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Abstract—Software testing is a crucial activity during software development and fault prediction models assist practitioners herein by

providing an upfront identification of faulty software code by drawing upon the machine learning literature. While especially the Naive

Bayes classifier is often applied in this regard, citing predictive performance and comprehensibility as its major strengths, a number of

alternative Bayesian algorithms that boost the possibility of constructing simpler networks with fewer nodes and arcs remain

unexplored. This study contributes to the literature by considering 15 different Bayesian Network (BN) classifiers and comparing them

to other popular machine learning techniques. Furthermore, the applicability of the Markov blanket principle for feature selection, which

is a natural extension to BN theory, is investigated. The results, both in terms of the AUC and the recently introduced H-measure, are

rigorously tested using the statistical framework of Dem�sar. It is concluded that simple and comprehensible networks with less nodes

can be constructed using BN classifiers other than the Naive Bayes classifier. Furthermore, it is found that the aspects of

comprehensibility and predictive performance need to be balanced out, and also the development context is an item which should be

taken into account during model selection.

Index Terms—Software fault prediction, Bayesian networks, classification, comprehensibility

Ç

1 INTRODUCTION

THE ubiquitous1 presence of computers has given rise to
novel research fields such as software development,

computer engineering, and artificial intelligence [25] while at
the same time enabling novel developments in other
domains like medicine, telecommunications, and image
processing [41], [101], [102]. In spite of all the efforts invested
in the field of software engineering, the development of
software remains jeopardized by high cancellation rates and
considerable delays [59]. The introduction of software testing
processes to identify software faults in a timely manner is
crucial since corrective maintenance costs increase exponen-
tially if faults are detected later in the software development
life cycle [11]. As a result, the importance of software testing
has long been recognized, e.g., the waterfall approach, a
phased and iterative development methodology, specifies
the implementation of a separate testing phase [82]. The first

work on the topic of software testing dates from 1975 [44]
and, since the pioneering work of Goodenough, numerous
books and papers have been published on this topic.
Software testing expenses can amount to up to 60 percent
of the overall development budget [50], and several
approaches to support these efforts have been proposed.

A key finding to software testing is the fact that faults tend
to cluster, i.e., to be contained in a limited number of software
modules [87]. Gyimóthy et al. found while investigating the
open source software web and e-mail suite Mozilla that bugs
were present in 42.04 percent of all software classes [46]. Even
more skewed distributions have been reported by others,
e.g., Ostrand et al., who investigated several successive
releases of a large inventory system, stated that “At each
release after the first, faults occurred in 20 percent or fewer of
the files” [77]. In fact, it has been shown that the distribution
of faults over a system can be modeled by a Weibull
probability distribution [107]. This motivates the use of
software fault prediction models, which provide an upfront
indication of whether code is likely to contain faults, i.e., is
fault prone. A timely identification of this fault prone code
will allow for a more efficient allocation of testing resources
and an improved overall software quality. To construct such
a prediction model which discriminates between fault-prone
code segments and those presumed to be fault-free, the use of
static code features characterizing code segments has been
advocated [14], [16]. Static code features which can be
automatically collected from software source code have
proven to be useful [88], and are widely used in academic
research as well as in industry settings [74], [99].

A myriad of different approaches to assist in the fault
prediction task have previously been proposed, including
expert driven methods, statistical models, and machine
learning techniques [16]. In spite of the use of various
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advanced techniques, including association rule mining [9],
support vector machines [31], neural networks [80], genetic
programming [32], and swarm intelligence [100], it is
recognized that their gain compared to simple techniques
such as Naive Bayes is limited [74]. The use of Naive Bayes to
model the presence of software faults is also advocated by
other researchers, citing predictive performance and com-
prehensibility as its major strengths [17], [36], [97]. Under-
lying Naive Bayes is the assumption of conditional
independency between attributes. Despite the restrictions
on the network structure imposed by this conditional
independence assumption, Naive Bayes classifiers have
been found to perform surprisingly well in, e.g., the medical
domain [91]. A similar conclusion was also echoed by Holte,
who compared the complexity and accuracy of different rule
learners [52]. He noted that simple models are often not
outperformed by more complex ones and that in such cases,
the simpler model should be selected. The good perfor-
mance of Naive Bayes compared to other classifiers inspired
several modifications relaxing the conditional independence
assumption to allow the construction of more complex
network structures. Well-known examples include Aug-
mented Naive Bayes and General Bayesian Network (BN)
classifiers. The latter even impose no restrictions on the
network structure and various algorithms to learn a suitable
network structure have been introduced. Two such algo-
rithms, together with various Augmented Naive Bayes
classifiers and a selection of benchmark classifiers, constitute
the set of techniques under consideration in this study.
Additionally, the use of the Markov blanket feature selection
procedure, which provides a natural way to reduce the set of
available features, is also investigated. The results of the
analyses are presented both in terms of AUC (Area Under
the ROC Curve) and the novel H-measure and are subjected
to rigorous statistical testing to verify their significance.

The rest of the paper is structured as follows: In the next
part, our work is positioned against the software fault
prediction literature. Section 3 discusses the working of
Naive Bayes classifiers and provides a number of exten-
sions hereon. The Markov blanket feature selection proce-
dure is also explained. In Section 4, the empirical setup of
the study is detailed, including the rationale for using the
novel H-measure. Next, the results are presented in
Section 5, together with a discussion on the suitability of
extending the Naive Bayes classifier in a software fault
prediction context from a comprehensibility point of view.
Finally, a short conclusion is provided.

2 RELATED WORK

Software failure is being studied from various viewpoints,
for instance, stochastic models to estimate the postdeploy-
ment software reliability, expressed, e.g., in terms of the
probability of failure each time a software component is
executed, is a topic which has attracted considerable
attention [42]. Such models typically combine information
on the interplay between different components with in-
dividual component reliability data. Furthermore, reliability
growth models can be applied to estimate the reliability of
individual components over time, which can be aggregated
into an estimate of the overall reliability of a system. One of

the main purposes of these models is to assist in software

maintenance budgeting [42].
Some researchers have adopted an alternative viewpoint

stemming from the observation that costs incurred to

correct faults increase exponentially with the time they

remain uncorrected in the system. It is therefore advisable

to eliminate as many faults as early as possible during

software development [11]. Based hereon, one can also

focus on already locating faults during development, before

the software goes gold. An example is the development of

automatic bug localization techniques that try to establish

which software patterns are associated with bugs (referred

to as “bug patterns”) and subsequently use this information

to locate previously unknown bugs in the source code [24].

Another approach to the early identification of faults is

software fault prediction, which investigates the character-

istics of individual code segments to identify those

segments that are fault prone [74] or to predict the number

of faults in each segment [78]. In the first, software fault

prediction is regarded as a classification problem, while the

latter approach considers it to be a regression problem.

Note that in this study, emphasis is put on the classification

point of view. To this purpose, a large number of software

code characteristics (also referred to as “static code

features”) have been introduced to the domain of software

fault prediction. These include McCabe and Halstead

metrics, metrics adopting object-oriented (OO) program-

ming concepts such as the Chidamber-Kemerer (CK)

metrics suite [21] or the Conceptual Cohesion of Classes

(C3) measure introduced in [73], as well as various file and

component-based metrics [72], [77]. Note that some of these

metrics can be collected on different granularity levels,

e.g., McCabe and Halstead measures have been explored on

the level of software functions, classes, and files. Fenton and

Neil [35] conjectured that the most widely used static code

features include Lines Of Code (LOC)-based measures,

Halstead metrics, and McCabe complexity metrics, which

was also echoed by Catal and Diri [16]. Evidence hereon can

be found in the publicly available software fault prediction

data, e.g., all projects in the NASA MDP repository contain

these metrics at the level of software modules and several

datasets from other sources also include these metrics [63],

[98], [99], [108].
There has been considerable debate about the extent to

which software fault prediction models constructed from

these metrics actually contribute to supporting software

testing processes. It is, e.g., demonstrated by Fenton and

Pfleeger that by using different language constructs, source

code providing the same functionality can have different

static code values [37]. Furthermore, while several studies

failed to validate the usefulness of, e.g., McCabe cyclomatic

complexity metrics for software fault prediction [85], [86],

other studies showed opposite results [16].
More recently, the validity of software fault prediction

using static code features has been empirically illustrated

by, e.g., Menzies et al., who stated that static code features

are useful, easy to use, and widely used [74]. This observation

was later also confirmed by other work, e.g., [99].
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Useful. Several studies have reported on the inability of
real-life fault predictors to obtain similar detection rates as
static code-based classification techniques.

