

A Framework for Object Identification and Refinement Process in

Object-Oriented Analysis and Design

Romi S. Wahono Behrouz H. Far
Department of Information and Computer

Sciences, Saitama University
romi@aise.ics.saitama-u.ac.jp

Department of Electrical and Computer
Engineering, University of Calgary

far@enel.ucalgary.ca

Abstract

There are already many projects focusing on

Computer Aided Software Engineering (CASE) tools for
object-oriented analysis and design. However, at this
moment, there are certain limitations to such solutions,
such as, they are concentrated on object-oriented
notation and forward/reverse engineering, and the
methodology for object identification and refinement
are not implemented well. This paper presents a
methodology for object identification and refinement
from the software requirements, which is based on
object-based formal specification (OBFS). This
methodology provides the mean of understanding the
object-oriented paradigm easily, and supports us with
identifying and refining the objects. As a case study for
a comprehensive explanation about how to use this
methodology, an example of software project for an air
traffic control system is given.

Keywords: requirements engineering, object
identification, object refinement

1. Introduction
Object oriented analysis and design has now

become a major approach in the design of software
systems. The state of object-oriented analysis and
design is evolving rapidly. There are numerous
object-oriented analysis and design methods being
advocated at the present time, all fairly similar but with
significant differences in approach and notation.
However, the challenges of object-oriented analysis and
design are, to identify the objects and their attributes
needed to implement the software, describe the
associations between the identified objects, define the
behavior of the objects by describing the function
implementations of each object, and refine objects and
organize classes by using inheritance to share common
structure [6]. The object identification and refinement
process are together called object model creation
process.

Researchers and software designers have come to a
conclusion that object identification and refinement
process are an ill-defined task [5][21], because of the

difficulty of heuristics and there is no unified
methodology for object-oriented analysis and design.
This is mainly due to a lack of formalism for
object-oriented analysis and design.

Although there are many project focusing on
Computer Aided Software Engineering (CASE) tools for
object-oriented analysis and design, there are only a few
focusing on the formalization and implementation of the
methodology for object model creation process. And
also they are not developed well for the software design
that requires collaborative working among members of
a software design project team. This paper examines the
issues associated with the methodology for object
identification and refinement, and also the use of
multi-agent system approach for collaborative
object-oriented analysis and design. This system is
called OOExpert [15][16].

In compare with the other approaches, our
proposed approach has the potential of handling and
solving problems on object identification and
refinement process in object-oriented analysis and
design. However, object-oriented CASE systems which
exist now, like Rational Rose (www.rational.com),
Together (www.togethersoft.com), Object Domain
(www.objectdomain.com), etc. have concentrated on the
problem solving of the object modeling notation and
forward/reverse engineering too much, but the problem
on the earlier phase, that is object identification and
refinement phase has not been solved yet. Our works
concentrate on how one can handle and solve the
problems on object model creation process in
object-oriented analysis and design.

The structure of this paper is as follows. In Section
2, an overview of the object model creation process is
presented. In Section 3, the proposed models for
requirement acquisition and specification are described.
And we continue with the explanation about the
proposed models for object model creation process, in
Section 4. Section 5 and 6 focus on system architecture,
design and implementation of the proposed system
(OOExpert). The other research projects related to our
work is presented in Section 7. Finally, in Section 8 a
conclusion and the future directions of our research are
outlined.

2. An Overview of the Object Model
Creation Process

First of all, we summarized what is going on the
object-oriented analysis and design process. As shown
in Figure 1, object-oriented analysis and design begins
with a problem statement (requirement) generated by
end-users or customers. The requirement may be
incomplete, and informal. Identification processes make
it more precise and expose ambiguities and
inconsistencies. The real-world system described by the
requirement must be understood and identified, and its
essential features abstracted into a model.

Users

Customer
Requirements

Identifiyng
Objects,

Attributes,
Associations and

Behaviors

Object Model

Domain knowledge
Real-world experience

User interviews

Generate
Requests

Refining with
inheritance

Class Model

Domain knowledge
Real-world experience

User interviews

Implementation

Object Model
Creation Process

Figure 1. An Overview of the Object Model

Creation Process

Identifying objects, attributes, associations and
behaviors of the object are important steps in
constructing an object model. The next step is to
organize classes by using inheritance to share common
structure. Inheritance can be added in two ways [9]: by
generalizing common aspects of existing classes into a
superclass (bottom up or generalization approach), or
by refining existing classes into specialized subclasses
(top down or specialization approach). The object
identification and refinement process are together called
object model creation process.

