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In the area of classification, C4.5 is a known algorithm widely used to design decision trees. In this
algorithm, a pruning process is carried out to solve the problem of the over-fitting. A modification of
C4.5, called Credal-C4.5, is presented in this paper. This new procedure uses a mathematical theory based
on imprecise probabilities, and uncertainty measures. In this way, Credal-C4.5 estimates the probabilities
of the features and the class variable by using imprecise probabilities. Besides it uses a new split criterion,
called Imprecise Information Gain Ratio, applying uncertainty measures on convex sets of probability dis-
tributions (credal sets). In this manner, Credal-C4.5 builds trees for solving classification problems
assuming that the training set is not fully reliable. We carried out several experimental studies comparing
this new procedure with other ones and we obtain the following principal conclusion: in domains of class
noise, Credal-C4.5 obtains smaller trees and better performance than classic C4.5.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction and justification

A decision tree (DT) is a very useful tool for classification. Its
structure is simple and easy to interpret. Moreover, to build the
classification model normally requires a short time. When a DT is
used for classification, a key question is the adjustment degree of
the model to the training set. If the algorithm to build a DT em-
ploys a tight stopping criteria, then it tends to create small and
underfitted DTs. On the other hand, if the algorithm uses a loose
stopping criteria, then it tends to generate large DTs that over-fit
the data of the training set. Pruning methods were developed for
solving this dilemma. According to this methodology, a loosely
stopping criterion is used, letting the DT to over-fit the training
set. Then the over-fitted tree is cut back into a smaller tree by
removing subbranches that are not contributing to the generaliza-
tion accuracy (Rokach & Maimon, 2010). It has been shown in var-
ious studies that employing pruning methods can improve the
general performance of a DT, especially in noisy domains.

The ID3 algorithm (Quinlan, 1986) and its extension C4.5
(Quinlan, 1993) are widely used for designing decision trees. C4.5
improves to ID3 algorithm with several characteristics: handling
of continuous attributes, dealing training data with missing
attribute values and a process for pruning a built tree.
There are different post-pruning processes for DTs (see Rokach
& Maimon (2010) for a revision). They are based on estimating the
generalization error and then removing useless sub-branches
according this information. Usually, the basic idea of this estima-
tion is that the ratio of error, calculated by using the training set,
is not quite reliable. The training error is corrected in order to ob-
tain a more realistic measure.

On the other hand, C4.5 algorithm uses a measure of informa-
tion gain ratio for selecting an input variable in each node (split cri-
terion). This variable selection process is based on the precise
probabilities calculated from the training set. Therefore, C4.5 con-
siders that the training set is reliable when the variable selection
process is carried out, and it considers that the training set is not
reliable when the pruning process is made. This situation can be
unsuitable, specially when noisy data are classified. Let us see an
example of this situation.

Example 1. Let us suppose a noisy data set composed by 15
instances, 9 instances of class A and 6 instances of class B. We
consider that there are two binary feature variables X1 and X2.
According with the values of these variables, the instances are
organized in the following way:

X1 ¼ 0! ð3 of class A;6 of class BÞ
X1 ¼ 1! ð6 of class A;0 of class BÞ
X2 ¼ 0! ð1 of class A;5 of class BÞ
X2 ¼ 1! ð8 of class A;1 of class BÞ
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Fig. 2. Branching of a node with clean data produced by C4.5 algorithm.
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If this data set appears in the node of a tree, then the C4.5 algorithm
chooses the variable X1 for splitting the node (see Fig. 1).

We can suppose that the data set is noisy because it has an
outlier point when X2 ¼ 1 and class is B. In this way, the clean
distribution is composed by 10 instances of class A and 5 instances
of class B, that are organized as follows:

X1 ¼ 0! ð4 of class A;5 of class BÞ
X1 ¼ 1! ð6 of class A;0 of class BÞ
X2 ¼ 0! ð1 of class A;5 of class BÞ
X2 ¼ 1! ð9 of class A;0 of class BÞ

If this data set is found in the node of a tree, then the C4.5 algorithm
chooses the variable X2 for splitting the node (see Fig. 2).

We can observe that C4.5 algorithm generates an incorrect
subtree when noisy data are processed, because it considers that
the data set is reliable. Later, the pruning process considers that the
data set is not reliable in order to solve this problem. However, the
pruning process can only delete the generated incorrect subtree. It
can not make a detailed adjustment of the correct subtree
illustrated in Fig. 2. The ideal situation is to carry out the branching
shown in Fig. 2 and then to make the pruning process. This
situation is achieved by using decision trees based on imprecise
probabilities as it will be shown later.

In the last years, several formal theories for manipulation of
imprecise probabilities have been developed (Walley, 1996; Wang,
2010; Weichselberger, 2000). By using the theory of imprecise
probabilities presented in Walley (1996), known as the Imprecise
Dirichlet Model (IDM), Abellán and Moral (2003) have developed
an algorithm for designing decision trees, called credal decision
trees (CDTs). The variable selection process for this algorithm (split
criterion) is based on imprecise probabilities and uncertainty mea-
sures on credal sets, i.e. closed and convex sets of probability dis-
tributions. In particular, the CDT algorithm extends the measure
of information gain used by ID3. The split criterion is called the
Imprecise Info-Gain (IIG).

Recently, in Mantas and Abellán (2014), credal decision trees
are built by using an extension of the IIG criterion. In this work,
the probability values of the class variable and features are esti-
mated via imprecise probabilities. The CDT algorithm obtains good
experimental results (Abellán & Moral, 2005; Abellán & Masegosa,
2009). Besides, its use with bagging ensemble (Abellán & Maseg-
osa, 2009, 2012; Abellán & Mantas, 2014) and its above mentioned
extension (Mantas & Abellán, 2014) are especially suitable when
noisy data are classified. A complete and recent revision of ma-
chine learning methods to manipulate label noise can be found
in Frenay and Verleysen (in press). Here, the credal decision tree
procedure is included as a label noise-robust method.
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Fig. 1. Branching of a node with noisy data produced by C4.5 algorithm.
According to the previous paragraphs, the CDT algorithm and its
extensions consider that the training set is not reliable when the
variable selection process is carried out. Hence, the problem shown
in Example 1 is solved. If the noisy data set appears in the node of a
credal tree, then the variable X2 is chosen for splitting it (see Fig. 3).

Therefore, if we design a new credal tree algorithm inspired on
C4.5 (with its improvements and advantages), then we can obtain
an algorithm that considers the training set as unreliable when the
processes of pruning and variable selection are made. This algo-
rithm will be especially suitable for designing DTs in noisy
domains.

Hence, C4.5 algorithm is redefined in this paper by using impre-
cise probabilities (Credal-C4.5). A new measure called Imprecise
Information Gain Ratio (IIGR) is presented as split criterion. IIGR
estimates the probability values of the class variable and features
with imprecise probabilities as it is presented in Mantas and Abel-
lán (2014). Besides, all the improvements of C4.5 are available:
handling of continuous attributes, dealing of missing values,
post-pruning process and so on. Credal-C4.5 and classic C4.5 are
compared when they classify noisy data. It will be shown that Cre-
dal-C4.5 obtains smaller trees and better accuracy results than
classic C4.5 with significant statistical difference.

Section 2 briefly describes the necessary previous knowledge
about decision trees, C4.5 and credal decision trees. Section 3 pre-
sents Credal-C4.5 algorithm. Section 4 analyzes the differences be-
tween Credal-C4.5 and classic C4.5. Section 5 compares the action
of Credal-C4.5 with the one performed by pessimistic pruning. In
Section 6, we describe the experimentation carried out on a wide
range of data sets and comments on the results. Finally, Section 7
is devoted to the conclusions and future works.
X2
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Fig. 3. Branching of a node with noisy data by a credal tree.
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2. Previous knowledge

2.1. Decision trees

Decision trees (DTs), also known as Classification Trees or hier-
archical classifiers, started to play an important role in machine
learning with the publication of Quinlan’s ID3 (Iterative Dichoto-
miser 3) (Quinlan, 1986). Subsequently, Quinlan also presented
the C4.5 algorithm (Classifier 4.5) (Quinlan, 1993), which is an ad-
vanced version of ID3. Since then, C4.5 has been considered a stan-
dard model in supervised classification. It has also been widely
applied as a data analysis tool to very different fields, such as
astronomy, biology, medicine, etc.

