

IECI Chapter Japan Series Vol. 4 No. 1, 2002 ISSN 1344-7491

PPrroocceeeeddiinnggss ooff tthhee IIEECCII JJaappaann WWoorrkksshhoopp 22000022

IIJJWW--22000022

MMaarrcchh 33rd,, 22000022 rd
TTookkyyoo IInnssttiittuuttee ooff TTeecchhnnoollooggyy

Supported by
 Indonesian Society on Electrical, Electronics, Communication and Information (IECI)

Indonesian Students Association (PPI)

Organized by
Indonesian Society on Electrical, Electronics, Communication and Information

(IECI) Japan

In Cooperation With
Green Digital Press TM

IECI Japan Workshop 2002 IJW-2002

Toward a Method for Eliciting Software Requirements Using
Constraint Natural Language

Romi Satria Wahono

Dept. of Information and Mathematical Sciences, Saitama University

Indonesian Institute of Science (LIPI)

Abstract:
Requirement elicitation is considered as one of the most important activities in software development. Most
of the faults found during testing and operation result from poor understanding or misinterpretation of
requirements. Although there are many techniques focusing on the requirements elicitation, there are only a
few focusing on the formalization of object-oriented features and the methodology for identifying and
refining objects. We propose a methodology for eliciting requirements using constraint natural language
based on object-oriented paradigms.

Keywords: requirements engineering, requirements elicitation

1. INTRODUCTION
Requirement elicitation is considered as one of the
most important activities in software development.
Most of the faults found during testing and
operation result from poor understanding or
misinterpretation of requirements. Until now, there
are only a few effective methods and tools to
guarantee a complete, consistent, and unambiguous
requirement model [Lu00]. In the traditional
approach to software analysis, system analyst
interviews end-users to capture requirement.

We propose a methodology where user takes an
active role in the requirements elicitation using
constraint natural language, which is called
object-based formal specification (OBFS).

2. THE THREE DIMENSIONS of

REQUIREMENTS ENGINEERING
The requirements engineering is the first phase of
software engineering process, in which user
requirements are collected, understood, and
specified. Requirements engineering is recognized
as a critical task, since many software failures
originate from inconsistent, incomplete or simply
incorrect requirements specifications. A correct,
consistent and complete way to collect, understand,
specify and verify user requirements is important
and necessary. The result of the requirements
engineering phase is documented in the
requirements specification. The requirements
specification reflects the mutual understanding of
the problem to be solved between the analyst and
the client. The requirements specification serves as
a starting point for the next phase, the design phase.
To achieve well-defined document containing the
user requirements that satisfies these prerequisites,

we can distinguish three processes in requirements
engineering [Loucopoulos-95]. These processes
involve iteration and feedback (Figure 1).

Elicitation Specification Validation and
Verification

User

user requirements
requirements
specification

models to be
validated by

user

user feedback

knowledge

request more
knowledge

requirements
model

validation
results

Figure 1. Requirements Engineering Process

Requirements Elicitation •

•

Requirements elicitation is about understanding
the problem. In general, the requirements analyst is
not an expert in the domain being modeled.
Through interaction with domain specialists, he
has to build himself a sufficiently rich model of
that domain. The fact that different disciplines are
involved in this process complicates matters. In
many cases, the analyst is not a mere outside
observer of the domain modeled, simply eliciting
facts from domain specialists.

Requirements Specification
Once the problem is understood, it has to be
described in the requirements specification
document. This document describes the product to
be delivered, not the process of how it is
developed.

 69

IECI Japan Workshop 2002 IJW-2002

• Requirements Validation and
Verification

Once the problem is described, the different parties
involved have to agree upon its nature. We have to
ascertain that the correct requirements are stated
(validation) and that these requirements are stated
correctly (verification).

3. The Problems of Requirements

Elicitation
Problems of requirements elicitation can be
grouped into three categories [Christel-91]:

1. Problems of scope, in which the

requirements may address too little or too
much information.
•
•

•

•

•

•
•
•
•

•

The boundary of the system is ill-defined
Unnecessary design information may be
given

2. Problems of understanding, within groups

as well as between groups such as users and
developers.

