

ICS-01M-927

Intelligent Agents for Object Model
Creation Process in Object-Oriented

Analysis and Design

指導教官 B.H. Far 助教授

平成 13年 2月 13日

理工学研究科情報システム工学専攻 R3927

Romi Satria Wahono

埼玉大学工学部情報システム工学 Far研究室

埼玉県浦和市下大久保 255

ICS-01M-927

Intelligent Agents for Object Model

Creation Process in Object-Oriented

Analysis and Design

By

Romi Satria Wahono

Supervisor: Behrouz Homayoun Far

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Engineering

of the

Department of Information and Computer Sciences
Graduate School of Science and Engineering

Saitama University

February 2001

 i

CCoonntteennttss

Contents ... i

List of Figures ... iv

List of Tables .. vi

Abstract ... vii

Chapter 1 Introduction ... 1

1.1 Overview Of Object-Oriented Analysis And Design 2
1.1.1 Object-Orientation Concepts ... 2
1.1.2 Object-Oriented Analysis and Design and Its Problems 7

1.2 Overview Of Intelligent Agent... 10
1.2.1 Agent Concepts.. 10
1.2.2 Multi-Agent System Concepts.. 12
1.2.3 Benefits of Agents.. 14
1.2.4 Areas of Agent Application.. 16

1.3 Research Motivations And Objectives .. 20

1.4 How This Thesis Is Organized... 21

Chapter 2 Object Model Creation Process and Its Computational
Model .. 24

2.1 Priming the Object Model Creation Process.................................... 25

 ii

2.2 Requirements Specification and Its Computational Model 27
2.2.1 Requirements Specification and Acquisition Concepts 27
2.2.2 Models for Requirements Specification 30

2.3 Object Identification and Its Computational Model......................... 36
2.3.1 Object Identification Concepts .. 36
2.3.2 Models for Object Identification .. 37

2.4 Attribute Identification and Its Computational Model...................... 39
2.4.1 Attribute Identification Concepts ... 39
2.4.2 Models for Attribute Identification ... 40

2.5 Association Identification and Its Computational Model 41
2.5.1 Association Identification Concepts 41
2.5.2 Models for Association Identification 44

2.6 Behavior Identification and Its Computational Model...................... 46
2.6.1 Behavior Identification Concepts ... 46
2.6.2 Models for Behavior Identification ... 47

2.7 Object Refinement with Inheritance and Its Computational Model .. 49
2.7.1 Object Refinement with Inheritance Concepts........................ 49
2.7.2 Models for Object Refinement with Inheritance...................... 50

Chapter 3 System Architecture And Design 53

3.1 Agent Model of OOExpert... 54

3.2 Agent Framework of OOExpert ... 55
3.2.1 Issues and Guidelines for OOExpert Agent Framework 55
3.2.2 Communication Engine ... 56
3.2.3 Reasoning Engine and Knowledge Base 58

3.3 Design of OOExpert Agents .. 62

Chapter 4 Implementation ... 67

4.1 Implementing OOExpert Agents Using Java................................... 68
4.1.1 The Main Reasons to Deal with Java...................................... 68
4.1.2 Implementing Reasoning Engine Using Java 71
4.1.3 Implementing Communication Engine Using Java................... 73

4.2 How the OOExpert Works... 75
4.2.1 Getting Started with OOExpert.. 75
4.2.2 Working with OOExpert .. 76

 iii

4.2.3 Summary of How the OOExpert Works 85

Chapter 5 Conclusion.. 86

5.1 System Evaluation and Future Directions....................................... 87

5.2 Summary and Conclusion ... 88

Acknowledgements ... 90

Bibliography .. 92

List of Publications .. 107

Glossary ... 109

 iv

LLiisstt ooff FFiigguurreess

Figure 1.1: The Relationship Between Object-Oriented Analysis and Design................. 8
Figure 1.2: Overview of Object-Oriented Analysis and Design Process........................ 10
Figure 1.3: An Agent Interacting With Its Environment And The Other Agents............ 13

Figure 2.1: Object Model Creation Process.. 25
Figure 2.2: Object-Based Formal Specification ... 31
Figure 2.3: Description Statements Shell.. 32
Figure 2.4: Object Identification Process ... 36
Figure 2.5: Proposed Approach for Object Identification Process 38
Figure 2.6: Attribute Identification Process .. 39
Figure 2.7: Proposed Approach for Attribute Identification Process.............................. 41
Figure 2.8: Association Identification Process ... 42
Figure 2.9: Proposed Approach for Association Identification Process 45
Figure 2.10: Behavior Identification Process ... 46
Figure 2.11: Proposed Approach for Behavior Identification Process............................ 48
Figure 2.12: Object Refinement with Inheritance .. 52

Figure 3.1: Architecture of OOExpert Agents .. 55
Figure 3.2: An Abstract View of the KQML Language .. 58
Figure 3.3: Object Identification Agent .. 62

 v

Figure 3.4: Attribute Identification Agent... 63
Figure 3.5: Association Identification Agent .. 64
Figure 3.6: Behavior Identification Agent .. 65
Figure 3.7: Object Refinement Agent ... 66

Figure 4.1: The Object Model of Rule-Based Reasoning... 72
Figure 4.2: Requirements Acquisition Agent in Action.. 75
Figure 4.3: Running the Requirements Acquisition Agent ... 76
Figure 4.4: Writing the Description Statements.. 77
Figure 4.5: Writing the Collaborative Statements... 78
Figure 4.6: Writing the Attributive Statements ... 78
Figure 4.7: Writing the Behavioral Statements... 79
Figure 4.8: Writing the Inheritance Statements .. 79
Figure 4.9: Object Identification Process ... 80
Figure 4.10: Association Identification Process ... 81
Figure 4.11: Attribute Identification Process .. 82
Figure 4.12: Behavior Identification Process ... 83
Figure 4.13: Object Identification Process ... 84
Figure 4.14: Summary of How the OOExpert Works... 85

 vi

LLiisstt ooff TTaabblleess

Table 1.1: Features, Advantages, and Benefits of Agent Technology............................. 14
Table 3.1: KQML Performatives .. 57

 vii

AAbbssttrraacctt

Object oriented analysis and design has now become a major approach in the design of
software systems. The state of object-oriented analysis and design is evolving rapidly.
There are numerous object-oriented analysis and design methods being advocated at the
present time. The first object-oriented analysis and design methods appeared in the late
of 1980’s and early 1990’s. Similar to the growth of structured methods we saw a
number of methods appear, all fairly similar but with significant differences in approach
and notation. Each method had a camp of supporters, who usually made a living from
training and consulting based on their approach. In the 1996’s, two of the major
methods gurus, Ivar Jacobson and James Rumbaugh, joined a third, Grady Booch at
Rational and defined a common Unified Modeling Language (UML). In addition the
Object Management Group (OMG) had begun a process to come up with a standard
meta-model and notation for analysis and design.

The challenges of object-oriented analysis and design are, to identify the objects and
their attributes needed to implement the software, describe the associations between the
identified objects, define the behavior of the objects by describing the function
implementations of each object, and refine objects and organize classes by using
inheritance to share common structure. The object identification and refinement process
are very important process in object-oriented analysis and design, and we called this
process by object model creation process. Researchers and software designers come to a
conclusion that object model creation process is an ill-defined task, regarding of the
difficulties of heuristic and there is no unified methodology for object-oriented software

 viii

analysis and design. This is mainly due to lack of formalism for object-oriented
software analysis and design.

In our project, we are developing an intelligent agents system that aims to help
designers while designing object-oriented software by automating the difficulties and
ill-defined tasks in the object model creation process, including identification of objects,
associations, attributes, behaviors, and organization of objects with inheritance. First of
all, we propose formal models of the object model creation process. And then we
formulate design patterns and rules for solving above problems, and store them in the
agent’s knowledge bases. This system was named OOExpert.

 1

CChhaapptteerr 11

IInnttrroodduuccttiioonn

In this chapter, we give a brief introduction and overview to the two major topics
covered in this thesis: object-oriented analysis and design, and intelligent agents. It
starts with a short introduction of the object-oriented paradigm, as frameworks rely
heavily on its mechanisms such as object, class, inheritance, polymorphism and so on.
And then, we will take a look at object-oriented analysis and design, and its problem
that motivate us to do research on this topic. We present the key attributes of intelligent
agents such as autonomy, mobility, and intelligence, and also provide the benefits and
taxonomy of various intelligent agents technology. The research motivations and
objectives are also presented at the end of this chapter.

 2

1.1 Overview Of Object-Oriented Analysis And

Design

Object oriented analysis and design has now become a major approach in the design of
software systems. The state of object-oriented analysis and design is evolving rapidly.
There are numerous object-oriented analysis and design methods being advocated at the
present time. As Rentsch [Rentsch, 1982] predicted in 1982, “My guess is that
object-oriented programming will be in the 1980s what structured programming was in
the 1970s. Everyone will be in favor of it. Every manufacturer will promote his
products as supporting it. Every manager will pay lip service to it. Every programmer
will practice it (differently). And no one will know just what it is”. Booch [Booch,
1991] feels that: “Because object-oriented analysis and design is a relatively young
practice, a discipline for effectively applying the elements of the object model has not
yet emerged”.

The first object-oriented analysis and design methods appeared in the late of 1980’s and
early 1990’s. Similar to the growth of structured methods we saw a number of methods
appear, all fairly similar but with significant differences in approach and notation. Each
method had a camp of supporters, who usually made a living from training and
consulting based on their approach. In the 1996’s, two of the major methods gurus, Ivar
Jacobson and James Rumbaugh, joined a third, Grady Booch at Rational and defined a
common Unified Modeling Language (UML). In addition the Object Management
Group (OMG) had begun a process to come up with a standard meta-model and
notation for analysis and design.

Definition 1.1 (Object-Oriented Analysis and Design): Object-oriented
analysis and design is a way of thinking about problems using models
organized around real-world concepts.

1.1.1 Object-Orientation Concepts

Object
As the name object-oriented implies, objects are key to understanding object-oriented

 3

technology. We can look around we know and see many examples of real-world objects:
our dog, our desk, our television set, our bicycle. These real-world objects share two
characteristics: they all have attribute and they all have behavior. For example, dogs
have attribute (name, color, breed, hungry) and dogs have behavior (barking, fetching,
and slobbering on our newly cleaned slacks). Bicycles have attribute (current gear,
current pedal cadence, two wheels, number of gears) and behavior (braking,
accelerating, slowing down, changing gears).

Software objects are modeled after real-world objects in that they, too, have attribute
and behavior. A software object maintains its attribute in variables and implements its
behavior with methods. So we can define, an object is a software bundle of variables
and related methods. We can represent real-world objects using software objects. We
might want to represent real-world dogs as software objects in an animation program or
a real-world bicycle as a software object in the program that controls an electronic
exercise bike. However, we can also use software objects to model abstract concepts.
For example, an event is a common object used in GUI window systems to represent the
action of a user pressing a mouse button or a key on the keyboard.

Everything that the software object knows (attribute) and can do (behavior) is expressed
by the variables and methods within that object. A software object that modeled our
real-world bicycle would have variables that indicated the bicycle's current attribute: its
speed is 10 mph, its pedal cadence is 90 rpm, and its current gear is the 5th gear. These
variables and methods are formally known as instance variables and instance methods
to distinguish them from class variables and class methods.

In many programming languages, an object can choose to expose its variables to other
objects allowing those other objects to inspect and even modify the variables. Also, an
object can choose to hide methods from other objects forbidding those objects from
invoking the methods. An object has complete control over whether other objects can
access its variables and methods and in fact, can specify which other objects have
access.

Definition 1.2 (Object): Object is the principal building blocks of
object-oriented programs. Each object is a programming unit consisting of
attribute (instance variables) and behavior (instance methods). An object is a
software bundle of variables and related methods.

 4

Class
In the real world, we often have many objects of the same kind. For example, our
bicycle is just one of many bicycles in the world. Using object-oriented terminology, we
say that our bicycle object is an instance of the class of objects known as bicycles.
Bicycles have some attribute (current gear, current cadence, two wheels) and behavior
(change gears, brake) in common. However, each bicycle's attribute is independent of
and can be different from other bicycles. When building bicycles, manufacturers take
advantage of the fact that bicycles share characteristics by building many bicycles from
the same blueprint. It would be very inefficient to produce a new blueprint for every
individual bicycle they manufactured.

In object-oriented software, it's also possible to have many objects of the same kind that
share characteristics: rectangles, employee records, video clips and so on. Like the
bicycle manufacturers, we can take advantage of the fact that objects of the same kind
are similar and we can create a blueprint for those objects. Software "blueprints" for
objects are called classes. So, we can define a class is a blueprint or prototype that
defines the variables and methods common to all objects of a certain kind. For example,
we could create a bicycle class that declares several instance variables to contain the
current gear, the current cadence, and so on, for each bicycle object. The class would
also declare and provide implementations for the instance methods that allow the rider
to change gears, brake, and change the pedaling cadence.

The values for instance variables are provided by each instance of the class. So, after
we've created the bicycle class, we must instantiate it (create an instance of it) before we
can use it. When we create an instance of a class, we create an object of that type and
the system allocates memory for the instance variables declared by the class. Then we
can invoke the object's instance methods to make it do something. Instances of the same
class share the same instance method implementations (method implementations are not
duplicated on a per object basis), which reside in the class itself.

In addition to instance variables and methods, classes can also define class variables and
class methods. We can access class variables and methods from an instance of the class
or directly from a class. We don't have to instantiate a class to use its class variables and
methods. Class methods can only operate on class variable, and they do not have access
to instance variables or instance methods.

 5

The system creates a single copy of all class variables for a class the first time it
encounters the class in a program. All instances of that class share its class variables.
For example, suppose that all bicycles had the same number of gears. In this case
defining an instance variable for number of gears is inefficient. Each instance would
have its own copy of the variable, but the value would be the same for every instance. In
situations such as this, we could define a class variable that contains the number of
gears. All instances share this variable. If one object changes the variable, it changes for
all other objects of that type.

We probably noticed that the illustrations of objects and classes look very similar to one
another. And indeed, the difference between classes and objects is often the source of
some confusion. In the real world it's obvious that classes are not themselves the objects
that they describe, a blueprint of a bicycle is not a bicycle. However, it's a little more
difficult to differentiate classes and objects in software. This is partially because
software objects are merely electronic models of real-world objects or abstract concepts
in the first place. But it's also because many people use the term "object" inconsistently
and use it to refer to both classes and instances.

Objects provide the benefit of modularity and information hiding. Classes provide the
benefit of reusability. Bicycle manufacturers reuse the same blueprint over and over
again to build lots of bicycles. Software programmers use the same class, and thus the
same code, over and over again to create many objects.

Definition 1.3 (Class): A class is a blueprint or prototype that defines the
variables and methods common to all objects of a certain kind.

Inheritance
Each subclass inherits attribute from the superclass. Mountain bikes, racing bikes, and
tandems share some attributes: cadence, speed, and the like. Also, each subclass inherits
methods from the superclass. Mountain bikes, racing bikes, and tandems share some
behaviors: braking and changing pedaling speed, for example.

However, subclasses are not limited to the attribute and behaviors provided to them by
their superclass. What would be the point in that? Subclasses can add variables and
methods to the ones they inherit from the superclass. Tandem bicycles have two seats
and two sets of handle bars; some mountain bikes have an extra set of gears with a

 6

lower gear ratio. Subclasses can also override inherited methods and provide specialized
implementations for those methods. For example, if we had a mountain bike with an
extra set of gears, we would override the "change gears" method so that the rider could
actually use those new gears.

We are not limited to just one layer of inheritance. The inheritance tree, or class
hierarchy, can be as deep as needed. Methods and variables are inherited down through
the levels. In general, the further down in the hierarchy a class appears, the more
specialized its behavior. Subclasses provide specialized behaviors from the basis of
common elements provided by the superclass. Through the use of inheritance,
programmers can reuse the code in the superclass many times. Programmers can
implement superclasses called abstract classes that define "generic" behaviors. The
abstract superclass defines and may partially implement the behavior but much of the
class is undefined and unimplemented. Other programmers fill in the details with
specialized subclasses.

Definition 1.4 (Inheritance): Inheritance is a mechanism for sharing
attributes and behaviors among classes based on a hierarchical relationship.

Encapsulation
Encapsulation is the mechanism by which related data and procedures are bound
together within an object. In effect, an object is software capsule that functions as a
black box, responding to messages from other objects and dispatching messages of its
own in ways that do not reveal its internal structure. In this way, encapsulation supports
and extends the proven principle of information hiding. Information hiding is valuable
because it prevents local changes from having global impact. In the case of objects, it
allows the implementations of individual objects to be altered without affecting the way
these objects communicate through messages.

Ideally, an object should not only encapsulate data and methods, it should also hide the
very distinction between the two. This allows developers to change implementations
from data to methods or vice versa, without affecting the way of object interacts with
other objects. In practice, this is achieved by declaring all variables to be private, or
hidden from view outside of the object. When another object needs to see or change the
value of a variable, it does so by way of an access method. In most object languages,
methods as well as data may be declared to be private. This allows the internal

 7

operations of an object to be hidden from view. A well-designed object exposes the
smallest feasible portion of its methods as public to make them available to messages
from other objects. This approach offers the greatest flexibility in terms of future
changes to the object.