Decision trees are models based on a recursive partition meth-
od, the aim of which is to divide the data set using a single variable
at each level. This variable is selected with a given criterion. Ide-
ally, they define a set of cases in which all the cases belong to
the same class.

Their knowledge representation has a simple tree structure. It
can be interpreted as a compact set of rules in which each tree
node is labeled with an attribute variable that produces branches
for each value. The leaf nodes are labeled with a class label.

The process for inferring a decision tree is mainly determined
by the followings aspects:

(i) The criteria used to select the attribute to insert in a node
and branching (split criteria).

(ii) The criteria to stop the tree from branching.
(iii) The method for assigning a class label or a probability distri-

bution at the leaf nodes.
(iv) The post-pruning process used to simplify the tree structure.

Many different approaches for inferring decision trees, which
depend upon the aforementioned factors, have been published.
Quinlan’s ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) stand out
among all of these.

Decision trees are built using a set of data referred to as the
training data set. A different set, called the test data set, is used
to check the model. When we obtain a new sample or instance
of the test data set, we can make a decision or prediction on the
state of the class variable by following the path in the tree from
the root to a leaf node, using the sample values and tree structure.

2.1.1. Split criteria
Let us suppose a classification problem. Let C be the class vari-

able, fX1; . . . ;Xng the set of features, and X a general feature. We
can find the following split criteria to build a DT.

Info-Gain. This metric was introduced by Quinlan as the basis for
his ID3 model (Quinlan, 1986). The model has the following main
features: it was defined to obtain decision trees with discrete vari-
ables, it does not work with missing values, a pruning process is
not carried out and it is based on Shannon‘s entropy H.

The split criterion of this model is Info-Gain (IG) which is de-
fined as:

IGðC;XÞ ¼ HðCÞ �
X

i

PðX ¼ xiÞHðCjX ¼ xiÞ; ð1Þ

where

HðCÞ ¼
X

j

PðC ¼ cjÞ log PðC ¼ cjÞ:

In a similar way is expressed HðCjX ¼ xiÞ.

Info-Gain ratio. In order to improve the ID3 model, Quinlan intro-
duces the C4.5 model (Quinlan, 1993), where the Info-Gain split
criterion (the split criterion of ID3) is replaced by an Info-Gain ratio
criterion that penalizes variables with many states. The C4.5 model
involves a more complete procedure defined to work with contin-
uous variables and missing data. It has a complex subsequent
pruning that is introduced to improve the results and obtain less
complex structures.

The split criterion for this model is called Info-Gain Ratio (IGR)
and it is defined as

IGRðC;XÞ ¼ IGðC;XÞ
HðXÞ : ð2Þ
2.2. C4.5 Tree inducer

In this subsection we will give a brief explanation of the most
important aspects of this well known tree inducer. We highlight
the main ideas that were introduced in Quinlan (1993):

Split criteria: Information Gain (Quinlan, 1986) (see Eq. (1))
was firstly employed to select the split attribute at each branch-
ing node. But this measure is strongly affected by the number of
states of the split attribute: attributes with a higher number of
states were usually preferred. Quinlan introduced the Informa-
tion Gain Ratio (IGR) criterion (see Eq. (2)) for this new tree
inducer, which penalizes variables with many states. This score
normalizes the information gain of an attribute X by its own
entropy. It is selected the attribute with the highest Info-Gain
Ratio score and whose Info-Gain score is higher than the aver-
age Info-Gain scores of the valid split attributes. These valid
split attributes are those which are numeric or whose number
of values is smaller than the thirty percent of the number of
instances that are in this branch.
Stopping criteria: The branching of the decision tree is stopped
when there is not attribute with a positive Info-Gain Ratio score
or there are a minimum number of instances per leaf which is
usually set to 2. But in addition to this, using the aforemen-
tioned condition in ‘‘Split Criteria’’ of valid split attributes, the
branching of a decision tree is also stopped when there is not
any valid split attribute.
Handling numeric attributes: This tree inducer manipulates
numeric attributes with a very simple approach. Within this
method, only binary split attributes are considered and each
possible split point is evaluated. Finally, it is selected the point
that induces a partition of the samples with the highest Infor-
mation Gain based split score.
Dealing with missing values: It is assumed that missing val-
ues are randomly distributed (Missing at Random Hypothesis).
In order to compute the scores, the instances are split into
pieces. The initial weight of an instance is equal to the unit,
but when it goes down a branch receives a weight equal to
the proportion of instances that belongs to this branch
(weights sum to 1). Information Gain based scores can work
with this fractional instances using sum of weights instead
of sum of counts.
When making predictions, C4.5 marginalize the missing vari-
able by merging the predictions of all the possible branches that
are consistent with the instance (there are several branches
because it has a missing value) using their previously computed
weights.
Post-pruning process: Although there are many different pro-
posals to carry out a post-pruning process of a decision tree (see
Rokach & Maimon (2010)), the technique employed by C4.5 is
called Pessimistic Error Pruning. This method computes an upper
bound of the estimated error rate of a given subtree employing
a continuity correction of the Binomial distribution. When the
upper bound of a subtree hanging from a given node is greater
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than the upper bound of the errors produced by the estimations
of this node supposing it acts as a leaf, then this subtree is
pruned.

2.3. Credal decision trees

The original split criterion employed to build credal decision
trees (CDTs) (Abellán & Moral, 2003) is based on imprecise proba-
bilities and the application of uncertainty measures on credal sets.
The mathematical basis of this theory is described below.

Let there be a variable Z whose values belong to fz1; . . . ; zkg. Let
us suppose a probability distribution pðzjÞ; j ¼ 1; . . . ; k defined for
each value zj from a data set.

A formal theory of imprecise probability called Walley’s Impre-
cise Dirichlet Model (IDM) (Walley, 1996) is used to estimate prob-
ability intervals from the data set for each value of the variable Z.
IDM estimates that the probabilities for each value zj are within
the interval:

pðzjÞ 2
nzj

N þ s
;
nzj
þ s

N þ s

� �
; j ¼ 1; . . . ; k;

with nzj
as the frequency of the set of values ðZ ¼ zjÞ in the data set,

N the sample size and s a given hyperparameter that does not de-
pend on the sample space (Representation Invariance Principle, Wal-
ley (1996)). The value of parameter s determines the speed at which
the values of probability upper and lower converge when sample
size increases. Higher values of s give a more cautious inference.
Walley (1996) does not give a definitive recommendation for the
value of this parameter but he suggests two candidates: s ¼ 1 or
s ¼ 2.

One important characteristic of this model is that intervals are
wider if the sample size is smaller. Therefore, this method pro-
duces more precise intervals at the same time as N increases.

This representation gives rise to a specific kind of convex set of
probability distributions on the variable Z;KðZÞ (Abellán, 2006).
The set is defined as

KðZÞ ¼ p jpðzjÞ 2
nzj

N þ s
;
nzj
þ s

N þ s

� �
; j ¼ 1; . . . ; k

� �
: ð3Þ

On this type of sets (really credal sets, Abellán (2006)), uncer-
tainty measures can be applied. The procedure to build CDTs uses
the maximum of entropy function on the above defined credal set,
a well established total uncertainty measure on credal sets (see Klir
(2006)). This function, denoted as H�, is defined as:

H�ðKðZÞÞ ¼ max HðpÞ jp 2 KðZÞf g ð4Þ

where the function H is the Shannon’s entropy function.
H� is a total uncertainty measure which is well known for this

type of set (see Abellán & Masegosa (2008)). H� separates conflict
and non-specificity (Abellán, Klir, & Moral, 2006), that is, H� is a
disaggregated measure of information that combines two
elements:

(a) A conflict or randomness measure that indicates the
arrangement of the samples of each class in the training
set. This measure is related to the entropy of the probabili-
ties in the convex set.

(b) A non-specificity measure that shows the uncertainty
derived from the training set size. This measure is related
to the size of the convex set.

The procedure for calculating H� has a low computational cost
for values s 2 ð0;2� (see Abellán & Moral (2006)). The procedure
for the IDM reaches the lowest cost with s ¼ 1 and it is simple
(see Abellán (2006)). For this reason, we will use a value s ¼ 1 in
the experimentation section. Firstly, this procedure consists in
determining the set

A ¼ fzjjnzj
¼minifnzi

gg ð5Þ

then the distribution with maximum entropy is

p�ðziÞ ¼
nzi

Nþs if zi R A
nzi
þs=l

Nþs if zi 2 A

8<
: ; i ¼ 1; . . . ; k; ð6Þ

where l is the number of elements of A.
As the imprecise intervals are wider with smaller sample sizes,

there is a tendency to obtain larger values for H� with small sample
sizes. This is due to that the non-specificity component of H� will
be higher in this case. This property will be important for distin-
guishing the action of Credal-C4.5 as opposed to the behavior of
other classic algorithms.