. A panel consisting of academic and business experts
at the IEEE Metrics 2002 symposium concluded that
manual software reviews typically account for
around 60 percent of all identified faults, independent
of the domain or level of maturity of the organization
[88]. Similar (or even worse) defect detection cap-
abilities were observed among other industrial defect
detectors [74].

. Empirical evidence comparing an expert driven
approach with the use of statistical techniques to
locate software faults indicated the superior perfor-
mance of the latter, stating that “When it comes to
comparing both methods we found that statistical
models outperformed expert estimations” [92].
Other advantages of adopting static code-based
classifiers that were identified include improved
fault prediction efficiency and the ability to cope
with large datasets, resulting in possibly finer
grained fault prediction. The study also found
human experts to be unable to grasp or understand
the structure of large systems and, as a result, unable
to, e.g., provide a ranking of the fault proneness
across all system components.

On the flip side, it was reckoned that human
experts might be better able to incorporate qualita-
tive information when predicting the fault proneness
of a software component; however, this advantage
proved not to outweigh the disadvantages.

By contrast, using static code-based classification techni-
ques, noticeably better detection rates have been recorded.
For instance, Menzies et al. reported an average detection
rate of 71 percent [74].

Easy to use. Static code features such as McCabe and
Halstead metrics can be mined from the source code using
automated methods. Several tools have been proposed,
including McCabe IQ,2 RUBY [17], EMERALD [53], and
Prest [64], to assist practitioners in this effort. In addition to
static code features characterizing each code segment, labels
indicating whether faults were found are needed to
construct software fault prediction models. This often
requires a matching between data contained in a bug
database such as Bugzilla3 and the mined source code.
Various text mining techniques exist to facilitate this
matching effort [38].

Widely used. Static code features have been extensively
investigated by researchers [14], [16] and their use in
industry has been long reckoned, e.g., [35]. It is argued that
some large government software contractors will not review
code segments unless they are flagged as fault prone [74].
Moreover, the ability to collect data concerning the software
development process is also a requirement when trying to
achieve Capability Maturity Model Integration (CMMI)
level 2 appraisal. Obtaining such appraisal can be an
obligation to compete for (government) contracts [10].

Researchers have adopted a myriad of different techni-
ques to construct software fault prediction models. These
include various statistical techniques such as logistic
regression and Naive Bayes which explicitly construct an
underlying probability model. Furthermore, different ma-
chine learning techniques such as decision trees, models
based on the notion of perceptrons, support vector
machines, and techniques that do not explicitly construct
a prediction model but instead look at a set of most similar
known cases have also been investigated. A taxonomy of
the most often employed classification techniques for
software fault prediction is offered in Fig. 1. References to
earlier work using each technique are provided between
square brackets. While this overview does not attempt to be
exhaustive, it is clear that BN classifiers are in fact one of the
most popular techniques to model the presence of software
faults in a system. One of the earliest references to BN
classifiers in this context can be found in the work of Fenton
and Neil, who reckoned that these techniques offer several
advantages including the ability to explicitly model un-
certainty, the good comprehensibility, and the avoidance of
multicollinearity related problems [35]. They also high-
lighted the possibility of expert driven BN creation, which,
however, deviates from how such classifiers are commonly
utilized in machine learning literature. Persuaded by these
remarks, several authors have used such models [70], [74],
[97], [99]. The Naive Bayes classifier has been especially
carefully investigated and has been found to perform
exceptionally well, despite being a very simple technique.
For instance, Menzies et al. found Naive Bayes with
logarithmic transformation of the inputs to be the best
performing prediction model as compared to two rule
induction techniques, i.e., C4.5 and OneR [74]. This result
was later partially confirmed by Lessmann et al., who found
an ensemble learner, Random Forests (RndFor), to be the
best performing technique. BN learners, however, were not
found to be statistically outperformed by this ensemble
learner [70]. The assumption of conditional independence
underlying Naive Bayes is typically not met in a software
fault prediction context; different static code features try to
measure the same underlying dimensions of the source
code. The relaxation of this assumption has been investi-
gated by Turhan et al., who instead used a univariate
Gaussian approximation of the unknown distribution of the
static code features, a multivariate Gaussian approximation
[97]. It was concluded that the independence assumption of
Naive Bayes is not harmful for software defect data after the
data were preprocessed using Principal Component Ana-
lysis (PCA), which maps the data on a set of orthogonal
axes. Note that by construction, principal components are
not correlated with each other. In our work, the impact of
the conditional independence assumption is considered
from a different perspective by investigating BN classifiers
that explicitly model the conditional independence among
attributes. In another study, Turhan and Bener looked into
the use of various attribute weighting heuristics (e.g.,
heuristics based on concepts of Shannon’s information
theory and statistical methods such as the PCA scores and
the Kullback-Leibler Divergence) to improve BN learners
[96], [97]. As such, they adopted a two stage approach by
first applying these heuristics to rank all attributes and
afterward providing this ranking to the BN learner. They
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showed that using weighting heuristics based on Shannon’s
information theory (information gain and gain ratio) or
feature selection techniques yields improved results. Their
findings motivated the inclusion of the Markov blanket
feature selection into this study, which is a feature selection
approach rooted in BN theory.

3 BAYESIAN NETWORK CLASSIFIERS

In this section, a general introduction to Bayesian networks is
presented, followed by a description of the Naive Bayes
classifier. Next, a number of alternative BN classifiers
relaxing the assumption of conditional independence are
explained. Two alternative machine learning techniques,
which serve as a benchmark in this study, are also detailed.

The following notation is adopted throughout the paper:

j attribute identifier

i instance identifier

n number of attributes
N number of instances

xiðjÞ 2 IR scalar representing the value of the jth attribute

on the ith instance

yi dichotomous target indicating an instance is

faulty (yi ¼ 1) or not (yi ¼ 0)

In line with this notation, the task of learning a software
fault prediction model can be defined as follows: Let
D ¼trn fðxi; yiÞgNi¼1 be a training set containing N observa-
tions, where xi 2 IRn represents the static code features
characterizing the ith instance and yi 2 f0; 1g, a label
indicating the presence of faults. A software fault predic-
tion model provides a mapping from the instances xi to the
posterior probability of belonging to the class of fault
prone code segments, P ðyi ¼ 1jxiÞ. Formally, fðxiÞ : IRn 7!
P ðyi ¼ 1jxiÞ.

3.1 Bayesian Networks

A BN represents a joint probability distribution over a set
of stochastic variables, either discrete or continuous. It can
be visualized as a graph consisting of nodes representing
the individual variables xðjÞ and directed arcs indicating the
existence of dependencies between variables. Likewise, the
absence of an arc between two nodes xðjÞ and xðj0Þ indicates
the conditional independence between both variables given
their parents in the graph. Associated with each node is a
probability table containing the probability distribution of
each variable conditional on the direct parent(s) in the
graph [79]. Underlying BN is the Bayes theorem, which
formulates the posterior probability of the presence of
faults in terms of prior probabilities and the reverse
conditional probability:

P ðyi ¼ 1jxiÞ ¼
P ðxijyi ¼ 1ÞP ðyi ¼ 1Þ

P ðxiÞ
: ð1Þ

Note that P ðxiÞ acts as a normalizing constant herein and
can be ignored.