Definition 1.5 (Encapsulation): Encapsulation is the concept of the
localization of knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black
box that provides services. Instance variables and methods can be added,
deleted, or changed, but as long as the services provided by the object
remain the same, code that uses the object can continue to use it without
being rewritten.

Polymorphism
The fact that different objects can respond to the same message in different ways is
known as polymorphism. The power of polymorphism is that it greatly simplifies the
logic of programs. A requestor no longer has to use nested IF statements or complex
CASE statements to call the appropriate procedure. Instead, the proper procedure is
automatically invoked by sending the request to a particular object. Polymorphism is
often portrayed as advanced concept in object technology, but it is really a highly
intuitive mechanism. More often than not, it is the technical staff steeped in the tradition
of unique functions that have difficulty with the concept. Non-programmers grasp it
quite readily because it reflects the natural form of human communication.

Definition 1.6 (Polymorphism): Polymorphism means that the same
behavior may behave differently on different classes.

1.1.2 Object-Oriented Analysis and Design and Its
Problems

[Booch, 1991] offers precise definitions of object-oriented analysis and design:
Object-oriented analysis (OOA) is a method of analysis that examines requirements
from the perspective of the classes and objects found in the vocabulary of the problem
domain.
Object-oriented design (OOD) is a method of design encompassing the process of
object-oriented decomposition and a notation for depicting logical and physical as well

 8

as static and dynamic models of the systems under design.

OOA involves problem definition and design focuses on solution specification. OOD
transforms the problem representation into a solution representation. Figure 1.1 depicts
the relationship between OOA and OOD. The problem and solution domain
representations are different and smaller than real-world problem. And the solution
domain includes everything in the problem domain, plus any additional constructs
required by the solution. However, it is difficult to determine where OOA ends and
OOD begins, because of the blundered distinction between analysis and design in the
object paradigm.

Real World Problem

Solution Domain
Representation

Problem Domain
Representation

Object-Oriented
Analysis

Object-Oriented
Design

Figure 1.1: The Relationship Between Object-Oriented Analysis and Design

OOA is concerned with devising a precise, concise, understandable, ad correct model of
real-world. Before building anything complex, such as a house, a computer program, or
hardware-software system., the builder must understand the requirements and the
real-world environment in which will exit. The purpose of OOA is to model the
real-world system so that it can be understood. To do this, we must examine
requirements, analyze their implications, and restate them rigorously. We must abstract
important real-world features first and defer small details until later. The successful
analysis model states what must be done, without restricting how it is done, and avoids
implementation decisions. The result of analysis should understand the problem as a
preparation for OOD.

 9

As shown in Figure 1.2, OOAD begins with a problem statement (requirement)
generated by users and possibly customer. The requirement may be incomplete of
informal, and identification processes make it more precise and exposes ambiguities and
inconsistencies. The requirement should not be taken as immutable but should serve as a
basis for refining the real requirements. Next, the real-world system described by the
requirement must be understood and identified, and its essential features abstracted into
a model. Identifying objects, attributes, associations and behaviors of the object is the
important step in constructing an object model. And the next step is to organize classes
by using inheritance to share common structure. Inheritance can be added in two
directions [Rumbaugh et al., 1991]: by generalizing common aspects of existing
classes into a superclass (bottom up or generalization) or by refining existing classes
into specialized subclasses (top down or specialization). The object identification and
refinement process are called object model creation process. The last OOAD step is to
implement class model using a programming language.

Researchers and software designers come to a conclusion that object model creation
process, including object identification and refinement is an ill-defined task, regarding
of the difficulties of heuristic [Holland et al., 1996] [Kato, 1998] and there is no
unified methodology for object-oriented software analysis and design. This is mainly
due to lack of formalism for object-oriented software analysis and design. So, we can
make conclusion that the challenges of object-oriented analysis and design are, to
identify the objects and their attributes needed to implement the software, describe the
relationships between the identified objects, define the behavior of the objects by
describing the function implementations of each object, and refine objects and organize
classes by using inheritance to share common structure [Beringer, 1997] [Booch, 1991]
[Holland et al., 1996] [Liang et al., 1998]. This thesis is concerning work for solving
the problems on object model creation process.

 10

Users

Customer
Requirements

Identifiyng
Objects,

Attributes,
Associations and

Behaviors

Object Model

Domain knowledge
Real-world experience

User interviews

Generate
Requests

Refining with
inheritance

Class Model

Domain knowledge
Real-world experience

User interviews

Implementation

Object Model
Creation Process

Figure 1.2: Overview of Object-Oriented Analysis and Design Process

1.2 Overview Of Intelligent Agent

1.2.1 Agent Concepts

An agent is a physical or virtual entity, which runs approximately as follows: [Ferber,
1999]
z Which is capable of acting in an environment,
z Which can communicate directly with other agents,
z Which is driven by a set of tendencies,

 11

z Which possesses resources of its own,
z Which is capable of perceiving its environment,
z Which has only a partial representation of this environment,
z Which possesses skills and can offer services,
z Which may be able to reproduce itself,
z Whose behavior tends towards satisfying its objectives, taking account of the

resources and skills available to it and depending on its perception, and the
communications it receives.

A physical entity is something that acts in the real world; a robot, an aircraft or a car, are
examples of physical entities. A software component and a computing module, on the
other hand, are virtual entities, since they have no physical existence. Agents are
capable of acting, and not just of reasoning, as in the classic AI systems. The concept of
action, which is fundamental for multi-agent systems, is based on the fact that agents
carry out actions, which are going to modify the agents’ environment, and thus their
future decision-making. They can also communicate with one another, and this is in fact
one of the main ways in which agents interact. They are acting within an environment.

Agents are endowed with autonomy. This means that they are not directed by
commands coming from a user or another agent, but by a set of tendencies, which can
take the form of individual goals to be achieved or satisfaction or survival functions
which the agent attempt to optimize. It could thus be said that motor of an agent is itself.
It is the agent that is active. It can accede to or reject request coming from other agents.
Autonomy is not simply behavioral, it also relates to resources. In order to act, the agent
needs a certain number of resources: power, a CPU, a quantity of memory, access to
certain sources of information and so on. The agent is at once partially dependent on its
environment for the provision of resources, and independent of its environment to he
extend that is capable of managing those resources.

Agents have only a partial representation of their environment, that is, they have no
overall perception of what is happening. And this is actually also the case in any
large-scale human endeavor in which nobody knows all the details of the project, each
specialist having only a partial view corresponding to his or her area of competence.

The agent is thus a kind of organism, whose behavior, which can be summarized as
communicating, acting, and perhaps reproducing, is aimed at satisfying its needs and

 12

attaining its objectives, on the basis of all the other elements (perceptions,
representations, actions, communications and resources) which are available to it.

 Agents also must have intelligence. Intelligence is the degree of reasoning and learned
behavior: the agent's ability to accept the user's statement of goals and carry out the task
delegated to it. At a minimum, there can be some statement of preferences, perhaps in
the form of rules, with an inference engine or some other reasoning mechanism to act on
these preferences. Higher levels of intelligence include a user model or some other form
of understanding and reasoning about what a user wants done, and planning the means
to achieve this goal. Further out on the intelligence scale are systems that learn and
adapt to their environment, both in terms of the user's objectives, and in terms of the
resources available to the agent. Such a system might, like a human assistant, discover
new relationships, connections, or concepts independently from the human user, and
exploit these in anticipating and satisfying user needs.

1.2.2 Multi-Agent System Concepts

Figure 1.3 gives an illustration of the concept of a multi-agent system (MAS). The
concept of multi-agent systems can be defined as applied system that comprising the
following elements: [Ferber, 1999]
z An environment (E), that is, a space, which generally has a volume.
z A set of objects (O). These objects are situated; that is to say, it is possible at a

given moment to associate any object with a position in E. These object are
passive, that is, they can be perceived, created, destroyed and modified by the
agents.

z An assembly of agents (A), which are specific objects (A ⊆ O), representing the
active entities of the system.

z An assembly of relations (R), which link objects and thus agents to each other.
z An assembly of operations (Op), making it possible for the agents of A to

perceive, produce, consume, transform and manipulate objects form O.

 13

PerceptionsActions

Communications

Resources

Goal: X

Objectives

Representations

Environment

Environ
ment

Figure 1.3: An Agent Interacting With Its Environment And The Other Agents

A special case exists for systems in which A = O and E is equal to the empty assembly.
In this case, the relations (R) define a network; each agent is directly linked to an
assembly of other agents, which are called its acquaintances. These systems, which can
be referred to as purely communicating MASs, are very common in distributed artificial
intelligence. Their preferred area is cooperation between software modules, the function
of which is to resolve a problem or to draw up an expert’s report on the basis of
specialized modules, as in the case of distributed control system where E is defined by
the structure of the underlying network. These systems are characterized by the fact that
interactions are essentially intentional communications and that he working mode
resembles that of a social organism.

When the agent are situated, E is generally a metric space, and the agents are capable of
perceiving their environment, that is, of recognizing the objects situated in the
environment through the functioning of their perceptive capabilities; and of acting, that
is, of transforming the state of the system by modifying the positions of, and the
relationships existing between, the objects.

We shall see that most reactive MASs consider that the concept of environment is
fundamental to the coordination of actions between several agents. For example, in a
universe of robots, the agent (A) are the robots, E is the Euclidian geometrical space in

 14

which the robots move, and O is obviously made up of agents, but also of physical
objects placed here and there which the robots have to avoid, pick up and manipulate.
The operation (Op) are the actions that the robots can take in moving themselves,
moving the other objects or communicating, and R is the assembly of relations that link
certain agents to others, such as acquaintance relationships (certain agents know some
of the others) and communication relationship (agents can communicate with certain
agents, but not necessarily with all of them).

1.2.3 Benefits of Agents

The user benefits of an agent lie in its task skills. Table 1.1 outlines the benefits of
agents in broad functional categories [Caglayan et al., 1997].

FeatureFeatureFeatureFeature AdvantageAdvantageAdvantageAdvantage BenefitBenefitBenefitBenefit

Automation Perform repetitive task Increased productivity

Customization Customize information interaction Reduced overload

Notification Notify user of events of significance Reduced workload

Learning Learn users behavior Proactive assistance

Tutoring Coach user in context Reduced training

Messaging Perform task remotely Off-line work

Table 1.1: Features, Advantages, and Benefits of Agent Technology

Automation
The automation benefits of an agent are particularly applicable for automating:
z Repetitive behavior of a single user
z Similar behavior of a group of user
z Repetitive sequential behavior of a number of users in a workflow thread

Repetitive behavior can be either time based or event based. A time-based task is
something that user does at a particular time, like visiting a particular web site every
morning at nine o’clock. An event-based task is something that user does in relation to
another task. For example, opening your clock desk accessory before you log into an
online database is an event-based task. The repetitive behavior of a single user is
particularly suitable for agent-based automation when this repetitive behavior is
dissimilar across the general user population. This situation makes it very hard to come
up with a design compromise that would suit the whole population. On servers, similar

 15

of a group of users can be benefit from agent automation. The personal and workgroup
productivity benefits of agent automation can be significant.

Customization
An agent provides customization benefits by representing information that matches a
user’s personal information and interaction style preferences. The customization
benefits can be discussed by noting where the agent model fits into traditional broadcast
and publishing models. In the broadcast model, the service providers broadcast the same
information to everyone. Users sample the information within the inherent time
constraints to everyone. In such a model, an agent between a user and broadcasters can
provide customization benefits by listening to the information broadcast on behalf of the
user, finding relevant information matching the user’s interest, and presenting the
filtered information to the user. There are three basic architecture choices in the
implementation of such a model. These agents can be implemented either at the
broadcast site or at the user end or in the middle as a broker agent that serves multiple
broadcasters and users.

Notification
An agent providing notification services to a user can produce significant
reduced-workload benefits by freeing the user to monitor events of personal
significance. For instance, such an agent can monitor web sites of interest for changes,
and report them to a user.

Learning
An agent with learning capability can learn tasks that can be automated or preferences
that can be used for customization:
z Learning and offering to automate the repetitive tasks of a single user, thus

relieving the user of the need to toil with what, when, and how to automate.
z Learning the similar attributes of a group of users to customize information based

on group characteristic.
z Learning similar behavior of a group of users to provide workgroup productivity

enhancement.
z Learning and offering to automate recurrent sequential behavior of a group of

users in a workflow thread, thus relieving the workgroup of repetitive tasks.

 16

Tutoring
An agent with tutoring capability can coach a user in context thanks to its event
monitoring and inferencing capabilities, thus reducing the training requirements.

Messaging
A messaging agent enables users to accomplish tasks off-line at remote sites. Mobile
agents are examples of messaging agents that can transport themselves from place to
place to interact with other agents to perform tasks on behalf of a user.

1.2.4 Areas of Agent Application

Agent technology is rapidly breaking out of universities and research labs, and is
beginning to be used to solve real-world problems in range of industrial and commercial
applications. Fielded applications exist today, and new systems are being developed at
an increasingly rapid rate. The main areas in which agent-based applications have been
reported are as follows: manufacturing, process control, telecommunication systems, air
traffic control, traffic and transportation management, information filtering and
gathering, electronic commerce, business process management, entertainment and
medical care [Jennings et al., 1998].

Industrial Applications
Industrial applications of agent technology were among the first to be developed, and
today, agents are being applied in a wide range of industrial systems:
z Manufacturing: Parunak [Parunak, 1987] describes the YAMS system (Yet

Another Manufacturing System), which applies the Contract Net Protocol to
manufacturing control. The goal of YAMS is to efficiently manage the production
process at these plants. This process is defined by some constantly changing
parameters, such as products to be manufactured, available resources, time
constraints, and so on. In order to achieve this enormously complex task, YAMS
adopt multi-agent approach, where each factory and factory component is
represented as an agent. Each agent has collection of plans, representing its
capabilities. Other systems in this area include those for: configuration design of
manufacturing product, collaborative design, scheduling and controlling
manufacturing operations, controlling a manufacturing robot, and determining
production sequences for a factory.

 17

z Process Control: Process control is a natural application for agents, since process
controllers are themselves autonomous reactive system. It is not surprising,
therefore that a number of agent-based process control applications should have
been developed. The best known of these is ARCHON, a software platform for
building multi-agent systems, and associated methodology for building
applications with this platform [Jennings et al., Dec 1996]. Other agent-based
process control systems have been written for monitoring and diagnosing faults in
nuclear power plants, spacecraft control, climate control, and steel coil processing.

z Telecommunications: Telecommunication systems are large, distributed networks

of interconnected components which need to be monitored and manage in
real-time. In what is a fiercely competitive market, telecommunication companies
and service providers aim to distinguish themselves from their competitors by
providing better, quicker or more reliable services. To achieve this differentiation,
they are increasingly turning to state-of-art software techniques including
agent-based approaches. In one such application, negotiating agents are used to
tackle the feature interaction problem. As new features are being added to the
phone network at an ever increasing rate, it is becoming correspondingly more
difficult to determine which features interact with, and are inconsistent with,
which other features. Therefore, the traditional approach for analyzing services at
design time and hard wiring in solutions for all possible interaction permutations
is doomed to failure. Given this situation, Griffeth and Velthuijsen [Griffeth et al.,
1994] decided to adopt a different strategy and tackle the problem on an as-needed
basis at run-time. They did this by employing negotiating agents to represent the
different entities who are interested in the set up of call. Other problems for which
agent-based systems have been constructed include: network control, transmission
and switching, service management and network management.

z Air Traffic Control: Ljunberg and Lucas [Ljunberg et al., 1992] describe a

sophisticated agent-realized air traffic control system known as OASIS. In this
system, which is undergoing field trials at Sydney airport in Australia, agents are
used to represent both aircraft and the various air-traffic control systems in
operation. The agent metaphor thus provides a useful and natural way of modeling
real-world autonomous components. As an aircraft enters Sydney airspace, an
agent is allocated for it, and the agent is instantiated with the information and
goals corresponding to the real-world aircraft.

 18

Commercial Applications
While industrial applications tend to be highly-complex, bespoke systems which operate
in comparatively small niche areas, commercial applications, especially those concerned
with information management, tend to be oriented much more towards the mass market.
z Distributed Project Management: For effective collaborative working between

the parties in a construction project team, it is essential that enabling information
and communications technologies are available. The problems posed by the use of
heterogeneous software tools are well known and need to be overcome by the
adoption of new approaches. One approach, which has significant potential for use
in the construction industry, involves the use of distributed artificial intelligence,
which is commonly implemented in the form of intelligent agents. [Anumba et al.,
1997] is intended to serve as a useful decision support system for designers, and
should allow faster, better, and more economic, collaborative design of buildings.
Other applications in this area include RAPPID project [Parsons et al., 1999],
PROCESSLINK project [Petrie et al., 1999] which has research goal to enable
multidisciplinary design engineers to track and coordinate their design decisions
with each other, even when not co-located or working with the same software, and
OOExpert project [Romi et al., March 1999] [Romi et al, June 1999] that
concern work on building intelligent agents for object model creation process in
object-oriented analysis and design.

z Information Management: The lack of effective information management tools

has given rise to what is colloquially known as the information overload problem.
We can characterize the information overload problem in two ways:

1. Information Filtering: Everyday we are presented with enormous amounts
of information, only a tiny proportion of which is relevant or important. We
need to able to sort the wheat from the chaff, and focus on the information
we need.