3. Proposed Models for Requirement
Acquisition and Specification

3.1. Our Approach Toward Object-Based
Requirement Acquisition and Specification

Requirement acquisition is considered as one of the
most important activities in software development [2].
The primary goal of the requirements document is to be

a reference for the software designers, facilitating
improved software design through detection of
incompleteness, inconsistency and ambiguity. Most of
the faults found during testing and operation result from
poor understanding or misinterpretation of requirements.
In spite of progress in analysis techniques, Computer
Aided Software Engineering (CASE) tools support,
prototyping, early verification and validation, software
development still suffers from poor requirements
acquisition [10]. Until now, there are only a few
effective methods and tools to guarantee a complete,
consistent, and unambiguous requirement model [17].
Recent advances in software technology such as the
development of the Unified Modeling Language (UML)
for object-oriented design have not reduced the need for
better requirement acquisition and specification.

In the traditional approach to software analysis,
system analyst interviews end-users to capture
requirement. We propose an approach where end-users
take an active role in the analysis by specifying
requirements using Object-Based Formal Specification
(OBFS) (Figure 2). We use OBFS to guide end-users in
describing their problem. OBFS is composed of
Description Statements (DS), Collaborative Statements
(CS), Attributive Statements (AS), Behavioral
Statements (BS), and Inheritance Statements (IS). This
approach also takes advantage of end-users' domain
knowledge.

A simple example of the software project for Air
Traffic Control (ATC) system is given in this paper. It is
provided for a comprehensive explanation about how to
use the proposed method. This example is based on [7]
[1].

3.2. Object-Based Formal Specification
Definition 3.1 (Object-Based Formal Specification
(OBFS)): Object-Based Formal Specification (OBFS) is
a semi-formal requirements template used to reveal
ambiguity, incompleteness, and inconsistency in an
object-oriented software system, and to guide end users
take an active role while describing their problem
statements. OBFS is composed of description
statements (DS), collaborative statements (CS),
attributive statements (AS), behavioral statements (BS),
and inheritance statements (IS).

ISBSASCSDSOBFS ⊕⊕⊕⊕= … (1)

Identifying Problem
Domain

Collaborative
Statements

Identifying
Objects and
Associations

Attributive
Statements

Identifying
Attributes

Behavioral
Statements

Identifying
Behaviors

Inheritance
Statements

Refining With
Inheritance

Class Model

OBFS

Description
Statements

Figure 2. Object Based Formal Specification

3.2.1. Description Statements (DS)

Description statements are used to guide for
writing an overview of the system that we want to build.
Description statements contain four kinds of elements:
Requirements ID, Requirements Name, Language, and
Description. The description statements should state
what is to be done and not how it is to be done. It
should be a statement of needs, not a proposal for a
solution.

Definition 3.2 (Description Statements (DS)): A
description statement is a requirement statement used to
write an overview of the system that we want to build,
which consists of Requirement ID, Requirement Name,
Language, and Description.

{ }nDescriptioLanguagereqNamereqIDDS ,,,= … (2)

An example of DS for ATC system is shown in

Example 3.1.

Example 3.1: DS of Air Traffic Control System
ReqID #001
ReqName Air Traffic Control System
Language English

Description

Air Traffic Control (ATC) is chiefly concerned with managing
aircraft in the neighborhood of an airport. An air traffic
controller decides on the movement of aircraft. The purpose of
this project is to develop an ATC for a metropolitan airport.
The ATC provides an interactive display system runnable with
a web browser and a display of a range of choices to be made
by an air traffic controller during actual airport tower
operation. The ATC has the capacity to play an important role
in planning, monitoring, and control responsibilities of human
specialists. The ATC provides the communication between
human specialists and aircraft, to transmit information and
control instructions. The ATC also provide the surveillance of
air traffic, to determine the location, altitute, and speed of
aircraft. The weather product availability is guaranteed, to
assist in planning aircraft movement between locations.

3.2.2. Collaborative Statements (CS)

Collaborative statements (CS) are used to identify
objects, and associations between objects. The first step
in the object model creation process is to identify
relevant objects and their association from the
application domain. Objects include physical entities
and all objects must make sense in the application
domain. All objects are explicit in the collaborative
statements. Objects correspond to nouns that are
identified from collaborative statements. CS consists of
a set of forms with contains Subject (S), Verb (V), and
Object (O) as well as the English (E) natural language
that is based on CS syntax rules.

{ },...),,(,),,(,),,(333222111 cscscs OVSOVSOVSCS = and

 … (3) ECS ∈∀

Scs and Ocs will be identified as a tentative object
(OBJt), and Vcs will be identified as a tentative
association (ASSt) in terms of object-oriented paradigm.

][tcs OBJSECS ⇒∈∀ and ∀

(4)

][tcs OBJOECS ⇒∈

][tcs ASSVECS ⇒∈∀ (5)

The CS syntax rules are listed as follows.

Predicates are extracted from synonym data dictionary
(thesaurus) [14].

 towith|refermmunicate talk to|co
OteCmSPredicaS

tonext to|go
OteLcSPredicaS

rve|useexecute|se
|own|ain|manage for|maintdrive|work

OteAcSPredicaS

cscs

cscs

cscs

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

=〉〈

〉〈=〉〈

::
::

::
::

::
::

teCmSPredica
e(CmS)ionSentencCommunicat

teLcSPredica
)ntence(LcSLocationSe

teAcSPredica
ence(AcS)ActionSent

An example of CS for ATC system is shown in

Example 3.2.

