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Abstract—A predictive model is required to be accurate and comprehensible in order to inspire confidence in a business setting. Both

aspects have been assessed in a software effort estimation setting by previous studies. However, no univocal conclusion as to which

technique is the most suited has been reached. This study addresses this issue by reporting on the results of a large scale

benchmarking study. Different types of techniques are under consideration, including techniques inducing tree/rule-based models like

M5 and CART, linear models such as various types of linear regression, nonlinear models (MARS, multilayered perceptron neural

networks, radial basis function networks, and least squares support vector machines), and estimation techniques that do not explicitly

induce a model (e.g., a case-based reasoning approach). Furthermore, the aspect of feature subset selection by using a generic

backward input selection wrapper is investigated. The results are subjected to rigorous statistical testing and indicate that ordinary

least squares regression in combination with a logarithmic transformation performs best. Another key finding is that by selecting a

subset of highly predictive attributes such as project size, development, and environment related attributes, typically a significant

increase in estimation accuracy can be obtained.

Index Terms—Data mining, software effort estimation, regression.

Ç

1 INTRODUCTION

RESOURCE planning is considered a key issue in a
production environment. In the context of a software

developing company, the different resources are, among
others, computing power and personnel. In recent years,
computing power has become a subordinate resource for
software developing companies as it doubles approximately
every 18 months, thereby costing only a fraction compared
to the late 1960s. Personnel costs are, however, still an
important expense in the budget of software developing
companies. In light of this observation, proper planning of
personnel effort is a key aspect for these companies. Due to
the intangible nature of the product “software,” software
developing companies are often faced with problems
estimating the effort needed to complete a software project
[1]. There has been strong academic interest in this topic,
assisting the software developing companies in tackling the
difficulties experienced to estimate software development
effort [2]. In this field of research, the required effort to
develop a new project is estimated based on historical data
from previous projects. This information can be used by

management to improve the planning of personnel, to make
more accurate tendering bids, and to evaluate risk factors
[3]. Recently, a number of studies evaluating different
techniques have been published. The results of these studies
are not univocal and are often highly technique and data set
dependent. In this paper, an overview of the existing
literature is presented. Furthermore, 13 techniques, repre-
senting different kinds of models, are investigated. This
selection includes tree/rule-based models (M5 and CART),
linear models (ordinary least squares regression with and
without various transformations, ridge regression (RiR),
and robust regression (RoR)), nonlinear models (MARS,
least squares support vector machines, multilayered per-
ceptron neural networks (NN), radial basis function (RBF)
networks), and a lazy learning-based approach which does
not explicitly construct a prediction model, but instead tries
to find the most similar past project. Each technique is
applied to nine data sets within the domain of software
effort estimation. From a comprehensibility point of view, a
more concise model (i.e., a model with less inputs) is
preferred. Therefore, the impact of a generic backward
input selection approach is assessed.

The remainder of this paper is structured as follows:
First, Section 2 presents an overview of the literature
concerning software effort estimation. Then, in Section 3 the
different techniques employed in the study are discussed.
Section 4 reflects upon the data sets, evaluation criteria, and
the statistical validation of the study. In Section 5, we apply
the techniques as well as the generic backward input
selection schema and discuss the results. The paper is
concluded by Section 6 providing general conclusions and
topics for future research.

2 RELATED RESEARCH

In the field of software effort estimation, the effort required
to develop a new software project is estimated by taking the
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details of the new project into account. The specific project
is then compared to a historical data set (i.e., a set of past
projects) containing measurements of relevant metrics (e.g.,
size, language used, and experience of development team)
and the associated development effort.

The first approaches to estimate software development
effort were introduced in the late 1960s [4], and relied on
expert judgment. In these cases, a domain expert applies his
or her prior experience to come up with an estimation of the
needed effort. A number of different variations exist, e.g.,
Delphi expert estimation, in which several experienced
developers formulate an independent estimate and the
median of these estimates is used as the final effort
estimation [5]. While still widely used in companies, an
expert-driven approach has the disadvantage of lacking an
objective underpinning. Furthermore, the domain expert is
key to the estimation process, inducing additional risks. In
[6], an overview of the literature concerning expert
estimation was presented, concluding that “There are
situations where expert estimates are more likely to be
more accurate... Similarly, there are situations where the use
of models may reduce large situational or human biases.”

During the last 30 years, a number of formal models for
software effort estimation have been proposed such as
Cocomo [7], Cocomo II [8], SLIM [9], and Function Points
Analysis [10]. These models have some advantages, provid-
ing a formulaic underpinning of software effort estimation
[11]. Hence, these models allow for a number of analyses to
be performed upon the obtained results [7, chapter 3].
Companies applying formal models during the estimation
process often opt for a Constructive Cost Model (Cocomo
model). The Cocomo I model takes the following form:

Effort ¼ a� Sizeb
Y15

i¼1

EMi;

where a and b are two factors that can be set depending on
the details of the developing company and EMi is a set of
effort multipliers, see Table 1. As data sets typically do not
contain sufficient projects to calibrate all parameters, only a
and b are adapted to reflect the development environment
using a local calibration approach. Data for this model are
collected making use of specific questionnaires which are

filled in by the project manager. This data collection
approach require a considerable effort from the business.
Also, it should be noted that the Cocomo I model is already
somewhat outdated as, e.g., new software development
trends such as outsourcing and multiplatform development
are not taken into account by the model. A newer version of
the Cocomo model exists [8], but the data on which this
model was built is not publicly available.

More recently, formal models are being superseded by a
number of data intensive techniques originating from the
data mining literature [2]. These include various regression
techniques which result in a linear model [12], [13],
nonlinear approaches like neural networks [12], tree/rule-
based models such as CART [14], [15], and lazy learning
strategies (also referred to as case-based reasoning (CBR))
[16]. Data mining techniques typically result in objective
and analyzable formulas which are not limited to a specific
set of attributes, as is the case with formal models such as
Cocomo I. Due to these strong elements, data mining
approaches are also adopted on a regular basis in numerous
other research and business applications such as credit
scoring [17] and customer churn prediction [18]. A number
of studies have assessed the applicability of data mining
techniques to software effort estimation. However, most of
these studies evaluate only a limited number of modeling
techniques on a particular, sometimes proprietary, data set
which naturally constrains the generalizability of the
observed results. Some of these studies also lack a proper
statistical testing of the obtained results or evaluate models
on the same data as used to build the models [19].

A nonexhaustive overview of the literature concerning
the use of various machine learning approaches for soft-
ware effort estimation is presented in Table 2. This table
summarizes the applied modeling techniques, the data sets
that are used, and the empirical setup for a number of
studies. As can be seen from Table 2, a large number of
modeling techniques have been applied in search for the
most suitable technique for software effort estimation, both
in terms of accuracy and comprehensibility.

For example, Finnie et al. [12] compared Artificial Neural
Networks (ANN) and Case-Based Reasoning to Ordinary
Least Squares regression (OLS regression). It was found that
both artificial intelligence models (ANN and CBR) out-
performed OLS regression and thus can be adequately used
for software effort estimation. However, these results were
not statistically tested.

Briand et al. [14], while performing a comparison
between OLS regression, stepwise ANOVA, CART, and
CBR, found that case-based learning achieved the worst
results, while CART performed best; however, the differ-
ence was not found to be statistically significant. In a
follow-up study using the same techniques on a different
data set, different results were obtained, i.e., stepwise
ANOVA and OLS regression performed best [15].