More formally, a BN comprises two parts B ¼ hG;�i. G
is a directed acyclic graph (DAG) conveying the direct
dependence relationships within the dataset, whereas the
second part, �, represents the conditional probability
distribution of each variable. Adopting the notation of
Cooper and Herskovits [23], �xðjÞ represents the set of direct
parents of xðjÞ in G. � contains a parameter �xðjÞj�xðjÞ

¼
PBðxðjÞj�xðjÞ Þ for each possible value of xðjÞ, given each
possible combination of values of all direct parents. The
network B then represents the following joint probability
distribution:

PBðxð1Þ; . . . ; xðnÞÞ ¼
Yn
j¼1

PBðxðjÞj�xðjÞ Þ ¼
Yn
j¼1

�xðjÞj�xðjÞ
: ð2Þ

Typically, the task of learning a BN can be decomposed
into two subtasks which are executed sequentially. First, the
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exact structure G of the network needs to be determined. In
general, it is infeasible to iterate over all possible network
structures and therefore several constraints can be imposed,
leading to different learning algorithms. After establishing
the exact network structureG, the parameters associated with
each node need to be estimated. In this paper, the empirical
frequencies as observed in the training data Dtrn are used to
estimate these parameters:

�xðjÞj�xðjÞ
¼ P̂Dtrn

ðxðjÞj�xðjÞ Þ: ð3Þ

It can be shown that these estimates maximize the log
likelihood of the networkB given the training dataDtrn. Note
that these estimates might be further improved by a
smoothing operation, e.g., by using a Laplace correction or
an M-estimate [40].

Generally, BN classifiers can be considered as probabil-
istic white-box classifiers. They allow to calculate the (joint)
posterior probability distribution of any subset of unob-
served stochastic variables, given that the variables in the
complementary subset are observed. This functionality
enables the use of BN as statistical classifiers which provide
a final classification by selecting an appropriate threshold on
the posterior probability distribution of the (unobserved)
class node. Alternatively, assuming all misclassification costs
are equal, a winner-takes-all rule can be adopted [29]. A
pivotal ability of these classifiers is the use of graphical
artifacts which facilitates the understanding of complex and
seemingly contradictory relationships within the data [35].

A simple example of a BN classifier is given in the left-
hand side of Fig. 2, while on the right-hand side an example
classifying a specific code segment as (not) fault prone is
provided. Note that by considering the characteristics of this
segment and the information conveyed in the Bayesian
network, the posterior probability that this particular
instance will be faulty can be computed as follows:

P ðyjxð1Þ; xð2Þ; xð3Þ; xð4ÞÞ ¼
P ðy; xð1Þ; xð2Þ; xð3Þ; xð4ÞÞ
P ðxð1Þ; xð2Þ; xð3Þ; xð4ÞÞ

:

It can be easily observed from Fig. 2 that, according to the
winner-takes-all rule, the code segment will be classified as
being not fault prone. In what follows, several structure
learning algorithms for the construction of BN classifiers
will be discussed.

3.2 The Naive Bayes Classifier

A first classifier built on the principle of Bayesian networks
is the Naive Bayes classifier [29]. This classifier merits its
connotation to the underlying assumption of conditional
independence between attributes given the class label. As a
result of this assumption, the DAG associated with a Naive
Bayes classifier is composed of a single parent (the
unobserved class label y) and several children, each
corresponding to an observed variable in the dataset. In
spite of this often oversimplifying assumption, the Naive
Bayes classifier typically performs surprisingly well. For
instance, Domingos and Pazzani [28] found the Naive
Bayes classifier performance to sometimes be superior to a
number of decision tree induction algorithms, even on
datasets with considerable variable dependencies. This
result was also confirmed in a software fault prediction
context by Menzies et al., who found the Naive Bayes
classifier to outperform rule-based learners [74].

The Naive Bayes classifier proceeds by calculating the
posterior probability of each class given the vector of
observed variable inputs ðxið1Þ; . . . ; xiðnÞÞ of each new code
segment using Bayes’ rule (1). As a result of the conditional
independence assumption, the class-conditional probabil-
ities can be restated as:

P ðxið1Þ; . . . ; xiðnÞjyi ¼ yÞ ¼
Yn
j¼1

P ðxiðjÞjyi ¼ yÞ: ð4Þ
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The probabilities P ðxiðjÞjyi ¼ yÞ are estimated by using
frequency counts for the discrete variables and a normal or
kernel density-based method for continuous variables [58].
Note that as a result of the simplifying assumption of
conditional independence, Naive Bayes classifiers are easy
to construct since the network structure is given a priori and
no structure learning phase is required. Another advantage
is its computational efficiency, especially since the model
has the form of a product, which can be converted into a
sum by using a logarithmic transformation. In this study,
both Naive Bayes using a kernel density estimate for
continuous variables as well as Naive Bayes after variable
discretization are considered. Fig. 3a provides a graphical
representation of a Naive Bayes classifier.

3.3 Augmented Naive Bayes Classifiers

The promising performance of the Naive Bayes classifier
inspired several modifications to relax the conditional
independence assumption. These modifications are mainly
based on adding additional arcs between variables to
account for dependencies present in the data or removing
irrelevant or correlated variables from the network structure.

A well-known example is the algorithm presented by
Friedman et al., the Tree Augmented Naive Bayes (TAN)
classifier, which allows every variable in the network to have
one additional parent next to the class node [40]. One other
such algorithm is the Semi-Naive Bayesian classifier devel-
oped by Kononenko [65], which partitions the variables into
pairwise disjoint groups. The latter assumes that xðjÞ is
conditionally independent of xðj0Þ if and only if they belong to
different groups. By contrast, the Selective Naive Bayes
classifier tries to improve the Naive Bayes classifier by
omitting certain variables to deal with strong correlation
among attributes [67].

In this study, the Augmented Naive Bayes classifiers
developed by Sacha [83] are used. Building upon the ideas
introduced by Friedman et al., this family of Bayesian
classifiers provides a further relaxation on the TAN
approach: Not all attributes need to be dependent on the
class node and there does not necessarily need to be an
undirected path between two attributes that does not pass
through the class node. The Augmented Naive Bayes
algorithms consist of a combination of two dependency
discovery operators and two augmenting operators, sum-
marized in Table 1. The measure of dependency between
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TABLE 1
Augmented Naive Bayes Approach: Different Operators

Fig. 3. Examples of Bayesian network structures.



two attributes, the conditional mutual information
IðxðjÞ; xðj0ÞÞ, which is used by augmenting both operators,
is defined as follows:

X
xðjÞ;xðj0 Þ

p xðjÞ; xðj0Þjy
� �

log
p xðjÞ; xðj0Þjy
� �

pðxðjÞjyÞp xðj0Þ
� �

 !
if y � xðjÞ

X
xðjÞ;xðj0 Þ

p xðjÞ; xðj0Þjy
� �

log
p xðjÞ; xðj0Þjy
� �

pðxðjÞÞp xðj0Þjy
� �

 !
if y � xðj0Þ

X
xðjÞ;xðj0 Þ

p xðjÞ; xðj0Þjy
� �

log
p xðjÞ; xðj0Þjy
� �

pðxðjÞjyÞp xðj0Þjy
� �

 !
if y � xðjÞ; xðj0Þ

X
xðjÞ;xðj0 Þ

p xðjÞ; xðj0Þ
� �

log
p xðjÞ; xðj0Þ
� �

pðxðjÞÞp xðj0Þ
� �

 !
if y ? xðjÞ; xðj0Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

Combining the dependency discovery operators with
different augmenting operators from Table 1 yields four
possible combinations. Note that both augmenting opera-
tors can also be applied directly on a Naive Bayes network,
providing the following six Bayesian network classifiers:

. TAN: Tree Augmented Naive Bayes,

. FAN: Forest Augmented Naive Bayes,

. STAN: Selective Tree Augmented Naive Bayes,

. STAND: Selective Tree Augmented Naive Bayes
with Discarding,

. SFAN: Selective Forest Augmented Naive Bayes,

. SFAND: Selective Forest Augmented Naive Bayes
with Discarding.

The aim of these classifiers is to find a tradeoff between the
simplicity of the Naive Bayes classifiers (with a limited
number of parameters) and the more realistic and complex
case of full dependency between the attributes.