Example 3.2: CS of Air Traffic Control System

TrafficManager manages Traffic. TrafficManager communicates with
AirspaceTypeResource. TrafficManager drives CommunicationSystem.
AirTrafficManager manages AirTraffic. AirTrafficManager communicates
with AirspaceTypeResource. AirTrafficManager drives
CommunicationSystem.
FlightManager manages Flight. FlightManager communicates with
AirspaceType Resource. FlightManager drives CommunicationSystem.
GroundTrafficManager manages GroundTraffic. GroundTrafficManager
communicates with GroundTypeResource. GroundTrafficManager drives
CommunicationSystem.
VehicleManager manages Vehicle. VehicleManager communicates with
GroundTypeResource. VehicleManager drives CommunicationSystem.
Aircraft refers to AirspaceTypeResource.
GroundVehicle refers to GroundTypeResource.
VehicleSurveillanceSystem owns SurveillanceSystem.
VehicleNavigationSystem owns NavigationSystem.
VehicleCommunicationSystem owns CommunicationSystem.

Definition 3.3 (Collaborative Statements (CS)): A
collaborative statement is an OBFS statement, which
has a tuple {Scs,Vcs, Ocs}. An Object (OBJ) is derived
from Scs and Ocs, and association between objects (ATT)
is derived from Vcs.

3.2.3. Attributive Statements (AS)

Attributive statements (AS) are used to identify the
attributes of objects. Attributes are properties of
individual objects. Attributes usually correspond to
nouns followed by possessive phrases, and sometimes
are characterized by adjectives or adverbs. Attributive
statement must contain properties of each object
identified at the previous step. AS consists of a set of
forms with contains Subject (S), Verb (V), and Object
(O) as well as the English (E) natural language that is
based on AS syntax rules.

{ ,...),,(,),,(,),,(333222111 asasas OVSOVSOVSAS =

EAS ∈∀

} and

 … (6)

Oas will be identified as a tentative attribute (ATTt)

in the term of object-oriented paradigm. And Sas is
identified and refined objects (OBJ) from tentative
object (OBJt), as the final result of object
identification’s process.

][tas ATTOEAS ⇒∈∀ … (7)

][OBJSEAS as =∈∀ … (8)

The AS syntax rules are listed as follows.

ntain ofsits of|corties)|conhas (prope
OteOwSPredicaS asas

=〉〈

〉〈=〉〈

::
::

teOwSPredica
S)entence(OwOwnershipS

Example 3.3: AS of Air Traffic Control System

TrafficManager has AreaOfResponsibility.
Traffic has SelectionCriteria.
AirspaceTypeResource has Capacity, Configuration, Demand, Load,
Location, Name, SaturationThreshold, SeparationMinima, UsageRestriction.
AirTrafficManager has AreaOfResponsibility.
AirTraffic has SelectionCriteria.
FlightManager has AreaOfResponsibility.
Flight has Trajectory, Type.
GroundTrafficManager has AreaOfResponsibility.
GroundTraffic has SelectionCriteria.
GroundTypeResource has Capacity, Configuration, Demand, Load, Location,
Name, SaturationThreshold, SeparationMinima, UsageRestriction.
VehicleManager has AreaOfResponsibility.
Vehicle has Vehicletype.
Aircraft has AircraftIdentification, Location.
GroundVehicle has GroundVehicleIdentification, Location.
VehicleSurveillanceSystem has EquipmentType.
SurveillanceSystem has AreaOfCoverage, EquipmentType, Status.
VehicleNavigationSystem has Equipmenttype, Status.
NavigationSystem has AreaOfCoverage, FrequencyChannels, IdentifierCode,
Location, Status.
VehicleCommunicationSystem has ActiveFrequency, EquipmentType.
CommunicationSystem has AreaOfCoverage, EquipmentType, Status.

Definition 3.4 (Attributive Statements (AS)): An
attributive statement is an OBFS statement, which has a
tuple {Sas,Vas, Oas}. Sas is an identified object (OBJ),

and Vas is a constant word, which shows that Oas is an
attribute of Sas. The object’s attribute (ATT) is derived
from Oas.

3.2.4. Behavioral Statements (BS)

Behavioral statements are used to identify object
behaviors. Behavior is how an object acts and reacts, in
terms of state changes and message passing. A
behavioral statement must contain behaviors of each
object identified at the previous step. BS consists of a
set of forms with contains Subject (S), Verb (V), and
Object (O) as well as the English (E) natural language
that is based on BS syntax rules.

{ },...),,(,),,(,),,(333222111 bsbsbs OVSOVSOVSBS = and

 … (9) EBS ∈∀

Oas will be identified as a tentative behavior (BEHt)
in the term of object-oriented paradigm. And Sbs is
identified and refined objects (OBJ) from tentative
object (OBJt), as the final result of object
identification’s process.

