectors, local invariant regions, and local descriptors
Fig. 9. Two views of the same building are related directly by a homography.



Table 1
Recognition rates reported by various effectiveness approaches on different databases.

Approach Database Performance (%)

HPAT indexing [38] ZuBuD 77.3
SFBR [24] SBID 94.7
Multiple buildings [45] Building images in Ulsan metropolitan city 97.5
Fast wide baseline matching [14] ZuBuD 92.0
Kim’s method [22] Video clips of Dajeon City (Korea) 95.9
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are extracted. The individual recognition rates of various effectiveness approaches are provided in Table 1. Since the methods
were not tested on the same building image dataset, it is not sensible to directly compare their performance only based on
the recognition rates.
3.2. Efficiency approaches for building recognition

A series of algorithms were proposed for fast processing. Efficiency approaches can be categorized into three classes: (i)
dimensionality reduction-based methods [15,25,26]; (ii) clustering-based algorithms [19,28,57,34,58,10]; and (iii) others [2].
Dimensionality reduction-based methods improve the recognition efficiency by alleviating the dimensionality of feature
vectors and clustering-based algorithms aim to discover the relationships among different image structures by grouping
them into different clusters.
3.2.1. Dimensionality reduction-based methods
Most building recognition systems suffer from the curse of dimensionality [5] due to the high dimensions of extracted

feature vectors. In order to eliminate feature redundancy and make the data more compact, dimensionality reduction
(DR) [16] finds a projection to reduce the original higher dimensional feature space to a much lower dimensional subspace,
thereby alleviating the computational costs for the subsequent recognition process. DR approaches can be mainly divided
into linear subspace methods (LSMs) and manifold learning algorithms. LSMs project the original higher dimensional data
points ~xi 2 Rn (1 6 i 6 N) into a lower dimensional space ~yi 2 Rd (d� n) by a linear transformation U 2 Rn�d; i.e.,
~yi ¼ UT~xi, where principal component analysis (PCA) [20] and linear discriminant analysis (LDA) [32] are two of the most
representative methods. PCA projects the data along the direction with the largest variance; whereas LDA finds the projec-
tion direction that maximizes the between-class scatter matrix while minimizing the within-class scatter matrix. Manifold
learning algorithms aim to explore the local geometrical structure in the low-dimensional manifold embedded in the high-
dimensional space, where the representative ones are locally linear embedding (LLE) [35], isometric feature mapping (Iso-
map) [43], Laplacian Eigenmap (LE) [4], just to name a few. LLE assumes that data points close in the high-dimensional space
should also be close in the embedded low-dimensional space and utilizes linear coefficients preserving the local geometry in
the high-dimensional space to reconstruct each data point from its neighbors. Similar as LLE, Isomap preserves the intrinsic
geometry of data by computing the geodesic distance (shortest path) between pairs of data points. LE was proposed based on
the correspondence between the graph Laplacian and the Laplace Beltrami operator on the manifold.

Groeneweg et al. [15] implemented a fast offline building recognition method based on intensity-based region detection
[46] and PCA [20]. The algorithm was first tested on ZuBuD [37] by the following steps:

(1) downsample every image in ZuBuD;
(2) detect invariant regions based on local intensity extrema;
(3) fit a parallelogram to each detected region to capture the transformations that affect its appearance;
(4) double the size of the fitted parallelogram to make the region more distinctive;
(5) transform the image contents in each resized region to a fixed size of 10 � 10;
(6) compute the RGB color values of the pixels in each patch to characterize the region and normalize it by dividing each

value by the sum of the intensities of all pixels in the region to make the representation invariant to illumination
changes;

(7) apply PCA for compact representation by keeping the first 30 components;
(8) implement linkage clustering to group the features for all images of a building into clusters according to the maximal

distance between the instances and characterize each cluster by its centroid. This step can remove repeated regions
caused by repetitions (i.e., a row of identical windows) or many views of a building;

(9) build a 100-bin histogram for the r channel and g channel for every building image in the database;
(10) normalize each histogram and store it in the database; and
(11) calculate the chi-square distance between the normalized RGB histogram of the query image and every histogram pre-

viously stored in the database. Then the best match is determined by voting each region found within the query image
for the building by a weighted majority voting scheme.
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This approach reduces the computational cost and storage capacity in a mobile phone platform, but it is sensitive to illu-
mination changes and not invariant to rotation. Considering that ZuBuD is a relatively simple dataset, the Roeterseiland data-
base was constructed by taking pictures of the Roeterseiland complex of the University of Amsterdam to allow the
evaluation of the normalized RGB histograms under harder conditions. It consists of images of 7 buildings and the resolution
of each image is 160 � 120. The experimental results on this dataset verified that the global color distributions are not dis-
criminative enough in complex environments. Nevertheless, the number of buildings in this dataset is still small, which can-
not really serve as a benchmark dataset for investigating various building recognition techniques.