3. Credal-C4.5

The method for building Credal-C4.5 trees is similar to the
Quinlan‘s C4.5 algorithm (Quinlan, 1993). The main difference is
that Credal-C4.5 estimates the probability values of the features
and the class variable by using imprecise probabilities. As in the
CDT procedure, an uncertainty measure on credal sets is used to
define a new split criterion. In this way, Credal-C4.5 considers that
the training set is not very reliable because it can be affected by
class or attribute noise (see Mantas & Abellán (2014)). So, Credal-
C4.5 can be considered as a proper method for noisy domains.

Credal-C4.5 is created by replacing the Info-Gain Ratio split cri-
terion from C4.5 with the Imprecise Info-Gain Ratio (IIGR) split cri-
terion. This criterion can be defined as follows: in a classification
problem, let C be the class variable, fX1; . . . ;Xmg the set of features,
and X a feature; then

IIGRDðC;XÞ ¼ IIGDðC;XÞ
HðXÞ ; ð7Þ

where Imprecise Info-Gain (IIG) is equal to:

IIGDðC;XÞ ¼ H�ðKDðCÞÞ �
X

i

PDðX ¼ xiÞH�ðKDðCjX ¼ xiÞÞ; ð8Þ

with KDðCÞ and KDðCjX ¼ xiÞ are the credal sets obtained via the IDM
for the C and ðCjX ¼ xiÞ variables respectively, for a partition D of
the data set (see Abellán & Moral (2003)); PDðX ¼ xiÞði ¼ 1; . . . ; nÞ
is a probability distribution that belongs to the credal set KDðXÞ.

We choose the probability distribution PD from KDðXÞ that max-
imizes the following expression:X

i

PðX ¼ xiÞHðCjX ¼ xiÞÞ:

It is simple to calculate this probability distribution. Let xj0 be a
value for X such that HðCjX ¼ xiÞ is the maximum. Then the prob-
ability distribution PD will be

PDðxiÞ ¼
nxi

Nþs if i – j0
nxi
þs

Nþs if i ¼ j0

(
: ð9Þ

The IIGR criterion is different from the classical criteria. It is
based on the principle of maximum uncertainty (see Klir (2006)),
widely used in classic information theory, where it is known as
maximum entropy principle. This principle indicates that the prob-
ability distribution with the maximum entropy, compatible with
available restrictions, must be chosen. Hence, the use of the max-
imum entropy function in the decision tree building procedure
(see Abellán & Moral (2005)) and the definition of probability dis-
tribution PD are justified.
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Each node No in a decision tree causes a partition of the data set
(for the root node, D is considered to be the entire data set). Fur-
thermore, each No node has an associated list L of feature labels
(that are not in the path from the root node to No). The procedure
for building Credal-C4.5 trees is explained in the algorithm in
Fig. 4.

We can summarize the main ideas of this procedure:

Split criteria: Imprecise Info-Gain Ratio (IIGR) is employed to
select the split attribute at each branching node. In a similar
way to the classic C4.5 algorithm, it is selected the attribute
with the highest Imprecise Info-Gain Ratio score and whose
Imprecise Info-Gain score is higher than the average Imprecise
Info-Gain scores of the valid split attributes. These valid split
attributes are those which are numeric or whose number of val-
ues is smaller than the thirty percent of the number of instances
which are in this branch.
Labeling leaf node: The most probable value of the class vari-
able in the partition associated with a leaf node is inserted as
label, that is, the class label for the leaf node No associated with
the partition D is:
ClassðNo;DÞ ¼max
ci2C
j Ij 2 D=classðIjÞ ¼ ci; j ¼ 1; . . . ; jDj
� �

j

where classðIjÞ is the class of the instance Ij 2 D and jDj is the num-
ber of instances in D.

Stopping criteria: The branching of the decision tree is stopped
when the uncertainty measure is not reduced (a 6 0, step 6) or
when there are no more features to insert in a node (L ¼ ;, step
1) or when there are not a minimum number of instances per
leaf (step 3). The branching of a decision tree is also stopped
when there is not any valid split attribute using the aforemen-
tioned condition in ‘‘Split Criteria’’, like classic C4.5.
Handling numeric attributes: The numeric attributes are han-
dled in the same way that C4.5, presented in Section 2.2. The
only difference is the use of IIG instead of the IG measure.
Dealing with missing values: The missing values are manipu-
lated in a similar way to C4.5, presented in Section 2.2. Again,
the only difference is to use IIG instead of IG.
Post-pruning process: Like C4.5, Pessimistic Error Pruning is
employed in order to prune a Credal-C4.5.

4. Credal-C4.5 versus classic C4.5

Next, it is commented the situations where Credal-C4.5 and
classic C4.5 are different.
Fig. 4. Procedure to build a Credal-C4.5 decision tree.
(a) Small data sets. According Eq. (3), when imprecise probabil-
ities are used to estimate values of a variable, the size of the ob-
tained credal set is proportional to the parameter s. Hence, if
s ¼ 0 the credal set contains only one probability distribution
and, in this case, IIGR measure is equal to IGR.1 If s > 0 the size of
the credal set is inversely proportional to the data set size N. If N
is very high then the effect of the parameter s can be ignored and
so the measures IIGR and IGR can be considered equivalent. That
is, Credal-C4.5 and classic C4.5 have a similar behavior in the nodes
with high associated data set, usually in the upper levels of the tree.

On the other hand, if N is small, then the parameter s produces
credal sets with many probability distributions (big size of the con-
vex set). Hence, the measures IIGR and IGR can be different (max-
imum entropy of a set H� can be distinct from classic entropy H).
That is, Credal-C4.5 and C4.5 have a different behavior in the nodes
with small data set, usually in the lower levels of the tree.

(b) Features with many states. The IG measure used by ID3 is
biased in favor of feature variables with a large number of values.
The IGR measure used by C4.5 was created to compensate for this
bias. As the IIG measure (Eq. (8)) also penalizes feature variables
with many states (see Mantas & Abellán (2014)) and the difference
between IGR (Eq. (2)) and IIGR (Eq. (7)) is the use of IIG measure
instead of IG, we can conclude that Credal-C4.5 penalizes the fea-
tures with many values in a higher degree than classic C4.5. As
we have said in the previous paragraph, this fact happens in the
nodes with a associated small data set.

(c) Negative split criterion values. It is important to note that
for a feature X and a partition D, IIGRDðC;XÞ can be negative. This
situation does not appear with classical split criteria, such as the
IGR criterion used in C4.5. This characteristic enables the IIGR cri-
terion to reveal features that worsen the information on the class
variable. Hence, a new stopping criterion is defined for Credal-
C4.5 (Step 6 in Fig. 4) that is not available for classic C4.5. In this
way, IIGR provides a trade-off between stopping criteria tight
and loose, that is, it offers a trade-off between trees small underfit-
ted and large over-fitted. Hence, we can hope that Credal-C4.5 pro-
cedure produces smaller trees than the classic C4.5 procedure. In
the experimental section we will show that it is so, and also that
the accuracy results of the new method are similar or better than
the ones of the classic C4.5 procedure before and after pruning.

5. Credal-C4.5 versus pessimistic pruning

Pessimistic pruning is based on estimating the generalization
error of a data set. This estimation consists on increasing the train-
ing error, that is,

egenðNÞ ¼ etrðNÞ þ eincðNÞ; ð10Þ

where egenðNÞ is the generalization error of the node N; etr is the
training error and einc is the increment of the training error.

Next, if the generalization error of the descendant nodes is
greater than the one of the parent node, this node is pruned. For
example, let us suppose a node N0 with two descendant nodes
N1 and N2, then the node N0 is pruned if the following condition
is fulfilled:

egenðN0Þ 6 egenðN1Þ þ egenðN2Þ:

On the other hand, when we are using the Credal-C4.5 algo-
rithm, a node N0 is not expanded into the descendant nodes N1

and N2 if the following condition is fulfilled for all the available
variables Xj and the class variable C:

IIGRD0 ðC;XjÞ 6 0:
1 The Info-Gain ratio criterion is actually a specific case of the IIGR criterion using
the parameter s ¼ 0.
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This condition means that the features worsen the information
on the class variable, that is, the maximum of entropy H� on the
partition D0 is less or equal than the proportional aggregation of
H� on the partitions D1 and D2 associated with the descendant
nodes, noting as Di to the partition associated with the node Ni.