][tbs BEHOEBS ⇒∈∀ … (10)

][OBJSEBS bs =∈∀ … (11)

The BS syntax rules are listed as follows.

ities)o (capabilnot able tbilities)| not (capay for)|can(a capacit
not y to)|has capabilithas not (a

)pabilitiesble to (cailities)|acan (capab
r)|apacity fo)|has (a cability tohas (a cap

OedicateCpSMinusPrS
OteCpSPredicaS

bsbs

bsbs

=〉〈

=〉〈

〉〈

〉〈=〉〈

::

::

::

edicateCpSMinusPr

teCpSPredica

|pS)Sentence(CCapability

An example of BS for ATC system is shown in

Example 3.4.

Example 3.4: BS of Air Traffic Control System

AirspaceTypeResource has capabilities to UpdateDemand, UpdateLoad.
AirTrafficManager has capabilities to DetectSaturation, PredictSaturation,
ReportSaturation, DetermineAirspaceCapacity, ReserveAirspace,
ResolveAirspaceSaturationProblem, SetAirspaceSaturationThreshold.
AirTraffic has capabilities to CreateAirTraffic.
FlightManager has capabilities to AssistFlightPlanning,
AssistWeatherAvoidance, DetectRestrictionViolation,
PredictRestrictionViolation, ReportRestrictionViolation,
TransferControlResponsibility, AcceptContolResponsibility.
Flight has capabilities to MaintainTrajectory.
GroundTrafficManager has capabilities to DetectSaturation,
PredictSaturation, ReportSaturation, DetermineGroundCapacity,
ResolveGroundSaturationProblem, SetGroundSaturationThreshold.
GroundTraffic has capabilities to Connect.
GroundTypeResource has capabilities to UpdateDemand, UpdateLoad.
VehicleManager has capabilities to AssistRoutePlanning,
DetectRestrictionViolation, PredictRestrictionViolation,
ReportRestrictionViolation, SeparateVehicles, TransferResponsibility,
AccpetResponsibility.
Aircraft has capabilities to CreateFlight.
GroundVehicle has capabilites to CreateGroundVehicle.
VehicleSurveillanceSystem has capabilites to ReportAltitute,
ReportIdentification.
SurveillanceSystem has capabilities to Connect, LocateFlight, IdentifyFlight,
ReportFlight.

VehicleNavigationSystem has capabilities to AcceptNavigationalGuide,
InterogateNavigational Aid, Navigate.
NavigationSystem has capabilities to Connect,Transmit Azimuth Information,
TransmitRangeIdentifier.
VehicleCommunicationSystem has capabilities to AcceptMessage,
SendMessage.
CommunicationSystem has capabilities to Connect, TransmitMessage.

Definition 3.5 (Behavioral Statements (BS)): An
behavioral statement is an OBFS statement, which has a
tuple {Sbs,Vbs, Obs}. Sbs is an identified object (OBJ),
and Vbs is a constant word, which shows that Obs is a
behavior of Sbs. The object’s behavior (BEH) is derived
from Obs.

3.2.5. Inheritance Sentences (IS)

Inheritance statements are used to organize classes
by using inheritance, to share common object attributes
and behaviors. Inheritance provides a natural
classification for kinds of objects and allows for the
commonality of objects to be explicitly taken advantage
of in modeling and constructing object systems.
Inheritance statements provide sentences that describe
is-a-kind-of relationship.

Inheritance statements consists of a set of forms
with contains Subject (S), Verb (V), and Object (O) as
well as the English (E) natural language that is based on
IS syntax rules.

{ },...),,(,),,(,),,(333222111 isisis OVSOVSOVSIS =

EIS ∈∀

 and

 … (12)

Ois will be identified as a tentative superclass
(SCLt) in the term of object-oriented paradigm. And Sis
is identified and refined objects (OBJ) from tentative
object (OBJt), as the final result of object
identification’s process.

][tis SCLOEIS ⇒∈∀ … (13)

][OBJSEIS is =∈∀ … (14)

The IS syntax rules are listed as follows．

ization ofis general
SateIhSBPredicOBB

 ofializationof|is spesis a kind
OateIhSAPredicS

isis

isis

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

::
::

::
::

ateIhSBPredic
)(IhSeSentenceInheritanc

ateIhSAPredic
(IhSA)eSentenceAInheritanc

An example of IS for ATC system is shown in

Example 3.5.

Example 3.5: IS of Air Traffic Control System
AirTraffic is a kind of Traffic.
GroundTraffic is a kind of Traffic.
Aircraft is a kind of Vehicle.
Aircraft is a kind of Flight.
GroundVehicle is a kind of vehicle.