Shepperd and Schofield [20] reported that CBR outper-
forms regression, yet in a study by Myrtveit and Stensrud
[21], these results were not confirmed. However, Shepperd
and Schofield used a different regression approach (without
a log transformation) than the latter study and opted not to
split the data set in a training and test set.
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TABLE 1
Overview of the Cocomo I Multipliers



It should be noted that the results of different studies
are often difficult to compare due to different empirical
setup and data preprocessing, possibly leading to contra-
dictory results. Hence, the issue of which modeling
technique to use for software effort estimation remains
an open research question. Another issue in software
engineering is the fact that estimation techniques are
typically applied to small data sets and/or data sets

which are not publicly available, making studies not
reproducible [22]. Additionally, studies often make com-
parisons based on only one or two data sets. Kitchenham
and Mendes [19] note that “One of the main problems
with evaluating techniques using one or two data sets is
that no one can be sure that the specific data sets were
not selected because they are the ones that favor the new
technique.”
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TABLE 2
Literature Overview of the Application of Data Mining Approaches for Software Effort Estimation



Although a large variety of techniques are available,
expert-driven estimation methods are still frequently
applied in a business setting. Evidence from other domains
suggests that both data mining and formal models could
provide more accurate estimates than expert driven estima-
tion methods. Often cited strong points of an analytical
approach are consistency (provided with the same input, a
model will always reach the same conclusion) and the fact
that such models posses the ability to correctly assess the
impact of different inputs [23]. This conjecture was,
however, not confirmed by studies in the domain of
software effort prediction [6]. Jørgensen stated that “The
use of models, either alone or in combination with expert
judgment may be particularly useful when 1) there are
situational biases that are believed to lead to a strong bias
toward overoptimism; 2) the amount of contextual informa-
tion possessed by the experts is low; and 3) the models are
calibrated to the organization using them.” [24]. Other
research confirmed that whether expert-driven methods
perform significantly better or worse than an analytical
oriented approach remains a point of debate [25], [26], [27].

3 TECHNIQUES

As mentioned in Section 2, a large number of different
techniques have been applied to the field of software effort
estimation. As the aim of the study is to assess which data
mining techniques perform best to estimate software effort,
the following techniques are considered1:

- Ordinary least squares regression.
- OLS regression with log transformation.
- OLS regression with Box Cox (BC) transformation.
- Robust regression.
- Ridge regression.
- Least median squares regression.
- MARS.
- CART.
- Model tree.
- Multilayered perceptron neural network.
- Radial basis function networks.
- Case-based reasoning.
- Least squares support vector machines.

These techniques were selected as their use has pre-
viously been illustrated in the domain of software effort
prediction and/or promising results were obtained in other
regression contexts. Due to the scale of the benchmarking
experiment, computational cost was also taken into con-
sideration in selecting the techniques, eliminating techni-
ques characterized by high-computational loads.

The following notation is used throughout the paper. A
scalar x 2 IR is denoted in normal script while a vector x 2
IRn is in boldface script. A vector is always a column vector
unless indicated otherwise. A row vector is indicated as the
transposed of the associated column vector, x0. A matrix
X 2 IRN�n is in bold capital notation. xiðjÞ is an element of

matrix X representing the value of the jth variable on the
ith observation. N is used as the number of observations in
a data set, while n represents the number of variables.

In the data sets, the target variable is effort in man-months
or an equivalent measure. The actual effort of the ith software
project is indicated as ei, while the predicted effort is
indicated as êi. In line with this notation, the task of
estimating a continuous target can be defined as follows:
Let S ¼ fðxi; eiÞgNi¼1 be a training data set containing
N observations, where xi 2 IRn represents the characteristics
of a software project and ei 2 IR is the continuous target
variable. An estimation model provides a mapping from the
instances xi to the continuous target, ei: fðxiÞ : IRn 7! êi.

In the following paragraphs, a short discussion of the
included techniques is presented. A selection of regression
techniques and data mining techniques (MARS, CART, and
MLP; cfr infra) is applied to the Desharnais data set and
illustrated in Figs. 1a, 1b, 1c, 1d, 1e, and 1f. A two
dimensional representation that plots project size (Points-
NonAdjust) against effort in man hours is used to allow for
easier representation.

3.1 OLS

Arguably one of the oldest and most widely applied
techniques for software effort estimation is Ordinary Least
Squares regression. This well-documented technique fits a
linear regression function to a data set containing a
dependent, ei, and multiple independent variables, xið1Þ
to xiðnÞ; this type of regression is also commonly referred to
as multiple regression. OLS regression assumes the follow-
ing linear model of the data:

ei ¼ x0i� þ b0 þ �i;

where x0i represents the row vector containing the values of
the ith observation, xið1Þ to xiðnÞ. � is the column vector
containing the slope parameters that are estimated by the
regression, and b0 is the intercept scalar. This intercept can
also be included in the � vector by introducing an extra
variable with a value of one for each observation. �i is the
error associated with each observation. This error term is
used to estimate the regression parameters, �, by minimiz-
ing the following objective function:

min
XN
i¼1

�2i ;

thus obtaining the following estimate for �:

�̂ ¼ ðX0XÞ�1ðX0eÞ;

with e representing the column vector containing the effort
and X an N � n matrix with the associated explanatory
variables.

3.2 Log + OLS

Typically, both dependent and independent attributes in the
field of software effort prediction can be heavily skewed,
e.g., skewnessðeÞDesharnais ¼ 1:97 and skewnessðeÞESA ¼ 4:89.
Skewness, �s, is defined as

�s ¼
�3

�3
;
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1. The techniques are implemented in Matlab, www.mathworks.com,
and Weka, http://www.cs.waikato.ac.nz/ml/weka. Additionally, open
source toolboxes were used in case of least squares support vector
machines (LS-SVMlab, http://www.esat.kuleuven.be/sista/lssvmlab) and
MARS (ARESLab, http://www.cs.rtu.lv/jekabsons/regression.html).



where �3 is the third moment of the mean and � the

standard deviation. A normal distribution has a skewness

of zero while a positive (negative) skewness indicates a

larger number of smaller (bigger) projects. By applying a

log transformation to the data, the residuals of the

regression model become more homoscedastic, and follow

more closely a normal distribution [28]. This transformation

is also used in previous studies [14], [15]. Both OLS and

Log + OLS are illustrated in Fig. 1a.

3.3 BC + OLS

The Box Cox transformation is a power transformation which

corrects for discontinuities, e.g., when the transformation

parameter, �, is zero [29]. The BC transformation is

defined as

e�i ¼

�
e�i � 1

�
�

; � 6¼ 0;

log ei; � ¼ 0:

8<
:
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Fig. 1. Comparison of machine learning techniques on the Desharnais data set. (a) OLS regression with and without log transformation, (b) MARS
and LMS. (c) and (e) The CART and MLP regression line, respectively. (d) and (f) The accompanying CART tree and neural network.



The transformation parameter is obtained by a maximum
likelihood optimization. The BC transformation is an
alternative to the log transformation serving similar goals.
A BC transformation will also resolve problems related to
nonnormality and heterogeneity of the error terms [30].

To the best of our knowledge, the BC transformation
has not been previously used in the context of software
effort estimation.

3.4 Robust Regression

RoR is an alternative to OLS regression with the advantage

of being less vulnerable to the existence of outliers in the

data [31]. RoR is an application of Iteratively Reweighted

Least Squares (IRLS) regression in which the weights !
ðtÞ
i

are iteratively set by taking the error terms of the previous

iteration, �
ðt�1Þ
i , into account.

In each iteration, RoR will minimize the following
objective function:

min
XN
i¼1

!2
i �

2
i :

From this equation, it can be easily seen that OLS regression
can be in fact considered as a special case of RoR [32].

Multiple possible weighting functions exist, the most
commonly applied being Huber’s weighting function and
Tukey’s bisquare weighting function. In this study, the
Tukey’s bisquare weighting function is used:

!bisquare ¼ ð1� �2Þ2; if j�j < 1;
0; otherwise:

�

� is the normalized error term and is computed as a
function of �̂, the estimated standard deviation of the error
terms, and a tuning constant, � , which penalizes for the
distance to the regression function.

The first iteration consists of an OLS regression since the
weights depend on the previous iteration.

RoR is a technique that has been previously applied in
the field of software effort estimation [33].