Li and Allinson [26] integrated biologically-inspired feature extraction [40] with dimensionality reduction to construct a
biologically-plausible building recognition (BPBR) scheme. Firstly, biologically-inspired features are extracted using a sal-
iency model and a gist model. The saliency model is constructed by extracting visual features at multi-scales and creating
a set of feature maps for each image, and then the gist model is constructed by dividing each feature map into a number
of sub-regions and describing each map by a gist feature. Afterwards, LDA is used to reduce the dimensionality of the feature
vectors and the nearest neighbor rule [11] is applied for classification. Experiments undertaken on SBID demonstrate that
this scheme achieves satisfactory results. Extracted features are biologically related to human visual perception and invari-
ant to geometric and photometric transformations – especially robust to different lighting conditions. Moreover, each stage
of the scheme requires low computational cost. Based on this scheme, the authors further proposed a relevance feedback
(RF)-based building recognition (RFBR) scheme [25] which performs a support vector machine (SVM)-based RF after dimen-
sionality reduction by LDA. The flowchart of the RFBR scheme is given in Fig. 10. It was the first time to embed human–
computer interaction in building recognition, resulting in enhanced recognition performance. However, both schemes were
evaluated on SBID with relatively small-size images, while their effectiveness cannot be guaranteed for high-definition
images.
3.2.2. Clustering-based algorithms
In clustering-based building recognition algorithms, clustering is usually conducted on extracted features (either global

or local) using k-means or hierarchical clustering which groups the features into different clusters. By exploiting the
Fig. 10. The flowchart of the RFBR scheme. The figure is taken from [25].
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intra-structure of each cluster or modeling the interrelationships between two clusters, the efficiency of building recognition
improves.

According to the principles of perceptual grouping [19], a bottom-up processing approach was proposed to explore the
semantic interrelationships among different types of primitive image features (e.g., significant edges, junctions and parallel
lines). These low-level visual features were hierarchically grouped into intermediate-level structures (e.g., corners, windows,
doors, and boundaries of the building) for content-based image retrieval of buildings. In more detail, the following features
were hierarchically extracted from an image: (i) straight line segments; (ii) longer linear lines; (iii) ‘‘L’’ junctions; (iv) ‘‘U’’
junctions; (v) parallel lines; (vi) parallel groups; and (vii) significant parallel groups. The obtained parallel lines are grouped
into clusters with similar orientations; parallel groups are obtained by grouping overlapping parallel lines which are deter-
mined by orthogonal projection; significant parallel groups are extracted based on certain criteria. Finally, a feature vector is
described by X = (x1, x2, x3)t with i e {1, 2, 3} and xi e [0, 1], where x1 denotes the percentage of lines in ‘‘L’’ junctions in the
total number of retained lines, x2 is the percentage of lines in ‘‘U’’ junctions in the total number of retained lines, and x3

stands for the percentage of lines in significant parallel groups in the total number of retained lines.
Finally, a Bayesian framework is applied to analyze these features and determine the presence of a building in an image.

The system was tested on 150 images with a resolution of 640 � 480 and both the recall and the precision for the building
classes are over 80%.