Definition 3.6 (Inheritance Statements (IS)): An

Inheritance statement is an OBFS statement, which has
a tuple {Sis,Vis, Ois}. Sis is an identified object (OBJ),
and Vis is a constant word, which shows that Ois is a
superclass of Sis. The subclass (CLS) is derived from Sis,
and the superclass (SCL) is derived from Ois.

4. Proposed Models for Object Model
Creation Process

4.1. Object Identification Process
Figure 3 shows our strategy for the object

identification process. We use collaborative statements
(CS) from OBFS to guide end-users in describing their
problem, especially for collaborative process in the
system that end-users want to build. The first step in the
object identification process is to extract S and O
written in the collaborative statements to be tentative
objects (OBJt) (4). The tentative objects (OBJt)
extracted from the collaborative statements of ATC
system is as follows (Example 3.6).

Object Identification
TaskCollaborative

Statements
(S V O)

Extract
S and O

Tentative
Objects

Objects
Rules of Spurious
Object Elimination

Redundant Objects
Attributes
Behaviors
Not Nouns

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Eliminate
Spurious
Objects

Propose
Relevant
Objetcs

Figure 3. Object Identification Process

Example 3.6: OBJt of Air Traffic Control System
TrafficManager
Traffic
AirspaceTypeResource
AirTrafficManager
AirTraffic
FlightManager
Flight
GroundTrafficManager
GroundTraffic
GroundTypeResource
VehicleManager
Vehicle
Aircraft
GroundVehicle
VehicleSurveillanceSystem
SurveillanceSystem
VehicleNavigationSystem
NavigationSystem
VehicleCommunicationSystem
CommunicationSystem

The next step is to eliminate spurious objects and
propose relevant objects using Rule-Based Reasoning
(RBR) and Case-Based Reasoning (CBR) paradigms. In
RBR, the system will discard unnecessary and incorrect
objects according to the following criteria: redundant
objects (OBJred), not noun objects (OBJnon), attributes
(OBJatt), behaviors (OBJbeh), and associations (OBJass).
The summary of object identification process is shown
in Figure. 4.

][OBJOBJOBJOBJOBJEOBJ nonbehattred ⇒¬∧¬∧¬∧¬∈∀

… (15)

Two different kinds of case-base indexed in our
CBR are called Human Expert Solution (HES) and
Problem Domain Relation (PDR). The final result of
the object identification process is a set of relevant
objects (OBJ).

4.2. Association Identification Process
We use collaborative statements (CS) from OBFS

to guide end-users in describing their problem,
especially for collaborative process in the system that
end-users want to build. The first step in the association
identification process is to extract V written in the
collaborative statements to be tentative associations
(ASSt) (5). The tentative associations (ASSt) extracted
from the collaborative statements of ATC system is
shown as V of CS in the Example 3.2.

The next step is to eliminate spurious associations
and propose relevant associations using Rule-Based
Reasoning (RBR) and Case-Based Reasoning (CBR)
paradigms. In RBR, the system will discard unnecessary
and incorrect associations according to the following
criteria: redundant associations (ASSred), not verb
associations (ASSnov), behaviors (ASSbeh), object
(ASSobj), and attributes (ASSatt). The summary of
association identification process is shown in Figure. 4.

][ASSASSASSASSASSEASS novbehattred ⇒¬∧¬∧¬∧¬∈∀

 … (16)

The final result of the association identification
process is a set of relevant associations (ASS).

4.3. Attribute Identification Process
We use attributive statements (AS) from OBFS to

guide end-users in describing their problem, especially
for each object's property that is appeared in the system.
The first step in the attribute identification process is to
extract O written in the attributive statements to be
tentative attribute (ATTt) (7). The tentative attribute
(ATTt) extracted from the attributive statements of ATC
system is shown as O of AS in the Example 3.3.

The next step is to eliminate spurious attributes and
propose relevant attributes using Rule-Based Reasoning
(RBR) and Case-Based Reasoning (CBR) paradigms. In
RBR, the system will discard unnecessary and incorrect
attributes according to the following criteria: redundant
attributes (ATTred), not noun attributes (ATTnon), objects
(ATTobj), association (ATTass), and behaviors (ATTbeh).
The summary of attribute identification process is
shown in Figure. 4.

][ATTATTATTATTEATT behobjred ⇒¬∧¬∧¬∈∀

 … (17)
The final result of the attribute identification

process is a set of relevant attributes (ATT).