2. Information Gathering: The volume of information available prevents us
from actually finding information to answer specific queries. We need to be
able to obtain information that meets our requirements, even if this
information can only be collected from a number of different sites.

One important contributing factor to information overload is almost certainly that
an end user is required to constantly direct the management process. But there is in
principle no reason why such searches should not be carried out by agents, acting

 19

autonomously to search the web on behalf of some user. The idea is so compelling
that many projects are directed at doing exactly this [Maes, 1994] [Sycara et al.,
1996]. Other application in this area include: a personal assistant that learns user
interests and on the basis of these compiles a personal newspaper, a personal
assistant agent for automating various user tasks on a computer desktop, a home
page finder agent, a web browsing assistant and expert locator system.

z Electronic Commerce: Currently, commerce is almost entirely driven by human
interactions; humans decide when to buy goods, how much they are willing to pay,
and so on. But in principle, there is no reason why some commerce cannot be
automated. By this, we mean that some commercial decision-making can be
placed in the hands of agents. Although widespread electronic commerce is likely
to lie some distance in the future, an increasing amount of trade is being
undertaken by agents. As an example, [Chaves et al., 1996] describes a simple
electronic marketplace called Kasbah. This system realizes the marketplace by
creating buying and selling agents for each good to be purchased or sold
respectively. Commercial transactions then take place by the interactions of these
agents. Other commerce applications include: an agent which discovers the
cheapest CDs, a personal shopping assistant able to search online stores for
product availability and price information, a virtual marketplace for electronic
commerce, and several agent-based interactive catalogues.

z Business Process Management: Company managers make informed decisions

based on a combination of judgment and information from many departments.
Ideally, all relevant information should be brought together before judgment is
exercised. However obtaining pertinent, consistent and up to date information
across a large company is a complex and time-consuming process. For this reason,
organizations have sought to develop a number of IT systems to assist with
various aspects of the management of their business process. Project ADEPT
[Jennings et al., 1996] tackles this problem by viewing a business process as a
community of negotiating, service providing agents. Each agent represents a
distinct role or department in the enterprise and is capable of providing one or
more services. Other applications in this area include a system for supply chain
management, a system for managing heterogeneous workflows and a system of
mobile agents for inter-organizational workflow management.

 20

Entertainment Applications
The leisure industry is often not taken seriously by the computer science community.
Leisure applications are frequently seen as somehow peripheral to the serious
application of computers. And yet leisure applications such as computer games can be
extremely challenging and lucrative. Agents have an obvious role in computer games,
interactive theatre, and related virtual reality applications: such systems tend to be full
of semi-autonomous animated characters, which can naturally be implemented as
agents.
z Games: Grand and Cliff [Grand et al., 1998] built the highly successful Creatures

game using agent techniques. Creatures provides a rich, simulated environment
containing a number of synthetic agents that a user can interact with in real-time.
The agents are intended to be sophisticated pets whose development is shaped by
their experiences during their lifetime. [Wavish et al., 1996] also described
applications of agent technology to computer games.

z Interactive Theater and Cinema: By interactive theatre and cinema, we mean a

system that allows a user to play out a role analogous to those played by real,
human actors in plays or films, interacting with artificial, computer characters that
have the behavioral characteristics of real people. Agents that play the part of
human in theatre-style applications are often known as believable agents--software
programs "that provide the illusion of life, thus permitting an audience's
suspension of disbelief". A number of projects have been set up to investigate the
development of such agents [Trapl et al., 1997] [Lester, 1997].

Medical Applications
Medical informatics is a major growth area in computer science: new applications are
being found for computers everyday in the health industry. It is now surprising,
therefore, that agents should be applied in this domain. Two of the earliest applications
are in the areas of patient monitoring and health care [Hayes et al., 1989] [Huang et al.,
1995].

1.3 Research Motivations And Objectives

The challenges of object-oriented analysis and design are, to identify the objects and
their attributes needed to implement the software, describe the associations between the

 21

identified objects, define the behavior of the objects by describing the function
implementations of each object, and refine objects and organize classes by using
inheritance to share common structure [Beringer, 1997] [Booch, 1991] [Holland et al.,
1996] [Liang et al., 1998]. The object identification and refinement process are very
important process in OOAD, and we called this process by object model creation
process (Figure 1.2). Researchers and software designers come to a conclusion that
object model creation process is an ill-defined task, regarding of the difficulties of
heuristic [Holland et al., 1996] [Kato, 1998] and there is no unified methodology for
object-oriented software analysis and design. This is mainly due to lack of formalism
for object-oriented software analysis and design.

In our project, we are developing an intelligent agents system that aims to help
designers while designing object-oriented software by automating the difficulties and
ill-defined tasks in the object model creation process, including identification of objects,
relationships, attributes, behaviors and organization of objects with inheritance. We
formulate design patterns and rules for solving the above problems, and store them in
the knowledge bases. This system is named OOExpert [Romi et al., March 1999]
[Romi et al, June 1999].

1.4 How This Thesis Is Organized

The remainder of this thesis is organized into five chapters: introduction, object model
creation process and its computational model, system architecture and design,
implementation, and conclusion.

Chapter 1: Introduction
In this chapter, we give a brief introduction and overview to the two major topics
covered in this thesis: object-oriented analysis and design, and intelligent agents. It
starts with a short introduction of the object-oriented paradigm, as frameworks rely
heavily on its mechanisms such as object, class, inheritance, polymorphism and so on.
And then, we will take a look at object-oriented analysis and design, and its problem
that motivate us to do research on this topic. We present the key attributes of intelligent
agents such as autonomy, mobility, and intelligence, and also provide the benefits and
taxonomy of various intelligent agents technology. The research motivations and
objectives are also presented at the end of this chapter.

 22

Chapter 2: Object Model Creation Process and Its Computational
Model
In this chapter, we focus on object model creation process and why it has the capacity to
play a key role in object-oriented analysis and design. However, building software
engineering tools, and defining repository requires quantitative approach, because
everything must be clear and unambiguous. One way to ensure clarity of ideas is
through mathematical formalism. This chapter is an initial attempt to produce such
formalism for object model creation process used to represent the result of our works. It
presents a basic ontology for expressing our concepts and their relationships using set of
theory and functions. In this chapter, we explain our concepts, idea and approach toward
well-defined object model creation process and its computational model.

Chapter 3: System Architecture and Design
In this chapter, we focus on how the problems on object model creation process
introduced and formalized in the previous section can be designed to be a software
system. In our research, object model creation process is viewed as a society of software
agents that interact and negotiate with each other. We also construct the OOExpert agent
framework so that inter-agent communication can be supported as well as the mobility
of our agents across network. Finally, we explain system design and architecture of each
OOExpert agent, including requirements acquisition agent, object identification agent,
attribute identification agent, association identification agent, behavior identification,
and object refinement agent.

Chapter 4: Implementation
In this chapter, we focus on how the problems on object model creation process
introduced, formalized, and designed in the previous section can be implemented to be a
software system. It starts with an explanation about why Java is used as programming
language to implement OOExpert agents. However, There are specific features of Java,
which support intelligent agent paradigm: autonomy, intelligence and mobility. How the
OOExpert agents work is also presented at the end of this chapter.

Chapter 5: Conclusion
At this point we have described and addressed the problem of object model creation
process in object-oriented analysis and design. Furthermore, We have defined and
formalized our approach to overcome above problems. We also have designed and

 23

implemented our idea to be a software system, that we called it OOExpert. The final
step will be to summarize the argument presented in this thesis and reflect on it.

 24

CChhaapptteerr 22

OObbjjeecctt MMooddeell CCrreeaattiioonn

PPrroocceessss aanndd IIttss

CCoommppuuttaattiioonnaall MMooddeell

In this chapter, we focus on object model creation process and why it has the capacity to
play a key role in object-oriented analysis and design. However, building software
engineering tools, and defining repository requires quantitative approach, because
everything must be clear and unambiguous. One way to ensure clarity of ideas is
through mathematical formalism. This chapter is an initial attempt to produce such
formalism for object model creation process used to represent the result of our works. It
presents a basic ontology for expressing our concepts and their relationships using set of
theory and functions. In this chapter, we explain our concepts, idea and approach toward
well-defined object model creation process and its computational model.

 25

2.1 Priming the Object Model Creation

Process

As shown in Figure 2.1, OOAD begins with a problem statement (requirement)
generated by users and possibly customer. The requirement may be incomplete,
informal, and identification processes make it more precise and expose ambiguities and
inconsistencies. The requirement should not be taken as immutable but should serve as a
basis for refining the real requirements. Next, the real-world system described by the
requirement must be understood and identified, and its essential features abstracted into
a model. Identifying objects, attributes, associations and behaviors of the object is the
important step in constructing an object model. And the next step is to organize classes
by using inheritance to share common structure. Inheritance can be added in two
directions [Rumbaugh et al., 1991]: by generalizing common aspects of existing
classes into a superclass (bottom up or generalization) or by refining existing classes
into specialized subclasses (top down or specialization). The object identification and
refinement process are together called object model creation process.

Requirements

Identifiyng
Objects,

Attributes,
Associations and

Behaviors

Object Model

Domain knowledge
Real-world experience

User interviews

Refining with
inheritance

Class Model

Domain knowledge
Real-world experience

User interviews

Object Model
Creation Process

Figure 2.1: Object Model Creation Process

 26

Once developers have established the requirements for software, they can begin the
recursive object model creation process. The process can be summarized in the
following steps:

1. Identifying Objects
2. Identifying Attributes
3. Identifying Associations
4. Identifying Behaviors
5. Object Refinement with Inheritance

The object model creation process starts with the specification phase. In this phase the
developers work to understand exactly what the objects will look like in finished. The
result of the specification phase is a description of all external views of the completed
object. After the specification phase, come to the identification phase. During the
identification phase the developer describes how the object works in terms of
subordinate objects, including object attributes, associations and behaviors. The
identification phase also identifies the subordinate objects for use in following phase.
Identifying the subordinate objects sets the stage for the recursive phase of the object
model creation process. The final phases of the object model creation process focus on
object refinement.

The object model creation process relies on abstraction and expert perspective. Each
phase in sequence, applies perspectives to produce artifacts. The full set of artifacts
constitutes the complete product. Because the object model creation process needs
requirements as its input, the first step in the creation of a program is to identify the
program requirements. Given the program requirements, the developer begins the
recursive object mode creation process using the program as the highest-level object.
Decomposing the starting point operations provides insight into identifying and creating
objects.

Definition 2.1 (Object Model Creation Process): Object model creation
process is a main process of object-oriented analysis and design process,
which starts with identification of objects, behaviors, attributes, and
associations from requirements, and ends with object refinement with
inheritance process.

 27

2.2 Requirements Specification and Its

Computational Model

2.2.1 Requirements Specification and Acquisition
Concepts

Requirement acquisition is considered one of the most important activities in software
development. Most faults found during testing and operation result from poor
understanding or misinterpretation of requirements. In spite of progress in analysis
techniques, CASE tools support, prototyping, and early verification and validation
technique, software development still suffers from poor requirements acquisition.

In the traditional approach to software analysis, system analyst interview end users to
capture requirements. We propose an approach where end users take an active role in
analysis by specifying requirements using Object Based Formal Specification (OBFS).
We use OBFS to guide end users in describing their problem. This approach will be first
important step for solving the difficulties and ill-defined tasks in the object model
creation process, including identification of objects, associations, attributes, behaviors
and organization of objects with inheritance. This approach also takes advantage of end
users' domain knowledge.

Requirements Specification
A requirement is a desired relationship among phenomena of the environment of a
system, to be brought about by the software system that will be constructed and
installed in the environment.

A specification describes system behavior sufficient to achieve the requirement. A
specification is a restricted kind of requirement. All the environment phenomena
mentioned in a specification are shared with the system. The phenomena constrained by
the specification are controlled by the system, and the specified constraints can be
determined without reference to the future. Specifications are derived from
requirements by reasoning about the environment, using properties that hold
independently of the behavior of the system [Jackson et al., 1995].

 28

In other words, we can say that the difference between requirements and specification is
that requirements refer to the entire system to be realized, whereas a specification refers
only to the part of the system to be implemented by software.

Jackson and Zave [Jackson et al., 1995] consider specifications as special kind of
requirements. A requirement is a specification if all actions constrained by the
requirement are controlled by the software system, and all information it relies on is
shared with the software system and refers only to the past, not the future. Requirements
(and thus specifications) do not talk about the state of the software system. In contrast to
this view, we consider a specification to be a model of the software system to be built in
order to satisfy the requirements.

The software requirements specifications process consists of three steps:

1. Requirements capture and analysis
2. Requirements definition and specification
3. Requirements validation

The origin of most software system is the need of a client /user who desires a new
software system. The final output of this process is a requirements document, which
defines the system to be developed [Jalote, 1997].

Formal Methods and Formal Specification
Formal methods used in developing software systems provide frameworks for
specifying, developing, and verifying systems in a systematic manner rather than ad hoc
manner. Formal methods are used to reveal ambiguity, incompleteness, and
inconsistency in a software system. System designer use formal methods to specify
desired behavioral and structural properties [Ralston et al., 1993]. Formal methods can
be used in all phases of software's development and present an opportunity to develop
new techniques to improve software production. One tangible product to applying a
formal method is a formal specification.

Formal requirement specifications have the additional advantage over informal
requirement specifications because they are amenable to machine analysis and
manipulation. The greatest benefit of applying a formal requirement specification is that
system designers gain a deeper understanding of the specified system, because they
have forced to be more abstract and precise about desired properties. Another important

 29

application of formal requirement specification is that they can be used as a base to
reason about the behavior of system's components.

Below, there are some applications of formal specifications and the formal methods that
support each software development phase: [Iglewski et al., 1997]
z Requirement Analysis. This step clarifies in the informally stated requirements,

help clear up vague ideas, reveals contradictions (or inconsistencies), ambiguities
and incompleteness.

z Software Design. This step is used during modular decomposition and refinement
to record design decisions and assumptions. It provides the implementer the
information needed to construct the modules without knowledge of its clients. The
implementation can be replaced by more efficient one, without affecting the
interface and the client's code.

z Software Verification. This step is the process of showing that a system satisfies
its specification. This process is impossible without a formal specification. It is
important to realize that although the entire system may never be completely
verified, a smaller, critical piece often can be.

z Software Validation. Formal methods can aid in system testing and debugging.
Specifications can be used to generate complete test cases.

z Software Documentation. A specification serves as a description of the software.
It is used for a communication between a client and a specifier, between a
specifier and an implementer, and among the implementation team.

z Software Analysis and Evaluation. To learn from experience of building
prototype software, developers should perform a critical analysis of its
functionality and performance after this prototype has been built. Recently,
significant research has been carried out in specifying a software, which is already
built, running, and used. Some of these exercises revealed serious bugs in
published algorithms and design. As expected, most formal specifications revealed
unstated assumptions, inconsistencies, and unintentional incompleteness of
software.

The usefulness of formal requirement specification is more and more accepted by
researcher and practical software engineers. But formal requirement specification
techniques still suffer from two drawbacks.

First, research spends more effort to develop new languages than provide

 30

methodological guidance for using existing ones. Often, users of formal techniques are
left alone with a formalism for which no explicit methodology has been developed.

Second, formal requirement specification techniques are not well integrated with the
analysis phase of software engineering. Often, formal requirement specifications begin
with very short description of the system to be implemented, and detail is added during
the development of the formal requirement specification. Such a procedure does not
adequately take into account the need to thoroughly analyze the system to be
implemented and the environment in which it will operate before a detailed requirement
specification is developed.

2.2.2 Models for Requirements Specification

Figure 2.2 shows our strategy to formulate requirement specification for solving the
object model creation process. We propose an approach where end users take an active
role in analysis by specifying requirements using Object-Based Formal Specification
(OBFS). We use OBFS to guide end users in describing their problem. This approach
will be the first important step for solving the difficulties and ill-defined tasks in the
object model creation process, including identification of objects, associations,
attributes, behaviors and organization of objects with inheritance.

OBFS is composed of Description Statements (DS), Collaborative Statements (CS),
Attributive Statements (AS), Behavioral Statements (BS), and Inheritance Statements
(IS).

ISBSASCSDSOBFS ⊕⊕⊕⊕=

Each OBFS statement consists of Subject (S), Verb (V), and Object (O) as well as the
English (E) natural language.

{ }
{ }
{ }
{ }

{ },...),,(,),,(,),,(
,...),,(,),,(,),,(
,...),,(,),,(,),,(
,...),,(,),,(,),,(

,,,

333222111

333222111

333222111

333222111

isisis

bsbsbs

asasas

cscscs

OVSOVSOVSIS
OVSOVSOVSBS
OVSOVSOVSAS
OVSOVSOVSCS

nDescriptioLanguagetNamerequirementIDrequiremenDS

=
=
=
=
=

 and EOBFS ∈∀

 31

Identifying Problem
Domain

Collaborative
Statements

Identifying
Objects and
Associations

Attributive
Statements

Identifying
Attributes

Behavioral
Statements

Identifying
Behaviors

Inheritance
Statements

Refining With
Inheritance

Class Model

OBFS

Description
Statements

Figure 2.2: Object-Based Formal Specification

Definition 2.2 (Object-Based Formal Specification (OBFS)): Object-Based
Formal Specification (OBFS) is a semi-formal requirements template used to
reveal ambiguity, incompleteness, and inconsistency in an object-oriented
software system, and to guide end users take an active role while describing
their problem statements. OBFS is composed of description statements (DS),
collaborative statements (CS), attributive statements (AS), behavioral
statements (BS), and inheritance statements (IS).