Users have incomplete understanding of
their needs
Users have poor understanding of
computer capabilities and limitations
Analysts have poor knowledge of problem
domain
User and analyst speak different languages
Ease of omitting “obvious” information
Conflicting views of different users
Requirements are often vague and
untestable, e.g., “user friendly” and
“robust”

3. Problems of volatility, i.e., the changing

nature of requirements.
Requirements evolve over time

4. OBFS as a Constraint Natural

Language
We propose an approach where end-users take an
active role in the analysis by eliciting requirements
using OBFS. We use OBFS to guide end-users in
describing their problem based on object-oriented
paradigm. OBFS is composed of Description
Statements (DS), Collaborative Statements (CS),
Attributive Statements (AS), Behavioral Statements
(BS), and Inheritance Statements (IS). OBFS use
English natural language based on the constraint
syntax rules.

4.1. Description Statements (DS)
DS is used to guide the writing of an overview of
the system that one wants to build. DS is composed

from four elements: Requirement ID, Requirement
Name, Language, and Description. DS should
specify what is to be done, but not how it is to be
done. It should be a statement of needs, not a
proposal for a solution.

4.2. Collaborative Statements (CS)
CS is used to identify objects, and associations
between the objects. CS consists of a set of forms
and contains Subject-Verb-Object (S-V-O) as well
as the English natural language based on CS syntax
rules (E). We use Scs-Vcs-Ocs notation for
describing S-V-O natural language, which is based
on CS syntax rules. The collaboration between Scs
and Ocs must be described in the CS.

The CS syntax rules are listed as follows.
Predicates are extracted from synonym data
dictionary (thesaurus) [Chapman-92].

 towith|refermmunicate talk to|co
OteCmSPredicaS

tonext to|go
OteLcSPredicaS

rve|useexecute|se
|own|ain|manage for|maintdrive|work

OteAcSPredicaS

cscs

cscs

cscs

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

=〉〈

〉〈=〉〈

::
::

::
::

::
::

teCmSPredica
e(CmS)ionSentencCommunicat

teLcSPredica
)ntence(LcSLocationSe

teAcSPredica
ence(AcS)ActionSent

The objects and its associations can be identified
by using the following formulas.

[] []
[]

(3))()(

(2)

(1)

redred L

L

L

ASSASSandOBJOBJ

ASSVECS

OBJOECSandOBJSECS

tt

tcs

tcstcs

⇒¬⇒¬

⇒∈∀

⇒∈∀⇒∈∀

Xt=tentative X, Yred=redundant Y, OBJ=object, ASS=association

4.3. Attributive Statements (AS)
AS are used to identify the attributes of objects.
Attributes are properties of individual objects.
Attributes usually correspond to nouns followed by
possessive phrases, and sometimes are
characterized by adjectives or adverbs. AS must
contain properties of each object identified at the
previous step. AS consists of a set of forms and
contains Sas-Vas-Oas as well as the English natural
language based on AS syntax rules (E).
The AS syntax rules are listed as follows.

ntain ofsits of|corties)|conhas (prope
OteOwSPredicaS asas

=〉〈

〉〈=〉〈

::
::

teOwSPredica
S)entence(OwOwnershipS

The object attributes can be identified by using the
following formulas.

[] [
(5))(

(4)

red L

L

ATTATT

OBJSEASandATTOEAS

t

astas

⇒¬

⇒∈]∀⇒∈∀

Xt=tentative X, Yred=redundant Y, OBJ=object, ATT=attribute

 70

IECI Japan Workshop 2002 IJW-2002

 71

4.4. Behavioral Statements (BS) 6. REFERENCES
BS is used to identify object behaviors. Behavior is
how an object acts and reacts, in terms of state
changes and message passing. A behavioral
statement must contain behaviors of each object
identified at the previous step. BS consists of a set
of forms and contains Sbs-Vbs-Obs as well as the
English natural language based on BS syntax rules
(E).

[Chapman-92] Robert L. Chapman, Roget's
International Thesaurus, HarperCollins
Publishers, 1992.

[Christel-91] Michael G. Christel and Kyo C.
Kang, Issues in Requirements Elicitation,
Technical Report CMU/SEI-92-TR-12,
ESC-TR-92-012, September 1992.