4.4. Behavior Identification Process
We use behavioral statements (BS) from OBFS to

guide end-users in describing their problem, especially
for each object's capability that is appeared in the
system. The first step in the behavior identification

Object
Model

Creation
Process

Pre-Input
(OBFS)

Extract
(S V O) Input Rules for Reasoning Output

 Rules for Elimination
Object

Identification
Collaborative

Statements S and O Tentative
Object

Redundant
Object

Not
Noun Attribute Behavior Association Object

Association
Identification

Collaborative
Statements V Tentative

Association
Redundant
Association Not Verb Behavior Object Attribute Association

Attribute
Identification

Attributive
Statements O Tentative

Attribute
Redundant
Attribute

Not
Noun Object Association Behavior Attribute

Behavior Behavioral
Statements O Tentative

Behavior
Redundant
Behavior Not Verb Association Attribute Object Behavior

Inheritance
Statements S and O Object

Hierarchy Class
Hierarchy

Rules for Similarity
Searching Rules for Superclass Naming

Object
Refinement

with
Inheritance

Identified
Object from

Object
Identification

Process
Attribute Behavior Similar Object’s

Name
Given Name from

User

Class
Hierarchy

Figure 4. Summary of the Proposed Approach for Object Model Creation Process

process is to extract O written in the behavioral
statements to be tentative behavior (BEHt) (10). The
tentative behavior BEHt) extracted from the behavioral
statements of ATC system is shown as O of BS in the
Example 3.4.

The next step is to eliminate spurious behaviors and
propose relevant behaviors using Rule-Based
Reasoning (RBR) and Case-Based Reasoning (CBR)
paradigms. In RBR, the system will discard unnecessary
and incorrect behaviors according to the following
criteria: redundant behaviors (BEHred), not verb
behaviors (BEHnov), associations (BEHass), attributes
(BEHatt), and objects (BEHobj). The summary of
behavior identification process is shown in Figure. 4.

][BEHBEHBEHBEHBEHBEHEBEH novattassobjred ⇒¬∧¬∧¬∧¬∧¬∈∀

 … (18)
The final result of the behavior identification

process is a set of relevant behaviors (BEH).

4.5. Object Refinement with Inheritance
Firstly, object refinement with inheritance process

refers to inheritance statements (IS) directly for getting
information about the hierarchy of objects according to
end-user. The superclass-subclass hierarchy extracted
from the inheritance statements (IS) of ATC system is as
follows (Example 3.7).

Example 3.7: Class Hierarchy of Air Traffic Control
System Based on IS
Superclass: Traffic Subclass: AirTraffic, GroundTraffic
Superclass: Flight Subclass: Vehicle
Superclass: Vehicle Subclass: Aircraft, GroundVehicle

Furthermore, we use bottom-up (generalization)
concepts as the basic approach to build a new model of
object refinement process. As shown in Figure 5, object
refinement with inheritance process begins by listing
objects found in the previous object model creation
process, and searching similar object names, attributes,
and behaviors. If similar objects are found, the object
will be belong to a subclass and a tentative superclass
will be generated automatically.

The next process is to give the superclass a name.
The superclass name can be given by the user, or
automatically generated from similar object names. The
result of this process is a class model with inheritance
structure. If similar object cannot be found, the object
will be a class model without inheritance structure. The
final result of the object refinement process is a class
model, which is the combination of the class model with
inheritance and the class model without inheritance.

The summary of Object Refinement with
Inheritance is shown in Figure 4.

Object Refinement
TaskObjects

Search Similar
Attributes,
Associations
and Behaviors

Give the
Superclass a

Name

Class Model
with

Inheritance
Rules for Naming

Superclass

Similar Object's Name
Given Name from User

Subclass

Tentative
Superclass

Class

NOYES

Class Model
without

Inheritance

Class Model

Figure 5. Object Refinement with Inheritance

5. System Architecture and Design
Software design often requires collaborative work

among members of a software design project team. In
many cases, the members are geographically distributed
making the need for effective information and
communication technologies acute. Agent-based
approach is an alternative approach to achieve tasks on
distributed computer systems [3]. This is intended to
serve as a useful decision support system for designers,
and should allow faster, better, and more economic,
collaborative software analysis and design.

To date, the main areas in which agent-based
applications have been reported are as follows:
manufacturing, process control, telecommunication
systems, air traffic control, traffic and transportation
management, information filtering and gathering,
electronic commerce, business process management,
entertainment and medical care [13]. This research
examines the issues associated with the use of
agent-based approach within the software analysis and
design.

In our approach, object model creation process is
viewed as a society of software agents that interact and
negotiate with each other. We have devised six types of
agents: requirement acquisition agent, object
identification agent, attribute identification agent,
association identification agent, behavior identification
agent, and object refinement agent (Figure 6). Each
agent is an intelligent in its own field and may interact
with its human counterpart or behave autonomously.
Each agent has a local knowledge base and a reasoning
engine. All agents have a communication engine and a
documentation engine. The communication and
documentation engines facilitate communication and
navigation of each agent on the network environment.

The responsibility of each agent is as follows.
Firstly, the requirements acquisition agent manages the
task concerning the requirements acquisition from
object-based formal specification (OBFS). The object

identification agent manages the task concerning the
identification of objects. The attribute identification
agent manages the task concerning the identification of
object attributes. The association identification agent
manages the task concerning the identification of
associations between the identified objects. The
behavior identification agent manages the task
concerning the identification of object behaviors. And
finally, the object refinement agent manages the task
concerning to refine objects and organize classes by
using inheritance to share common structure.