According to Eqs. (4) and (6), the use of H� is equivalent to work
with the classic entropy function H and a probability distribution
p�. This distribution p� assumes that the information about a data
set is imprecise, there is a number s of instances that are unknown.
According Eqs. (5) and (6), these unknown instances are assigned
to less frequent class for obtaining the maximum of entropy of a
credal set. Hence, as the label of a node is equal to the more fre-
quent class, the unknown instances are added into the error of
the node, that is, we have the following estimated error for a node
N when imprecise probabilities are used:

eestðNÞ ¼ etrðNÞ þ s: ð11Þ

If we compare the generalization error of the pessimistic prun-
ing (Eq. (10)) and the assumed error with the use of imprecise
probabilities (Eq. (11)), we can observe that they estimate the real
error of a data set by increasing the training error.

The difference is that pessimistic pruning labels a node as leaf if
the sum of the estimated error for the descendant nodes is greater
than for parent node, whereas Credal-C4.5 labels a node as leaf if
the obtained data sets with the error estimation do not provide
information gain when the node is split. Let us see an example of
this difference.

Example 2. Let us suppose the subtree illustrated in Fig. 5 where a
parent node is split in terms of the values of the variable X, the
increment of error with the pessimistic pruning is equal to 0.5 and
the value of the parameter s is also 0.5. With these conditions, if
classic C4.5 is used, this subtree is initially created when there is
information gain, that is,

IGRðClass;XÞ ¼ IGðClass;XÞ
HðXÞ > 0:

This condition is fulfilled for this example because HðXÞ ¼ 1:915
and

IGðClass;XÞ ¼ HðClassÞ �
X4

i¼1

PðX ¼ xiÞHðClassjX ¼ xiÞ

¼ 0:918

� 12
30

0:918þ 7
30

0:985þ 3
30

0:918þ 8
30

0:811
� 	

¼ 0:918� 0:9051 > 0:

After the creation of this subtree, the parent node is pruned by
the pessimistic pruning because
X?

x1 x2 x3 x4

Fig. 5. Branching of a node in a decision tree.
egenðparent nodeÞ 6
X4

i¼1

egenðdescendanti nodeÞ;

that is,

ð10þ 0:5Þ 6 ð4þ 0:5Þ þ ð3þ 0:5Þ þ ð1þ 0:5Þ þ ð2þ 0:5Þ:

On the other hand, this parent node is not expanded by using
Credal-C4.5 when

IIGRDðClass;XÞ ¼ IIGDðClass;XÞ
HðXÞ < 0:

This condition is fulfilled for this example because HðXÞ ¼ 1:915
and

IIGDðClass;XÞ ¼ H�ðKDðClassÞÞ �
X4

i¼1

PDðX ¼ xiÞH�ðKDðClassjX ¼ xiÞÞ

¼ 0:928

� 12
30:5

0:942þ 7:5
30:5

0:996þ 3
30:5

0:985þ 8
30:5

0:873
� 	

¼ 0:928� 0:941 < 0;

where D is the data set composed by the 30 examples of Fig. 5 and
PD is the probability distribution chosen from Eq. (9), that is,

PD ¼ 12
30:5

;
7:5

30:5
;

3
30:5

;
8

30:5

� 	
:

We can observe with the above example that the processes of
branching and pruning of a tree can be reduced by using the IIGR
split criterion. We can also see that pessimistic pruning and Cre-
dal-C4.5 work with the data sets obtained after estimating the gen-
eralization error. Pessimistic pruning considers the sum of errors in
order to prune a node, whereas Credal-C4.5 takes into account the
information gain to label a node as leaf and to avoid one possible
step of branching and pruning. Besides, this stopping criterion is
not tight because Credal-C4.5 achieves good accuracy results. This
fact will be shown in experimental section.
6. Experimental analysis

We present two experiments in this section.

(1) The aim of the first experiment is show that Credal-C4.5
improves to the best previously published credal decision
tree, Complete Credal Decision Tree (CCDT) (Mantas & Abel-
lán, 2014). CCDT is different to Credal-C4.5 because it uses
the IIG measure for the split criterion instead of IIGR mea-
sure, it has not pruning process and the data sets are prepro-
cessed before using CCDT (the missing values are replaced
and the continuous variables are discretized).

(2) The second experiment studies the performance of Credal-
C4.5 as opposed to classic C4.5. An algorithm similar to
ID3, that we have called as MID3, is also implemented in
order to carry out a more complete comparison. This MID3
algorithm is equal to classic C4.5 by replacing IGR measure
by IG. Besides, all the variables available in a node are used
for the split criterion.

CCDT was defined as algorithm without pruning in Mantas and
Abellán (2014). For this reason, the results provided by C4.5, Cre-
dal-C4.5 and MID3 without pruning are used in the first experi-
ment. In this way, all the algorithms are compared with the
same experimental conditions. The second experiment is only fo-
cused on the methods with a pruning process. The trees built with
the above mentioned algorithms will be referenced as C4.5, Credal-
C4.5, MID3 and CCDT in this section.



Table 1
data set description. Column ‘‘N’’ is the number of instances in the data sets, column ‘‘Feat’’ is the number of features or attribute variables, column ‘‘Num’’ is the number of
numerical variables, column ‘‘Nom’’ is the number of nominal variables, column ‘‘k’’ is the number of cases or states of the class variable (always a nominal variable) and column
‘‘Range’’ is the range of states of the nominal variables of each data set.

Data set N Feat Num Nom k Range

Anneal 898 38 6 32 6 2–10
Arrhythmia 452 279 206 73 16 2
Audiology 226 69 0 69 24 2–6
Autos 205 25 15 10 7 2–22
Balance-scale 625 4 4 0 3 –
Breast-cancer 286 9 0 9 2 2–13
Wisconsin-breast-cancer 699 9 9 0 2 –
Car 1728 6 0 6 4 3–4
CMC 1473 9 2 7 3 2–4
Horse-colic 368 22 7 15 2 2–6
Credit-rating 690 15 6 9 2 2–14
German-credit 1000 20 7 13 2 2–11
Dermatology 366 34 1 33 6 2–4
Pima-diabetes 768 8 8 0 2 –
Ecoli 366 7 7 0 7 –
Glass 214 9 9 0 7 –
Haberman 306 3 2 1 2 12
Cleveland-14-heart-disease 303 13 6 7 5 2–14
Hungarian-14-heart-disease 294 13 6 7 5 2–14
Heart-statlog 270 13 13 0 2 –
Hepatitis 155 19 4 15 2 2
Hypothyroid 3772 30 7 23 4 2–4
Ionosphere 351 35 35 0 2 –
Iris 150 4 4 0 3 –
kr-vs-kp 3196 36 0 36 2 2–3
Letter 20000 16 16 0 26 –
Liver-disorders 345 6 6 0 2 –
Lymphography 146 18 3 15 4 2–8
mfeat-pixel 2000 240 0 240 10 4–6
Nursery 12960 8 0 8 4 2–4
Optdigits 5620 64 64 0 10 –
Page-blocks 5473 10 10 0 5 –
Pendigits 10992 16 16 0 10 –
Primary-tumor 339 17 0 17 21 2–3
Segment 2310 19 16 0 7 –
Sick 3772 29 7 22 2 2
Solar-flare2 1066 12 0 6 3 2–8
Sonar 208 60 60 0 2 –
Soybean 683 35 0 35 19 2–7
Spambase 4601 57 57 0 2 –
Spectrometer 531 101 100 1 48 4
Splice 3190 60 0 60 3 4–6
Sponge 76 44 0 44 3 2–9
Tae 151 5 3 2 3 2
Vehicle 946 18 18 0 4 –
Vote 435 16 0 16 2 2
Vowel 990 11 10 1 11 2
Waveform 5000 40 40 0 3 –
Wine 178 13 13 0 3 –
Zoo 101 16 1 16 7 2

2 The data set is separated in 10 subsets. Each one is used as a test set and the set
obtained by joining the other 9 subsets is used as training set. So, we have 10 training
sets and 10 test sets. This procedure is repeated 10 times with a previous random
reordering. Finally, it produces 100 training sets and 100 test sets. The percentage of
correct classifications for each data set, presented in tables, is the average of these 100
trials.
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In order to check the above procedures, we used a broad and di-
verse set of 50 known data sets, obtained from the UCI repository of
machine learning data sets which can be directly downloaded from
http://archive.ics.uci.edu/ml. We took data sets that are different
with respect to the number of cases of the variable to be classified,
data set size, feature types (discrete or continuous) and number of
cases of the features. A brief description of these can be found in
Table 1.