3.5 Ridge Regression

RiR is an alternative regression technique that tries to
address a potential problem with OLS in case of highly
correlated attributes. OLS regression is known to be Best
Linear Unbiased Estimator (BLUE) if a number of condi-
tions are fulfilled, e.g., the fact that X0X should be
nonsingular. In reality, however, different variables are
often highly correlated, resulting in a near singular X0X
matrix. This will result in unstable estimates in which a
small variation in e, the dependent variable, can have a
large impact on �̂.

RiR addresses this potential problem by introducing a
so-called ridge parameter, 	 [34]. The introduction of the
ridge parameter will yield the following estimator of �:

�̂	 ¼ ðX0Xþ 	InÞ�1ðX0eÞ;

where In represents the identity matrix of rank n.
To the best of our knowledge, this technique has not

been applied before within the domain of software effort
estimation.

3.6 Least Median of Squares Regression (LMS)

LMS is an alternative to robust regression with a break-
down point 
� ¼ 50% [35]. The breakdown point 
� is the
smallest percentage of incorrect data that can cause an
estimator to take on aberrant values [36]. This breakdown
point is 0 percent for all the other regression techniques
considered in this study, indicating that extreme outliers
could have a detrimental influence for these techniques. The
LMS will optimize the following objective function:

min medianð�2i Þ;

where �i is the error associated with the ith observation.
Although LMS regression is known to be inefficient in some
situations [36], this technique has been applied in different
domains. However, to the best of our knowledge, the LMS
regression has not been applied to the estimation of
software effort.

3.7 Multivariate Adaptive Regression Splines
(MARS)

MARS is a novel technique introduced by Friedman [37].
MARS is a nonlinear and nonparametric regression
technique exhibiting some interesting properties like ease
of interpretability, capability of modeling complex non-
linear relationships, and fast model construction. It also
excels at capturing interactions between variables and
therefore is a promising technique to be applied in the
domain of effort prediction. MARS has previously been
successfully applied in other domains including credit
scoring [38] and biology [39].

MARS fits the data to the following model:

ei ¼ b0 þ
XK
k¼1

bk
YL
l¼1

hlðxiðjÞÞ;

where b0 and bk are the intercept and the slope
parameter, respectively. hlðxiðjÞÞ are called hinge func-
tions and are of the form maxð0; xiðjÞ � bÞ in which b is
called a knot. It is possible to model interaction effects by
taking the product of multiple hinge functions. Hence,
this model allows for a piecewise linear function by
adding multiple hinge functions.

The model is constructed in two stages. In the first stage,
called the forward pass, MARS starts from an empty model
and constructs a large model by adding hinge functions to
overfit the data set. In the second stage, the algorithm
removes the hinge functions associated with the smallest
increase in terms of the Generalized Cross Validation (GCV)
criterion

GCVK ¼
PN

i¼1ðei � êiKÞ
2

1� CðKÞ
N

� �2
:

Here, CðKÞ represents a model complexity penalty which is
dependent on the number of hinge functions in the model,
while the numerator measures the lack of fit of a model
with K hinge functions, êiK . Both LMS and MARS are
illustrated on the Desharnais data set in Fig. 1b.

3.8 Classification and Regression Trees (CART)

CART is an algorithm that takes the well-known idea of
decision trees for classification [40] and adopts it to
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continuous targets. CART constructs a binary tree by
recursively splitting the data set until a stopping criterion
is met [41]. The splitting criterion used in this study is the
least squared deviation:

min
X
i2L

ei � eLð Þ2þ
X
i2R

ei � eRð Þ2:

The data set is split in a left node (L) and a right node (R)
in a way that the sum of the squared differences between
the observed and the average value is minimal. A
minimum of 10 observations at each terminal node is set
to halt further tree construction. In retrospect, the fully
grown tree is pruned to avoid overfitting on the training
set. Figs. 1c and 1d, respectively, present the estimation
function and the accompanying binary regression tree for
the Desharnais data set.

The good comprehensibility of regression trees can be
considered a strong point of this technique. To determine
the effort needed for a new project, it is sufficient to select
the appropriate branches based on the characteristics of the
new project. It is possible to construct an equivalent rule set
based on the obtained regression tree.

This technique has previously been applied within a
software effort prediction context where it consistently was
found to be one of the better performing techniques [14],
[15], [33], [42], [43].

3.9 M5

Introduced by Quinlan [44], the model tree technique (M5)
can be considered as an extension to CART. A model tree
will fit a linear regression to the observations at each leaf
instead of assigning a single value like CART.

The model tree algorithm used in this study is the
M5’ algorithm which is a variant of the original M5 algorithm
[45]. A binary decision tree is induced by recursively
applying the following splitting criterion, similarly to CART:

min
eL

eL þ eR
� stdevðeLÞ þ

eR
eL þ eR

� stdevðeRÞ
� �

:

Instead of taking the absolute deviations into account, as is
the case with CART, the M5’ algorithm applies a splitting
criterion based on standard deviation. After growing and
pruning the decision tree, a linear regression is fitted to the
observations at each leaf. This regression only considers
attributes selected by the different attribute conditions on
the nodes, thus resulting in a tree-based piecewise linear
model. Finally, a smoothing process is applied to compen-
sate for possible discontinuities that may occur between
adjacent linear models at the different leaves.

The use of a model tree algorithm should allow for a
more concise representation and higher accuracy compared
to CART [44].

3.10 MLP

Neural networks are a nonlinear modeling technique
inspired by the functioning of the human brain [46], [47],
[48] and have previously been applied in the context of
software effort estimation [12], [49], [50]. We further discuss
MultiLayered Perceptrons (MLPs) which are the most
commonly used type of NNs that are based upon a network
of neurons arranged in an input layer, one or more hidden

layers, and an output layer in a strictly feedforward
manner. Each neuron processes its inputs and generates

one output value via a transfer function which is trans-

mitted to the neurons in the subsequent layer. The output of

hidden neuron i is computed by processing the weighted
inputs and its bias term b

ð1Þ
i as follows:

hi ¼ f ð1Þ b
ð1Þ
i þ

Xn
j¼1

Wijxj

 !
:

W is the weight matrix whereby Wij denotes the weight

connecting input j to hidden unit i. In an analogous way,

the output of the output layer is computed as follows:

z ¼ fð2Þ bð2Þ þ
Xnh
j¼1

vjhj

 !
;

with nh the number of hidden neurons and v the weight

vector, whereby vj represents the weight connecting hidden

unit j to the output neuron. The bias term has a similar role

as the intercept in regression.
MLP neural networks with one hidden layer are universal

approximators, able to approximate any continuous function

[51]. Therefore, in this study, an MLP with one hidden layer

was implemented. The network weights W and v are trained

with the algorithm of Levenberg-Marquardt [52]. In the
hidden layer, a log sigmoid transfer function has been used,

while in the output layer, a linear transfer function is applied.

The topology of the neural network is adjusted during
training to better reflect specific data sets. In Figs. 1e and 1f,

respectively, the MLP estimation function and the accom-

panying network are given for a subset of the Desharnais

data set to increase readability. In the hidden layer, two
hidden neurons with log sigmoid transfer functions are used

for illustration purposes.

3.11 Radial Basis Function Networks (RBFN)

Radial Basis Function Networks are a special case of

artificial neural networks, rooted in the idea of biological
receptive fields [53]. An RBFN is a three-layer feedforward

network consisting of an input layer, a hidden layer

typically containing multiple neurons with radial sym-

metric gaussian transfer functions, and a linear output
layer. Due to the continuous target, a special type of RBFN

is used, called Generalized Regression Neural Networks

[54]. Within such networks, the hidden layer contains a
single neuron for each input sample presented to the

algorithm during training. The output of the hidden units is

calculated by a radial symmetric gaussian transfer function,

radbasðxiÞ:

radbasðxiÞ ¼ e�kxk�xik�b
2
;

where xk is the position of the kth observation in the input
space, k:k the euclidean distance between two points, and b

is a bias term. Hence, each kth neuron has its own receptive

field in the input domain, a region centered on xk with size
proportional to the bias term, b. The final effort estimates

are obtained by multiplying the output of the hidden units

with the vector consisting of the targets associated with the
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cluster centroids ck, and then inputting this result into a

linear transfer function.
The applicability of RBFN has recently been illustrated

within the domain of software effort estimation [55], [56].