Requirements
Specification

Class Model

Object Identification
Agent

Object
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Requirements Acquisition
Agent

Requirements
Acquisition

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Object Refinement
Agent

Object
Refinement with

Inheritance

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Attribute Identification
Agent

Attribute
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Association Identification
Agent

Association
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Behavior Identification
Agent

Behavior
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Figure 6. Intelligent Agent Architecture for

Object Model Creation Process

6. Implementation
OOExpert is implemented using Java programming

language. Object model creation process is viewed as a
society of OOExpert agents that interact and negotiate
with each other. We have developed six types of
OOExpert agents.

Running all of the OOExpert agents are however,
the first step toward working with OOExpert. When we
start to run OOExpert agents, for example Requirement
Acquisition Agent, it will display a user interface
window as shown in Figure 7. The user interface
window contains a standard toolbar, the viewer for
OBFS tree and directories tree, and a control window.
Requirements Acquisition Agent displays OBFS menu
in the control window, including Description
Statements, Collaborative Statements, Attributive
Statements, Behavioral Statements and Inheritance
Statements. The user writes requirements in this place
based on OBFS standard. Especially for other
OOExpert agents, the reasoning processes of agents are
displayed in this control window (Figure. 8).

Figure 7. Requirements Acquisition Agent

Figure 8. Object Identification Agent

Figure 9 shows the summary of how the OOExpert
agents work.

Requirement AcquisitionRequirement Acquisition
AgentAgent

Object IdentificationObject Identification
AgentAgent

Association IdentificationAssociation Identification
AgentAgent

Attribute IdentificationAttribute Identification
AgentAgent

Behavior IdentificationBehavior Identification
AgentAgent

Object RefinementObject Refinement
AgentAgent

RequirementRequirement
SpecificationSpecification

Class ModelClass Model

- Socket and KQML
Based connection

- Send OI request

- Socket and KQML
Based connection

- Send AI request

- Socket and KQML
Based connection

- Send AtI request- Socket and KQML
Based connection

- Send BI request

- Socket and KQML
Based connection

- Send OR request

- Socket and KQML
Based connection

- Send OR request

Figure 9. Summary of How the OOExpert

Agents Work

7. Related Work
In recent year, there are many research focusing on

the methodology for identifying objects and its
properties, i.e., behaviors, attributes, association [11]
[21] [10], and the methodology for refining objects to
share common structure.

Liang [21] proposed an approach to strengthen the
process of object identification and selection, by
considering the integration of object-oriented methods
with a method of facilitating a rich appreciation of a
problem situation and adding a new activity to the
existing object-oriented analysis (OOA) process. The
method used to bring about the appreciation of the
problem situation that provides a way of modeling
purposeful activities in a problem situation into an
activity model. These activities represent the purposeful
human actions in the situation that associate with actors,
owners and customers. The actors, owners and
customers are regarded as the basic elements of the
situation as they perform, allow or request the activities.
Liang [21] argues that they can be used as a base for
identifying and selecting significant objects in OOA.
Analysts are able to appreciate and understand such
basic elements of a problem situation through the
process of enquiry and then to specify them as
significant objects into the object model.

Becker [11] proposed methodology called MOSYS
(Methodology for Object Identification for SYstem
Specification), which supports the design of distributed
real-time systems. The methodology uses
object-oriented models and UML (Unified Modeling
Language) for system specification. As a first step of
the methodology, external actors and objects that
interact with the system are identified as the problem
context. Elements of the object model that emerge from
the analysis of the real problem are directly mapped into
logical objects. Reuse constraints can also impose the
definition of internal actors. Secondly and following the
UML notation, use case diagrams are used to describe
system functionality that is not directly associated with
intuitive objects. Afterwards, a CASE tool is used to
model use-case functionality, either by using activity
diagrams or (and against UML) extended data flow
diagrams (E-DFD). The components of E-DFD are
weighted processes and weighted attributes (updated by
the processes). Process and attribute weights are
introduced to model process complexity and (virtual or
real) timing constraints.

Drake [10] initiated a project called AURA
(Automated User Requirements Acquisition), which
takes advantage of end-users domain understanding.
The central thesis of the AURA approach is that
user-centered analysis will produce a higher quality
specification than analyst-centered analysis. AURA
uses a question-and-answer model to guide end-users in
describing their problem. Additionally, AURA provides
problem domain knowledge to suggest answers for the
questions. When end-users perform analysis, the analyst

role becomes verification and validation of end-users’
analysis products. From the prototype and evaluation,
Drake show that end-users can utilize a
methodology-guided tool to input most of their
requirements and input is consistent with the products
of object-oriented analysis (OOA).

An interesting approach for eliciting software
requirement is proposed by Komiya [18]. Komiya
proposed a method for constructing the system to
navigate the process of software engineering's eliciting
software requirements by interviewing software
customers over WWW. As a result of some experiments
the topics adopted during an interview are classified
into nine categories. We think that such results can be
used to generate OBFS' description statements.