 32

Description Statements (DS)
Description statements are used to guide for writing an overview of the system that we
want to build. Description statements contain four kinds of elements: Requirement ID,
Requirement Name, Language, and Description (Figure 2.3). The description statements
should state what is to be done and not how it is to be done. It should be a statement of
needs, not a proposal for a solution.

A Unique ID of the Requirement

A Title of the Requirement
Language used

in the Requirement

The problem statements of the intention of the requirement

Figure 2.3: Description Statements Shell

Definition 2.3 (Description Statements (DS)): A description statement is a
requirement statement used to write an overview of the system that we want
to build, which consists of Requirement ID, Requirement Name, Language,
and Description.

 33

Collaborative Statements (CS)
Collaborative statements are used to identify objects, and association between objects.
The first step in object model creation process is to identify relevant object and its
association from the application domain. Objects include physical entities and all
objects must make sense in the application domain. All objects are explicit in the
collaborative statements, and objects are corresponding to nouns that identified from
collaborative statements.

Any dependency between two ore more objects in the collaborative statements is an
object association. A reference from one object to another is also an association.
Associations show dependencies between objects at the same level of abstraction as the
objects themselves. Associations can be implemented in various ways, but such
implementation decisions should kept out of the analysis model to preserve design
freedom. Associations often correspond to verbs or verb phrases. These include physical
location (next to, part of, contained in), directed actions (drives), communication (talks
to), ownership (has, part of), or satisfaction of some condition (works for, married to,
manages).

Collaborative Statement (CS) consists of Subject (S), Verb (V), and Object (O) as well
as the English (E) natural language.

{ },...),,(,),,(,),,(333222111 cscscs OVSOVSOVSCS = and ECS ∈∀

Scs and Ocs will be identified as a tentative object (OBJt), and Vcs will be identified as a
tentative association (ASSt) in terms of object-oriented paradigm.

][tcs OBJSECS ⇒∈∀ and][tcs OBJOECS ⇒∈∀

][tcs ASSVECS ⇒∈∀

Definition 2.4 (Collaborative Statements (CS)): A collaborative statement is
a requirement statement used to identify objects, and association between
objects, which consists of subject (S), verb (V), and object (O) as well as the
English (E) natural language.

 34

Attributive Statements (AS)
Attributive statements are used to identify object attributes. Attributes are properties of
individual objects. Attributes usually correspond to nouns followed by possessive
phrases, and sometimes are characterized by adjectives or adverbs. Attributive statement
must contain properties of each object identified at the previous step.

Attributive Statement (AS) consists of Subject (S), Verb (V), and Object (O) as well as
the English (E) natural language.

{ },...),,(,),,(,),,(333222111 asasas OVSOVSOVSAS = and EAS ∈∀

Oas will be identified as a tentative attribute (ATTt) in the term of object-oriented
paradigm. Sas is identified and refined objects (OBJ) from tentative object (OBJt) as the
final result of object identification’s process.

][tas ATTOEAS ⇒∈∀

][OBJSEAS as =∈∀

Definition 2.5 (Attributive Statements (AS)): An Attributive statement is a
requirement statement used to identify object attributes, which consists of
subject (S), verb (V), and object (O) as well as the English (E) natural
language.

Behavioral Statements (BS)
Behavioral statements are used to identify object behaviors. Behavior is how an object
acts and reacts, in terms of its state changes and message passing [Booch, 1991].
Behavioral statement must contain behaviors of each object identified at the previous
step.

Behavioral Statement (BS) consists of Subject (S), Verb (V), and Object (O) as well as
the English (E) natural language.

{ },...),,(,),,(,),,(333222111 bsbsbs OVSOVSOVSBS = and EBS ∈∀

 35

Oas will be identified as a tentative behavior (BEHt) in the term of object-oriented
paradigm. Sbs is identified and refined objects (OBJ) from tentative object (OBJt) as the
final result of object identification’s process.

][tbs BEHOEBS ⇒∈∀

][OBJSEBS as =∈∀

Definition 2.6 (Behavioral Statements (BS)): A Behavioral statement is a
requirement statement used to identify object behaviors, which consists of
subject (S), verb (V), and object (O) as well as the English (E) natural
language.

Inheritance Statements (IS)
Inheritance statements are used to organize classes by using inheritance, to share
common object attributes and behaviors. Inheritance provides a natural classification for
kinds of objects and allows for the commonality of objects to be explicitly taken
advantage of in modeling and constructing object systems. Inheritance is a relationship
between classes where one class is the parent class of another. Inheritance statement
provides sentences that have is-a-kind-of relationship. For example, mountain bikes,
racing bikes, and tandems are all different kinds of (is-a-kind-of) bicycles.

Inheritance Statement (IS) consists of Subject (S), Verb (V), and Object (O) as well as
the English (E) natural language.

{ },...),,(,),,(,),,(333222111 isisis OVSOVSOVSIS = and EIS ∈∀

Ois will be identified as a tentative superclass (SCLt) in the term of object-oriented
paradigm. Sis is identified and refined objects (OBJ) from tentative object (OBJt) as the
final result of object identification’s process.

][tis SCLOEIS ⇒∈∀

][OBJSEIS is =∈∀

 36

Definition 2.7 (Inheritance Statements (IS)): An Inheritance statement is a
requirement statement used to organize classes by using inheritance, and to
share common object attributes and behaviors, which consists of subject (S),
verb (V), and object (O) as well as the English (E) natural language.

2.3 Object Identification and Its

Computational Model

2.3.1 Object Identification Concepts

As shown in Figure 2.4, object identification begins by listing candidate objects found
in the written requirements specification. The next step is to identify relevant objects
from the application domain. Objects include physical entities and all objects must
make sense in the application domain. All objects are explicit in the requirements
specification, and objects are corresponding to nouns that identified from requirements
specification. The next step is discard unnecessary and spurious objects according to the
following criteria: redundant objects, irrelevant objects, vague objects, attributes,
operations, roles, and implementation construct.

Object Identification
TaskRequirements

Specification

Extract Nouns

Tentative
Objects

Eliminate
Spurious
Objects

Objects
Rules of Spurious
Object Elimination

Redundant Objects
Irrelevant Objects

Vague Objects
Attributes
Operations

Roles
Implementation Construct

Figure 2.4: Object Identification Process

 37

2.3.2 Models for Object Identification

Figure 2.5 shows our strategy for solving the object identification process. We use
collaborative statements from OBFS to guide end users in describing their problem. The
first step in object identification process is to extract S and O written in the collaborative
statements to be tentative objects (OBJt).

][tcs OBJSECS ⇒∈∀ and][tcs OBJOECS ⇒∈∀

The next step is to eliminate spurious objects and propose relevant objects using
Rule-Based Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms. In the
RBR, the system will discard unnecessary and incorrect objects according to the
following criteria: redundant objects (OBJred), attributes (OBJatt), behaviors (OBJbeh),
and not noun objects (OBJnon).

][OBJOBJOBJOBJOBJEOBJ nonbehattred ⇒¬∧¬∧¬∧¬∈∀

 38

Object Identification
TaskCollaborative

Statements
(S V O)

Extract
S and O

Tentative
Objects

Objects
Rules of Spurious
Object Elimination

Redundant Objects
Attributes
Behaviors
Not Nouns

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Eliminate
Spurious
Objects

Propose
Relevant
Objetcs

Figure 2.5: Proposed Approach for Object Identification Process

In other hand, CBR is based on psychological theories of human cognition. We collect
design rules from human experts, and store/index them in the case-base. It rests on the
intuition that human expertise does not depend on rules or other formalized structures,
but on experiences. Human experts differ from novices in their ability to relate problems
to previous ones, to reason based on analogies between current and old problems, to use
solutions from old experiences, and to recognize and avoid old errors and failures. Two
kinds of case-base indexed in our approach are: Human Expert Solution (HES) and
Problem Domain Relation (PDR). The final result of the object identification process is
a relevant object (OBJ).

 39

2.4 Attribute Identification and Its

Computational Model

2.4.1 Attribute Identification Concepts

As shown in Figure 2.6, attribute identification begins by listing candidate attributes
found in the written requirements specification. The next step is to identify relevant
attributes from the application domain. Attributes are properties of individual objects,
such as name, weight, velocity, or color. And, attributes are corresponding to nouns
followed by possessive phrases that identified from requirements specification.
Adjectives often represent specific enumerated attribute value, such as red, on, or
expired. Unlike objects and associations, attributes are less likely to be fully described
in the requirements statement. We must draw on our knowledge of the application
domain and the real world to find them. Fortunately, attributes seldom affect the basic
structure of the problem. The next step is discard unnecessary and spurious attributes
according to the following criteria: objects, qualifiers, names, identifiers, link attributes,
internal values, and discordant attributes.

Attribute
Identification TaskRequirements

Specification
Extract Object

Properties

Tentative
Attributes

Eliminate
Spurious

Attributes

Attributes
Attribute Identification

Rules

Objects
Qualifiers

Names
Identifiers

Link Attributes
Internal Values

Discordant Attributes

Figure 2.6: Attribute Identification Process

 40

2.4.2 Models for Attribute Identification

Figure 2.7 shows our strategy for solving the attribute identification process. We use
attributive statements from OBFS to guide end users in describing their problem. The
first step in attribute identification process is to extract O written in the attributive
statements to be tentative attribute (ATTt).

][tas ATTOEAS ⇒∈∀

The next step is to eliminate spurious attributes and propose relevant attributes using
Rule-Based Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms. In the
RBR, the system will discard unnecessary and incorrect attributes according to the
following criteria: redundant attributes (ATTred), objects (ATTobj), and behaviors
(ATTbeh).

][ATTATTATTATTEATT behobjred ⇒¬∧¬∧¬∈∀

In other hand, CBR is based on psychological theories of human cognition. We collect
design rules from human experts, and store/index them in the case-base. It rests on the
intuition that human expertise does not depend on rules or other formalized structures,
but on experiences. Human experts differ from novices in their ability to relate problems
to previous ones, to reason based on analogies between current and old problems, to use
solutions from old experiences, and to recognize and avoid old errors and failures. Two
kinds of case-base indexed in our approach are: Human Expert Solution (HES) and
Problem Domain Relation (PDR). The final result of the attribute identification process
is a relevant attribute (ATT).

 41

Attribute
Identification TaskAttributive

Statements
(S V O)

Extract O

Tentative
Attributes

Eliminate
Spurious

Attributes
Attributes Rules of Spurious

Attribute
Elimination

Redundant Attributes
Objects

Behaviors

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Propose
Relevant

Attributes

Figure 2.7: Proposed Approach for Attribute Identification Process

2.5 Association Identification and Its

Computational Model

2.5.1 Association Identification Concepts

As shown in Figure 2.8, association identification begins by listing candidate
associations found in the written requirements specification. The next step is to identify
relevant associations from the application domain. All associations are explicit in the
requirements specification, and associations are corresponding to static verbs or verb
phrases that identified from requirements specification. The next step is discard
unnecessary and spurious associations according to the following criteria: associations

 42

on eliminated objects, irrelevant associations, actions, ternary associations, derived
associations, misnamed associations, role names, qualified associations, multiplicity,
and missing associations.

Association
Identification TaskRequirements

Specification
Extract Static
Verbs or Verb

Phrases

Tentative
Associations

Eliminate
Spurious

Associations

Associations
Association

Identification Rules

Associations on eliminated Objects
Irrelevant Associations

Actions
Ternary Associations
Derived Associations

Misnamed Associations
Role Names

Qualified Associations
Multiplicity

Missing Associations

Figure 2.8: Association Identification Process

Any dependency between two ore more objects is an object association. A reference
from one object to another is also an association. Associations show dependencies
between objects at the same level of abstraction as the objects themselves. Associations
can be implemented in various ways, but such implementation decisions should kept out
of the analysis model to preserve design freedom. Associations often correspond to
static verbs or verb phrases. These include physical location (next to, part of, contained
in), directed actions (drives), communication (talks to), ownership (has, part of), or
satisfaction of some condition (works for, married to, manages).

We can summarize, there are four general categories of inter-object associations. These
are:

1. The Is-a-kind-of association
2. The Uses association
3. The Consists-of association
4. The Contains association

The classic Is-a-kind-of object association indicates set membership. For example, a

 43

queen is a kind of chess piece, or a dog is a kind of animal. The object-oriented
paradigm represents Is-a-kind-of association through inheritance. Inheritance implies
that descendant object receive the attributes of their base classes.

The Uses association is a client-server association. In a Uses association, one object
uses another object to accomplish some task. In a database application, a database
object might store and retrieve data records for an application object. A client is the
application that uses the server or the database object. Objects can be both clients and
servers. While the database object is the server for the application, the database object
might be a client of a file system server. It is important to focus on identifying the
associations between objects and not just the objects.

The Consists-of association occurs when an object is composed of other objects. A car
consists of an engine, four wheels, a body, and an electrical system. Consists-of
associations are generally static. This means that a car always has four wheels and not
sometimes two or 10.

Finally, the Contains association describes a potentially transient association such as
cards in a poker hand or items in a box. The transient ness of the Contains association
distinguishes it from the Consists-of association. For example, objects may be put into
or taken out of a box, but in normal use, the engine never leaves the car. The Contains
association also represents set of membership, but the transient nature of the Contains
association distinguishes it from the Is-a-kind-of association. An item may come and go
as a member of the set of things a box contains, but a dog will always be a member of
the set of animals. The transient nature of the associations between the objects should
help categorize the association.

To apply abstraction in the recursive analysis and design process, software designers
must first concentrate on Consists-of association, i.e., on viewing programs as objects
within objects. Consists-of associations are the binding links between levels of
abstraction. A book consists of a table of contents, chapters, appendices, and index. The
abstraction called the book is, bound by the Consists-of association to the lower level
abstraction’s table of contents, chapters, appendices, and index. For the recursive
analysis and design process to be successful, we must also recognize Contains
associations as link between levels of abstraction. Objects are potentially dynamic sets
that decompose differently depending upon the changing constitution of the set. For

 44

example, the set of windows that makes up a screen of a Graphical User Interface (GUI)
application may change as the application runs. The GUI screen might be considered as
abstraction of the set of windows it contains. This contains association binds the
higher-level screen abstraction to the lower level windows’ abstractions. Once software
designers understand what the subordinate objects are, it becomes important to organize
how the subordinate objects interact. As subordinate objects work to perform the
functions of their superior object, they will require each other’s assistance. These
assisting associations are the Uses associations.

2.5.2 Models for Association Identification

Figure 2.9 shows our strategy for solving the association identification process. We use
collaborative statements from OBFS to guide end users in describing their problem. The
first step in association identification process is to extract V written in the collaborative
statements to be tentative associations (ASSt).

][tcs ASSVECS ⇒∈∀

The next step is to eliminate spurious associations and propose relevant associations
using Rule-Based Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms. In
the RBR, the system will discard unnecessary and incorrect associations according to
the following criteria: redundant associations (ASSred), attributes (ASSatt), behaviors
(ASSbeh), and not verb associations (ASSnov).

][ASSASSASSASSASSEASS novbehattred ⇒¬∧¬∧¬∧¬∈∀

 45

Association
Identification TaskCollaborative

Statements
(S V O)

Extract V

Tentative
Associations

Eliminate
Spurious

Associations
Associations Rules of Spurious

Association
Elimination

Redundant Associations
Attributes
Behaviors
Not Verbs

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Propose
Relevant

Associations

Figure 2.9: Proposed Approach for Association Identification Process

In other hand, CBR is based on psychological theories of human cognition. We collect
design rules from human experts, and store/index them in the case-base. It rests on the
intuition that human expertise does not depend on rules or other formalized structures,
but on experiences. Human experts differ from novices in their ability to relate problems
to previous ones, to reason based on analogies between current and old problems, to use
solutions from old experiences, and to recognize and avoid old errors and failures. Two
kinds of case-base indexed in our approach are: Human Expert Solution (HES) and
Problem Domain Relation (PDR). The final result of the association identification
process is a relevant association (ASS).

 46

2.6 Behavior Identification and Its

Computational Model

2.6.1 Behavior Identification Concepts

Behavior is how an object acts and reacts, in terms of its state changes and message
passing [Booch, 1991]. So, behavior can most effectively be identified by explicitly
stating what the object does. For example, which of these descriptions best exemplifies
a word processor?
z A program that runs on a PC, drives a laser printer, employs columns, and users

four megabytes of disk space.
z A program that lets users edit, format, and print text.