3.12 CBR

CBR is a technique that works similarly to the way in which

an expert typically estimates software effort; it searches for

the most similar cases and the effort is derived based on

these retrieved cases. This technique is commonly used in

software effort estimation, e.g., [12], [16], [20], [43], [49].

Typically, the euclidean distance with rescaled attributes is

used in retrieving the most similar case:

Distanceðxi;xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðxiðkÞ � xjðkÞÞ2
s

:

The rescaling is done by subtracting the minimum and

dividing by the difference between maximum and mini-

mum of an attribute. Only relevant attributes should be

taken into account when calculating the euclidean distance;

in line with [12], [14], only attributes characterized by

significant differences in effort are selected as found by

applying a t-test in case of binary attributes and an

ANOVA test otherwise. In both cases, only attributes with

significant differences in effort at � ¼ 95% are retained

during effort estimation. A final issue is the number of

analogies to consider. In some studies, it is argued that no

significant differences are found when retrieving more than

one case, while other studies report a decrease in accuracy

if more cases are retrieved [57]. Therefore, multiple

alternatives are considered (k ¼ 1, k ¼ 2, k ¼ 3, and

k ¼ 5). The final effort is determined by taking the average

effort of the retrieved cases.

3.13 Least Squares SVM (LS-SVM)

SVM is a nonlinear machine learning technique based on
recent advances in statistical learning theory [58]. SVMs have
recently become a popular machine learning technique,
suited both for classification and regression. A key
characteristic of SVM is the mapping of the input space to
a higher dimensional feature space. This mapping allows
for an easier construction of linear regression functions.
LS-SVM for regression is a variant of SVM in which the goal
is to find a linear function fðxiÞ in a higher dimensional
feature space minimizing the squared error r2

i [59]. The
function fðxiÞ takes the following form:

fðxiÞ ¼ <w; �ðxiÞ>þ b;

with w 2 IRn the weight vector in the input space, � a

nonlinear function providing the mapping from the input

space to a higher (possibly infinite) dimensional feature

space, and b 2 IR a bias parameter. The function fðxiÞ is

determined by solving the following convex optimization

problem:

minimize
1

2
wTwþ � 1

2

XN
i¼1

r2
i

subject to ei ¼ wT�ðxiÞ þ bþ ri; i ¼ 1 . . .N:

As can be seen from the objective function, a tradeoff is
made between the minimization of the squared error, r2

i ,
and minimizing the dot product of the weight vectors,
wTw, by an optimization parameter �. The Lagrangian of
the problem takes the following form:

1

2
wTwþ � 1

2

XN
i¼1

r2
i �

XN
i¼1

�ifwT�ðxiÞ þ bþ ri � eig;

where �i 2 IR are the Lagrange multipliers. The problem is
reformulated in its dual form giving way to the following
equation:

ei ¼
XN
i¼1

�i < �ðxÞ; �ðxiÞ > þ b:

At this point, the kernel function is applied which will
compute the dot product in the higher dimensional
feature space by using the original attribute set. In this
study, a Radial Basis Function kernel was used since it
was previously found to be a good choice in case of LS-
SVMs [60]:

Kðx;xiÞ ¼ e�
kx�xik2

2�2 ;

where � is a kernel parameter determining the bandwidth
of the kernel. It has been shown that the bandwidth is an
important parameter of the generalization behavior of a
kernel method [61].

SVMs are a popular technique which has been applied
in various domains. Since this is a rather recent machine
learning technique, its suitability in the domain of soft-
ware effort estimation has only been studied to a limited
extent [62].

4 EMPIRICAL SETUP

4.1 Data Sets

Nine data sets from companies of different industrial
sectors are used to assess the techniques discussed in
Section 3. While other software effort estimation data sets
exist in the public domain (e.g., a study of Mair et al.
identified 31 such data sets [63]), the majority of these data
sets are rather small. The overview of Mair et al. contained
only three data sets pertaining to over 50 projects, the
Coc81, CSC, and Desharnais data sets. The CSC data set,
however, focuses on differences between estimation ap-
proaches instead of project characteristics and is therefore
not included in this study. Investigating recent literature,
three other data sets in the public domain were identified,
the Cocnasa, Maxwell, and USP05 data sets. Furthermore,
researchers having access to data sets pertaining to over
150 projects were contacted, as well as several companies
involved in effort estimation. As such, access to four
additional software effort estimation data sets was obtained
(the Experience, ESA, ISBSG, and Euroclear data sets).

The data sets typically contain a unique set of attributes
that can be categorized as follows:

. Size attributes are attributes that contain information
concerning the size of the software project. This
information can be provided as Lines Of Code
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(LOC), Function Points, or some other measure. Size
related variables are often considered to be impor-
tant attributes to estimate effort [7].

. Environment information contains background infor-
mation regarding the development team, the com-
pany, the project itself (e.g., the number of

developers involved and their experience), and the
sector of the developing company.

. Project data consist of attributes that relate to the
specific purpose of the project and the project type.
Also attributes concerning specific project require-
ments are placed in this category.
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. Development related variables contain information
about managerial aspects and/or technical aspects
of the developed software projects, such as the
programming language or type of database system
that was used during development.

Table 3 provides an overview of the data sets, including

number of attributes, observations, and previous use. The

skewness and kurtosis as well as the minimum, mean and

maximum of effort and size in Klocs or FP is given. A

histogram of effort is provided for each data set in the center

while, on the right-hand side, the partitioning of the different

attributes across the four attribute types is shown. From this

overview, the inherent difficulties to construct software

effort estimation models become apparent. Data sets

typically are strongly positively skewed indicating many

“small” projects and a limited number of “large” outliers.

Also, data sets within this domain are typically small as

compared to other domains. Most data mining techniques

benefit from having more observations to learn from. Table 4

further details a number of basic characteristics of the data

sets including whether the data were collected from a single

or multiple companies, the application domain of the

software, the size measure used, and the years during which

the information was collected.
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4.2 Data Preprocessing

The first important step in each data mining exercise is data
preprocessing. In order to correctly assess the techniques
discussed in Section 3, the same data preprocessing steps
are applied to each of the nine data sets.

First, starting from the raw data set, the data used to
learn and validate the models are selected; only attributes
that are known at the moment when the effort is estimated
are taken into account (e.g., duration or cost are not known
and therefore not included in the data set). An implicit
assumption made in most software effort estimation studies
is that size-related attributes are taken for granted. How-
ever, in reality such attributes are often a result of an
estimation process on their own. This remark is also echoed,
e.g., by Jørgensen, stating that “a program module’s size
and degree of complexity...are typically based on expert
judgment” [24]. However, this assumption is made (but
rarely mentioned) not only in this study, but also in almost
all studies in the domain of software effort estimation.
Furthermore, some of the data sets include an indication
about the reliability of observations. Taking this information
into account, the observations with a higher possibility of
being incorrect are discarded. In Table 3, an overview of the
number of retained attributes and observations is provided.

Second, since some of the techniques are unable to cope
with missing data (e.g., OLS regression), an attribute is
removed if more than 25 percent of the attribute values are
missing. Otherwise, for continuous attributes, median
imputation is applied in line with [78]. In case of categorical
attributes, a missing value flag is created if more than
15 percent of the values are missing; else, the observations
associated with the missing value are removed from the
data set. Since missing values often occur in the same
observations, the number of discarded projects turned out
to be low. In the Appendix, the data preprocessing is
illustrated for the ISBSG data set as this is the largest data
set, both in number of attributes and number of projects.

Finally, coarse classification with k-means clustering is
applied in case of categorical attributes with more than
eight different categories (excluding the missing value flag).
Afterward, the categorical variables are transformed into

binary variables using dummy encoding. No other pre-
processing steps are performed on the data.