After detecting edges by a Canny edge detector [9] and segmenting them into straight lines using the Object Recognition
Toolkit [12], color, orientation, and spatial features of each line segment are integrated and grouped into consistent line clus-
ters [28], i.e., a type of mid-level features, where intra-cluster and inter-cluster relationships are utilized to recognize and
locate different buildings in an image. These structural local features are obtained through the construction of color-consistent
line clusters, orientation-consistent line clusters, and spatially-consistent line clusters step by step. Firstly, each pixel of an
image is classified as one of several dominant colors and every line segment is grouped into one of the color-consistent line
clusters based on its color pair, i.e., a dominant color from its left region and the other from its right region. Afterwards,
roughly orientation-consistent line clusters are achieved by further classifying every color-consistent line cluster according
to the line segments’ orientations in the image, where parallel segments of the same orientation are assigned to one orien-
tation-consistent line cluster via finding the peaks in the orientation histogram. In order to rule out the segments from dif-
ferent physical entities, spatial clustering is performed using both vertical and horizontal position histograms to project the
line segments to create vertical position clusters and horizontal position clusters, respectively. Consistent line clusters en-
able both keyword indexing and spatial relationship queries. Nevertheless, the detection rate decreases significantly if the
building in an image occupies only a small portion.

Zhang and Košecká [57] proposed a hierarchical building recognition (HBR) system based on vanishing point detection
and localized color histograms. Detected line segments are grouped into dominant vanishing directions and vanishing points
are estimated by the expectation maximization (EM) algorithm. Afterwards, an image pixel with its gradient magnitude
above a previously defined threshold is assigned to one of the groups (namely left, right, and vertical) if the difference be-
tween its gradient direction and the principal vanishing directions is less than some threshold, and then localized color his-
tograms are only computed on these pixels as indexing vectors. Finally, the histograms are matched by the chi-square
distance, and the recognition results on ZuBuD [37] are refined by extracting SIFT features and applying a simple probabi-
listic model to integrate the evidence from individual matches. Because of the fast indexing step using localized color his-
tograms, this method achieves some improvement in efficiency and has attracted the most attention. Nevertheless, it also
has limitations: (1) the authors assume that there is only one building in each image to be recognized, which is not always
true in real-world cases; (2) although it conducts a fast indexing step, the processing time for extracting many features from
color images is still long; (3) its recognition performance is good only when the building is large enough and with simple
backgrounds. In consequence, the algorithm is inappropriate for navigation systems that require real-time processing.

Considering visual words as a spatial configuration, a ranking scheme [34] was proposed for searching building facades in
a large corpus. Its procedure is given as follows. First, affine-invariant Hessian regions [33] are extracted and described by
128-dimensional SIFT descriptors [29]. These descriptors are then quantized or clustered into a visual vocabulary by approx-
imate k-means which employs a forest of 8 randomized kd-trees built over the cluster centers at the beginning of each iter-
ation. In this way, each affine region is mapped to the closest visual word and an image is represented as a bag of visual
words. Afterwards, the search engine uses a vector-space model [3] of visual word occurrences in an image and calculates
the similarity between the query vector and each image vector in the database according to tf–idf weighting. Finally, the top
retrieved results are re-ranked by first estimating a transformation between the query region and each target image and then
re-ranking target images based on the discriminability of the spatially verified visual words. The performance of the ranking
scheme has been demonstrated on OBD [34]. However, the spatial matching process of the ranking stage adds to the com-
putational burden.

Based on the visual characteristics of landmarks, Zheng et al. [58] proposed a clustering-based landmark recognition
method to organize and index landmarks from two sources: (i) GPS-tagged photos in photo sharing websites with their text
tags and (ii) travel guide articles from websites. Landmarks mined from these two sources have small overlaps but comple-
ment each other: a large number of the geographically calibrated images are visually similar and the names of landmarks can
be mined from their corresponding geographic text tags; the landmark list mining can be regarded as a task of text-based
named entity extraction from the travel guide corpus. The procedure of the recognition system is given in Fig. 11.



Fig. 11. Clustering-based landmark recognition.
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For GPS-tagged photos, the following steps are conducted: (1) perform hierarchical clustering on photos’ GPS coordinates
to obtain dense geo-clusters; (2) conduct visual clustering on the noisy image set I1 of each geo-cluster, where I1 contains
photos of one or several adjacent landmarks; (3) extract text tags of each photo in a visual cluster by filtering out stop words
and phrases; and (4) compute the frequency of n-grams of all text tags in each visual cluster and the n-grams with the high-
est frequency are regarded as the landmark name for the visual cluster.

For travel guide articles, the system executes as follows: (1) extract a noisy list of landmark candidates by performing
named entity extraction based on the semantic clues embedded in the document structure. That is, the text is classified
to be either landmark or non-landmark according to a set of heuristic rules; (2) generate the candidate image set using
the mined landmark name associated with each landmark candidate as a query for Google image search; and (3) perform
visual clustering on I2 to exploit true landmark images.