We used Weka software (Witten & Frank, 2005) on Java 1.5 for
our experimentation. The implementation of C4.5 algorithm pro-
vided by Weka software, called J48, was employed with its default
configuration. We added the necessary methods to build Credal-
C4.5 and MID3 trees with the same experimental conditions. The
parameter of the IDM for the Credal-C4.5 algorithm was set to
s ¼ 1:0 (see Section 2.3). The minimum number of instances per
leaf for branching was fixed to 2 for C4.5 and Credal-C4–5, as it
is appears in the configuration by default for C4.5 (J48 in Weka).
Data sets with missing values or continuous variables were
processed according the procedures described in Section 2.2. We
use the procedure for pruning that appears by default for C4.5 in
Weka: the pessimistic pruning procedure.

On the other hand, by using Weka’s filters, we added the follow-
ing percentages of random noise to the class variable: 0%;10% and
30%, only in the training data set. The procedure to introduce noise
was the following for a variable: a given percentage of instances of
the training data set was randomly selected, and then their current
variable values were randomly changed to other possible values.
The instances belonging to the test data set were left unmodified.

We repeated 10 times a 10-fold cross validation procedure for
each data set.2

http://archive.ics.uci.edu/ml


Table 2
Accuracy results of C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when are
applied on data sets with percentage of random noise equal to 0%.

Dataset C4.5 Credal-C4.5 MID3 CCDT

Anneal 98.57 98.19 98.99 99.34
Arrhythmia 64.05 67.55 64.89 67.08
Audiology 76.48 78.58 76.02 80.94
Autos 82.40 74.52 77.46 78.27
Balance-scale 79.44 78.00 79.45 69.59
Breast-cancer 68.15 71.44 68.34 72.03
Wisconsin-breast-cancer 94.37 95.08 94.56 94.74
Car 93.74 91.42 93.98 90.28
CMC 49.19 52.01 49.58 48.70
Horse-colic 82.09 84.64 82.91 83.17
Credit-rating 82.17 85.46 81.26 84.06
German-credit 68.11 70.17 69.68 69.53
Dermatology 94.04 93.82 92.20 94.58
Pima-diabetes 73.87 73.19 73.79 74.22
Ecoli 82.53 81.90 83.07 80.03
Glass 67.76 63.66 67.90 68.83
Haberman 70.52 73.89 70.62 73.59
Cleveland-14-heart-disease 76.44 76.60 78.62 76.23
Hungarian-14-heart-disease 78.55 82.54 76.12 78.62
Heart-statlog 76.78 80.04 77.93 82.11
Hepatitis 78.59 79.84 78.82 80.32
Hypothyroid 99.51 99.53 99.56 99.37
Ionosphere 89.83 88.35 88.15 89.75
Iris 94.80 94.73 94.80 93.73
kr-vs-kp 99.44 99.40 99.42 99.49
Letter 88.02 87.57 88.00 77.55
Liver-disorders 65.37 64.18 65.75 56.85
Lymphography 75.42 78.51 73.42 74.50
mfeat-pixel 78.42 79.58 75.66 80.31
Nursery 98.69 96.30 98.64 96.31
Optdigits 90.48 90.77 91.10 79.33
Page-blocks 96.78 96.72 96.92 96.26
Pendigits 96.54 96.39 96.39 88.87
Primary-tumor 42.60 42.19 38.59 38.73
Segment 96.80 96.04 96.77 94.18
Sick 98.77 98.77 98.82 97.80
Solar-flare2 99.49 99.53 99.38 99.46
Sonar 73.42 71.47 73.53 73.92
Soybean 90.69 92.50 86.76 92.21
Spambase 92.42 92.61 92.83 91.85
Spectrometer 47.31 45.52 43.49 45.22
Splice 92.16 93.81 91.37 93.17
Sponge 91.68 94.11 92.70 94.63
Tae 58.60 53.20 58.21 46.78
Vehicle 72.18 72.84 72.67 69.53
Vote 95.76 96.04 95.56 96.18
Vowel 81.63 77.87 84.09 75.60
Waveform 75.12 76.05 75.70 74.44
Wine 93.20 92.13 93.83 92.08
Zoo 93.41 92.42 92.01 95.83

Average 82.13 82.23 81.81 81.00

Table 3
Accuracy results of C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when are
applied on data sets with percentage of random noise equal to 10%.

Dataset C4.5 Credal-C4.5 MID3 CCDT

Anneal 96.05 97.84 96.31 97.87
Arrhythmia 59.81 64.77 57.65 63.90
Audiology 75.06 76.98 71.43 76.40
Autos 74.73 71.57 68.88 74.50
Balance-scale 76.56 78.46 76.35 71.90
Breast-cancer 66.31 68.68 64.85 68.98
Wisconsin-breast-cancer 92.00 94.29 92.20 92.93
Car 88.80 90.90 88.47 90.41
CMC 47.25 50.07 47.30 47.66
Horse-colic 79.74 83.52 78.93 79.24
Credit-rating 76.80 85.04 75.80 82.87
German-credit 65.23 69.01 65.94 68.69
Dermatology 88.00 92.66 85.73 92.10
Pima-diabetes 72.04 73.58 72.20 73.35
Ecoli 77.77 81.52 77.89 79.67
Glass 64.07 65.29 63.40 67.43
Haberman 68.86 73.40 69.02 72.74
Cleveland-14-heart-disease 72.93 76.31 73.83 75.87
Hungarian-14-heart-disease 75.73 80.73 73.73 77.70
Heart-statlog 72.33 77.67 72.48 79.70
Hepatitis 73.84 78.17 75.27 77.37
Hypothyroid 95.55 99.38 95.74 99.05
Ionosphere 86.30 87.30 85.31 85.95
Iris 89.73 93.60 89.20 93.67
kr-vs-kp 93.51 98.04 93.05 97.39
Letter 85.01 86.27 84.45 76.45
Liver-disorders 62.15 61.11 62.27 56.85
Lymphography 71.31 74.10 69.59 73.57
mfeat-pixel 71.79 76.88 67.51 76.43
Nursery 91.59 96.23 91.39 96.13
Optdigits 82.49 87.49 83.01 75.14
Page-blocks 93.95 96.67 94.06 96.18
Pendigits 89.66 95.19 89.62 87.80
Primary-tumor 38.70 39.53 37.85 36.99
Segment 90.09 95.02 90.31 93.58
Sick 95.68 98.07 95.53 97.49
Solar-flare2 98.22 99.50 98.32 99.44
Sonar 67.56 70.53 69.34 71.51
Soybean 86.85 91.70 79.55 90.04
Spambase 89.87 91.56 89.38 88.20
Spectrometer 42.63 43.01 38.78 42.43
Splice 81.23 90.87 80.30 90.18
Sponge 83.00 89.07 84.80 90.73
Tae 52.23 49.01 52.55 45.13
Vehicle 66.17 69.63 65.72 67.77
Vote 92.20 94.39 92.52 94.57
Vowel 78.19 75.15 78.42 74.12
Waveform 69.10 74.96 69.07 70.81
Wine 86.17 89.22 86.28 90.64
Zoo 91.99 92.10 91.49 92.07

Average 77.74 80.72 77.06 79.23
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Following the recommendation of Demsar (2006), we used a
series of tests to compare the methods.3 We used the following
tests to compare multiple classifiers on multiple data sets, with a le-
vel of significance of a ¼ 0:1:

Friedman test (Friedman, 1940): a non-parametric test that
ranks the algorithms separately for each data set, the best per-
forming algorithm being assigned the rank of 1, the second best,
rank 2, etc. The null hypothesis is that all the algorithms are
equivalent. If the null-hypothesis is rejected, we can compare
all the algorithms to each other using the Nemenyi test (Nem-
enyi, 1963).
3 All the tests were carried out using Keel software (Alcalá-Fdez et al., 2009),
available at www.keel.es.
6.1. Experiment 1: methods without pruning

6.1.1. Results
Next, it is shown the results obtained by C4.5, Credal-C4.5,

MID3 and CCDT trees. Tables 2–4 present the accuracy results of
each method without post-pruning procedure, applied on data sets
with a percentage of random noise to the class variable equal to
0%;10% and 30%, respectively.