Data mining techniques typically perform better if a
larger training set is available. On the other hand, a part of
the data needs to be put aside as an independent test set in
order to provide a realistic assessment of the performance.
As can be seen from Table 3, the smallest data set contains
62 observations, while the largest contains up to 1,160
observations. In case of data sets containing more than 100
observations, hold out splitting is applied; otherwise, leave
one out cross validation (LOOCV) is used.

In case of holdout splitting, the initial data set is randomly
partitioned into two disjoint sets, i.e., a training and test set
consisting of, respectively, 2/3 and 1/3 of the observations.
The model is induced on the training set while the
independent test set is used to evaluate the performance.
To account for a potential bias induced by the holdout split,
this procedure is repeated 20 times. It is argued by Kirsopp
and Shepperd [79] that “ideally more than 20 sets should be
deployed.” With repeatable sampling, a confidence interval
indicating the reliability of the performance estimate can be
constructed. After empirical investigation and in line with
[79], 20 random holdout samples were taken in case of data
sets containing more than 100 observations. Further sam-
pling typically did not yield a significant reduction in
variation, as can be seen from Fig. 2.

In case of LOOCV, iteratively one observation is selected
as the test set while the remaining observations are used as
the training set. The total error is found by summing the
errors on the test set (or taking the average of the errors
depending on the evaluation metric) in each step. The
LOOCV approach is computationally more expensive since
as many models need to be estimated as there are
observations in the data set, but guarantees that, as much
as possible, observations are used to learn from [80]. This
approach has previously been adopted in the field of
software effort prediction, see, e.g., [20], [64], [81]. Note that
there still is a discussion on whether k-fold cross validation
or LOOCV is best; however, Myrtveit et al. note that
LOOCV is more in line with real world situations [81].

4.3 Technique Setup

Several of the estimation techniques discussed in Section 3
have adjustable parameters, also referred to as hyperpara-
meters, which enable a model to be adapted to a specific
problem. When appropriate, default values are used based
on previous empirical studies and evaluations reported in
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the literature. If no generally accepted default parameter
values exist, then these parameters are tuned using a grid-
search procedure. In other words, a set of candidate
parameter values is defined and all possible combinations
are evaluated by means of a split-sample setup. The models
are induced on 2/3 of the training data and the remainder is
used as a validation set. The performance of the models for
a range of parameter values is assessed using this validation
set. The parameter values resulting in the best performance
are selected and a final model is trained on the full training
set. The MdMRE performance measure (see Section 4.5) was
selected for hyperparameter tuning since this measure is a
generally accepted metric for software effort estimation as it
is outlier resistant.

4.4 Input Selection

A second factor impacting the performance of software effort
prediction models is input selection. Typically, similar, or
occasionally better performance can be obtained by inducing
models from a data set containing less, but highly relevant
attributes, yielding a more concise and comprehensible
model [82]. Therefore, a generic input selection procedure
is applied in which a subset of highly predictive attributes is
selected, discarding irrelevant variables.

A wrapper approach is adopted which evaluates
candidate attribute subsets by executing a selected learning
algorithm on a reduced data set. Starting with the original
data set, an iterative backward input selection procedure is
adopted in which, in each step, as many models are
induced as there are variables left. Each of these models
include all the remaining variables except one. The
performance of the estimated models is compared, and
the best performing attribute subset is selected. This
procedure is repeated until only one attribute remains in
the data set. This approach is computationally expensive
since, in each iteration, as many models as remaining
attributes need to be estimated. The performance of the
sequentially best models with a decreasing number of
attributes is plotted, see Fig. 4. In the beginning, the
performance typically remains stable or even increases
while discarding attributes [72]. When the size of the
attribute set drops below a certain number of attributes,
the performance of the model drops sharply. The model at
the elbow point is considered to incorporate the optimal
trade-off between maximizing the performance and mini-
mizing the number of attributes. The performance at this
elbow point is reported in Section 5.

Algorithm 1 provides a formal description of the
followed procedure in case of data sets containing more
than 100 observations. Otherwise, a cross validation-based
alternative is adopted.

Algorithm 1. Pseudocode of backward input selection

1: Let Dntr;l and Dnte;l be the lth (l ¼ 1 . . . 20) random holdout

split of a data set with n attributes and N observations

2: for j ¼ n to 1 do

3: for k ¼ 1 to j do

4: Exclude attribute k from data sets Djtr;l and Djte;l
5: for l ¼ 1 to 20 do

6: Induce model from Djtr;l
7: Calculate model performance Pj

k;l on Djte;l
8: end for

9: Calculate mean performance over all holdout
splits: Pj

k ¼ 1
20

P20
l¼1 P

j
k;l

10: end for

11: Remove attribute x0ðmÞ from Dj where

Pj
m ¼ maxkðPj

k) resulting in Dj�1

12: end for

13: Plot(j; P j
m) with j ¼ 1; . . . ; n

14: Select elbow point with optimal tradeoff between

performance and number of variables

4.5 Evaluation Criteria

A key question to any estimation method is whether the
predictions are accurate; the difference between the actual
effort, ei, and the predicted effort, êi, should be as small as
possible. Large deviations between ei and êi will have a
significant impact on the costs related to the development
of software. A criterion often used in the literature on cost
estimation models is the Magnitude of Relative Error
(MRE) [83]. The MRE is calculated for each observation
and is defined as

MREi ¼
jei � êij
ei

:

Based on the MRE criterion, a number of accuracy measures
are defined. The MRE value of individual predictions can
be averaged, resulting in the Mean MRE (MMRE):

MMRE ¼ 100

N

XN
i¼1

jei � êij
ei

:

Although it is a commonly used measure (see also Table 2),
the MMRE can be highly affected by outliers [84]. To address
this shortcoming, the MdMRE metric has been proposed
which is the median of all MREs. This metric can be
considered more robust to outliers, and is therefore preferred
over the MMRE:

MdMRE ¼ 100�medianðMREÞ:

A complementary accuracy measure is PredL, the fraction
of observations for which the predicted effort, êi, falls
within L percent of the actual effort, ei:

PredL ¼
100

N

XN
i¼1

1; if MREi � L
100 ;

0; otherwise:

�

Typically, the Pred25 measure is considered, looking at the
percentage of predictions that are within 25 percent of the
actual values.

The Pred25 can take a value between 0 and 100 percent,
while the MdMRE can take any positive value. It is often
difficult to compare results across different studies due to
differences in empirical setup and data preprocessing, but a
typical Pred25 lies in the range of 10 to 60 percent, while the
MdMRE typically attains values between 30 and 100 percent.

Besides Pred25 and MdMRE, we also compared the
techniques using a correlation metric. As the data are not
normally distributed (see also Table 3), a rank correlation
measure is adopted, which is a measure of the monotonic
relationship between ei and êi. More specifically, the
Spearman’s rank correlation coefficient, rs, is used since
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this nonparametric correlation coefficient does not assume a
normal distribution of the underlying data [28]. The
Spearman’s rank correlation takes a value between �1 and
þ1 with þ1 (�1) indicating a perfect positive (negative)
monotonic relationship between the actual values and the
predicted values. The Spearman’s rank correlation is
defined as

rs ¼ 1� 6
PN

i¼1 d
2
i

NðN2 � 1Þ ;

whereby di represents the difference between the ordinal
ranks assigned to each of the observations. In case of equal
ranks, the average rank is assigned.

Please note that there still is no consensus of opinion as
to which metric is the most suited within the field of
software effort prediction [81]. Earlier studies pointed out
that MRE-based metrics, and especially the MMRE, some-
times prefer models that underestimate to a model that
estimates the correct value [85]. A number of other metrics
have been proposed in recent literature, such as MER-based
metrics [86], coefficient of determination (R2), mean
absolute residual, standard deviation of errors, as well as
a number of alternatives like the logarithmic standard
deviation [81], [87]. None of these other metrics, however,
have gained wide acceptance because they suffer from a
flaw or limitation. For example, Foss et al. note that both the
standard deviation as well as the logarithmic standard
deviation make certain assumptions as to whether the data
is homo or heteroscedastic [87]. R2 and the mean absolute
residual are, on the other hand, known to be outlier
sensitive [21]. While the rank reversal problem (a better
performing model mistakenly found to be less accurate)
cannot be ruled out, we believe our selection of metrics
(MdMRE, Pred25, and rs) and the empirical setup of the
study to be robust in this respect.