The first description identifies features of word processors but does not describe what
word processors do. The first description could also identify a spreadsheet application.
In contrast, the second description focuses on the behaviors unique to word processors.
Due to its focus on behavioral, the second description eliminates many unrelated classes
of applications. However, recently there is no methodology to extract behavior from
requirements specification. But we can summarize from above discussion, as shown in
Figure 2.10, behavior identification is a process to extract what the object does (object
acts and reacts) from requirements specification.

Behavior
Identification TaskRequirements

Specification

Extract Object
Acts and Reacts

Behaviors

Figure 2.10: Behavior Identification Process

 47

2.6.2 Models for Behavior Identification

Figure 2.11 shows our strategy for solving the behavior identification process. We use
behavioral statements from OBFS to guide end users in describing their problem. The
first step in behavior identification process is to extract O written in the behavioral
statements to be tentative behavior (BEHt).

][tbs BEHOEBS ⇒∈∀

The next step is to eliminate spurious behaviors and propose relevant behaviors using
Rule-Based Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms. In the
RBR, the system will discard unnecessary and incorrect behaviors according to the
following criteria: redundant behaviors (BEHred), objects (BEHobj), associations
(BEHass), attributes (BEHatt), and not verb behaviors (BEHnov).

][BEHBEHBEHBEHBEHBEHEBEH novattassobjred ⇒¬∧¬∧¬∧¬∧¬∈∀

 48

Behavioral
Identification TaskBehavioral

Statements
(S V O)

Extract O

Tentative
Behaviors

Eliminate
Spurious
Behaviors

Behaviors Rules of Spurious
Behavior

Elimination

Redundant Behaviors
Objects

Associations
Attributes
Not Verbs

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Propose
Relevant
Behaviors

Figure 2.11: Proposed Approach for Behavior Identification Process

In other hand, CBR is based on psychological theories of human cognition. We collect
design rules from human experts, and store/index them in the case-base. It rests on the
intuition that human expertise does not depend on rules or other formalized structures,
but on experiences. Human experts differ from novices in their ability to relate problems
to previous ones, to reason based on analogies between current and old problems, to use
solutions from old experiences, and to recognize and avoid old errors and failures. Two
kinds of case-base indexed in our approach are: Human Expert Solution (HES) and
Problem Domain Relation (PDR). The final result of the behavior identification process
is a relevant behavior (BEH).

 49

2.7 Object Refinement with Inheritance and

Its Computational Model

2.7.1 Object Refinement with Inheritance Concepts

The final step of object model creation process is to organize classes by using
inheritance to share common structure. Inheritance can be added in two directions,
bottom up (generalization) and top down (specialization).

1. Bottom Up (Generalization): By generalizing common aspects of existing classes
into a superclass. We can discover inheritance from the bottom up by searching
for classes with similar attributes, associations, or behaviors. For each
generalization, define a superclass to share common features.

2. Top Down (Specialization): By refining existing classes into specialized subclass.
Top down specializations are often apparent from the application domain. Look
for noun phrases composed of various adjectives on the class name. Avoid
excessive refinement. If proposed specializations are incompatible with an
existing class, the existing class may be improperly formulated. Enumerated
subcases in the application domain are the most frequent source of
specializations. Often, it is sufficient to note that a set of enumerated subcases
exists, without actually listing them.

The object-oriented paradigm represents Is-a-kind-of association through inheritance.
Inheritance implies that descendant object receive the attributes of their base classes.
For example, a queen is a kind of chess piece, or a dog is a kind of animal. The
Is-a-kind-of association is a generalization that encompasses several objects with similar
methods.

Definition 2.8 (Generalization and Specialization): Generalization and
Specialization are relationships between concepts. Any type of A, each of
whose objects is also an instance of a given type B, is called a specialization
(or subtype) of B and is written as BA ⊂ . B is also called the generalization
(or supertype) of A.

As with the classification relation the specialization relation can also be qualified in

 50

extensional and intensional terms [Odell et al., 1997]. For example,

)()(AnimalextDogext ⊂ or simply AnimalDog ⊂

means that every number of the Dog is also a member of the Animal set. In contrast,

)(int)int(AnimaltDog ⊂

means the definition of Dog must contain the definition of Animal. When viewed in
extension, the left side of the ⊂ involves fewer than the right, because the left side is a
subset. When viewed in intension, the left side of the ⊂ involves more than the right,
because the definition of the left must also include the definition of the right. In short,
when going down a generalization hierarchy, the extension gets smaller while the
intension get bigger.

2.7.2 Models for Object Refinement with Inheritance

Models for Object Refinement with Inheritance Using Specialization
First, we denote the set of behaviors of a class CLS by CLSbeh. And we also denote the
set of attributes of a class CLS by CLSatt. So in this case:

},...,,{ 21 k
beh BEHBEHBEHCLS = and },...,,{ 21 k

att ATTATTATTCLS =

As we know, a class is composed of behaviors and attributes. In this case, class CLS is
composed of behaviors CLSbeh and attributes CLSatt.

attbeh CLSCLSCLS ⊕=

We assume that the members of class CLS are CLS1, CLS2, …, CLSk and the members of
class SCL are SCL1, SCL2, …, SCLk.

},...,,{ 21 kCLSCLSCLSCLS = and },...,,{ 21 kSCLSCLSCLSCL =

Class SCL is specializing CLS1, CLS2, …, CLSk. This means that class SCL has CLS1,

 51

CLS2, …, CLSk as subclasses and define attributes and behaviors inherited from SCL as
superclass. In this case, we can denote that class SCL will therefore be the union of all
the class CLS. Furthermore, class SCL conforms to all its subclasses in the class
hierarchy. This is expressed formally bellow.

U
k

i
iCLSSCL

1=

=

Models for Object Refinement with Inheritance Using Generalization
First, we denote the set of behaviors of a class CLS by CLSbeh. And we also denote the
set of attributes of a class CLS by CLSatt. So in this case:

},...,,{ 21 k
beh BEHBEHBEHCLS = and },...,,{ 21 k

att ATTATTATTCLS =

As we know, a class is composed of behaviors and attributes. In this case, class CLS is
composed of behaviors CLSbeh and attributes CLSatt.

attbeh CLSCLSCLS ⊕=

We assume that the members of class CLS are CLS1, CLS2, …, CLSk and the members of
class SCL are SCL1, SCL2, …, SCLk.

},...,,{ 21 kCLSCLSCLSCLS = and },...,,{ 21 kSCLSCLSCLSCL =

Class CLS1, CLS2, …, CLSk are generalizing SCL. This means that classes CLS have
SCL as superclass and define attributes and behaviors generalized from CLS as
subclasses. In this case, we can denote that class SCL will therefore be the intersection
of all the class CLS. Furthermore, all of classes CLS conform to SCL, and we can define
that SCL is a superclass of CLS in the class hierarchy. This is expressed formally bellow.

I
k

i
iCLSSCL

1=

=

In OOExpert project, we use bottom-up (generalization) concepts as a basic approach to
build a new model of object refinement process. As shown in Figure 2.12, object

 52

refinement with inheritance process begins by listing objects found in the previous
object model creation process, and searching similar object names, attributes, and
behaviors. If the similar objects are found, the object will be a sub class and a tentative
superclass will be generated automatically. The next process is to give the superclass a
name. The superclass can be given from user, or automatically generates from similar
object names. The result of this process is a class model with inheritance structure.
Oppositely, if the similar object cannot be found, the object will be a class model
(without inheritance structure) directly. The final result of the object refinement process
is a class model, which is the combination of class model with inheritance and class
model without inheritance.

Object Refinement
TaskObjects

Search Similar
Attributes,
Associations
and Behaviors

Give the
Superclass a

Name

Class Model
with

Inheritance
Rules for Naming

Superclass

Similar Object's Name
Given Name from User

Subclass

Tentative
Superclass

Class

NOYES

Class Model
without

Inheritance

Class Model

Figure 2.12: Object Refinement with Inheritance

 53

CChhaapptteerr 33

SSyysstteemm AArrcchhiitteeccttuurree AAnndd

DDeessiiggnn

In this chapter, we focus on how the problems on object model creation process
introduced and formalized in the previous section can be designed to be a software
system. In our research, object model creation process is viewed as a society of software
agents that interact and negotiate with each other. We also construct the OOExpert agent
framework so that inter-agent communication can be supported as well as the mobility
of our agents across network. Finally, we explain system design and architecture of each
OOExpert agent, including requirements acquisition agent, object identification agent,
attribute identification agent, association identification agent, behavior identification,
and object refinement agent.

 54

3.1 Agent Model of OOExpert
In this research, object model creation process is viewed as a society of software agents
that interact and negotiate with each other. We have devised six types of agents:
requirement acquisition agent, object identification agent, attribute identification agent,
association identification agent, behavior identification agent, and object refinement
agent [Figure 3.1]. Each agent is an intelligent in its own field and may interact with its
human counterpart or behave autonomously.
z The requirements acquisition agent manages the task concerning the requirements

acquisition from object-based formal specification (OBFS).
z The object identification agent manages the task concerning the object

identification.
z The attribute identification agent manages the task concerning the identification

of object attributes.
z The association identification agent manages the task concerning the

identification of associations between the identified objects
z The behavior identification agent manages the task concerning the identification

of object behaviors.
z The object refinement agent manages the task concerning to refine objects and

organize classes by using inheritance to share common structure

Each agent has a local knowledge base and a reasoning engine. All agents have a
communication engine and a documentation engine. The communication and
documentation engines facilitate communication and navigation of each agent on the
network environment.

 55

Requirements
Specification

Class Model

Object Identification
Agent

Object
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Requirements Acquisition
Agent

Requirements
Acquisition

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Object Refinement
Agent

Object
Refinement with

Inheritance

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Attribute Identification
Agent

Attribute
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Association Identification
Agent

Association
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Behavior Identification
Agent

Behavior
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Figure 3.1: Architecture of OOExpert Agents

3.2 Agent Framework of OOExpert

3.2.1 Issues and Guidelines for OOExpert Agent
Framework

There are some fundamental issues and guidelines for building a framework of
OOExpert Agent.
z OOExpert agents must support a relatively sophisticated event-processing

capability. OOExpert agents will need to handle events from the outside world,
other agents, and signal events to outside applications. Java release features a
powerful new event-processing model called the Delegation Event Model. This
new framework was actually driven by the requirements of JavaBeans component
model. This model is based on event sources and event listeners. There are many

 56

different classes of events with different levels of granularity. We will use the
JavaBeans event model in our work.

z Domain knowledge must be added to OOExpert agents using Rule-Based
Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms.

z Learning algorithms must be added to OOExpert agents to do classification,
clustering and prediction.

z OOExpert agents must be supported using a KQML message protocol. In order to
provide this functionality, we will have to go back to the drawing board, and come
up with an agent that can handle tasks like a KQML facilitator or matchmaker.

z OOExpert agents should be persistent. That is, once an agent is constructed, there
must be a way to save it in file and reload its state at a later time.

3.2.2 Communication Engine

An agent is an active object with the ability to perceive, reason and act. We assume that
an agent has explicitly represented knowledge and mechanism for operating on or
drawing inferences on its knowledge. We also assumed that an agent has the ability to
communicate. This ability is part perception (the receiving of messages) and part action
(the sending of messages). Furthermore, when our agents need to talk to each other, they
can do this in a variety of ways. They can talk directly to each other, provided they
speak the same language. Or they can talk through an interpreter or facilitator, providing
they know how to talk to the interpreter, and the interpreter can talk to the other agent.

There is a level of basic language (the syntax and format of the messages), and there is a
deeper level (the meaning or semantics). While the syntax is often easily understood,
the semantics are not. For example, two English-speaking agents may get confused if
one talks about the boot and bonnet, and the other about the hood and trunk of an
automobile. They need to have a shared vocabulary of words and their meaning. This
shared vocabulary is called ontology.

OOExpert agents use Knowledge Query and Manipulation Language (KQML) [Finin et
al., 1993] [Finin et al., 1994] [Labrou et al., 1997] as an agent communication
language. The KQML provides a framework for programs and agents to exchange
information and knowledge. KQML and also Knowledge Interchange Format (KIF)
[Genesereth et al., 1992] came out of the DARPA Knowledge Sharing Effort (KSE).

 57

Whereas KIF deals with knowledge representations, KQML focuses on message format
and message-handling protocols between running agents. KQML defines the operations
that agents may attempt on each other’s knowledge bases, and provide a basic
architecture for agents to share knowledge and information through special agents
called facilitators. Facilitators act as matchmakers or secretaries for the agents they
service.

KQML messages are called performatives. Each message is intended to implicitly
perform some specified action. There are a large number of performatives defined in
KQML, and most agent-based systems support only a small subset. The performatives,
or message types, are reserved words in KQML. Using performatives, agents can ask
other agents for information, tell other agents facts, subscribe to the services of agents,
and offer their own services. KQML uses ontologies, explicit specifications of the
meaning, concepts, and relationships applicable to some specific domain, to insure that
two agents communicating in the same language can correctly interpret statements in
that language.

At the heart of KQML are more than three dozen performatives that define the allowed
"speech acts" that agents may use, and which provide the substrate for constructing
more complex co-ordination and negotiation strategies. These performatives are
grouped into nine categories, as shown in Table 3.1.

Category Category Category Category Reserved Performative NamesReserved Performative NamesReserved Performative NamesReserved Performative Names

Basic Informational Performatives tell, deny, untell, cancel

Basic Query Performatives valuate, reply, ask-if, ask-about, ask-one, ask-all, sorry

Multi-Response Query Performatives stream-about, stream-all

Basic Effector Performatives achieve, unachieve

Generator Performatives standby, ready, next, rest, discard, generator

Capability Definition Performatives advertise

Notification Performatives subscribe, monitor

Networking Performatives register, unregister, forward, broadcast, pipe, break

Facilitation Performatives broker-one, broker-all, recommend-one, recommend-all,

recruit-one, recruit-all

Table 3.1: KQML Performatives

 58

The KQML language can be viewed as consisting of three layers, or three different
architectural levels: the content, message and communication layers, as shown in Figure
3.2.

Communication Layer

Message Layer

Content Layer

Figure 3.2: An Abstract View of the KQML Language

An example of a KQML message from agent AGENT-A asking about the price of a
share of MICROSOFT stock might be encoded as:

(ask-one
:sender AGENT-A
:content (REAL PRICE = MICROSOFT.PRICE())
:receiver STOCK-SERVER
:reply-with MICROFT-STOCK
:language JAVA
:ontology MUS)

The KQML performative is ask-one; the receiver of the message is an agent named
STOCK-SERVER. The :content parameter completely defines the content level.
The :reply-with, :sender, and :receiver parameters specify information at the
communication level. The performative name, the :language specification, and
the :ontology name are part of the message level.

3.2.3 Reasoning Engine and Knowledge Base

Hierarchical Structure of Knowledge Levels
It is believed that human experts possess a conceptual model of how the objects in the
external world interact based on standard operating procedures. Conceptual models

 59

have a hierarchical structure defined best by the Skill-Rule-Knowledge (S-R-K) levels
[Rasmussen, 1985] concerning with routine, innovative and creative problem solving
tasks, respectively.
z Level 1 (Skill-Based Level): This level is deal with routine task. It denotes the

kind of task for which problem solving knowledge and strategies are well defined.
At this level, reasoning is governed by stored patterns of predefined rules. Such
context specific pattern are called rules-of-thumb, that map directly from an
observation to a ready-made solution. At this level a query of agent is accepted
and by searching the knowledge base, proper immediate action is selected. For
instance, in case of search agent the query comes in the form of a list of keywords,
submitted by the customer agent. Then search agent finds related keywords and
conducts search using the new set of keywords.

z Level 2 (Rule-Based Level): This level deals with the innovative tasks when

dealing with familiar or similar problems. It denotes the kind of task for which
problem solving knowledge is well-defined. Rule base behavior is conventionally
described by case bases, decision tables, diagraphs, fuzzy sets and natural
language models. At this level a query of an agent is accepted and a case database
is consulted to determine the action. Then a set of similar cases are searched and
cases matching the needs of the user are retrieved. Further research is conducted
based on the instructions recorded on the matched cases.

z Level 3 (Knowledge-Based Level): This level deals with the creative tasks for

which common pattern in stored knowledge form do not exist and reasoning
should start from the so called first principles, starting from problem identification.
In other words, neither problem solving knowledge nor the strategy is
well-defined. At this level a query is accepted and the agent uses its knowledge
base to interact with the other agent and identify the actual needs. After this
problem identification level, the proper action is determined by consulting other
agents.

Reasoning With Rules
Rules may contain much information beyond their simple conditional if-then
component. Whereas the antecedent and consequent of a rule specify data sufficient for
inferring a conclusion or performing another action, other parts of a rule serve
additional important roles. A rule whose antecedent clauses are all true is said to be

 60

triggered or ready to fire. We fire a triggered rule by asserting the consequent clause and
adding it is a fact to our working memory. At any time, a rule base may contain several
rules that are ready to fire. It is up to the control strategy of the inference engine to
decide which one gets fired.

Many rule-based systems benefit from hierarchical structuring, in which each rule may
belong to one or more higher order collections. These collections, called rule- sets,
aggregate and differentiate rules according to their function within the system. The rule
is spoken of as a relatively independent piece or chunk of know-how. Psychologists, for
some time, have emphasized the subjective reality of chunks. Chunks correspond to the
elementary patterns people perceive and manipulate in thinking. They differ from
person to person. They reflect the learned, appropriate, effective distinctions in each
person's skill areas. A rule corresponds to a chunk of problem-solving know-how.