Tables 5 and 6 present the average result of accuracy and tree
size (number of nodes) for each method without pruning when is
applied to data sets with percentages of random noise equal to
0%;10% and 30%.

Table 7 shows Friedman’s ranks obtained from the accuracy re-
sults of C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when
they are applied on data sets with percentages of random noise
equal to 0%;10% and 30%. We remark that the null hypothesis is
rejected in all the cases with noise.

http://www.keel.es


Table 4
Accuracy results of C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when are
applied on data sets with percentage of random noise equal to 30%.

Dataset C4.5 Credal-C4.5 MID3 CCDT

Anneal 80.49 90.84 79.84 88.92
Arrhythmia 46.55 59.71 44.83 57.13
Audiology 63.93 69.45 53.39 64.90
Autos 56.70 58.40 52.19 62.23
Balance-scale 64.80 73.61 64.40 73.21
Breast-cancer 58.76 62.71 58.58 60.94
Wisconsin-breast-cancer 84.59 91.45 84.57 86.51
Car 73.92 82.80 73.42 82.88
CMC 42.96 45.23 43.16 43.94
Horse-colic 68.39 73.91 66.06 63.56
Credit-rating 64.43 73.03 63.61 68.41
German-credit 57.98 60.57 59.41 61.47
Dermatology 69.16 79.93 67.52 77.02
Pima-diabetes 68.87 69.43 68.45 69.31
Ecoli 64.14 77.71 64.14 78.28
Glass 52.51 59.82 52.29 66.31
Haberman 63.93 66.44 63.89 67.90
Cleveland-14-heart-disease 59.97 69.09 60.00 69.39
Hungarian-14-heart-disease 70.80 79.94 66.22 75.27
Heart-statlog 63.07 71.19 62.56 72.74
Hepatitis 62.19 70.41 62.17 67.10
Hypothyroid 79.54 97.45 80.49 96.12
Ionosphere 77.87 79.84 77.13 71.17
Iris 78.60 88.27 78.00 89.87
kr-vs-kp 72.22 81.16 72.38 80.22
Letter 71.74 77.44 71.36 68.92
Liver-disorders 56.72 55.37 57.00 56.85
Lymphography 56.50 63.43 54.91 61.28
mfeat-pixel 57.78 64.57 53.55 62.63
Nursery 72.18 88.95 71.74 88.98
Optdigits 62.98 73.59 63.82 61.15
Page-blocks 83.80 96.04 83.06 94.01
Pendigits 69.88 86.66 70.11 77.42
Primary-tumor 34.69 34.90 33.66 31.92
Segment 70.66 89.86 71.52 83.44
Sick 87.65 94.96 87.82 92.41
Solar-flare2 91.35 96.90 91.94 96.56
Sonar 60.74 63.34 61.06 61.98
Soybean 73.03 86.32 58.82 79.76
Spambase 85.42 87.44 84.47 72.88
Spectrometer 31.85 35.40 29.12 35.51
Splice 62.46 68.00 61.85 67.62
Sponge 63.52 71.29 62.93 72.27
Tae 45.73 43.31 44.92 41.48
Vehicle 53.09 62.99 53.15 59.92
Vote 79.08 84.45 78.71 82.55
Vowel 64.68 65.00 64.13 65.72
Waveform 57.22 69.84 56.50 58.51
Wine 70.01 82.40 70.14 79.20
Zoo 84.06 85.49 85.81 82.50

Average 65.86 73.21 64.82 70.60

Table 5
Average result of accuracy for C4.5, Credal-C4.5, MID3 and CCDT (without pruning)
when are applied on data sets with percentage of random noise equal to 0%;10% and
30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 82.13 77.74 65.86
Credal-C4.5 82.23 80.72 73.21
MID3 81.81 77.06 64.82
CCDT 81.00 79.23 70.60

Table 6
Average result about tree size for C4.5, Credal-C4.5, MID3 and CCDT when are applied
on data sets with percentage of random noise equal to 0%;10% and 30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 216.98 376.37 672.13
Credal-C4.5 138.78 167.09 317.92
MID3 216.15 373.97 662.42
CCDT 387.18 523.09 1033.15

Table 7
Friedman’s ranks for a ¼ 0:1 obtained from the accuracy results of C4.5, Credal-C4.5,
MID3 and CCDT (without pruning) when they are applied on data sets with
percentage of random noise equal to 0%;10% and 30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 2.52 3.10 3.11
Credal-C4.5 2.30 1.34 1.38
MID3 2.54 3.32 3.45
CCDT 2.64 2.24 2.06

Table 8
p-Values of the Nemenyi test with a ¼ 0:1 obtained from the accuracy results of the
methods C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when they are applied
on data sets with percentage of random noise equal to 10%. Nemenyi procedure
rejects those hypotheses that have a p-value6 0:016667.

i algorithms p-Values

6 Credal-C4.5 vs. MID3 0
5 C4.5 vs. Credal-C4.5 0
4 MID3 vs. CCDT 0.000029
3 Credal-C4.5 vs. CCDT 0.000491
2 C4.5 vs. CCDT 0.000866
1 C4.5 vs. MID3 0.394183

Table 9
p-Values of the Nemenyi test with a ¼ 0:1 obtained from the accuracy results of the
methods C4.5, Credal-C4.5, MID3 and CCDT (without pruning) when they are applied
on data sets with percentage of random noise equal to 30%. Nemenyi procedure
rejects those hypotheses that have a p-value6 0:016667.

i algorithms p-Values

6 Credal-C4.5 vs. MID3 0
5 C4.5 vs. Credal-C4.5 0
4 MID3 vs. CCDT 0
3 C4.5 vs. CCDT 0.000048
2 Credal-C4.5 vs. CCDT 0.008448
1 C4.5 vs. MID3 0.187901
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Tables 8 and 9 show the p-values of the Nemenyi test obtained
from the accuracy results of the methods C4.5, Credal-C4.5, MID3
and CCDT when they are applied on data sets with a percentage
of random noise 10% and 30%. For 0% of noise, the null hypothesis
is not rejected. In all the caseS, Nemenyi procedure rejects the
hypotheses that have a p-value 6 0:016667.
6.1.2. Comments about the results
The objective of this section is to compare CCDT algorithm with

the rest of algorithms without pruning. In particular, it is important
the comparison between Credal-C4.5 without pruning and CCDT in
order to show the improvement of the credal trees. The results of
the previous section are analyzed according the following aspects:
Average accuracy, Tree size, Friedman’s ranking and Nemenyi test.

� Average accuracy: According to this factor, we can say that
without noise all the tree methods are nearly equivalent, being
some better the performance of the Credal-C4.5 without prun-
ing. When noise is added there is a notable difference in favor
of Credal-C4.5 without pruning respect to the rest ones. This
difference is important when the level of noise is 30% On the
other hand, CCDT presents the worst result for data without
noise. However, CCDT has better average accuracy results than
C4.5 and MID3 (without pruning) for data with noise.



Table 10
Accuracy results of C4.5, Credal-C4.5 and MID3 (with pruning) when are applied on
data sets with percentage of random noise equal to 0%.