4.6 Statistical Tests

A procedure described in Dems̆ar [88] is followed to
statistically test the results of the benchmarking experiment.
In the first step of this procedure the Friedman test [89] is
performed, which is a nonparametric equivalent of the well-
known ANalysis Of Variance (ANOVA) test. The null
hypothesis of the Friedman test states that all techniques
perform equivalent. The test statistic is defined as

2
F ¼

12P

kðkþ 1Þ
Xk
j¼1

R2
j �

kðkþ 1Þ2

4

" #
;

with Rj the average rank of algorithm j ¼ 1; 2 . . . k over P
data sets. Under the null hypothesis, the Friedman test
statistic is distributed according to 2

F with k� 1 degrees of
freedom, at least when P and k are big enough (P > 10 and
k > 5). Otherwise, exact critical values are used based on an
adjusted Fisher z-distribution. When comparing the results
with input selection to the results without input selection, k
equals 2 and P equals 9.

If the null hypothesis of equivalent performing techni-
ques is rejected by the Friedman test, a posthoc Bonferroni-
Dunn test [90] is applied to compare the models. The

posthoc Bonferroni-Dunn test is a nonparametric alternative
of the Tukey test and is defined as

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6P

r
;

with critical value q� based on the Studentized range
statistic divided by

ffiffiffi
2
p

, and an additional Bonferroni
correction by dividing the confidence level � by the number
of comparisons made, ðk� 1Þ, to control for family wise
testing. This results in a lower confidence level and thus in
higher power. The difference in performance of the best
performing technique and other techniques is significant if
the corresponding average ranks (AR) differ by at least the
Critical Distance (CD).

The previous tests are performed in order to compare the
results across the different data sets. Additionally, to
compare the performance of two models on a single data
set, the nonparametric Wilcoxon Matched Pairs test [91] (in
case of the MdMRE) and the parametric t-test [28] (in case of
Pred25 and correlation) are performed. The Wilcoxon
Matched Pairs test compares the ranks for the positive
and negative differences in performance of two models, and
is defined as

min
X
di>0

RðdiÞ þ
1

2

X
di¼0

RðdiÞ;
X
di<0

RðdiÞ þ
1

2

X
di¼0

RðdiÞ
 !

;

with RðdiÞ the rank of the difference in performance
between two models, ignoring signs. This test statistic
follows approximately a standard normal distribution. The
t-test is a general statistical test which is typically used to
assess the difference between two responses. Under the null
hypothesis, this test statistic follows a Student t-distribution.

5 RESULTS

This section reports on the results of the techniques
discussed in Section 3. The results both with and without
application of the backward input selection procedure, as
explained in Section 4.4, are provided in Tables 5, 6, and 7,
respectively, for the MdMRE, Pred25, and Spearman’s rank
correlation. The top panels show the results without
backward input selection and the bottom panels with
backward input selection. The last column of each table
displays the Average Ranks for the different techniques.
The techniques are ranked according to their performance
on each data set, rank 1 indicating the best performance and
rank 16 the worst. The AR are then calculated by averaging
the ranks across the different data sets.

The best performing technique is reported in bold and
underlined. Results that are not significantly different from
the best performing technique at 95 percent are tabulated in
boldface font, while results significantly different at
99 percent are displayed in italic script. Results significant
at the 95 percent level but not at the 99 percent level are
displayed in normal script.

5.1 Techniques

The results of the different modeling techniques are
compared by first applying a Friedman test, followed by a
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Bonferroni-Dunn test, as explained in Section 4.6. The
Friedman test resulted in a p-value close to zero (p-values
between 0.0000 and 0.0002) indicating the existence of
significant differences across the applied techniques in all
three cases (MdMRE, Pred25, and rs). In a next step, the

Bonferroni-Dunn test to compare the performance of all
the models with the best performing model is applied. The
results are plotted in Fig. 3. The horizontal axis in these
figures corresponds to the average rank of a technique across
the different data sets. The techniques are represented by a
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horizontal line; the more this line is situated to the left,
the better performing a technique is. The left end of this line
depicts the average ranking, while the length of the line
corresponds to the critical distance for a difference between
any technique and the best performing technique to be
significant at the 99 percent confidence level. In case of
16 techniques and 9 data sets, this critical distance is 7.0829.
The dotted, dashed and full vertical lines in the figures
indicate the critical difference at, respectively, the 90, 95, and
99 percent confidence level. A technique is significantly
outperformed by the best technique if it is located at the right
side of the vertical line.

Data sets in the domain of software effort estimation
have specific characteristics [92]. They often have a limited
number of observations, are affected by multicollinearity,
and are known to be positively skewed and to contain
outliers. Different techniques (both linear and nonlinear
models, tree/rule induction techniques and case-based
reasoning) have been applied in this study that cope with
these characteristics in different ways.

It can be seen from Tables 5, 6, and 7 that ordinary least
squares regression with logarithmic transformation
(Log + OLS) is the overall best performing technique.
However, a number of other techniques including least
median squares regression, ordinary least squares regres-
sion with Box Cox transformation, and CART, are not
significantly outperformed by Log + OLS, see Fig. 3. There
are a few notable exceptions, such as the Euroclear data set
(all three performance measures), the USP05 data set (in
case of MdMRE and Pred25), and both the Desharnais as
well as the Maxwell data set (only for Pred25). The good
performance of Log + OLS can be attributed to the fact that

such a transformation typically results in a distribution
which better resembles a normal distribution. The range of
possible values is also reduced thus limiting the number of
outliers. Applying a Jarque-Bera test for normality on the
log transformed data, it was found that in all but three cases
(USP05, Euroclear, and ISBSG), the null hypothesis of
normality could not be rejected at � ¼ 5%. Related to the
normality of the distribution is the number of extreme
values or outliers. For instance, if an outlier is defined as an
observation at a distance of more than 1.5 times the
interquartile range of either the first or the third quartile,
applying the logarithmic transformation removes all out-
liers in case of both the Cocnasa and the Coc81 data sets. In
case of the ISBSG, Experience, and ESA data sets, less than
2 percent of the observations can be regarded as outliers
after applying a log transformation. In case of the USP05
data set, such transformation was less able to reduce the
number of outliers as still 23 percent of the observations are
outliers. For the other data sets, the fraction of outliers was
reduced to below 7 percent of all data.

The aspect of multicollinearity can be quantified using
the Variance Inflation Factor (VIF), which is defined as

V IFj ¼
1

1�R2
j

;

with R2
j the coefficient of determination obtained by

regressing xj on all other independent attributes. A value
higher than 5 is typically considered to be an indication of
multicollinearity. Most data sets are characterized by
limited multicollinearity; only Desharnais, USP05, ISBSG,
and Euroclear data sets had a VIF higher than 5 for over
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50 percent of their attributes. Still, it can be remarked that in

these cases, ridge regression, which is specifically designed

to cope with multicollinearity, did not score particularly

well. A possible explanation is that the regression models

did not consider all attributes concurrently but instead used

a stepwise selection procedure.
Finally, taking the number of observations into account,

one would expect nonlinear techniques such as SVM, RBFN,

and MLP to perform better in case of larger data sets.

However, even in case of the largest data set (ISBSG), state-of-
the-art nonlinear techniques did not perform particularly
well. While LS-SVM did not perform statistically worse than
Log + OLS, both MLP and RBFN were found to be out-
performed. Both tree/rule induction techniques (CART and
M5) were not statistically outperformed by Log + OLS. A
possible explanation is that MLP, LS-SVM, and RBFN take
all attributes jointly into account while other techniques
consider only one attribute at the time. Hence, these other
techniques are less affected by the sparseness of the data
sets. Note that a total of 1,160 observations is not large
compared to a number of other domains [17].