Except for TAN, all of the above procedures adopt a
quality measure to assess the fitness of a network given the
data. Commonly, a distinction is made between global and
local quality measures. The former evaluate the complete
network, while the latter only evaluate the network at the
class node. As the task of software fault prediction is in fact
a classification task requiring the prediction of a single class
attribute, local quality measures would seem the most
preferable. In this study, a representative from both
categories is used, see Table 2. Both quality measures were
combined with the five algorithms defined above, resulting
in 10 different BN learners.

The implementation of Sacha has been used for both the
Naive Bayes and the Augmented Naive Bayes classifiers
[83]. This implementation is available as a set of Weka
bindings, which allows the execution of the software
directly from within the Weka environment.4

3.4 General Bayesian Network Classifiers

All previously discussed methods restrain the network
structure G in order to limit the search space of allowed
DAGs. Omitting these restrictions, General Bayesian Networks
(GBN) can adopt any DAG as G. Selecting the optimal
structure is, however, known to be an NP-hard problem
since the possible sets of parents for each variable grow
exponentially with the number of candidate parents [20].
Several algorithms have been proposed to limit the
computational expense of finding a suitable network
structure. Commonly, these algorithms can be subdivided
into two broad categories, i.e., those using a heuristic search
procedure (“Search-and-Score algorithms”) and algorithms
which employ statistical tests to infer the conditional
independence relationships among variables (“Constraint-
Based algorithms”) [66].

3.4.1 K2

Several Search-and-Score algorithms have been proposed in
the literature, e.g., the Greedy Equivalence Search (GES)
algorithm [19] and algorithms based on the use of genetic
operators [68]. In this study, the K2 algorithm of Cooper and
Herskovits, which employs a greedy search procedure, is
investigated [23]. While greedy search can become trapped
in local minima, it has been shown that K2 yields comparable
results to other Search-and-Score algorithms [105].

The K2 algorithm adopts a bottom-up search strategy,
assuming equal prior probabilities for all possible network
structures, and considers all variables one by one, assuming
some ordering in the variables. For each variable xðiÞ, the
posterior probability of the network structure where xðiÞ is
conditionally independent of all other variables is evalu-
ated. Next, the parents whose addition increases the
posterior probability of the resulting network structure the
most are sequentially added. When no further parents that
increase the posterior probability of the network can be
added, the algorithm traces back until all variables have
been considered. The K2 algorithm, available in the Weka
workbench, is used in this study [103].

3.4.2 MMHC

Opposite to the Search-and-Score paradigm is the use of
statistical tests to verify whether certain conditional
independencies between variables hold. Examples are the
PC algorithm [89] and the Three Phase Dependency
Analysis (TPDA) algorithm [18]. In our analysis, a hybrid
combining the advantages of Search-and-Score and Con-
straint-Based algorithms is considered, i.e., the Max-Min
Hill-Climbing (MMHC) algorithm proposed in [95]. Com-
parison with, among others, GES, TPDA, and PC empiri-
cally illustrated the strength of this algorithm [95].

The MMHC algorithm first constructs the skeleton of a
Bayesian network (i.e., a network structure containing only
undirected edges) by adopting a local discovery algorithm
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called Max-Min Parents and Children (MMPC) to deter-
mine the parent-children set (PC) of every node. MMPC
proceeds by sequentially adding nodes to a candidate PC
set (CPC) as selected by a heuristic procedure. The set may
contain false positives, which are removed in a second step.
The algorithm tests whether any variable in CPC is
conditionally independent of the target variable, given a
blocking set S � CPC. If such variables are found, they are
removed from CPC. As a measure of conditional
(in)dependence, the G2 measure, as described by Spirtes
et al. [89], is used. This measure is asymptotically following
a �2 distribution with appropriate degrees of freedom
under the null hypothesis of conditional independence,
which allows calculation of a p-value indicating the
probability of falsely rejecting this null hypothesis. Condi-
tional independence is assumed when the p-value is more
than the significance level � (� equals 0.15 in this study).
Once the skeleton is determined, the final network structure
is learned using a greedy hill-climbing search which is
constrained to add only an edge if it was discovered by
MMPC. The BDeu score [51] is used to guide this greedy
search. The network structure is induced using the Causal
Explorer package for Matlab,5 while the Bayesian Net
Toolbox6 is used for inference afterward.

3.5 Benchmark Classifiers

As illustrated by Fig. 1, numerous techniques other than BN
classifiers have been used to construct software fault
prediction models. As a reference, two such techniques
are included, i.e., random forests and logistic regression,
which are both implemented in the Weka toolbox [103].
These techniques are selected on the basis of illustrated
performance in software fault prediction and other domains
[7], [70].

Logistic regression is a well-known statistical technique
that fits the data to the following expression:

P ðyi ¼ 0jxiÞ ¼
1

1þ e�x0i��
; ð6Þ

where �� is a vector of unknown parameters. Note that it is
possible to reformulate a logistic regression model as a
general BN model. However, instead of using, e.g., the
empirical frequencies as parameter estimates, logistic
regression typically uses an iterative parameter estimation
procedure [104]. Further explanation on software fault
prediction models using logistic regression can be found in,
e.g., [70], [94].

Random forests is an ensemble learning schema that has
been successfully applied in software fault prediction [45],
[70]. It can be regarded as a classifier which consists of a
collection of independently induced base classifiers which
are then combined using a voting procedure. As originally
proposed by Breiman, CART decision trees are adopted as
base classifier [12]. Key in this approach is the dissimilarity
among the base classifiers, which is obtained by adopting a
bagging procedure to select the training samples of
individual base classifiers and the selection of a random
subset of attributes at each node. The latter is a parameter

which, in line with Lessmann et al., is tuned using a five-
fold stratified cross-validation approach.

3.6 Markov Blanket Feature Selection

Learning from high-dimensional data often poses consider-
able difficulties to machine learning techniques due to the
presence of irrelevant or redundant features. Moreover,
when considering more features, typically comparatively
more parameters need to be estimated, which in turn
induces additional uncertainty in these estimations [90].

Previous work on mining static code features indicated
that a single best set of features does not exist, but instead
the set of best features is highly dependent on the specific
dataset [74]. As a result, several software fault prediction
studies pass all features to the machine learning technique
and let the technique decide which features should be
selected [70], [99]. Such an approach is often feasible as
most techniques include some sort of embedded feature
selection or can be adjusted to this goal by, e.g., including a
penalty on the size of the parameters [2]. This is, however,
not the case for the Naive Bayes classifier and some of the
Augmented Naive Bayes Classifiers, which thus also
include uninformative variables.

The use of a Markov blanket-based feature selection
approach provides a natural solution to this issue. The
Markov blanket (MB) of a node y is the union of y’s parents,
y’s children, and the parents of y’s children and is the
minimal variable subset conditioned on which all other
variables are independent of y. In other words, no other
variables than those contained in the MB of y need to be
observed to predict the value of y. The concept is illustrated
in Fig. 4, where the MB of y is indicated by the shaded area.
For instance, the value of xð6Þ can be ignored when
predicting the value of y as it is the child of a parent of y
and thus is no part of the MB of y.

The HITON algorithm is used for the Markov blanket
feature selection, which adopts the same test of conditional
(in)dependence as the MMHC algorithm, the G2 measure,
and has been applied to the datasets at a significance level
of 5 and 15 percent, referred to as MB.05 and MB.15,
respectively [3]. Note that if attribute selection is performed,
it is applied prior to training and testing the classifiers.
Hence, every classifier is applied three times to each
dataset. The feature selection algorithm has been imple-
mented in the Causal Explorer package.

4 EMPIRICAL LAYOUT

4.1 Datasets

The data considered in this study stems from two
independent sources, i.e., from the NASA IV&V facility
and the open source Eclipse Foundation. Both data sources
are in the public domain, enabling researchers to validate
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Fig. 4. The Markov blanket of a classification node y.
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our findings. Note that the set of static code features is not
homogenous, including McCabe complexity, Halstead, OO,
and LOC metrics, depending on the origin of the dataset.
Notwithstanding this dissimilarity, the purpose of both
data collection efforts is to investigate the relationship
between static code features and software faults.