Given candidate image sets I = I1 \ I2 which contain potential landmark images from geo-clusters and Google image
search, clustering is performed on I to learn true landmark images by analyzing the visual similarity distribution among
images. After training an AdaBoost-based photographic vs. non-photographic image classifier and adopting a multi-view face
detector [49], visual cluster outlines (non-photographic images) are removed and photos with overly large area of human
faces are filtered out, respectively. Afterwards, interest points are detected by Laplacian-of-Gaussian filters [33] and each lo-
cal region is described by a 118-dimensional Gabor wavelet texture feature. For efficiency, PCA [20] is applied to reduce the
feature dimensionality from 118 to 40. Consequently, object matching on all images in the set is performed by comparing the
local features for a pair of images and then an undirected weighted region graph is obtained, in which the vertices are
matched regions and the edge weight is quantified by its length. Finally, the hierarchical agglomerative clustering [7] is con-
ducted on the graph to discover regions of the same or similar landmarks and graph matching is carried out by utilizing the
single linkage inter-cluster distance to define the distance between two regions in order to achieve efficiency. In this work,
efficiency is accomplished not only by hierarchical clustering, but also by parallel computing of landmark models on multi-
ple machines and efficient image matching by kd-tree indexing [6] for local features.

Chung et al. [10] utilized sketch-based representations to find major structural components of a building, e.g., windows
and doors, for office-building recognition. The scheme detects multi-scale maximal stable extremal regions (MSERs) [30] and
describes the normalized MSER patches using histogram of oriented gradients [11]. Afterwards, k -means clustering is ap-
plied to group the local patches into different structural components and spectral graph matching is conducted to find cor-
responding clusters between a query image and a reference image in the database. This method was specially designed for
building recognition with large viewpoint changes. However, it only focuses on office-building recognition while its perfor-
mance for other types of buildings has not been demonstrated.

3.2.3. Others
In [2], a rapid window detection and localization method for buildings was introduced for mobile vision systems, where

window detection, integrating line grouping, pattern detection, and gradient setting, is considered as a pattern recognition
task, respectively. It is based on the extraction of multi-scale Harr-like features followed by a learning stage using a classifier
cascade through AdaBoost. The advantage of the proposed method is: instead of detecting every window of a building, only a
Table 2
Recognition rates reported by efficiency approaches on different databases.

Approach Database Performance (%)

Groeneweg et al. [15] ZuBuD 91.0
BPBR [26] SBID 85.3
RFBR [25] SBID 93.0
Perceptual grouping [19] 150 Building images 83.7
Consistent line clusters [28] 977 Color images 94.2
Hierarchical building recognition [57] ZuBuD 95.0
Ranking scheme [34] OBD (5 M) 95.3
Zheng et al. [58] 5312 Landmarks from 1259 cities 80.8
Sketch-based representations [10] ZuBuD 81.0
Semantic indexing [2] ZuBuD 57 ± 19



Fig. 12. Comparison results of HBR, BPBR, and SFBR for each category in the Sheffield Building Image Dataset [26]. This figure is taken from [24].
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fraction of discriminative windows need to be detected, enabling fast indexing of buildings from mobile imagery in the urban
environment.

3.2.4. Summary
The efficiency of building recognition is achieved using either dimensionality reduction or clustering after feature extrac-

tion. Efficiency approaches are relatively fast but sometimes cannot achieve satisfactory accuracy [2]. Individual recognition
rates of various efficiency approaches are provided in Table 2.

4. Comparison results of representative approaches

Although it is difficult to compare all the above-mentioned building recognition systems systematically, we provide the
comparison results of some representative works [24], i.e., hierarchical building recognition (HBR) system [57], biologically-
plausible building recognition scheme [26], and steerable filter-based building recognition (SFBR) model [24]. These tech-
niques were conducted on the Sheffield Building Image Dataset (SBID) [26], which is one of the most popularly used datasets
for building recognition.