It should be noted that different performance metrics
measure different properties of the distribution of êi [86],
and thus could give inconsistent results if they are used to
evaluate alternative prediction models. Similar observations
can be made in other studies that used multiple perfor-
mance metrics, e.g., [21], [57].

The Pred25 metric favors techniques that are generally
accurate (e.g., fall within 25 percent of the actual value)
and occasionally widely inaccurate. The MdMRE is an
analogous measure as it is also outlier resistant. Both can
therefore be considered to be measures benefiting from
properly calibrated models. This can be seen by the
similar results for both the Pred25 and the MdMRE, see
Figs. 3a and 3b. The results for the Spearman’s rank
correlation are slightly more deviant since, for instance,
RiR scores third and model trees (M5) fourth, see Fig. 3c.
The best and worst performing techniques are, however,
similar. The Spearman’s rank correlation is a measure of
monotonic relationship between the actual and the
predicted values and is therefore insensitive to the precise
calibration of the models.

Focusing on the results in terms of MdMRE, cfr. Table 5, it
can be seen that Log + OLS is the best performing technique
as it is ranked first in seven of nine cases. Hence, the best
average rank is attributed to Log + OLS, followed by LMS,
BC + OLS, CART, various implementations of CBR, and
MARS, none of which is significantly outperformed at the
95 percent significance level. The excellent results of various
implementations of regression allow to build accurate and
comprehensible software effort estimation models, which
can be checked against prior domain knowledge. These
findings are consistent with the studies of Briand et al. [14],
[15], who found that OLS is a good performing technique on
previous versions of both Experience and ESA data sets.
From a business perspective, the aspects of understand-
ability and trust are important, thus techniques resulting in
comprehensible and justifiable models (i.e., are in line with
generally accepted domain knowledge) are preferred [93].
The good result of CART, which is not outperformed by the
best performing technique at the 95 percent significance
level, is interesting since CART allows us to induce easy to
understand piecewise linear prediction functions, and
permits verifying whether the learned model is in line with
prior domain knowledge, see Fig. 1d. Note, however, that
models occasionally would need to be recalibrated on newly
collected data, as relationships between attributes can
change over time [19]. The fact that multiple techniques
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Fig. 3. Ranking of software effort estimation models without backward
input selection for (a) MdMRE, (b) Pred25, and (c) Spearman’s rank
correlation. The dotted vertical line represents the 90 percent
significance level, the dashed line the 95 percent significance level,
and the full line the 99 percent significance level. (a) Plot of the
Bonferroni-Dunn test for MdMRE, (b) plot of the Bonferroni-Dunn test for
Pred25, (c) plot of the Bonferroni-Dunn test for Spearman’s rank
correlation.



perform similar is in line with previous benchmarking
studies in related domains like software fault prediction [94].

5.1.1 Cocomo

A comparison can be made between formal models such as
Cocomo and data mining techniques. However, as indicated
in Section 2, applying Cocomo requires a data set to be in a
suitable format. Hence, only two data sets qualify for this
comparison (the Coc81 and Cocnasa data sets). Similarly to
data mining techniques which are typically tuned to better fit
the underlying problem area, the coefficient a and the
exponent b of the Cocomo model can be adjusted [7,
chapter 29]. This requires the use of a separate training and
test sample. Again, the same leave-one-out approach is
followed to allow for better comparison to the other results,
tuning both parameters on the complete data set minus one
observation. The calibrated model is then used to estimate the
effort of the test observation. Table 8 shows the result of this
experiment. Comparing the Cocomo results to other data
mining techniques shows that Cocomo yields similar results
as regression with logarithmic transformation, which was
previously found to be the best technique in both cases. Bold
font indicates the best performing technique; no statistical
significant differences were found by comparing the results
between Cocomo and Log + OLS. Analogous results are to be
expected as a Cocomo model is similar in nature to a
regression model with logarithmic transformation.

It is interesting to note that the performance of Cocomo
on the Coc81 data set can be partially attributed to the way
the Cocomo model was constructed; the original Cocomo
model was built and calibrated (including the precise
values for each of the effort multipliers) on 56 of the
63 observations, with the (independent) test set consisting
of 7 observations [7, chapter 29].

It should be noted that not all attributes are equally
important in estimating software effort. Therefore, in the
next section, the results of a backward input selection
procedure are discussed.

5.2 Backward Input Selection

The lower panels of Tables 5, 6, and 7 show the results of
the generic backward input selection procedure. A Fried-
man test to compare the results with backward input
selection and without backward input selection is per-
formed (in this case is k equals 2 and P equals 9), yielding a
p-value close to zero (p-value < 0:02 in all three cases). This
indicates that on aggregate applying input selection yields
significantly higher performance. While this result might
seem counterintuitive at first sight since information on
certain attributes is removed from the data set, it makes
sense that learning from a smaller data set, containing a
limited set of highly predictive attributes, is easier than

learning from a noisy data set containing many redundant
and/or irrelevant attributes. The resulting models with
input selection will also be more stable since potential
collinearity between attributes will be reduced. Moreover, a
model containing less attributes is generally preferred over
a model with more attributes since a more concise model is
easier to interpret. This finding is a confirmation of
previous research, e.g., the work of Chen et al. [72], which
found that a higher accuracy could be achieved using a
wrapper approach in case of Cocomo, and the findings of
Azzeh et al. [95], who found similar results in case of CBR
on the Desharnais and the ISBSG data set. These findings
were also confirmed by Li et al. [74], using a mutual
information filter approach on the Desharnais and the
Maxwell data set. Fig. 4 plots a typical result of the
backward input selection procedure which is exemplary for
most techniques and data sets. On the horizontal axis, the
number of variables remaining in the model are given,
while on the vertical axis, the performance measured in
MdMRE is provided. The number of remaining attributes is
selected by identifying the elbow point in the performance
evolution of the different techniques. Fig. 5 provides box
plots of the number of selected attributes. In each box plot,
the central line indicates the median number of selected
attributes, while the edges of the box represent the 25th and
the 75th percentiles for each technique. The whiskers extend
to the most extreme numbers of selected attributes that are
not considered to be outliers. Outliers, finally, are repre-
sented by crosses.

5.2.1 Technique Evaluation

The same statistical procedure is followed as in Section 5.1.
The results of the Friedman test indicate the existence of
significant differences between techniques (p-values be-
tween 0.0000 and 0.0066). Subsequently, Bonferroni-Dunn
tests are applied. The results of these tests are plotted in Fig. 6.
From these plots, it can be concluded that in all three cases the
best performing technique is again Log + OLS.

Analogous to the case without input selection, the results
from both MdMRE and Pred25 are similar. The best
performing technique is Log + OLS, followed closely by a
number of other techniques including LMS, BC + OLS,
MARS, LS-SVM, and various implementations of CBR.
Again, more deviant results can be observed in case of
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Fig. 4. Performance evolution of the input selection procedure for CART
applied on the ISBSG data set.

TABLE 8
Results of the Cocomo Models



Spearman’s rank correlation, although the best performing
technique is similar to both other metrics. Fig. 8 provides an
example of an OLS + Log model after application of the
generic backward input selection procedure on both the
Experience and the ESA data set. An advantage of
regression models is the possibility of verifying whether
the model is in line with domain knowledge. For instance, it
can be anticipated that larger projects require more effort,
and thus a positive coefficient is expected. Similarly, in case
of more programming experience, a lower effort is required
and thus a negative coefficient is expected.

While the Friedman test indicates that, on average, the
results are better with input selection, analogous conclu-
sions can be drawn to which techniques are more or less
suited for software effort estimation. Log + OLS is again
overall the best performing technique, while a number of
nonlinear techniques such as RBFN are less able to provide
good estimations. Whether a specific technique on a specific
data set benefits from selecting a subset of the data needs to
be verified empirically.