Dataset C4.5 Credal-C4.5 MID3

Anneal 98.57 98.36 98.99
Arrhythmia 65.65 67.68 65.15
Audiology 77.26 78.94 76.91
Autos 81.77 74.57 78.24
Balance-scale 77.82 77.33 77.69
Breast-cancer 74.28 74.84 71.75
Wisconsin-breast-cancer 95.01 95.12 95.35
Car 92.22 91.16 93.02
CMC 51.44 52.80 52.06
Horse-colic 85.16 85.18 84.34
Credit-rating 85.57 85.43 84.03
German-credit 71.25 71.34 71.98
Dermatology 94.10 94.26 93.49
Pima-diabetes 74.49 74.15 74.39
Ecoli 82.83 81.60 83.61
Glass 67.63 63.61 67.67
Haberman 72.16 71.18 72.03
Cleveland-14-heart-disease 76.94 76.53 79.30
Hungarian-14-heart-disease 80.22 82.33 76.77
Heart-statlog 78.15 80.33 78.81
Hepatitis 79.22 79.79 80.33
Hypothyroid 99.54 99.52 99.56
Ionosphere 89.74 88.18 88.04
Iris 94.73 94.73 94.73
kr-vs-kp 99.44 99.45 99.42
Letter 88.03 87.58 87.97
Liver-disorders 65.84 64.53 66.16
Lymphography 75.84 78.31 75.01
mfeat-pixel 78.66 79.76 77.12
Nursery 97.18 96.30 97.10
Optdigits 90.52 90.83 91.10
Page-blocks 96.99 96.69 97.09
Pendigits 96.54 96.42 96.39
Primary-tumor 41.39 42.33 39.92
Segment 96.79 96.04 96.74
Sick 98.72 98.79 98.85
Solar-flare2 99.53 99.53 99.53
Sonar 73.61 71.37 73.53
Soybean 91.78 92.40 89.94
Spambase 92.68 92.56 93.11
Spectrometer 47.50 45.54 43.37
Splice 94.17 94.04 93.57
Sponge 92.50 92.50 92.50
Tae 57.41 53.26 57.62
Vehicle 72.28 72.78 72.71
Vote 96.57 96.59 96.11
Vowel 80.20 77.88 83.63
Waveform 75.25 76.07 75.83
Wine 93.20 92.13 93.83
Zoo 92.61 92.42 92.01

Average 82.62 82.30 82.37

Table 11
Accuracy results of C4.5, Credal-C4.5 and MID3 (with pruning) when are applied on
data sets with percentage of random noise equal to 10%.

Dataset C4.5 Credal-C4.5 MID3

Anneal 98.37 98.23 98.42
Arrhythmia 62.54 65.76 58.44
Audiology 77.53 77.39 72.70
Autos 74.72 71.65 69.61
Balance-scale 78.11 78.26 77.82
Breast-cancer 71.13 72.07 70.75
Wisconsin-breast-cancer 93.72 94.28 94.06
Car 90.92 90.53 90.74
CMC 49.95 51.36 50.36
Horse-colic 84.61 85.10 84.50
Credit-rating 84.78 85.23 84.22
German-credit 71.18 71.38 71.72
Dermatology 93.31 93.12 91.06
Pima-diabetes 72.37 73.83 72.56
Ecoli 81.87 81.49 82.04
Glass 65.37 65.57 64.55
Haberman 72.32 72.39 72.29
Cleveland-14-heart-disease 75.78 76.94 77.56
Hungarian-14-heart-disease 79.78 80.94 77.03
Heart-statlog 75.63 78.41 76.04
Hepatitis 77.88 80.19 78.62
Hypothyroid 99.40 99.44 99.43
Ionosphere 86.90 87.04 85.79
Iris 92.73 93.53 92.47
kr-vs-kp 98.97 98.95 98.80
Letter 86.74 86.67 86.38
Liver-disorders 62.38 61.69 62.73
Lymphography 75.11 74.78 76.53
mfeat-pixel 76.77 77.97 74.36
Nursery 96.29 96.08 96.00
Optdigits 88.47 88.94 88.86
Page-blocks 96.70 96.78 96.79
Pendigits 95.37 95.49 95.20
Primary-tumor 39.59 40.39 40.09
Segment 95.06 95.17 95.03
Sick 98.22 98.24 98.22
Solar-flare2 99.53 99.53 99.53
Sonar 67.56 70.39 69.34
Soybean 90.54 91.74 85.85
Spambase 90.96 91.52 90.57
Spectrometer 43.20 43.07 39.64
Splice 93.05 93.08 92.48
Sponge 91.80 91.66 92.50
Tae 50.77 49.01 51.61
Vehicle 68.51 69.99 68.26
Vote 95.74 95.45 95.28
Vowel 77.13 75.26 78.37
Waveform 69.51 75.13 69.50
Wine 87.35 89.39 87.36
Zoo 92.39 92.10 92.19

Average 80.77 81.25 80.29
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� Tree size: We can observe that always (with an without noise)
Credal-C4.5 built the smallest trees. The average number of
nodes of this method is nearly the half of the number of nodes
of the rest of methods. C4.5 and MID3 (without pruning) have a
similar average tree size. Finally, CCDT presents the highest
average tree size, because CCDT carries out a multi-interval dis-
cretization of the continuous variables (Fayyad & Irani, 1993)
and the rest of methods make a discretization by using only
two intervals.
� Friedman’s ranking: According to this ranking, Credal-C4.5

without pruning is the best model to classify data sets in all
the cases. For data with noise, this difference is important. In
particular, Credal-C4.5 without pruning improves to CCDT for
data with or without noise. Finally, MID3 and C4.5 without
pruning have the worst rank for data with noise.
� Nemenyi test: This test is not carried out for the case of 0% of

noise because the Friedman’s test does not reject the null
hypothesis, that is, the differences are not significant for data
without noise. For data with noise (10% and 30%), this test indi-
cates that Credal-C4.5 is the best model with significant statis-
tical difference. This test also says that CCDT improves to MID3
and C4.5 (without pruning) for data without noise.

After this analysis we can conclude the following comments
about comparison between algorithms:

� Credal-C4.5 (without pruning) vs. CCDT: Credal-C4.5 without
pruning obtains better average accuracy results and Friedman’s
rank than CCDT. According Nemenyi test, this difference is sig-
nificant for data with noise. Besides, Credal-C4.5 without prun-
ing builds trees smaller than CCDT. Hence, we can conclude
with this experiment that Credal-C4.5 algorithm without prun-
ing improves to the best previously published credal decision
tree.



Table 12
Accuracy results of C4.5, Credal-C4.5 and MID3 (with pruning) when are applied on
data sets with percentage of random noise equal to 30%.

Dataset C4.5 Credal-C4.5 MID3

Anneal 96.03 95.85 95.24
Arrhythmia 49.15 62.06 45.09
Audiology 70.88 70.68 60.25
Autos 57.92 60.35 53.81
Balance-scale 74.16 75.02 73.52
Breast-cancer 68.65 67.61 67.49
Wisconsin-breast-cancer 89.24 92.27 89.43
Car 86.00 85.97 85.89
CMC 46.39 47.70 45.59
Horse-colic 79.63 80.48 75.00
Credit-rating 74.58 81.41 71.77
German-credit 63.09 63.70 66.05
Dermatology 87.64 88.95 86.56
Pima-diabetes 69.39 69.67 68.93
Ecoli 75.27 79.78 73.63
Glass 55.23 60.49 54.69
Haberman 68.83 72.85 68.87
Cleveland-14-heart-disease 68.00 71.57 67.97
Hungarian-14-heart-disease 78.16 80.81 74.68
Heart-statlog 65.52 72.33 64.70
Hepatitis 68.15 73.36 68.63
Hypothyroid 98.59 98.96 98.41
Ionosphere 78.18 80.04 77.30
Iris 84.00 89.00 84.07
kr-vs-kp 91.13 90.97 90.53
Letter 82.13 82.54 81.62
Liver-disorders 56.83 55.45 57.06
Lymphography 66.33 68.11 68.59
mfeat-pixel 71.98 73.19 68.43
Nursery 93.99 94.30 93.46
Optdigits 76.91 80.77 70.24
Page-blocks 94.91 96.25 94.81
Pendigits 89.21 92.25 88.02
Primary-tumor 37.67 37.76 38.44
Segment 85.35 91.92 84.33
Sick 95.20 97.14 95.29
Solar-flare2 99.53 99.49 99.53
Sonar 60.84 63.34 61.10
Soybean 88.45 89.34 72.78
Spambase 86.07 87.69 85.32
Spectrometer 33.02 35.61 29.72
Splice 81.21 80.06 81.85
Sponge 88.84 86.71 92.50
Tae 45.86 43.64 45.26
Vehicle 56.06 63.50 55.56
Vote 90.99 91.55 91.38
Vowel 66.01 65.61 64.16
Waveform 57.32 70.08 56.59
Wine 71.02 82.91 70.98
Zoo 87.65 87.74 89.05

Average 74.14 76.58 72.88

Table 13
Average result of accuracy for C4.5, Credal-C4.5 and MID3 when are applied on data
sets with percentage of random noise equal to 0%;10% and 30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 82.62 80.77 74.14
Credal-C4.5 82.30 81.25 76.58
MID3 82.37 80.29 72.88

Table 14
Average result about tree size for C4.5, Credal-C4.5 and MID3 when are applied on
data sets with percentage of random noise equal to 0%;10% and 30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 156.54 170.02 244.05
Credal-C4.5 122.67 131.06 171.39
MID3 155.83 170.03 253.73

Table 15
Friedman’s ranks for a ¼ 0:1 obtained from the accuracy results of C4.5, Credal-C4.5
and MID3 (with pruning) when they are applied on data sets with percentage of
random noise equal to 0%;10% and 30%.