Rules are easily manipulated by reasoning systems. Forward chaining can be used to
produce new facts and backward chaining can deduce whether statements are true or
not.
Forward chaining is a data-driven reasoning process where a set of rules is used to
derive new facts from an initial set of data. It does not use the resolution algorithm used
in predicate logic. The forward chaining algorithm generates new data by simple and
straightforward application or firing of the rules. Forward chaining is also used in
real-time monitoring and diagnostic system where quick identification and response to
problems are required. The following steps are part of the forward-chaining cycle:

1. Load the rule base into the inference engine, and any facts from the knowledge
base into the working memory.

2. Add any additional initial data into the working memory.
3. Match the rules against the data in working memory and determine which rules

are triggered, meaning that all of their antecedent clauses are true. This set of
triggered rules id called the conflict set.

4. Use the conflict resolution procedure to select a single rule from the conflict set.
5. Fire the selected rule by evaluating the consequent clause(s); either update the

working memory if it is a fact-generating rule, or call the effectors procedure, if it
is an action rule. This is referred to act step.

6. Repeat step 3,4, and 5 until the conflict set is empty.

Backward chaining is often called goal-directed inferencing, because a particular

 61

consequence or goal clause is evaluated first, and then we go backward through the
rules. Unlike forward chaining, which uses rules to produce new information, backward
chaining uses rules to answer questions about whether a goal clause is true or not.
Backward chaining is more focused than forward chaining, because it only processes
rules that are relevant to the question. It is similar to how resolution is used in predicate
logic. However, it is does not use contradiction. It simply traverses the rule base trying
to prove that clauses are true in a systematic manner. The following steps are part of the
forward-chaining cycle:

1. Load the rule base into the inference engine, and any facts from the knowledge
base into the working memory.

2. Add any additional initial data into the working memory.
3. Specify a goal variable for the inference engine to find.
4. Find the set of rules, which refer to the goal variable in a consequent clause. That

is, find all rules which set the value of the goal variable when they fire. Put each
rule on the goal stack.

5. If the goal stack is empty, halt.
6. Take the top rule off the goal stack.
7. Try to prove the rule is true by testing all antecedent clauses to see if they are true.

Integrating RBR and CBR paradigms for OOExpert Agents
The recent evolution of hybrid architectures for knowledge-based systems has resulted
in several approaches that combine rule-base reasoning (RBR) with case-based
reasoning (CBR) techniques to engender performance improvements over more
traditional one-representation architectures.

CBR is used in learning and problem-solving systems to solve new problems by
recalling and reusing specific knowledge obtained from past experience. RBR systems
learn general domain-specific knowledge from a set of training data and represent the
knowledge in comprehensible form as if-then rules. Due to their complementary
properties, CBR and RBR techniques have been combined in some systems to solve
problems to which single technique fails to provide a satisfactory solution.

We also use RBR and CBR integration approach for OOExpert agents’ reasoning engine.
RBR paradigm is used to eliminate spurious objects and propose relevant objects. In the
RBR, the system will discard unnecessary and incorrect objects. Furthermore, CBR is
used to propose relevant objects according to the human expert solution and problem

 62

domain relation. For this reason, we set two kinds of case indexed in case-base, there
are: Human Expert Solution and Problem Domain Relation.

3.3 Design of OOExpert Agents

According to each task of object model creation process, that is proposed in the
previous chapter, we have devised six types of agents: requirement acquisition agent,
object identification agent, attribute identification agent, association identification agent,
behavior identification agent, and object refinement agent. This is expressed on a design
picture bellow.

Object Identification Agent

Object Identification
Task

Collaborative
Statements

(S V O)
Extract
S and O

Tentative
Objects

Eliminate
Spurious
Objects

Objects Rules of Spurious
Object Elimination

Redundant Objects
Attributes
Behaviors
Not Nouns

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Communicates

Communicates

Object Refinement
Agent

Requirements Acquisiton
Agent

Propose
Relevant
Objects

Figure 3.3: Object Identification Agent

 63

Attribute Identification Agent

Attribute
Identification TaskAttributive

Statements
(S V O)

Extract O

Tentative
Attributes

Eliminate
Spurious

Attributes
Attributes Rules of Spurious

Attribute
Elimination

Redundant Attributes
Objects

Behaviors

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Communicates

Communicates

Propose
Relevant

Attributes

Requirements Acquisiton
Agent

Object Refinement
Agent

Figure 3.4: Attribute Identification Agent

 64

Association Identification Agent

Association
Identification TaskCollaborative

Statements
(S V O)

Extract V

Tentative
Associations

Eliminate
Spurious

Associations
Associations Rules of Spurious

Association
Elimination

Redundant Associations
Attributes
Behaviors
Not Verbs

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Communicates

Communicates

Requirements Acquisiton
Agent

Object Refinement
Agent

Propose
Relevant

Associations

Figure 3.5: Association Identification Agent

 65

Behavior Identification Agent

Behavioral
Identification TaskBehavioral

Statements
(S V O)

Extract O

Tentative
Behaviors

Eliminate
Spurious
Behaviors

Behaviors
Rules of Spurious

Behavior
Elimination

Redundant Behaviors
Objects

Associations
Attributes
Not Verbs

Cases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Communicates

Communicates

Propose
Relevant
Behaviors

Requirements Acquisiton
Agent

Object Refinement
Agent

Figure 3.6: Behavior Identification Agent

 66

 Object Refinement
 Agent

Object Refinement
TaskObjects

Search Similar
Attributes,
Associations
and Behaviors

Give the
Superclass a

Name

Class Model
with

Inheritance
Rules for Naming

Superclass

Similar Object's Name
Given Name from User

Subclass

Tentative
Superclass

Class

NOYES

Class Model
without

Inheritance

Object Identification
Agent

Behavior
Identification Agent

Association
Identification Agent

Attribute
Identification Agent

Communicates

Class Model

Figure 3.7: Object Refinement Agent

 67

CChhaapptteerr 44

IImmpplleemmeennttaattiioonn

In this chapter, we focus on how the problems on object model creation process
introduced, formalized, and designed in the previous section can be implemented to be a
software system. It starts with an explanation about why Java is used as programming
language to implement OOExpert agents. However, There are specific features of Java,
which support intelligent agent paradigm: autonomy, intelligence and mobility. How the
OOExpert agents work is also presented at the end of this chapter.

 68

4.1 Implementing OOExpert Agents Using

Java

4.1.1 The Main Reasons to Deal with Java

Java is an object-oriented programming language developed by Sun Microsystems. It
was originally designed for programming real-time embedded software for customer
electronics, particularly set-top boxes to interface between cable, provider, broadcasters,
and televisions or television like appliances. Six main reasons to deal with Java
programming language can be identified.

(a) Java Supports Intelligent Agent Application
There are specific features of Java, which support intelligent agent paradigm: [Bigus et
al., 1997]
z Autonomy: For software program to be autonomous, it must be a separate

process of thread. Java applications are separate processes and as such can be long
running and autonomous. Java applications can communicate with other programs
using sockets. In an application, an agent can be a separate thread of control. Java
supports threaded applications and provide support for autonomy using both using
both techniques. In the Introduction chapter, we described intelligent agents as
autonomous programs or process. As such they are always waiting, ready to
respond to a user request or a change in the environment. One question that comes
to mind is “How does the agent know when something changes?” As with many
others, the agent is informed by sending it an event. From an object-oriented
design perspective, an event is nothing more than a method call or message, with
information passed along on the method call, which defines what happened or
what action we want the agent to perform, as well as data required to process the
event.

z Intelligence: The intelligent in intelligent agents can range from hard coded

procedural or object-oriented logic to sophisticated reasoning and learning
capabilities. While Prolog and Lisp are the two languages usually associated with
artificial intelligence programming, in recent years, much of the commercial AI
work has been coded in C and C++. As a general purpose, object-oriented

 69

programming language, Java provides all of the base function needed to support
these behaviors. There are two major aspects to AI applications, knowledge
representation and algorithms, which manipulate those representations. All
knowledge representations are based on the use of slots or attributes, which hold
information regarding some entity, and links or references or other entities. Java
objects can be used to encode this data and behavior as well as the relationships
between objects. Standard AI knowledge representation such as frames, semantic
nets, and if-the rules can be easily and naturally implemented using Java.

z Mobility: There are several different aspects to mobility in the context of

intelligent agents and intelligent applications. Java’s portable bytecodes and JAR
files allow groups of compiled Java classes to be sent over a network and then
executed on the target machine. One of the prime requirements for mobile
programs is the ability to save the state of the running process, ship it off, and
then resume where the process left off, only now it is running on different system.
Computer science researchers have explored this topic in great detail in relation to
load balancing on distributed computer systems such as networks of workstations.
Having homogeneous machines was a crucial part of making this work. Once
again, the Java Virtual Machine (JVM) comes to rescue. By providing a standard
computing environment for a Java process to run in, the JVM provides a
homogenous virtual machine that allows java agents to move between
heterogeneous hardware systems without losing a beat.

(b) Simple, Object Oriented, and Familiar
Primary characteristics of Java include a simple language that can be programmed
without extensive programmer training while being attuned to current software practices.
The fundamental concepts of Java are grasped quickly; programmers can be productive
from the very beginning. Java is designed to be object oriented from the ground up.
Object technology has finally found its way into the programming mainstream after a
gestation period of thirty years. The needs of distributed, client-server based systems
coincide with the encapsulated, message-passing paradigms of object-based software.
To function within increasingly complex, network-based environments, programming
systems must adopt object-oriented concepts. Java provides a clean and efficient
object-based development platform. Programmers using Java can access existing
libraries of tested objects that provide functionality ranging from basic data types
through I/O and network interfaces to graphical user interface toolkits. These libraries

 70

can be extended to provide new behavior. Even though C++ was rejected as an
implementation language, keeping Java looking like C++ as far as possible results in
Java being a familiar language, while removing the unnecessary complexities of C++.

(c) Robust and Secure
Java is designed for creating highly reliable software. It provides extensive
compile-time checking, followed by a second level of run-time checking. Language
features guide programmers towards reliable programming habits. The memory
management model is extremely simple: objects are created with a new operator. There
are no explicit programmer-defined pointer data types, no pointer arithmetic, and
automatic garbage collection. This simple memory management model eliminates entire
classes of programming errors that bedevil C and C++ programmers. Java is designed to
operate in distributed environments, which means that security is of paramount
importance. With security features designed into the language and run-time system, Java
lets us construct applications that can't be invaded from outside. In the network
environment, applications written in Java are secure from intrusion by unauthorized
code attempting to get behind the scenes and create viruses or invade file systems.

(d) Architecture Neutral and Portable
Java is designed to support applications that will be deployed into heterogeneous
network environments. In such environments, applications must be capable of executing
on a variety of hardware architectures. Within this variety of hardware platforms,
applications must execute atop a variety of operating systems and interoperate with
multiple programming language interfaces. To accommodate the diversity of operating
environments, the Java compiler generates bytecodes, an architecture neutral
intermediate format designed to transport code efficiently to multiple hardware and
software platforms. The interpreted nature of Java solves both the binary distribution
problem and the version problem; the same Java language byte codes will run on any
platform. Architecture neutrality is just one part of a truly portable system. Java takes
portability a stage further by being strict in its definition of the basic language.

(e) High Performance
Performance is always a consideration. Java achieves superior performance by adopting
a scheme by which the interpreter can run at full speed without needing to check the
run-time environment. The automatic garbage collector runs as a low-priority
background thread, ensuring a high probability that memory is available when required,

 71

leading to better performance. Applications requiring large amounts of compute power
can be designed such that compute-intensive sections can be rewritten in native machine
code as required and interfaced with the Java platform. In general, users perceive that
interactive applications respond quickly even though they're interpreted.

(f) Interpreted, Threaded, and Dynamic
The Java interpreter can execute Java bytecodes directly on any machine to which the
interpreter and run-time system have been ported. In an interpreted platform such as
Java system, the link phase of a program is simple, incremental, and lightweight. You
benefit from much faster development cycles--prototyping, experimentation, and rapid
development are the normal case, versus the traditional heavyweight compile, link, and
test cycles. Modern network-based applications typically need to do several things at the
same time. Java's multithreading capability provides the means to build applications
with many concurrent threads of activity. Multithreading thus results in a high degree of
interactivity for the end user. Java supports multithreading at the language level with the
addition of sophisticated synchronization primitives: the language library provides the
Thread class, and the run-time system provides monitor and condition lock primitives.

4.1.2 Implementing Reasoning Engine Using Java

Figure 4.1 shows the strategy to implement rule-based reasoning using object-oriented
programming. This implementation includes a Rule class, a Variable class, a
RuleVariable class, a RuleBase class, a Clause class, a Fact class, and also a Sensor
class and an Effector class to inference the rule functionalities.

 72

属性:

演算:

RuleVariable

属性:

演算:

Clause

Owns
Owns

Owns Owns

属性:

演算:

RuleBase

Owns

属性:

演算:

Variable

属性:

演算:

Rule

属性:

演算:

Fact

属性:

演算:

Effector

属性:

演算:

Sensor

Figure 4.1: The Object Model of Rule-Based Reasoning

Rule Class: The Rule class is used to define a single rule and also contains methods that
support the inferencing process. Each Rule class has a name data member, a reference to
the owning RuleBase object, an array of antecedent clauses and a single consequent
clause.

Variable Class: We define a base class for variables, which support the function we
need for rule processing and for learning in the next chapter. The Variable class has a
name member to identify the variable, and a string value member.

RuleVariable Class: For rule processing, we subclass our Variable class and add some
rule-specific behavior. It provides the support necessary for variables used in
inferencing. The constructor takes the name of the variable as the only parameter.

 73

RuleVariable class inherit the discrete symbolic behavior of the base Variable class

RuleBase Class: The RuleBase class defines a set of RuleVariable and Rule class, along
with the high level methods for forward and backward chaining. The RuleBase has a
name, a variable list, which contains all of the RuleVariable class referenced by the Rule
class, and the rule list, which contains all of the Rule class.

Clause Class: Clause class is used both in the antecedent and consequent part of a Rule
class. A Clause class is usually made up of a RuleVariable class on the left-hand side, a
condition, which tests equality, greater than, or less than, and the right-hand side, which
in our implementation is a string value.

Fact Class: To support facts, we add a new class called Fact whose constructor takes a
single clause as a parameter. A fact can be an assignment of a value to a RuleVariable
class, a sensor call, or an effector call. The Facts are defined as part of the Rulebase
class with the other rule.

Sensor and Effector Class: Sensor and Effecor class is an instance of Clause class. The
Sensor class makes a call to a sensor method and registers it with the RuleBase class. At
runtime the RuleBase looks up the sensor name and calls the method on the registered
sensor object. A similar technique is used for the Effector class.

4.1.3 Implementing Communication Engine Using Java

OOExpert agents must communicate with other agents in order to work flexibly and
autonomously. We have considered building Java-based, KQML messaging and socket
pipe communicating agents that communicate over the network environment. A socket
is one endpoint of a two-way communication link between two programs running on the
network. A socket is bound to a port number so that the TCP layer can identify the
application that data is destined to be sent. The communication engine is mainly
responsible for maintaining connection to the network, communicating with other
agents and managing messages.

The following KQMLMessage class is used as the argument object in the related
communication engine classes. It is basically a collection of data that corresponds to the

 74

major slots of a KQML message.

import java.io.*;
import java.util.*;
import java.lang.*;

public class KQMLMessage{

 String performative, content, inReplyTo, language ;
 String ontology, receiver, replyWith, sender ;

 KQMLMessage(String Performative, String Content, String InReplyTo, String Language,
 String Ontology, String Receiver, String ReplyWith, String Sender){

 performative = Performative ;
 content = Content ;
 inReplyTo = InReplyTo ;
 language = Language ;
 ontology = Ontology ;
 receiver = Receiver ;
 replyWith = ReplyWith ;
 sender = Sender ;
 }

 KQMLMessage(String Performative, String Content, String InReplyTo,
 String Receiver, String ReplyWith, String Sender){

 performative = Performative ;
 content = Content ;
 inReplyTo = InReplyTo ;
 receiver = Receiver ;
 replyWith = ReplyWith ;
 sender = Sender ;
 }

 KQMLMessage(String Performative, String Content,
 String Receiver, String Sender){

 performative = Performative ;
 content = Content ;
 receiver = Receiver ;
 sender = Sender ;
 }

 public void display() {
 System.out.println("Performative: " + performative + "\n" +

 "Content: " + content + "\n" +
 "InReplyTo: " + inReplyTo + "\n" +
 "Language: " + language + "\n" +
 "Ontology: " + ontology + "\n" +
 "Receiver: " + receiver + "\n" +
 "ReplyWith: " + replyWith + "\n" +
 "Sender: " + sender + "\n");

 }

 public void displaySimple() {
 System.out.println("Performative: " + performative + "\n" +

 "Content: " + content + "\n" +
 "Receiver: " + receiver + "\n" +
 "Sender: " + sender + "\n");

 }
}

 75

4.2 How the OOExpert Works

4.2.1 Getting Started with OOExpert

When we start to run OOExpert agents, for example Requirement Acquisition Agent, it
will display a user interface window as shown in Figure 4.2. The user interface window
contains a standard toolbar, the viewer for OBFS tree and directories tree, and a control
window. Requirements Acquisition Agent displays Object Based Formal Specification
(OBFS) menu in the control window, including Description Statements, Collaborative
Statements, Attributive Statements, Behavioral Statements and Inheritance Statements.
The user writes requirements in this place based on OBFS standard. Especially for other
OOExpert agents, the reasoning processes of agents are displayed in this control
window.