It should be noted that static code features are known to
be correlated; previous work examining the different static
code features, e.g., indicated that these could be grouped
into four categories [71]. A first category related to metrics
derived from flowgraphs (i.e., McCabe metrics), while a
second category contained metrics related to the size and
item count of a program. The two other categories
represented different types of Halstead metrics. This again
motivates the use of a feature selection procedure,
especially when applying techniques that do not include
some sort of embedded feature selection.

4.1.1 NASA IV&V Facility

The NASA datasets can be freely obtained directly from the
NASA Metrics Data Program (MDP) repository which is
hosted at the NASA IV&V facility website7 or from the
Promise repository.8 Recently, it was pointed out that
differences exist between the data from both sources. In this
study, eight datasets taken from the NASA MDP repository
have been preprocessed as detailed in Section 4.2 and
studied. As machine learning typically benefits from more
data, only datasets with more than 1,000 observations have
been selected, see Table 3, top panel.

Table 4 provides an overview of all available features for
each of the NASA datasets included in this study and
indicates how they relate to each other. As noted earlier,
such data can be mined directly from the source code using

several purpose-built tools. The tool selected for this task
was McCabe IQ 7.1 and it has been used for all datasets,
providing a common measurement framework. The set of
available static code features include LOC, Halstead, and
McCabe complexity metrics. The first is arguably one of the
widest used proxies for software complexity in fault
prediction studies and has been used as an approximation
of software size since the late 1960s [35]. As LOC counts
have been recognized to be dependent on the selected
programming language, a number of alternative measures
were introduced in the 1970s to quantify software complex-
ity. Two such sets of metrics are McCabe complexity
metrics and Halstead software science metrics. The first
maps a program or module to a flowchart where each node
corresponds to a block of code where the flow is sequential
and the arcs correspond to branches in the program.
Software complexity is then related to the number of
linearly independent paths through a program. Halstead
metrics take a different perspective by considering a
program or module as a sequence of tokens, i.e., a sequence
of operators and operands. Based on the counts of these
tokens, a number of derivative measures have been defined
which are sometimes referred to as “software science”
metrics [47]. Note that the projects stemming from the
NASA IV&V facility were mainly developed using proce-
dural programming, and typically only contain LOC,
Halstead, and McCabe complexity metrics. For some
projects, requirement metrics (projects “PC1,” “CM1,” and
“JM1”) [57] and class level metrics (project “KC1”) [15] have
also been collected. These additional metrics have not been
considered in this study as these have not been collected on
the same granularity level as the rest of the data.

4.1.2 Eclipse Foundation

The Eclipse platform project was founded in 2001 by IBM
with the support of a consortium of software vendors. In early
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2004, the Eclipse Foundation was instated to support the
growing Eclipse community which constitutes both indivi-
duals and companies.9 Data from three major releases
(release 2.0, 2.1, and 3.0) have been collected by the University
of Saarland on the granularity of files and packages [109]. As
fault prediction models built on a finer granularity provide
more information to developers, only file level datasets are
considered in this study. More information on the origin of
the Eclipse datasets can be found in Table 3, bottom panel.

Static code features have been collected using the built-in
Java parser of Eclipse; some features were only collected at
a finer granularity (i.e., at the granularity of methods or
classes) and were thus aggregated taking the average, total,

and maximum value of the metrics. Table 5 provides an
overview of all available features. These include LOC and
McCabe complexity metrics as well as counts on the use of
object-oriented constructs. The source code is matched with
six months of postrelease failure data from the Eclipse bug
repository [109].

4.2 Data Preprocessing

A first important step in each data mining exercise is
preprocessing the data. In order to correctly assess the
techniques discussed in Section 3, the same preprocessing
steps are applied to each of the eleven datasets. Each
observation (software module or file) in the datasets consists
of a unique ID, several static code features, and an error
count. First, the data used to learn and validate the models
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are selected and thus the ID as well as attributes exhibiting
zero variance are discarded. Moreover, observations with a
total line count of zero are deemed logically incorrect and are
removed. In the case of the NASA datasets, the error density is
also removed. The error count is discretized into a Boolean
value where 0 indicates that no errors were recorded for this
software module or file and 1 otherwise, in line with, e.g.,
[70], [74], [97], [99], [100].

As some of the Bayesian learners are unable to cope with
continuous features, a discretized version of each dataset
was constructed using the algorithm of Fayyad and Irani
[34]. This supervised discretization algorithm uses entropy
to select subintervals that are as pure as possible with
respect to the target attribute. Most techniques use the
discretized datasets; if a technique employs the continuous
data instead, it is labeled accordingly.

Finally, it should be noted that machine learning
techniques typically perform better if more data to learn
from are available. On the other hand, part of the data needs
to be put aside as an independent test set in order to
provide a realistic assessment of the performance. As can be
seen from Table 3, the smallest dataset contains 1,059
observations, while the largest contains up to 15,414
observations. Each of the datasets is randomly partitioned
into two disjoint sets, i.e., a training and test set consisting
of, respectively, 2/3 and 1/3 of the observations, using
stratified sampling in order to preserve the class distribu-
tion. To account for a potential sampling bias, this
partitioning procedure is repeated 10 times. Please note
that as a side benefit of the automated collection of the static
code features, the datasets are complete, i.e., there is no
need for missing value handling.

After performing these steps, the datasets are passed to
the learners described in Section 3 with and without first
applying the Markov blanket feature selection procedure.

4.3 Classifier Evaluation

The induced models are compared to each other in terms
of classification performance and comprehensibility. Note
that the latter is often neglected during model selection,

but is of critical importance when building software fault
prediction models in practice [36].

4.3.1 Classifier Performance

A variety of performance measures has been used to gauge
the strength of different classifiers and to select the appro-
priate model [1]. A very commonly used tool in the
performance measurement of classifiers is receiver operating
characteristic (ROC) analysis [33]. Typically, a classifier
assigns a score sðxiÞ to each instance i (i.e., each software
module or file), based on its characteristics which are
captured by xi.

10 Classification is then based on this score
by defining a threshold t, whereby instances with scores
lower (higher) than t are classified as (not) fault prone. An
ROC curve shows the fraction of the identified faulty
instances (the sensitivity) versus one minus the fraction of
the identified fault free instances (one minus the specificity)
for a varying threshold. A classifier whose ROC curve lies
above the ROC curve of a second classifier is superior, and the
point ð0; 1Þ corresponds to perfect classification.

Although ROC curves are a powerful tool for comparing
classifiers, practitioners prefer a simple numeric measure
indicating the performance over the visual comparison of
ROC curves. Therefore, single point metrics such as the
area under the ROC curve (AUC) were proposed. Let flðsÞ
be the probability density function of the scores s for the
classes l 2 f0; 1g, and FlðsÞ the corresponding cumulative
distribution function. Then, it can be shown that AUC is
defined as follows:

AUC ¼
Z 1
�1

F0ðsÞf1ðsÞds: ð7Þ

The AUC can be regarded as a measure of aggregated
classification performance as it in some sense averages
performance over all possible thresholds [39]. Moreover, the
AUC has an interesting statistical interpretation in the sense
that it is the probability that a randomly chosen positive
instance will be ranked higher than a randomly chosen
negative instance.