8. Conclusion
Although there are many project focusing on

Computer Aided Software Engineering (CASE) tools
for object-oriented analysis and design, there are only a
few focusing on the formalization and implementation
of the methodology for object model creation process.
And also they are not developed well for the software
design that requires collaborative working among
members of a software design project team. In this
paper, we proposed an approach where end-users take
an active role in analysis by specifying requirements
using Object Based Formal Specification (OBFS). We
presented OBFS and its roles to be a methodological
support for specifying requirements in object model
creation process, including identification process and
object refinement with inheritance process. The models
and implementation for using OBFS are presented. A
framework and system implementation for object model
creation process is also presented.

9. References
[1] Celesta G. Ball and Rebecca L. Kim, An Object

Oriented Analysis Of Air Traffic Control,
WP-90W00542, the MITRE Corporation, McLean,
Virginia, August 1991.

[2] F.P Brooks, No Silver Bullet, Essence and Accidents of
Software Engineering, IEEE Computer, Vol. 20, No. 4,
pp. 10-19, April 1987.

[3] Gerhard Weiss, Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, MIT
Press, 1999.

[4] Grady Booch, James Rumbaugh, and Ivar Jacobson, The
Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[5] Grady Booch, Object-Oriented Analysis and Design
with Application, Benjamin/Cummings, 1991.

[6] Ian M. Holland and Karl J. Lieberherr, Object-Oriented
Design, ACM Computing Surveys, Vol. 28, No. 1, pp.
273-275, March 1996.

[7] James F. Peters and Witold Pedrycz, Software
Engineering An Engineering Approach, John Wiley &
Sons, Inc., 2000.

[8] James Rumbaugh, Ivar Jacobson, and Grady Booch, The

Unified Modeling Language Reference Manual,
Addison-Wesley, 1999.

[9] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorenson, Object-Oriented
Modeling and Design, Prentice Hall, 1991.

[10] J.M. Drake, W.W. Xie, and W.T. Tsai, Approach and
Case Study of Requirement Analysis Where end-users
Take an Active Role, in Proceedings of the 15th
International Conference on Software Engineering,
IEEE Computer Society Press, pp. 177-186, 1993.

[11] L.B. Becker, C.E. Pereira, O.P. Dias, I.M. Teixeira and
J.P. Teixeira, MOSYS A Methodology for Automatic
Object Identification from System Specification,
Proceedings of the Third IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing,
Newport Beach, California, March 15-17, 2000.

[12] Maritta Heisel and Jeanine Souquieres, Methodological
Support for Requirements Elicitation and Formal
Specification, Proceedings of the 9th International
Workshop on Software Specification and Design,
Ise-Shima (Isobe), Japan, April 16-18, 1998.

[13] Nicholas R. Jennings, Katia Sycara, and Michael
Wooldridge, A Roadmap of Agent Research and
Development, in Autonomous Agents and Multi-Agent
Systems, pp. 7-38, Kluwer Academic Publishers, Boston,
1998.

[14] Robert L. Chapman, Roget's International Thesaurus,
HarperCollins Publishers, 1992.

[15] Romi Satria Wahono and B.H. Far, Hybrid Reasoning
Architecture for Solving Object Class Identification
Problem in the OOExpert System, Proceedings of the
14th Annual Conference of Japanese Society for
Artificial Intelligence, Tokyo, Japan, July 2000.

[16] Romi Satria Wahono and B.H. Far, OOExpert:
Distributed Expert System for Automatic
Object-Oriented Software Design, Proceedings of the
13th Annual Conference of Japanese Society for
Artificial Intelligence, pp.456-457, Tokyo, Japan, June
1999.

[17] Ruqian Lu and Zhi Jin, Domain Modeling-Based
Software Engineering, Kluwer Academic Publishers,
2000.

[18] Seiichi Komiya, Junzo Kato, Morio Nagata, Shuichiro
Yamamoto, Motoshi Saeki, Atsushi Ohnishi, Hisayuki
Horai, A Method for Implementing a System to Guide
Interview-driven Software Requirements Elicitation,
The 4th Joint Conference on Knowledge-Based Software
Engineering (JCKBSE2000), Brno, Czech Republic,
2000.

[19] Software Engineering Standards Committee of the IEEE
Computer Society, IEEE Guide for Developing System
Requirements Specifications, IEEE Std 1233-1998,
IEEE, New York, 1998.

[20] Software Engineering Standards Committee of the IEEE
Computer Society, IEEE Recommended Practice for
Software Requirements Specifications, IEEE Std
830-1998, IEEE, New York, 1998.

[21] Ying Liang, Daune West, and Frank A. Stowell, An
Approach to Object Identification, Selection and
Specification in Object-Oriented Analysis, in
Information Systems Journal, Vol. 8, No. 2, 1998, pp.
163-180, Blackwell Science Ltd., 1998.