Figure 4.2: Requirements Acquisition Agent in Action

 76

4.2.2 Working with OOExpert

As already described completely in the previous chapter, OOExpert agents is viewed as
a society of software agents that interact and negotiate with each other. We have devised
six types of agents: requirement acquisition agent, object identification agent, attribute
identification agent, association identification agent, behavior identification agent, and
object refinement agent. Running all of the OOExpert agents are however, the first step
toward working with OOExpert.

Figure 4.3: Running the Requirements Acquisition Agent

 77

We present an example of the using of the OOExpert by create object model for
Automatic Teller Machine (ATM) Network System. The OOExpert’s running
procedures can be divided into six distinguished steps as following:

STEP 1: Requirement Acquisition Process (Requirement Acquisition
Agent)

The requirements acquisition agent manages the task concerning the requirements
acquisition from object-based formal specification (OBFS).

z The user has to specify Description Statements (DS) about system, which he wants

to build (Figure 4.4).

Figure 4.4: Writing the Description Statements

 78

z The user has to specify Collaborative Statements (CS) about system, which he
wants to build (Figure 4.5).

Figure 4.5: Writing the Collaborative Statements

z The user has to specify Attributive Statements (AS) about system, which he wants

to build (Figure 4.6).

Figure 4.6: Writing the Attributive Statements

 79

z The user has to specify Behavioral Statements (BS) about system, which he wants
to build (Figure 4.7).

Figure 4.7: Writing the Behavioral Statements

z The user has to specify Inheritance Statements (IS) about system, which he wants

to build (Figure 4.8).

Figure 4.8: Writing the Inheritance Statements

 80

STEP 2: Object Identification Process (Object Identification Agent)

The object identification agent manages the task concerning the object identification.

Figure 4.9: Object Identification Process

 81

STEP 3: Association Identification Process (Association Identification
Agent)

The association identification agent manages the task concerning the identification of
associations between the identified objects.

Figure 4.10: Association Identification Process

 82

STEP 4: Attribute Identification Process (Attribute Identification
Agent)

The attribute identification agent manages the task concerning the identification of
object attributes.

Figure 4.11: Attribute Identification Process

 83

STEP 5: Behavior Identification Process (Behavior Identification
Agent)

The behavior identification agent manages the task concerning the identification of
object behaviors.

Figure 4.12: Behavior Identification Process

 84

STEP 6: Object Refinement Process (Object Refinement Agent)

The object refinement agent manages the task concerning to refine objects and organize
classes by using inheritance to share common structure.

Figure 4.13: Object Identification Process

 85

4.2.3 Summary of How the OOExpert Works

Requirements
Specification

Class Model

* Socket Connection
* Send object
 identification request

* Socket Connection
* Send association
 identification request

* Socket Connection
* Send attribute
 identification request

* Socket Connection
* Send behavior
 identification request

* Socket Connection
* Send object
 refinement request

Requirements Acquistion
Agent

Object Identification
Agent

Association Identification
Agent

Attriobute Identification
Agent

Behavior Identification
Agent

Object Refinement
Agent

Figure 4.14: Summary of How the OOExpert Works

 86

CChhaapptteerr 55

CCoonncclluussiioonn

At this point we have described and addressed the problem of object model creation
process in object-oriented analysis and design. Furthermore, We have defined and
formalized our approach to overcome above problems. We also have designed and
implemented our idea to be a software system, that we called it OOExpert. The final
step will be to summarize the argument presented in this thesis and reflect on it.

 87

5.1 System Evaluation and Future Directions

In compare with the other object-oriented CASE (Computer Aided Software
Engineering) systems, our system has the potential of handling and solving problems on
object model creation process in object-oriented analysis and design. However,
object-oriented CASE systems which exist now, like Rational Rose (www.rational.com),
Together (www.togethersoft.com), Object Domain (www.objectdomain.com), etc. have
concentrated on the problem solving of the object modeling notation and
forward/engineering engineering too much, but the problem on the previous phase, that
is an object model creation process phase, has not been solved yet. Our works
concentrate on how we can handle and solve the problems on object model creation
process in object-oriented analysis and design.

The contribution of this thesis has been a proposal for solving problems described in the
chapter 2. Much more work is required to develop satisfied OOExpert agents according
to the computational model proposed in this thesis. In particular, the following
limitations need to be addressed:
z Autonomous rule acquisition and its administration
z Learning capabilities for capturing the solution of human designer
z Friendly user interface for negotiating and determining the best object-oriented

design between designer and OOExpert
z Forward and reverse engineering for coding

The proposal for future works are derived from the limitations of the work presented
above and is based on addressing some of the additional issues identified in this thesis.
In particular, the future works are categorized into extensions to the:
z Knowledge management in the OOExpert agents
z Implementation strategy for indexing two kinds of case-base: Human Expert

Solution (HES) and Problem Domain Relation (PDR)
z Negotiation and coordination strategy among OOExpert agents
z The functionalities for doing forward and reverse engineering

 88

5.2 Summary and Conclusion

The challenges of object-oriented analysis and design are, to identify the objects and
their attributes needed to implement the software, describe the associations between the
identified objects, define the behavior of the objects by describing the function
implementations of each object, and refine objects and organize classes by using
inheritance to share common structure [Beringer, 1997] [Booch, 1991] [Holland et al.,
1996] [Liang et al., 1998]. The object identification and refinement process are very
important process in object-oriented analysis and design, and we called this process by
object model creation process. Researchers and software designers come to a conclusion
that object model creation process is an ill-defined task, regarding of the difficulties of
heuristic [Holland et al., 1996] [Kato, 1998] and there is no unified methodology for
object-oriented software analysis and design. This is mainly due to lack of formalism
for object-oriented software analysis and design.

In our project, we are developing an intelligent agents system that aims to help
designers while designing object-oriented software by automating the difficulties and
ill-defined tasks in the object model creation process, including identification of objects,
associations, attributes, behaviors, and organization of objects with inheritance. First of
all, we propose formal models of the object model creation process. And then we
formulate design patterns and rules for solving above problems, and store them in the
agent’s knowledge bases.

A summary of this thesis follows:
In chapter 1, we give a brief introduction and overview to the two major topics covered
in this thesis: object-oriented analysis and design, and intelligent agents. It starts with a
short introduction of the object-oriented paradigm, as frameworks rely heavily on its
mechanisms such as object, class, inheritance, polymorphism and so on. And then, we
will take a look at object-oriented analysis and design, and its problem that motivate us
to do research on this topic. We present the key attributes of intelligent agents such as
autonomy, mobility, and intelligence, and also provide the benefits and taxonomy of
various intelligent agents technology. The research motivations and objectives are also
presented at the end of this chapter.

In chapter 2, we focus on object model creation process and why it has the capacity to
play a key role in object-oriented analysis and design. However, building software

 89

engineering tools, and defining repository requires quantitative approach, because
everything must be clear and unambiguous. One way to ensure clarity of ideas is
through mathematical formalism. This chapter is an initial attempt to produce such
formalism for object model creation process used to represent the result of our works. It
presents a basic ontology for expressing our concepts and their relationships using set of
theory and functions. In this chapter, we explain our concepts, idea and approach toward
well-defined object model creation process and its computational model.

In chapter 3, we focus on how the problems on object model creation process
introduced and formalized in the previous section can be designed to be a software
system. In our research, object model creation process is viewed as a society of software
agents that interact and negotiate with each other. We also construct the OOExpert agent
framework so that inter-agent communication can be supported as well as the mobility
of our agents across network. Finally, we explain system design and architecture of each
OOExpert agent, including requirements acquisition agent, object identification agent,
attribute identification agent, association identification agent, behavior identification,
and object refinement agent.

In chapter 4, we focus on how the problems on object model creation process
introduced, formalized, and designed in the previous section can be implemented to be a
software system. It starts with an explanation about why Java is used as programming
language to implement OOExpert agents. However, There are specific features of Java,
which support intelligent agent paradigm: autonomy, intelligence and mobility. How the
OOExpert agents work is also presented at the end of this chapter.

 90

AAcckknnoowwlleeddggeemmeennttss

I want to thank many people who made this thesis possible. This thesis could not have
been written without help of a great many people who assisted me with their comments,
their criticisms and above all their support.

First, I am particularly grateful to Professor Behrouz H. Far for being an ideal
supervisor, and his tact and encouragement assisted me in maintaining my confidence in
this research project. I am also very grateful for Professor Zenya Koono for his
invaluable support and guidance. I am happy to express my gratitude here. My thanks
also go to Hajji Hassan, Shadan Shanipour, Ewin Mardhana, Hiroyuki Onjo and
Sumihiko Gouda for providing me with constructive comments and criticisms when the
thesis existed only in embryonic form. I found their views very helpful. They also gave
me friendship, their help and their encouragement, for which I am profoundly grateful.

I am also grateful to the members of the Koono Laboratory and many others too
numerous to mention here. Their kindnesses, and the particularly fruitful scientific
discussions we had together, were a great help to me.

Most of all, I want to thank the scores or even hundreds of persons who contributed to
this thesis, who contributed to the community of ideas in intelligent agent,
object-orientated analysis and design methodology, software engineering, and numerous
other areas of computer science. It is impossible to list them all, or indeed to track even
the major chains of influence, without a major scholarly effort, and this is an

 91

engineering thesis, not a historical review. Many are well known, but many good ideas
came from those who did not have the good fortune to be widely recognized.

Finally, without the patience of my wife, Wulan, and my sons, Irsyad and Hasan, there
would have been no thesis about my research. And I also would like to thank all my
companions, my family and friends, for their understanding, their unconditional support
and their affection over the past few years.

 92

BBiibblliiooggrraapphhyy

[Anumba et al., 1997] C.J. Anumba and N.F.O. Evbuomwan, "Concurrent

Engineering in Design-Build Projects", Construction
Management and Economics, Vol. 15, No. 3, May,
pp 271-281, 1997.

[Aoyama, 1992] 青山幹雄, “分散環境：新しい開発環境像を求め
て”, 情報処理, Vol.33 No.1, 1992.

[Bailin, 2000] Sidney C. Bailin, “Object-Oriented Requirements
Analysis”, Software Requirements Engineering, pp.
334-355, IEEE Computer Society Press, 2000.

[Bates, 1994] J. Bates, "The Role of Emotion in Believable
Agents", Communications of the ACM, Vol. 37, No.
7, pp. 122-125, July 1994.

[Belo et al., 1996] Orlando Belo and Antonio Ribeiro, “A Web-Based
Framework for Distributed Expert Systems”,
Proceedings of WWW National Conference, 1996.

[Beringer, 1997] Dorothea Beringer, “Modelling Global Behaviour
with Scenarios in Object-Oriented Analysis”, PhD

 93

Dissertation at the Software Engineering Laboratory,
Swiss Federal Institute of Technology in Lausanne
(EPFL), May 1997.

[Bigus et al., 1997] Joseph P. Bigus and Jennifer Bigus, “Constructing
Intelligent Agents with Java: A Programmer's Guide
to Smarter Applications”, John Wiley & Sons, Inc,
USA, 1997.

[Booch, 1991] Grady Booch, “Object-Oriented Analysis and
Design with Application”, Benjamin/Cummings,
1991.

[Booch et al., 1999] Grady Booch, James Rumbaugh, and Ivar Jacobson,
“The Unified Modeling Language User Guide”,
Addison-Wesley, 1999.

[Caglayan et al., 1997] A. Caglayan, Colin Harrison, Alper Caglayan, and
Colin G. Harrison, "Agent Sourcebook: A Complete
Guide to Desktop, Internet, and Intranet Agents",
John Wiley & Sons Inc., January 1997.

[Cercone et al., 1999] Nick Cercone, Aijun An, and Christine Chan,
“Rule-Induction and Case-Based Reasoning: Hybrid
Architectures Appear Advantageous”, IEEE
Transactions on Knowledge Engineering and Data
Engineering, Vol. 11, No.1, January/February 1999.

[Chaves et al., 1996] A. Chaves and P. Maes, "Kasbah: An Agent
Marketplace for buying and selling goods",
Proceedings of the First International Conference on
the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM-96), pp. 75-90,
1996.

[Clark et al., 1999] Robert G. Clark and Ana M.D. Moreira, “Formal

 94

Specifications of User Requirements”, Automated
Software Engineering, Vol. 6, No. 3, 1999, Kluwer
Academic Publishers.

[Coad et al., 1991] Peter Coad and Edward Yourdon, “Object-Oriented
Analysis”, Yourdon Press, 1991.

[Decker et al., 1994] Rick Decker and Stuart Hirshfield, “The Top 10
Reasons Why Object-Oriented Programming Can't
Be Taught in CS 1”, Selected Papers of the
Twenty-Fifth Annual SIGCSE Symposium on
Computer Science Education, pp. 51-55, 1994.

[Dorfman, 2000] Merlin Dorfman, “Requirements Engineering”,
Software Requirements Engineering, pp. 7-22, IEEE
Computer Society Press, 2000.

[Drucker, 1998] Drucker P., "The Coming of the New Organization",
Harvard Business Review, Jan.-Feb. 1998, pp. 45-53,
1988.

[Far et al., 1994] B.H. Far, Takeshi Takizawa, and Zenya Koono, “An
Expert System for Reproducing Huan Cognitive
Processes in Automatic Software Design”, World
Congress of Expert System, Portugal, 1994.

[Far et al., 1996] B.H. Far and Zenya Koono, “Ex-W-Pert System: A
Web-Based Distributed Expert System for
Groupware Design”, World Congress on Expert
Systems' 96, pp. 545-552, Seoul, Korea, February
4-9, 1996.

[Far et al., 1997] B.H. Far, H. Mukai, Zenya Koono, “Intelligent
Agents for Electronic Commerce”, Proceedings of
The 11st Annual Conference of Japanese Society for
Artificial Intelligence, 1997.

 95

[Far et al., 1997] B.H. Far, Hidenari Mukai, and Zenya Koono,
“Intelligent Agents for Electronic Commerce”,
Proceedings of the 11st Annual Conference of
Japanese Society for Artificial Intelligence, pp.
482-485, Tokyo, Japan, June 1997.

[Far et al., 1998] B.H. Far, S.O. Soueina, H. Hajji, S. Saniepour, A.H.
Hashimoto, “An Integrated Reasoning and Learning
Environment for WWW Based Software Agents for
Electronic Commerce”, IEICE Transaction on
Information and System, Vol. E81-D, No.12,
pp.1374-1386, December 1998.

[Faulk, 2000] Stuart R. Faulk, “Software Requirements: A
Tutorial”, Software Requirements Engineering, pp.
158-179, IEEE Computer Society Press, 2000.

[Ferber, 1999] Jacques Ferber, “Multi-Agent Systems An
Introduction to Distributed Artificial Intelligence”,
Addison-Wesley, 1999.

[Finin et al., 1993] Tim Finin, Jay Weber, Gio Wiederhold, Michael
Geneseret, Richard Frtitzson, James McGuire, Stuart
Shapiro and Chris Beck, “DRAFT Specification of
the KQML Agent-Communication Language -- plus
example agent policies and architectures”, The
DARPA Knowledge Sharing Initiative, 1993.

[Finin et al., 1994] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire, “KQML: An Information and Knowledge
Exchange Protocol”, Knowledge Building and
Knowledge Sharing, Ohmsha and IOS Press, 1994.

[Finin et al., 1994] Tim Finin, Richard Fritzson Don McKay and Robin
McEntire, "KQML as an Agent Communication
Language", The Proceedings of the Third

 96

International Conference on Information and
Knowledge Management (CIKM'94), ACM Press,
November 1994.

[Finin et al., 1997] Tim Finin, Yannis Labrou, and James Mayfield,
“KQML as an Agent Communication Language”,
Software Agents, MIT Press, Cambridge, 1997.

[Genesereth et al., 1992] Michael R. Genesereth and Richard E. Fikes,
"Knowledge Interchange Format Version 3.0
Reference Manual", Technical Report Logic-92-1,
Stanford University, 1992.

[Goguen et al., 1993] Joseph A Goguen and Charlote Linde, “Techniques
for Requirements Elicitation”, Proceedings of
International Symposium on Requirements
Engineering, pp. 152-164, 1993.

[Grand et al., 1998] S. Grand and D. Cliff, "Creatures: Entertainment
Software Agents With Artificial Life", Autonomous
Agents and Multi-Agent Systems, Vol.1 No.1, 1998.

[Griffeth et al., 1994] N.D. Griffeth and H. Velthuijsen, "The Negotiating
Agents Approach to Run-Time Feature Interaction
RResolution", Feature Interactions in
Telecommunications System, pp.217-235, IOS Press,
1994.