Although the AUC has been extensively used, it was
pointed out by Hand that the AUC is flawed as a measure
of aggregated classification performance [48]. He developed
a performance measure based on the expected minimum
misclassification loss, whereby the misclassification costs
are not exactly known but follow a probability distribution.
Assume that misclassifying a faulty instance as not fault
prone has a misclassification cost c0, whereas a fault-free
instance classified as fault-prone costs c1. Then, the
expected minimum misclassification loss is defined as

L ¼ E½b�
Z 1

0

c�0ð1� F0ðT ÞÞ þ ð1� cÞ�1F1ðT Þ½ �uðcÞdc; ð8Þ

with �0 and �1 the prior probabilities for fault-prone and
not fault-prone instances, respectively, and T the optimal
threshold t for a given value of c. Moreover, a variable
transformation for the cost parameters has been applied,
implying b ¼ c0 þ c1 and c ¼ c0=ðc0 þ c1Þ. The probability
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distribution of c (the ratio of the costs) is given by uðcÞ, and is
assumed independent from the distribution of b (the level of
the costs), leading to the expected value of b, E½b�, outside the
integral. Hand has shown that an AUC-based ranking is
equivalent to a ranking based on the expected minimum
misclassification loss for an appropriate choice of uðcÞ. The
problem is that the probability distribution implied by the
AUC measure varies with the empirical score distribution
and thus with the classifiers. However, beliefs on the likely
values of c should depend on contextual information, not on
the classification tools used. Therefore, Hand proposes the H-
measure, which takes a beta distribution with parameters �
and � for uðcÞ, and is defined by

H ¼ 1�
R 1

0 c�0ð1� F0ðT ÞÞ þ ð1� cÞ�1F1ðT Þ½ �u�;�ðcÞdc
�0

R �1

0 c � u�;�ðcÞdcþ �1

R 1
�1
ð1� cÞ � u�;�ðcÞdc

: ð9Þ

This is a normalized measure based on the expected
minimum misclassification loss, ranging from zero for a
random classifier to one for a perfect classifier. Hand gives a
number of examples which clearly illustrate how the AUC
implies cost distributions which vary between classifiers [48].

Recently, an alternative and coherent interpretation of
the AUC as a measure of aggregated classification
performance was put forward by Flach et al. [39], relaxing
the assumption made by Hand of selecting the optimal
threshold T for a given value of c. More specifically, they
showed that the AUC can be reformulated as being linearly
related to expected misclassification loss by, instead of
selecting this optimal threshold T , considering as many
thresholds as there are examples, taking a uniform dis-
tribution over the data points and setting the threshold
equal to the score of the selected instance, t ¼ sðxiÞ. The
H-measure, on the other hand, has the benefit of explicitly
balancing the losses arising from classifying fault-prone as
not fault-prone instances against the opposite type of
misclassification, an aspect the AUC does not allow for.

In this study, the performance of the classification
algorithms will be quantified using both measures. The
AUC will be reported to verify the results of other studies
and is shown to be less discriminative as the H-measure,
supporting earlier findings in the literature [70], [75]. We
also report the H-measure and the impact of varying
the parameters for the beta distribution underlying the
H-measure.

H-measure parameters. When no additional knowledge of
the likely values of c is available, Hand proposes using a
symmetric beta distribution with � ¼ � ¼ 2. As no specific
costs have been specified in the fault prediction literature,
the H-measure will be calculated with these default values.
However, depending on the context, it can be argued that
misclassifying a faulty instance as non-fault-prone is more
serious than the opposite, e.g., when considering high-risk
software. On the other hand, e.g., in open source software
development, the opposite is true: In order to keep
participants motivated, it is advised to release early and
often and thus the cost of missing defects is perhaps lower
than the cost of delays due to unnecessary testing [81]. It
can be seen from Table 3 that the data obtained from NASA
relate to high risk projects, while the Eclipse project is an
example of the latter.

In [55], the impact of different cost ratios using the
MetaCost framework of Domingos was investigated. Mis-
classification costs ranging from ðc0; c1Þ ¼ ð75; 1Þ, i.e., risk
averse, to ðc0; c1Þ ¼ ð1; 75Þ, i.e., delay averse, were selected.
A similar approach is followed in this study, allowing c0

(respectively, c1) to take discrete values from 1 to 75 while
keeping the opposite misclassification cost equal to one. As
such, the robustness of the H-measure with respect to
changes in the software development context is investi-
gated. The findings of this analysis are reported in Section 5.

4.3.2 Classifier Comprehensibility

As opposed to classifier performance, no single point
comprehensibility measure exists that is applicable to all
types of classification models. Instead, comprehensibility
can be explored from different perspectives, depending on
the application context, and, likewise, a universal definition
of comprehensibility is difficult to formulate. Typically, it is
regarded as the extent to which there exists a mental fit
between the end user and the classification model which
justifies the subjective nature of this concept. Previous work
found representation type and model complexity to be the main
drivers of this mental fit [5], [54].

All BN learners considered in this study, with the
exception of the Naive Bayes learner with kernel density
estimation, result in a model which can be represented in a
similar way, i.e., by a DAG augmented with a conditional
probability table at each node, see Fig. 2. The discriminating
aspect of the different Bayesian models lies in the complex-
ity of the network structure and the number of entries in the
probability table. It is argued by, e.g., Domingos that
smaller, less complex models are to be preferred [27]. The
complexity of the network structure of each algorithm with
and without Markov blanket feature selection is quantified
by the number of nodes and arcs in the DAG. Note that
Naive Bayes and certain Augmented Naive Bayesian
learners are unable to exclude variables from the network
structure and thus invariably contain as many nodes as
there are variables in the dataset. The aggregated size of the
probability table is measured by the network dimension-
ality. This is defined as the number of parameters required
to fully specify the joint probability distribution encoded by
the network and is calculated as

DIM ¼
Xn
j¼1

rj � 1
� �

� qj; ð10Þ

with rj being the cardinality of variable xðjÞ and

qj ¼
Y

xðj0 Þ2�xðjÞ

rj0 ; ð11Þ

with �xðjÞ the direct parent set for node xðjÞ. Note that for
Naive Bayes using a kernel density estimate, the network
dimensionality cannot be calculated in a meaningful way
and thus is excluded from this comparison.

4.4 Statistical Testing

The statistical testing framework described by Dem�sar is
adopted in analyzing the results of this study [26]. In a first
step of this procedure, the Friedman test is used to
investigate whether classification performance is influenced
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by specific factors. Two factors are of interest here, i.e., the
type of (Bayesian Network) classifier and the use of feature
selection prior to model construction. The Friedman test
can be regarded as a nonparametric alternative to a
repeated measures ANOVA to detect differences in treat-
ment across multiple test attempts. The Friedman test
statistic is defined as

�2
F ¼

12P

kðkþ 1Þ
X
m

R2
m �

kðkþ 1Þ2

4

" #
; ð12Þ

with Rm the average rank (AR) of treatment m ¼ 1; 2; . . . ; k
over P test attempts. Under the null hypothesis of no
significant differences between treatments, the Friedman
test statistic is �2

F distributed with k� 1 degrees of
freedom, at least when P and k are large enough (e.g.,
Lehman and D’Abrera specify k� P > 30 as a guideline
[69]). When comparing the results without feature selection
with those after applying MB.15 and MB.05, k equals 3 and
P equals 11� 17 ¼ 187. As the MB.05 feature selection
procedure turned out to negatively impact predictive
performance, k ¼ 17 and P ¼ 11� 2 ¼ 22 when analyzing
the impact of classifiers.

If the null hypothesis is rejected by the Friedman test, a
posthoc Nemenyi test [76] is applied to compare all
treatments to each other. The posthoc Nemenyi test is a
nonparametric alternative to the Tukey test and is defined as:

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6P

r
; ð13Þ

with critical value q� based on the Studentized range
statistic divided by

ffiffiffi
2
p

. The performance difference
between treatments is significant if their average ranks
differ by at least the Critical Difference (CD). When
assessing classifiers, an additional Bonferroni-Dunn test
[30] is applied which compares all classifiers with the single
best performing classifier, which is similar to posthoc
Nemenyi but adjusts the confidence level to control for
family-wise testing.

Also, the network dimensionality discussed in the
previous section has been assessed using the Dem�sar
framework. As explained, only for a selection of BN learners
is it possible to calculate the network dimension in a
meaningful way and thus k equals 14 and P equals 11� 2 ¼
22 in this situation.

5 RESULTS AND DISCUSSION

This section reports the results of the techniques discussed
in Section 3. The average performance and standard
deviation (indicated by the � symbol) of the 10 independent
iterations in terms of AUC and H-measure taking �ð2; 2Þ as
distribution parameters are presented in Tables 6 and 7,
respectively. The upper panel displays the results prior to
Markov blanket feature selection, while the bottom panel
shows the performance after MB feature selection at a
significance level of 15 percent. The last column of each
table displays the AR for each technique. The AR is
calculated by ranking all techniques according to their
performance on each dataset, rank 1 indicating the best
performance and rank 17 the worst. The ARs are then
obtained by averaging the ranks across all eight datasets.