[IEEE-729] Institute of Electrical and Electronics
Engineers. IEEE Standard Glossary of
Software Engineering Terminology.
ANSI/IEEE Standard 729-1983, Institute of
Electrical and Electronics Engineers, New
York, 1983.

The BS syntax rules are listed as follows.

ities)o (capabilnot able tbilities)| not (capay for)|can(a capacit
not y to)|has capabilithas not (a

)pabilitiesble to (cailities)|acan (capab
r)|apacity fo)|has (a cability tohas (a cap

OedicateCpSMinusPrS
OteCpSPredicaS

bsbs

bsbs

=〉〈

=〉〈

〉〈

〉〈=〉〈

::

::

::

edicateCpSMinusPr

teCpSPredica

|pS)Sentence(CCapability

[IEEE-610.12] Institute of Electrical and
Electronics Engineers, IEEE Standard
Glossary of Software Engineering
Technology, IEEE Std 610.12-1990, Institute
of Electrical and Electronics Engineers, New
York, 1990.

The object behaviors can be identified by using the
following formulas.
 [IEEE-830] Institute of Electrical and

ElectronicsEngineers, IEEE Recommended
Practice for Software Requirements
Specifications, IEEE Std 830-1998, Institute
of Electrical and Electronics Engineers, New
York, 1998.

[] []
(7))(

(6)

red L

L

BEHBEH

OBJSEBSandBEHOEBS

t

bstbs

⇒¬

⇒∈∀⇒∈∀

Xt=tentative X, Yred=redundant Y, OBJ=object, BEH=behavior

4.5. Inheritance Statements (IS)
IS is used to organize classes by using inheritance,
to share common object attributes and behaviors.
IS provide sentences that describe is-a-kind-of
relationship. IS consists of a set of forms and
contains Sis-Vis-Ois as well as the English natural
language based on IS syntax rules (E).

[Loucopoulos-95] P. Loucopoulos and V.
Karakostas: Software Requirements
Engineering, McGraw-Hill, 1995.

[Lu-00] Ruqian Lu and Zhi Jin, Domain
Modeling-Based Software Engineering,
Kluwer Academic Publishers, 2000.

The IS syntax rules are listed as follows.
 BIOGRAPHY of AUTHOR

ization ofis general
SateIhSBPredicOBB

 ofializationof|is spesis a kind
OateIhSAPredicS

isis

isis

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

::
::

::
::

ateIhSBPredic
)(IhSeSentenceInheritanc

ateIhSAPredic
(IhSA)eSentenceAInheritanc

 Romi Satria Wahono,
Received B.Eng. and M.Eng
degrees in Information and
Computer Sciences in 1999
and 2001, respectively, from
Saitama University. He is
currently a researcher at the
Indonesian Institute of

Sciences (LIPI), and a Ph.D. candidate at the
Department of Information and Mathematical
Sciences, Saitama University. The research fields
of his interests are Software Engineering,
Requirement Engineering, and Object-Orientation.
He is a member of the ACM, IEEE Computer
Society, The Institute of Electronics, Information
and Communication Engineers (IEICE),
Information Processing Society of Japan (IPSJ),
Japanese Society for Artificial Intelligence (JSAI),
and Indonesian Society on Electrical, Electronics,
Communication and Information (IECI).

The object and its class hierarchy organization can
be refined by using the following formulas.

[] []
[] []

(10))(

(9)

(8)

red L

L

L

SCLSCL

OBJOEISandSCLSEIS

OBJSEISandSCLOEIS

t

istis

istis

⇒¬

⇒∈∀⇒∈∀

⇒∈∀⇒∈∀

IhSB

IhSA

Xt=tentative X, Yred=redundant Y, OBJ=object, SCL=superclass

5. Concluding Remarks
It is argued that requirements elicitation is an
ill-defined task. Although there are many
techniques focusing on the requirements elicitation,
there are only a few focusing on the formalization
of object-oriented features and the methodology
for identifying and refining objects. We presented a
methodology for eliciting requirements using
constraint natural language based on
object-oriented paradigms.

	52-puja-ijw02.pdf
	1 INTRODUCTION
	BIOGRAPHY of AUTHOR