Tree Noise 0% Noise 10% Noise 30%

C4.5 1.90 2.07 2.07
Credal-C4.5 2.08 1.60 1.40
MID3 2.02 2.33 2.53

Table 16
p-Values of the Nemenyi test with a ¼ 0:1 obtained from the accuracy results of the
methods C4.5, Credal-C4.5 and MID3 (with pruning) when they are applied on data
sets with percentage of random noise equal to 10%. Nemenyi procedure rejects those
hypotheses that have a p-value6 0:033333.

i algorithms p-Values

3 Credal-C4.5 vs. MID3 0.000262
2 C4.5 vs. Credal-C4.5 0.018773
1 C4.5 vs. MID3 0.193601

Table 17
p-Values of the Nemenyi test with a ¼ 0:1 obtained from the accuracy results of the
methods C4.5, Credal-C4.5 and MID3 (with pruning) when they are applied on data
sets with percentage of random noise equal to 30%. Nemenyi procedure rejects those
hypotheses that have a p-value6 0:033333.

i algorithms p-Values

3 Credal-C4.5 vs. MID3 0
2 C4.5 vs. Credal-C4.5 0.000808
1 C4.5 vs. MID3 0.021448
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� Credal trees (CCDT and Credal-C4.5 without pruning) vs. Clas-
sic methods without pruning (C4.5 and MID3): We can
observe with this experiment that credal trees improve the
results obtained by the classic methods (without pruning)
for data with noise. According Nemenyi test, this difference
is significant. Hence, we can conclude that the pruning pro-
cess is a fundamental part of the classic methods (C4.5 and
MID3) to improve their accuracy. For this reason, we have
focused on the methods with a pruning process in the next
experiment.

6.2. Experiment 2: methods with pruning

6.2.1. Results
Next, it is shown the results obtained by C4.5, Credal-C4.5 and

MID3 trees. Tables 10–12 present the accuracy results of each
method with post-pruning procedure, applied on data sets with a
percentage of random noise to the class variable equal to
0%;10% and 30%, respectively.

Tables 13 and 14 present the average result of accuracy and tree
size (number of nodes) for each method when is applied to data
sets with percentages of random noise equal to 0%;10% and 30%.

Table 15 shows Friedman’s ranks obtained from the accuracy
results of C4.5, Credal-C4.5 and MID3 (with pruning) when they
are applied on data sets with percentages of random noise equal
to 0%;10% and 30%. We remark that the null hypothesis is re-
jected in all the cases with noise.

Tables 16, 17 show the p-values of the Nemenyi test obtained
from the accuracy results of the methods C4.5, Credal-C4.5 and
MID3 when they are applied on data sets with a percentage of ran-
dom noise 10% and 30%. For 0% of noise, the null hypothesis is not
rejected. In all the cases with noise, Nemenyi procedure rejects the
hypotheses that have a p-value6 0:033333.
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6.2.2. Comments about the results
The principal aim of this section is to compare the methods

when a pruning process is used. In this case, all the methods im-
prove their percentage of accuracy. The results shown in the previ-
ous section about the methods with pruning process are analyzed
according the following aspects: Average accuracy, Tree size, Fried-
man’s ranking and Nemenyi test.

� Average accuracy: According to this factor, we can observe that
C4.5 obtains better average results of accuracy than Credal-C4.5
and MID3 for data without noise. On the other hand, Credal-
C4.5 obtains the best average result of accuracy for data with
noise. This difference is notable when a 30% of noise is added.
� Tree size: Credal-C4.5 obtains the smallest average tree size in

all the cases (with and without noise). It can be remarked that
always the Credal-C4.5 has an average of number of nodes that
is less of the half of the average of the rest of methods.
� Friedman’s ranking: According to this ranking, C4.5 obtains

the lower rank for data without noise and Credal-C4.5 is the
best model for classifying data sets with noise (lower rank value
in each comparison). This test says that the null hypothesis can
not be rejected without noise but with noise, always is rejected,
i.e all the procedures performs similar without noise but not
with noise. In the case of noise, always the Credal-C4.5 is better.
� Nemenyi test: This test is not carried out for the case of 0% of

noise because the Friedman’s test does not reject the null
hypothesis. According to this test, we can observe that in the
case of 10% of noise the Credal-C4.5 is statistically better than
MID3 and C4.5 for a 0:1 level of significance.4 C4.5 is not better
than MID3 using this test with similar level of significance. When
the level of noise is increased to 30% the test carried out
expresses similar conclusions, but, in this case, the differences
in favor of Credal-C4.5 are stronger (see the p-values of Table 17).
For this level of noise, C4.5 is also statistically better than MID3
using the Nemenyi test.

We can point out the following comments:

� C4.5 vs. MID3: C4.5 obtains better average results of accuracy
than MID3. Also, it has a Frieman’s rank smaller than the one
of MID3 in all the cases (data sets with or without noise, before
or after pruning). However, according Nemenyi test, these dif-
ferences are not statistically significant, except in the case of
pruning and 30% of noise. On the other hand, the average tree
size are very similar for these two methods.
� Credal-C4.5 vs. classic methods (C4.5 and MID3): For data

without noise: All the methods have a similar performance,
with and without a pruning process. Only can be remarked
the difference about the size of the trees built: Credal-C4.5
obtains the smallest average tree size.
For data with noise: Credal-C4.5 obtains always (with and with-
out pruning) better average results of accuracy than C4.5 and
MID3; it obtains the lowest Friedman’s rank; and, according
to the Nemenyi test, these differences are statistically signifi-
cant. Besides, Credal-C4.5 presents the smallest average tree
size in all the cases of noise.

The above points allow us to remark the following conclusions
about the experimental study:

(i) If we are interested to obtain smaller trees a with similar
level of accuracy, Credal-C4.5 is more adequate than meth-
ods based on classic probabilities.
4 Also for a stronger level of 0.075.
(ii) The use of Credal-C4.5 is especially suitable to be applied on
data sets with noise. This conclusion is reasonable from the
definition of Credal-C4.5. This method was defined with the
assumption that the training set is not very reliable. Impre-
cise probabilities were used to estimate the values of the
features and class variable. Hence, a very appropriate
method is obtained for noisy data.

7. Conclusion and future works

We have presented a new model called Credal-C4.5, a modified
version of the C4.5 algorithm. It has been defined by using a math-
ematical theory of imprecise probabilities and uncertainty mea-
sures on credal sets. Hence, the imprecision of the data is taken
into account in the new method. With this modification, a data
set is considered unreliable when the variable selection process
is carried out. The pruning process of the C4.5 algorithm takes into
account the same consideration. Hence, Credal-C4.5 as opposed to
C4.5 assumes the same hypothesis on the data set when the tree is
created and pruning. Credal-C4.5 with this new characteristic is
especially suitable when noisy data sets are classified. Relevant dif-
ferences in the performance of both methods are also shown.

In a first experimental study, we have compared a previous
method which takes into account the imprecision of the data too
with the new method Credal-C4.5, and we show that the new
method beats to the previous one in all the comparative studies
(with and without noise). In a second experimental study, we have
compared Credal-C4.5, C4.5 and a modified and improved version
of the known ID3, called MID3. We have showed that with no noise
is added, all the methods are very similar in performance, and the
only difference among them is that Credal-C4.5 presents trees with
a notable lower number of nodes. When noise is added, Credal-
C4.5 has a better performance than the one of the rest of methods,
and, in this case, also the number of nodes of Credal-C4.5 is notably
lower than the ones or the rest of methods.

Data sets obtained from real applications are not totally clean.
Usually, they have some level of noise. We think that it can be very
interesting to apply Credal-C4.5 algorithm on data sets of real
applications, to analyze results and to extract knowledge about
the application from the credal tree. New mathematical models,
procedures and split criteria, as the ones of Abellán, Baker, Coolen,
Crossman, and Masegosa (2014) and Abellán (2013a, 2013b) can be
checked on data sets with noise. These tasks are proposed as future
works.
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