The best performing technique is reported in bold and
underlined. The AR of a technique that is not significantly
different from the best performing technique at 5 percent is
tabulated in boldface font, while results significantly
different at 1 percent are displayed in italic script.
Classifiers differing at the 5 percent level but not at the
1 percent level are displayed in normal script. The
Bonferroni-Dunn test is used for these assessments.

5.1 Empirical Results

The results without MB feature selection and with MB.15
and MB.05 are first compared to each other using a
Friedman test. The outcome of this test indicated that
feature selection did have a significant impact on the results
(p-value 1:025� 10�4 in the case of AUC and 3:331� 10�16

in the case of the H-measure). Using the posthoc Bonferro-
ni-Dunn test to compare the results without input selection
with those obtained by performing the MB feature selection
procedure prior to model construction, it was found that
MB.15 did not result in significantly lower performance;
MB.05 did, however, result in significantly worse perform-
ing models. Hence, the results of MB.05 are omitted in the
remainder of this discussion.

5.1.1 Software Fault Prediction Techniques

All software fault prediction techniques are compared by first
applying a Friedman test, followed by a posthoc Nemenyi
test, as explained in Section 4.4. The Friedman test resulted in
a p-value close to zero in both cases; the p-value was 2:622�
10�21 for AUC and 2:507� 10�23 for the H-measure. The null
hypothesis of equal performance among all techniques is
thus strongly rejected and, in a next step, the posthoc
Nemenyi test assessing all pairwise differences between
techniques is performed. The outcome of this test is given in
Fig. 5. The horizontal axis in these figures corresponds to
the AR of a technique across all datasets. The techniques are
represented by a horizontal line; the more this line is
situated to the left, the better performing a technique is. The
left end of this line depicts the AR, while the length of the
line corresponds to the critical distance for a difference
between any two techniques to be significant at the 1 percent
significance level. In the case of 17 techniques and 11
datasets, this critical distance equals 5.959. The first set of
dotted and full vertical lines in the figure indicates the
critical difference at, respectively, the 5 and 1 percent
significance level with the overall best performing techni-
que. The second set of vertical lines, displayed in bold,
represents the differences with the best performing Baye-
sian Network learner. A technique is significantly out-
performed if located on the right side of the vertical line.

Recently, an alternative to the AUC as a measure of
aggregated classification performance was proposed, allow-
ing specification of a probability distribution over the
misclassification losses: the H-measure. The results of both
metrics exhibit a similar pattern as random forests is found to
be the overall best performing technique, both in terms of the
AUC and H-measure, confirming a.o. the work of Lessmann
et al. [70] and Guo et al. [45]. Furthermore, one can observe a
similar ranking across techniques, indicating the same
techniques as worst performing. One notable exception is
logistic regression (Log. Reg.); in terms of AUC, this
technique is found to be outperformed by RndFor at the

DEJAEGER ET AL.: TOWARD COMPREHENSIBLE SOFTWARE FAULT PREDICTION MODELS USING BAYESIAN NETWORK CLASSIFIERS 249



1 percent significance level, while for the H-measure, Log.
Reg. ranks second. This can be partially explained by the
leveling out effect observed for AUC, i.e., several Augmented
Naive Bayesian learners perform similarly in terms of AUC
and are thus attributed a similar ranking. Log. Reg., which
performs slightly worse in terms of AUC than these learners,
is thus ranked much lower. The fact that the rankings are
similar when no additional information on misclassification
costs is included in the H-measure is interesting.

Interestingly, when considering the AUC metric, most of
the BN learners are not significantly outperformed at the
1 percent significance level by RndFor, see Fig. 5a. However,
unlike the conclusions of Lessmann [70], who only consid-
ered AUC, it is found that the Naive Bayes learner, which is

often used in software fault prediction research, is out-
performed at the 1 percent significance level. Similar results
can be found when focusing on the H-measure; giving more
discriminative results, the Naive Bayes learner as well as a
number of augmented Naive Bayes classifiers are found to be
significantly outperformed at the 1 percent level. As such,
other BN learners which provide a more informative net-
work structure can indeed be regarded as a valid alternative
to Naive Bayes. Considering BN learners only, Tree
Augmented Naive Bayes was found to be the best perform-
ing classifier, while STAN-SB and MMHC15 are found to
perform significantly worse than TAN at the 1 percent level,
in the case of both the AUC and the H-measure. Especially,
the fact that MMHC15 scores last is noteworthy, as this BN
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TABLE 6
Comparison of Classifier Performance: Out-of-Sample AUC Performance



learner allows construction of any possible DAG as network

structure. This can be explained by the fact that MMHC15

uses conditional independence tests to determine the net-

work structure; even small amounts of noise in the dataset

can lead to incorrect conclusions reached by such tests [84].
As explained in Section 4.3, the H-measure relies on a

beta distribution characterized by two parameters which
determine the likelihood of different cost ratios. It can be
argued that this cost ratio is in fact context specific, and
distribution parameters reflecting different cost ratios
should be considered [55]. Parameter settings reflecting a
different development context have thus been adopted,
investigating the robustness of the H-measure in the context
of software fault prediction. The outcome is presented in

Fig. 6. The horizontal axis of this figure represents the
expected value of the cost ratio, while the vertical axis
corresponds to the AR. Techniques are represented by a
line; if a technique does not perform statistically worse than
the best performing technique at the 5 percent significance
level, a full line is used and a dotted line otherwise.
Bonferroni-Dunn tests are used in assessing the techniques
at each cost ratio. Note that to improve readability, only a
selection of techniques is shown, combining the best
techniques both from a comprehensibility and performance
point of view. It can be seen that RndFor remains the overall
best performing technique when the cost ratio is larger than
one, which corresponds to a risk averse development
context. When considering a delay averse context, however,
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TABLE 7
Comparison of Classifier Performance: Out-of-Sample H-Measure Performance



very different conclusions can be reached. In such a context,
Augmented Bayesian Network classifiers are found to be
best performing. A cost ratio of one seems to be pivotal in
this respect. One possible explanation for these findings lies
in the fact that BN learners are known to be biased,
exhibiting a tendency toward overconfidence in their
predictions [49]. This reaffirms earlier conclusions concern-
ing the importance of taking development context into
account in software fault prediction [55], [56].

5.1.2 Markov Blanket Feature Selection

It is known that several static code features are correlated
and, e.g., principal component analysis or factor analysis
has previously been used to reduce the number of features
[61], [71], [97]. A possible downside of such approach is a
decrease in comprehensibility as several static code features
are aggregated into a single feature. An alternative explored
by, e.g., Menzies et al. in the context of the NASA datasets is
the use of a filter approach to select the most informative
subset of features prior to model construction [74]. Catal
and Diri also considered a filter approach and compared it
to directly discarding aggregated features such as derived
Halstead measures [15]. Both confirmed the possibility of

selecting a set of most informative features from the data
without incurring a performance penalty. In the first study,
the authors were able to build fault prediction models based
on three features, while the filter employed in the more
recent study of Catal and Diri selected between three and
eight metrics prior to model construction. The MB feature
selection procedure of this study can be regarded as an
example of a filter approach. It was in some cases able to
select as little as five attributes; however, on some datasets
the MB included up to 23 features. The MB.05 filter
effectively further reduced the number of selected features,
but resulted in lowered performance. Menzies et al.
reported Halstead and LOC-based metrics to be the most
often selected features.11 Fig. 7 reports our findings hereon;
the bar chart depicts the average number of attributes
selected by the MB.15 procedure per dataset and per group
of static code features. It can be seen that in the case of the
NASA datasets, Halstead and LOC-based metrics are most
often selected by the MB.15 filter. A notable exception is the
PC5 dataset, for which McCabe complexity metrics were
found to be the second most important group. Note that this
last dataset was not included in their study. The Eclipse
datasets, containing an alternative set of static code features,
provide another picture as method level attributes are
prevalent. In all three Eclipse datasets, metrics collected at
different granularity were selected. Investigation at the level
of individual attributes reveals significant differences in
selected features between datasets. This supports the
findings of Menzies et al., who concluded that “The best
attributes to use for defect prediction vary from dataset to
dataset.” Finally, it can be argued that depending on the
data, other feature selection techniques seem more effective
than the MB procedure. This can in part be explained by the
requirement to discretize the data when considering BN
learners. Note that RndFor and some of the BN learners
investigated in this study also include embedded feature
selection, the impact of which is further discussed in the
next section.
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Fig. 5. Ranking of software fault prediction models for (a) the AUC and
(b) H-measure with �ð2; 2Þ using the posthoc Nemenyi test.