5.2.2 Selected Attributes

It can be seen from Fig. 5 that the number of selected
attributes by the different techniques is rather low, typically
ranging from 2 to 10. This means that a surprisingly small
number of attributes suffices to construct an effective
software effort estimation model. Hence, the largest
performance increase can be expected from improving the

quality of data, instead of collecting more attributes of low-

predictive value. Data quality is an important issue in the

context of any data mining task [96], [97].
In Section 4.1, four attribute types were identified that

are present in the software effort estimation data sets: size,

environment, project, and development. As a result of the

input selection procedure, it is possible to identify the most

important attribute types in the data sets, see Fig. 7. Size,

development, and environment are considered to be

392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

Fig. 5. Boxplot of the number of attributes selected by the different
techniques. (a) Boxplots of RiR, M5, LMS, OLS, BC + OLS, Log + OLS,
CART, and MARS, (b) Boxplots of RoR, LS-SVM, MLP, CBR k ¼ 1,
CBR k ¼ 2, CBR k ¼ 3, CBR k ¼ 5, and RBFN.

Fig. 6. Ranking of software effort estimation models with backward input
selection for (a) MdMRE, (b) Pred25, and (c) Spearman’s rank
correlation. The dotted vertical line represents the 90 percent
significance level, the dashed line the 95 percent significance level,
and the full line the 99 percent significance level. (a) Plot of the
Bonferroni-Dunn test for MdMRE, (b) plot of the Bonferroni-Dunn test for
Pred25, (c) plot of the Bonferroni-Dunn test for Spearman’s rank
correlation.



attributes of high importance for software effort prediction.
It should be noted that the attribute type “size” typically
only covers a limited number of attributes in a data set.
Since this type of attribute is selected in nearly all cases, it is
therefore considered to be highly predictive.

Another observation that can be made, is that all four
types of attributes are included in the set of most predictive
attributes selected during the input selection procedure.
Hence, none of the four attribute types can be omitted from
the data sets without incurring some performance loss.
Focusing on specific attribute categories, some attributes
which are typically good predictors can be identified. For
instance, programming language is a development-type
attribute that is often selected by the input selection
procedure. This is to be expected, since programming
language was previously found to have an important
impact on development effort, e.g., by Albrecht and Gaffney
[10]. Concerning environment attributes, variables related
to team size and company sector prove to be good
predictors to estimate effort as well.

We also considered a minimal Redundancy, Maximum
Relevance (mRMR) filter approach [98] as an alternative to
the backward input selection in this study, similar to the
study of Li et al. [74]. Using this approach, we selected the top
10 ranking attributes. This filter approach gave, however,
similar results to the backward input selection approach, i.e.,
also indicating an increased performance by taking a highly
predictive set of attributes and the importance of the size-
related attribute. In order not to overload the paper, the
results of this filter are not further detailed.

6 CONCLUSIONS AND FUTURE RESEARCH

The results of this benchmarking study partially confirm the
results of previous studies [14], [15], [21]. Simple, under-
standable techniques like OLS with log transformation of
attributes and target perform as well as (or better than)
nonlinear techniques. Additionally, a formal model such as
Cocomo performed at least equally well as OLS with log
transformation on the Coc81 and Cocnasa data sets. These
two data sets were collected with the Cocomo model in
mind. However, this model requires a specific set of
attributes and cannot be applied on data sets that do not
comply with this requirement. Although the performance
differences can be small in absolute terms, a minor
difference in estimation performance can cause more
frequent and larger project cost overruns during software
development. Hence, even small differences can be im-
portant from a cost and operational perspective [99].

These results also indicate that data mining techniques
can make a valuable contribution to the set of software
effort estimation techniques, but should not replace expert
judgment. Instead, both approaches should be seen as
complements. Depending on the situation, either expert-
driven or analytical methods might be preferable as first
line estimation. In case the experts possess a significant
amount of contextual information not available to an
analytical method, expert-driven approaches might be
preferred [24]. An automated data mining technique can
then be adopted to check for potential subjective biases in
the expert estimations. Additionally, various estimations
can be combined in alternative ways to improve the overall
accuracy, as investigated by, e.g., MacDonell and Shepperd
[100], which concluded “that there is indeed potential benefit
in using more than one technique.” A simple approach could
be to take the average across estimations, while a more
advanced approach would investigate in which case a
specific technique yields the most accurate estimation. When
combining estimates of techniques, the potential bias of the
technique, i.e., the tendency to over or underestimate effort,
should be taken into account. Since effort is a continuous
attribute, typically some error is to be expected. However, if
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Fig. 7. Bar chart of the average number of selected attributes per data
set and per attribute type.

Fig. 8. Example of the best performing technique.

TABLE 9
Overview of Calibration and Computation Time



the estimate is far from the actual value, e.g., more than
25 percent, the estimate can not be considered “accurate.” The
first two columns in Table 9 provide the average over and
underestimation per technique across all data sets. The
third column aggregates these two values, indicating
whether a technique has an overall tendency to over or
underestimate. Combining different techniques increases
computational requirements and hampers comprehensi-
bility. The required computation time is dependent on a
number of different aspects, including data set, hardware,
technique, empirical setup, and parameter tuning. An
indication of computational requirements is also presented
in the last column of Table 9.

A third conclusion is that the selection of a proper
estimation technique can have a significant impact on the
performance. A simple technique like regression is found to
be well suited for software effort estimation which is
particularly interesting as it is a well-documented technique
with a number of interesting qualities like statistical
significance testing of parameters and stepwise analysis.
This conclusion is valid with respect to the different metrics
that are used to evaluate the techniques. Furthermore, it is
shown that, typically, a significant performance increase can
be expected by constructing software effort estimation
models with a limited set of highly predictive attributes.
Hence, it is advised to focus on data quality rather than
collecting as much predictive attributes as possible. Attri-
butes related to the size of a software project, to the
development, and to environment characteristics are con-
sidered to be the most important types of attributes.

6.1 Future Research

This study indicates that different data preprocessing steps,
addressing possible data quality issues such as discretiza-
tion algorithms, missing value handling schemas, and
scaling of attributes, can play an important role in software
effort estimation. While the same data preprocessing steps
were applied on all data sets, the results of the input
selection indicate that preprocessing steps such as attribute
selection can be important. A thorough assessment of all
possible data preprocessing steps seems, however, compu-
tationally infeasible when considering a large number of
techniques and data sets. The impact of various preproces-
sing techniques has already been investigated to a limited
extent (e.g., [66]), but further research into this aspect could
provide important insights.

Considering the typical limited number of observations
and the importance of expert knowledge (i.e., contextual
information) for software effort estimation, we believe the
inclusion of such expert knowledge to be a promising topic
for future research. The inclusion of domain knowledge (e.g.,
by enforcing monotonicity constraints) into data mining
models constitutes the so-called knowledge fusion problem
[93]. Employing, e.g., hard constraints (constraints which
should not be violated) to restrict the solution space can be an
effective way to deal with the sparseness of data associated
with the small number of observations [101]. The inclusion of
domain knowledge is also important to both software
engineers and management to inspire more confidence into
such models, thus facilitating the introduction of these
models into business settings.

Related hereto, is the aspect of comprehensibility of the
estimation model as it also plays an important role in

acceptance of the model in a business setting. While log-

linear models are understandable to a certain level, rule sets

or decision trees are considered more comprehensible to

end users [102]. This topic has been investigated only to a

limited extent in software effort estimation; see, e.g., [71].

Future research could be done into these aspects by, e.g.,

studying the framework of Andrews et al. [103], especially

considering the impact such estimations can have on the

budgeting and remuneration of staff.

APPENDIX

DETAILS DATA SELECTION

For each data set, similar data preprocessing rules were

followed, as detailed in Section 4.1. The application of these

rules is illustrated on the largest data set, the ISBSG R11

data set.
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