The recognition performance of HBR, BPBR, and SFBR for different individual categories is shown in Fig. 12. As we can see,
for most categories in SBID, the performance of the SFBR model is the most stable and better than the others. HBR works well
for Category 8 and Category 9. However, its performance is poor for other categories, e.g., Category 10 and Category 22. This
indicates that the HBR algorithm performs well for buildings with modest challenges, but it cannot deal with large illumi-
nation variations and viewpoint changes. Why does SFBR outperform HBR and BPBR for building recognition? Different fea-
tures contribute to different strengths in mimicking perceptual saliency. For a building recognition task, edge information is
the most important feature in discriminating a building from another since each building contains windows, doors, bricks,
etc. In SFBR, we use second-order steerable filters [13], which are more suitable for extracting edge information and enhanc-
ing images. In addition, steerable filters are orientation-selective, which are able to deal with edges at arbitrary orientations
and so have potential for the task of building recognition. On the other hand, neither HBR nor BPBR includes both charac-
teristics mentioned above. Another reason why SFBR performs better than BPBR is that BPBR simply sums up the activities
of units (i.e., sum pooling), while SFBR adopts max pooling, which implies that the largest receptive filed will always win.

5. Conclusions and directions for future research

Recent advances in computer vision have promoted new and enhanced techniques for building recognition. As we can see
from the selection of work reviewed above, building recognition can be potentially utilized in various computer vision appli-
cations, e.g., automatic target detection in surveillance, real-time robot localization and visual navigation, architectural de-
sign, and 3D city reconstruction. In this survey, we have reviewed the state-of-the-art techniques of building recognition in
urban environments from different aspects: effectiveness and efficiency. Since not all the approaches were tested on the
same building image dataset, it is not possible to summarize which approach performs best only through their recognition
rates. Nevertheless, we can make the following tentative conclusions for building recognition algorithms.

Feature extraction and classifier design are two key issues in the task of building recognition, where both global features
and local features are essential to represent a building since they are two complementary types of features. As a result, most
current building recognition systems adopt both of them. Some techniques aim to achieve effectiveness (high recognition
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accuracy) but they embed complex building recognition processes which require more computational time; on the other
hand, efficiency approaches are relatively fast but sometimes cannot achieve satisfactory accuracy. How can we usefully
integrate these approaches? One straightforward way is to integrate the components (i.e., detectors, descriptors, and classi-
fiers) in various algorithms in a sequential order. However, this is not efficient enough, because different algorithms may
share more or less the same components. If we explore these algorithms separately, certain algorithmic modules may extract
typically redundant information. Therefore, a crude fusion may not improve accuracy but will likely slow down the system.
In order to obtain a more efficient system, the investigation for intelligent information fusion or interactive fusion is highly
desirable and it is necessary to design improved feature representation and classification methods that are multi-functional.

This survey is extensive, but it does not claim to be complete. There are many other aspects that have not been explored
in depth and we list below several promising directions for further research:

(1) A comprehensive benchmark database for performance evaluation needs to be constructed. Although most building
recognition techniques were evaluated on one of the following building image datasets, namely ZuBuD, SBID, and
OBD, each dataset has its own limitations (please refer to Section 2) and thus are not powerful to serve as a benchmark
database for future study. One direction is: except for city building images, other types of data (e.g., live videos, Google
Street View images, and satellite images) can be collected and integrated into the existing building recognition data-
sets. In this way, current datasets can be enlarged and thus become more challenging for real-world applications.

(2) As feature representation can be deemed as one of the most important stages for building recognition, more sophis-
ticated and effective features can be designed to meet the requirement of different applications. Moreover, instead of
using some specific local features (e.g., SIFT [29]) to detect interest points and describe local regions, machine-learned
features, which are more adaptive for this particular task, can be introduced into the building recognition scheme.

(3) The curse of dimensionality is a significant problem in recognition tasks, where subspace learning-based dimension-
ality reduction methods play a dominant role to alleviate the problem. However, rather than using classical linear sub-
space methods, e.g., PCA or LDA, more recent and advanced dimensionality reduction techniques can be adopted
according to the preference to specific applications.

(4) As building recognition is usually regarded as a content-based image retrieval problem, more advanced relevance
feedback techniques can be adopted to bridge the gap between low-level visual features and high-level image con-
cepts through preprocessing on accumulated user log files or statistical analysis of the log files, in order to obtain sig-
nificant results to accelerate the retrieval process as well as improving the retrieval effectiveness.

(5) Nowadays, much attention has been paid to 3D reconstruction. Building recognition schemes can be extended to the
3D modeling in city planning and design for synthesizing scenes in computer games.
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