11. Note that our selection of datasets is not identical to Menzies’ study
and that minor differences exist in the grouping of static code features, see
Table 4. For example, “Percent_comments” was regarded as an LOC-based
static code feature, in line with the documentation of the NASA MDP.

Fig. 6. Robustness of the H-measure.



5.2 Comprehensibility of the Bayesian Networks

Several characteristics constitute a good software fault
prediction model, of which performance is only one
element. Model comprehensibility is also important, espe-
cially if such a model would be deployed in a real life
setting [36]. As argued by, e.g., Kotsiantis et al. [66], BN
classifiers are among the most comprehensible classifiers,

but their comprehensibility can be hampered by the
complexity of the network structure. Fig. 8 reports on this
aspect by plotting the number of nodes, arcs, and the
network dimensionality of each BN learner, both with and
without prior application of the MB feature selection
procedure. Techniques are ordered according to their
classification performance using the H-measure; a techni-
que situated above the dotted line was not found to be
significantly outperformed at the 5 percent level by RndFor,
the best performing learner.

The graphs illustrate the impact of MB feature selection on
network complexity by reducing the number of nodes and
arcs in the network and lowering the number of parameters
to be estimated, or network dimension. Similarly to the
performance assessment, a Friedman test is first carried out
to establish whether differences observed in the network
dimension are significant. As the null hypothesis of no
significant differences is strongly rejected with a p-value of
3:473� 10�49, a Bonferroni-Dunn test is performed compar-
ing the best BN learner to all others. The results are depicted
in Fig. 9 and indicate that Selective Tree Augmented Naive
Bayes using the Standard Bayesian quality measure, STAN-
SB, is the BN learner associated with the lowest network
dimension. As such, one can argue that models induced by
this learner are the simplest and most comprehensible. Naive
Bayes, MMHC15, and several Augmented Naive Bayes
learners using the Local Leave-One-out Cross Validation
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Fig. 7. Bar chart of the average number of selected attributes per
dataset and per attribute group.

Fig. 8. Comparison of Bayesian networks: comprehensibility.



quality measure to assess network fitness are found to be not

significantly more complex. Taking into account, however,
the fact that STAN-SB is outperformed by the best perform-

ing Bayesian learner, TAN, it can be argued that the use of a

local quality measure is arguably better than using the
Standard Bayesian quality measure as it results in similar

performance to TAN while resulting in networks which are
not significantly more complex than STAN-SB. More gen-

erally, one can observe that the Augmented Naive Bayes

classifiers, which provide a relaxation to the TAN assump-
tion, are able to reduce the number of nodes and arcs

compared to TAN, without a loss in predictive power.
General Bayesian Networks, which are able to adopt any

DAG as network structure, are found to be less appealing.
MMHC15, which performed significantly worse than other

BN learners, typically constructs very simple networks.

These networks are often even overly simple, containing
only a very limited set of features (nodes). The other General

Bayesian Network learner, K2, performed much better but at

the expense of very complex network structures.12

When selecting the optimal learner to construct software
fault prediction models, a tradeoff is typically made between

model comprehensibility and classification performance. It

should be noted that the techniques found to result in the
most comprehensible models are also found to be out-

performed by random forests. Hence, it can be argued that

when gaining insight into what drives software faults is of
key importance, BN classifiers offer considerable advantages

over other more opaque models. More specifically, the NB

learner as well as several Augmented Bayesian Learners
using the LOO-CV quality criterion during network con-

struction are to be recommended. An important note in this
respect is that Naive Bayes is typically easy to implement and

can be written as a sum of logs to obtain a linear model [49],

[97]. However, this learner is unable to discard uninforma-
tive attributes, which can prove important in gaining further

insight into fault prediction. On the other hand, when

classification performance is crucial, other techniques such
as random forests would seem more appropriate. As

discussed in the previous section, however, the question of

which technique results in the best predictive performance
depends on the development context.

As an example, Fig. 10 shows the network for the PC1
dataset learned by the STAND LCV_LO classifier (without
prior input selection), a technique not found to be out-
performed by the best Bayesian learner while typically not
resulting in significantly more complex networks than
STAN-SB. As one can observe, the algorithm was able to
make accurate predictions retaining only five features.
When interpreting the network, it is important to realize
that the existence of an arc does not necessarily imply
causality, but rather should be seen as (conditional)
dependence between the variables. In this network, the
presence of software faults is directly governed by CLOC
(number of commentary lines), I (Halstead content), and the
normalized cyclomatic complexity. Further correlations
between, e.g., I and the number of unique operands can
be discerned, which is plausible when considering that the
latter serves as input to calculate the first. The relations
present in the network can be helpful when for instance
issuing guidelines on software complexity to programmers.

6 CONCLUSION

Time and cost effective software development are decisive
for today’s developers and since the pioneering work from
the 1970s, several avenues to tackle problems related hereto
have been investigated. Software fault prediction can be
regarded as one piece of the solution to these issues. It is
argued by Lessmann et al. that fault prediction techniques
should not be judged on their predictive performance alone,
but that other aspects such as computational efficiency, ease
of use, and especially comprehensibility should also be paid
attention to [70].

This paper tries to answer this call by comparing
15 Bayesian network learners both in terms of the Area
Under the ROC Curve and the recently introduced
H-measure. The results of the experiments show that
Augmented Naive Bayes classifiers can yield similar or better
performance than the commonly used Naive Bayes classifier.
This additional performance, however, comes at the expense
of more complex models. Considering comprehensible
models only, Augmented Naive Bayes classifiers using the
Local Leave-One-out Cross Validation quality measure are to
be recommended. The Naive Bayes classifier, which can be
turned into a linear model, is also a valid alternative, despite
its simple network structure. General Bayesian Networks
were found to be either outperformed by other Bayesian
learners or to result in overly complex network structures. It
can be argued that networks which focus on a smaller set of
highly predictive features provide practitioners with the
means to gain insights more easily into the drivers of software
faults and, to further capitalize hereon, the use of MB feature
selection was also tested. The outcome indicates that MB is
able to reduce the number of variables while not negatively
impacting performance. However, other feature selection
approaches are possibly able to select an even smaller set of
highly predictive features.

Depending on the development context and the asso-
ciated costs of misclassifying a (non)faulty instance, other
more opaque models are found to be more discriminative.
Our findings support earlier results indicating the random
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Fig. 9. Ranking of software fault prediction models for the network
dimension using the Bonferroni-Dunn test.

12. The K2 algorithm allows limiting the number of parents for each
node, but as the objective was to test this algorithm as a GBN, this
restriction was not imposed.



forest learner to be the most appropriate to model the
presence of faults if the cost of not detecting faults outweighs
the additional testing effort. In the opposite situation,
Augmented Bayesian Network classifiers are found to be
the better choice. The question of how other techniques such
as support vector machines or neural networks perform
under these circumstances remains to be explored.

Recently, several researchers turned their attention to
another topic of interest, i.e., the inclusion of information
other than static code features into fault prediction models
such as information on intermodule relations [98] and
requirement metrics [57]. The relation to the more com-
monly used static code features remains however unclear.
Using, e.g., Bayesian network learners, important insights
into these different information sources could be gained
which is left as a topic for future research.
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