[Gruber, 1993] T. R. Gruber, “A Translation Approach to Portable
Ontologies”, Knowledge Acquisition, 5(2),
pp.199-220, 1993.

[Halladay et al., 1993] Steve Halladay, Michael Wiebel, “Object-Oriented
Software Engineering”, R&D Publications, 1993

[Harabayashi et al., 1993] Toshiyuki Harabayashi, Atsuo Kawai, and Tsutomu

 97

Shiino, “Software Requirment Specification in
Controled Natural Language and its Analysis”,
Software Engineering, 95-3, 1993.

[Harwell et al., 1993] Richard Harwell, Erik Aslaksen, Ivy Hooks, Roy
Mengot, and Ken Ptack, “What is Requirement?”,
Proceedings of the Third Annual International
Symposium, pp. 17-24, National Council on System
Engineering, 1993.

[Hayes et al., 1989] B. Hayes, M. Hewett, R. Washington R. Hewett, and
A. Seiver, "Distributing Intelligence Within an
Individual", Distributed Artificial Intelligence
Volume II, pp. 385-412, Pitman Publishing: London
and Morgan Kaufman: Sun Mateo, 1989.

[Heisel et al., 1998] Maritta Heisel and Jeanine Souquieres,
“Methodological Support for Requirements
Elicitation and Formal Specification”, Proceedings
of the 9th International Workshop on Software
Specification and Design, Ise-Shima (Isobe), Japan,
April 16-18, 1998.

[Henderson et al., 1992] Brian Henderson and Sellers, “A Book of
Object-Oriented Knowledge – Object-Oriented
Analysis Design and Implementation: A New
Approach to Software Engineering”, Prentice Hall,
1992.

[Holland et al., 1996] Ian M. Holland and Karl J. Lieberherr,
“Object-Oriented Design”, ACM Computing Surveys,
Vol. 28, No. 1, March 1996.

[Honiden et al., 1994] 本位田真一, 山城明宏, “オブジェクト指向分
析・設計”, 情報処理, Vol.35 No.5, May 1994.

 98

[Huang et al., 1995] J. Huang, N.R. Jennings, and J. Fox, "An
Agent-Based Approach to Health Care
Management", Applied Artificial Intelligence, Vol. 9,
No. 4, pp.401-420, 1995.

[IEEE Std 1233, 1998] Software Engineering Standards Committee of the
IEEE Computer Society, “IEEE Guide for
Developing System Requirements Specifications”,
IEEE Std 1233-1998, IEEE, New York, 1998.

[IEEE Std 830, 1998] Software Engineering Standards Committee of the
IEEE Computer Society, “IEEE Recommended
Practice for Software Requirements Specifications”,
IEEE Std 830-1998, IEEE, New York, 1998.

[Iglewski et al., 1997] Michal Iglewski and Tomasz Muldner, “Comparison
of Formal Specification Methods and
Object-Oriented Paradigms”, Journal of Network
and Computer Applications, Vol. 20, No. 4, 1997,
Academic Press.

[Ishida et al., 1992] 石田亨, 桑原和広, “分散人工知能（１）：協調問
題解決”, 人工知能学会誌, Vol.7 No.6, 1992.

[Jackson et al., 1995] Michael Jackson and Pamela Zave, “Deriving
Specifications from Requirements: an Example”,
Proceedings of the 17th International Conference on
Software Engineering, Seattle, WA USA, April 24 -
28, 1995.

[Jacobson et al., 1992] Ivar Jacobson, Magnus Christerson, Patrik Jonson,
and Gunnar Overgaard, “Object-Oriented Software
Engineering: A Use Case Driven Approach”,
Addison-Wesley, 1992.

[Jacobson et al., 1999] Ivar Jacobson, Grady Booch, and James Rumbaugh,

 99

“The Unified Software Development Process”,
Addison-Wesley, 1999.

[Jalote, 1997] P. Jalote, “An Integrated Approach to Software
Engineering”, Springler-Verlag, New York, 1997.

[Jennings et al., 1993] N.R. Jennings, L.Z. Varga, R.P.Aarnts, J.Fuchs、P.
Skarek, “Transforming Standalone Expert Systems
into a Community of Cooperating Agents”,
Eng.Applic.Artificial Intelligent, Vol.6 No.4, 1993.

[Jennings et al., Dec 1996] N.R. Jennings, J. Corera, I. Laresgoiti, E.H.
Mamdani, F. Perriolat, P. Skarek, and L.Z. Varga,
"Using ARCHON to Develop Real-World DAI
Applications for Electricity Transportation
Management and Particle Acceleration Control",
IEEE Expert, Vol. 11, No. 6, pp. 60-88, December
1996.

[Jennings et al., 1996] N.R. Jennings, P. Faratin, M.J. Johnson, T.J. Norman.
P. O'Brien, and M.E. Wiegand, "Agent-Based
Business Process Management", International
Journal of Cooperative Information Systems, Vol. 5,
No. 2-3, pp. 105-130, 1996.

[Jennings et al., 1998] Nicholas R. Jennings, Katia Sycara, and Michael
Wooldridge, "A Roadmap of Agent Research and
Development", Autonomous Agents and Multi-Agent
Systems, pp. 7-38, Kluwer Academic Publishers,
Boston, 1998.

[Kato, 1998] 加藤貞行, “オブジェクト識別についての一考察
とその効果”, 情報処理学会研究報告 , Vol.90,
No.100,1998.

[Kawamura et al., 1993] 河村一樹、 “ソフトウェア工学入門”、 啓学出

 100

版、1993.

[Kolodner, 1993] J.Kolodner, “Case-Based Reasoning”, Morgan
Kaufman, San Francisco, 1993.

[Komiya, 1998] Seiji Komiya, “A Model for Recording Software
Design Decisions and Design Rationale”, IEICE
Transaction on Information and Systems, Vol.E81-D
No.12, pp.1350-1363, December 1998.

[Koono et al., 1994] Z. Koono, B.H. Far, T. Sugimoto, M. Ohmori and
Hui Chen, “A Systematic Approach for Design
Knowledge Acquisition from Documents”,
Proceedings of The Third Japanese Knowledge
Acquisition for Knowledge-Based Systems Workshop,
1994.

[Koono et al., 1997] 河野 善彌， 陳 慧，B.H. ファー, “人の設計知
識の構造とソフトウェア工学”, 情報処理学会ソ
フトウェア工学研究会 97-SE-114, pp. 33-40,
May 1997.

[Labrou et al., 1994] Yannis Labrou and Tim Finin, “A semantics
approach for KQML - A General Purpose
Communication Language For Software Agents”,
Third International Conference on Information and
Knowledge Management (CIKM'94), November
1994.

[Labrou et al., 1997] Yannis Labrou and Tim Finin, "A Proposal for a new
KQML Specification", TR CS-97-03, February 1997.

[Lester, 1997] J.C Lester and B.A Stone, "Increasing Believability
in Animated Pedagogical Agents", Proceedings of
the First International Conference on Autonomous
Agents (Agents 97), pp. 16-21, 1997.

 101

[Liang et al., 1993] Y. Liang, M.A. Newton, and H.M. Robinson,
"Analysis of Information Systems using
Object-Oriented Methodologies", Proceeding of
BCS ISM SG and BSS Joint Conference on the
Theory, Use and Integrative Aspects of IS
Methodologies, pp. 55-70, 1993.

[Liang et al., 1998] Ying Liang, Daune West, and Frank A. Stowell, “An
Approach to Object Identification, Selection and
Specification in Object-Oriented Analysis”,
Information Systems Journal, Vol. 8, No. 2, 1998, pp.
163-180, Blackwell Science Ltd., 1998.

[Ljunberg et al., 1992] M. Ljunberg and A. Lucas, "The OASIS Air Traffic
Management System", Proceedings of the Second
Pacific Rim International Conference on AI
(PRICA-92), Seoul, Korea, 1992.

[Maes, 1994] P. Maes, "Agents that reduce work and information
overload", Communication of the ACM, Vol. 37,
No.7, pp. 31-40, July 1994.

[Martin et al., 1995] James Martin and James J. Odell, “Object-Oriented
Methods: A Foundation”, Prentice Hall, 1995.

[Martin et al., 1996] James Martin and James J. Odell, “Object-Oriented
Methods: Pragmatic Considerations”, Prentice Hall,
1996.

[Mayfield et al., 1996] James Mayfield, Yannis Labrou, and Tim Finin,
"Evaluation of KQML as an Agent Communication
Language", Intelligent Agents Volume II --
Proceedings of the 1995 Workshop on Agent
Theories, Architectures, and Languages,
Springer-Verlag, 1996.

 102

[Miyazaki et al., 1998] 宮崎善史、廣田豊彦、橋本正明, “自分自身を編
集出来るオブジェクトモデルエディタ”, 情報処
理学会研究報告, Vol.90 No.100, 1998.

[Nishida, 1994] 西田 豊明, “大規模知識ベースシステム”, 情報
処理, Vol.35 No.2,1994.

[Nishida, 1995] 西田 豊明, “ソフトウエアエージェント”, 人工
知能学会誌, Vol.10 No.5,1995.

[Odell et al., 1997] James Odell and Guus Ramackers, “Toward a
Formalization of OO Analysis”, Journal of OO
Programming, pp. 64-68, July 1997.

[Orfali et al., 1997] Robert Orfali and Dan Harkey, “Client/Server
Programming with Java and CORBA”, John Wiley
& Sons Inc.,1997.

[Parsons et al., 1999] Michael G. Parsons, David J. Singer, and John A.
Sauter, "A Hybrid Agent Approach For Set-Based
Conceptual Ship Design", Proceedings of the
International Conference on Computer Applications
in Shipbuilding, Cambrige, June 1999.

[Parunak, 1987] H. Van Dyke Parunak, "Manufacturing Experience
with the Contract Net", Distributed Artificial
Intelligence, Pitman Publishing: London and
Morgan Kaufmann: San Mateo, pp.285-310, 1987.

[Petrie et al., 1999] Charles Petrie, Sigrid Goldmann, and Andreas
Raquet, "Agent-Based Project Management",
Lecture Notes in AI - 1600, Springer-Verlag, 1999.

[Ralston et al., 1993] Anthony Ralston, Edwin D. Reilly, “Encyclopedia of
Computer Science”, Van Nonstrand Reinhold, IEEE
Press, 1993.

 103

[Rasmussen, 1985] J. Rasmussen, “The Role of Hierarchical Knowledge
Representation in Decision Making and System
Management”, IEEE Transaction on System, Man,
and Cybernetics, Vol. SMC-15, No. 2, pp.234-243,
March/April 1985.

[Rentsch, 1982] T. Rentsch, “Object Oriented Programming”;
SIGPLAN Notices; Vol.17 No.12; pp.51, September
1982.

[Romi, 1999] Romi Satria Wahono, “Distributed Knowledge
Based System for Automatic Object-Oriented
Software Design: System Design”, (オブジェクト
指向ソフトウェア自動設計用分散型知識ベース
システムの開発：システム設計), B.Eng.
Dissertation at the Department of Information and
Computer Sciences, Faculty of Engineering, Saitama
University, Saitama, Japan, February 1999.

[Romi et al., March 1999] Romi Satria Wahono and B.H. Far, “Distributed
Expert System Architecture for Automatic
Object-Oriented Software Design”, Proceedings of
the Third Workshop on Electro-Communication and
Information (WECI-III), pp. 131-134, Japan, March
1999.

[Romi et al, June 1999] Romi Satria Wahono and B.H. Far, “OOExpert:
Distributed Expert System for Automatic
Object-Oriented Software Design”, Proceedings of
the 13th Annual Conference of Japanese Society for
Artificial Intelligence, pp.456-457, Tokyo, Japan,
June 1999.

[Romi et al., March 2000] Romi Satria Wahono and B.H. Far, “Reasoning with
Cases in the CBR System: A Case Study for
Applying OOExpert System”, Proceedings of the

 104

IECI Japan Workshop 2000 (IJW-2000), pp. 89-93,
Japan, March 2000.

[Romi et al., July 2000] Romi Satria Wahono and B.H. Far, “Hybrid
Reasoning Architecture for Solving Object Class
Identification Problem in the OOExpert System”,
Proceedings of the 14th Annual Conference of
Japanese Society for Artificial Intelligence, Tokyo,
Japan, July, 2000.

[Rosenberger., 1998] Jeremy Rosenberger, “Teach Yourself CORBA in 14
Days”, Sams Publishing, USA, 1998.

[Rumbaugh et al., 1991] James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorenson,
“Object-Oriented Modeling and Design”, Prentice
Hall, 1991.

[Rumbaugh et al., 1999] James Rumbaugh, Ivar Jacobson, and Grady Booch,
“The Unified Modeling Language Reference
Manual”, Addison-Wesley, 1999.

[Saeki et al., 1989] Motoshi Saeki, Hisayuki Horai and Hajime Enomoto,
“Software Development Process from Natural
Language Specification”, Proceedings of the 11th
International Conference on Software Engineering,
pp.64-73, 1989.

[Saiedian, 2000] Hossein Saiedian, “Formal Methods in Information
System Engineering”, Software Requirements
Engineering, pp. 384-397, IEEE Computer Society
Press, 2000.

[Sakashita, 1992] 坂下善彦, “分散開発環境の事例と今後の展望”,
情報処理, Vol.33 No.1, January 1992.

 105

[Shapiro et al., 1992] Stuart C. Shapiro, “Encyclopedia of Artificial
Intelligence Second Edition Volume 2”, John Wiley
& Sons, Inc., 1992.

[Shlaer et al., 1988] Sally Shlaer and Stephen J. Mellor,
“Object-Oriented System Analysis: Modeling the
World in Data”, Yourdon Press, 1988.

[Siddiqi et al, 1996] Jawed Siddiqi and M. Chandra Shekaran,
“Requirements Engineering: The Emerging
Wisdom”, IEEE Software, Vol. 13, No. 2, March
1996, pp. 15-19.

[Sugimoto et al., 2000] Hideaki Sugimoto, Atsushi Ohnishi, “A Supporting
Method of Making a Consistent Software
Requirements Specification Based on the Dempster
and Shafer's Theory”, IEICE Transaction on
Information and Systems, Vol.E83-D No.4
p.659-668, April 2000.

[Sycara et al., 1996] K.P. Sycara, K. Decker, A. Pannu, M. Williamson
and D. Zeng, "Distributed Intelligent Agents", IEEE
Expert, Vol.11, No. 6, 1996.

[Tao, 1995] Yonglei Tao, “Using Expert Systems To Understand
Object-Oriented Behavior”, The 26th SISCSE
Technical Symposium on Computer Science
Education, 1995.

[Tarumi, 1992] 垂水幸, “グループウエアのソフトウエア開発へ
の応用”, 情報処理, Vol.33 No.1, January 1992.

[Thayer, 2000] Richard H. Thayer, “Software System Engineering:
An Engineering Process”, Software Requirements
Engineering, pp. 84-106, IEEE Computer Society
Press, 2000.

 106

[Trapl et al., 1997] R. Trapl and P. Petta, "Creating Personalities for
Syntentic Actors", Springler-Verlag, 1997.

[Tsatsoulis et al., 1997] Costas Tsatsoulis, Qing Cheng, and Hsin-Yen Wei,
“Integrating Case-Based Reasoning and Decision
Theory”, IEEE Expert, Vol. 12, No. 4, pp. 46-55,
July/August 1997.

[Uetake et al., 1998] Tomofumi Uetake and Morio Nagata, “A Support
Tool for Specifying Requirements Using Structures
of Documents”, IEICE Transaction on Information
and Systems, Vol.E81-D No.12, pp.1429 - 1438,
December 1998.

[Vienneau, 1993] Robert Vienneau, “A Review of Formal Methods”,
Kaman Science Corrporation, pp. 3-15 and 27-33,
1993.

[Wavish et al., 1996] P. Wavish and M. Graham, "A Situated Action
Approach to Implementing Characters in Computer
Games", Applied Artificial Intelligence, Vo. 10, No.
1, pp. 53-74, 1996.

[Weiss, 1999] Gerhard Weiss, "Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence", The
MIT Press, 1999.

[Wirfs-Brock et al., 1990] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren
Wiener, “Designing Object-Oriented Software”,
Prentice Hall, 1990.

[Zave et al., 1997] Pamela Zave and Michael Jackson, “Four Dark
Corners of Requirements Engineering”, ACM
Transaction on Software Engineering and
Methodology, Vol. 6, No. 1, pp. 1-30, Januari 1997.

 107

LLiisstt ooff PPuubblliiccaattiioonnss

[Romi et al., March 1999] Romi Satria Wahono and B.H. Far, “Distributed

Expert System Architecture for Automatic
Object-Oriented Software Design”, Proceedings of
the Third Workshop on Electro-Communication and
Information (WECI-III), pp. 131-134, Japan, March
1999.

[Romi et al, June 1999] Romi Satria Wahono and B.H. Far, “OOExpert:

Distributed Expert System for Automatic
Object-Oriented Software Design”, Proceedings of
the 13th Annual Conference of Japanese Society for
Artificial Intelligence, pp.456-457, Tokyo, Japan,
June 1999.

[Romi et al., March 2000] Romi Satria Wahono and B.H. Far, “Reasoning

with Cases in the CBR System: A Case Study for
Applying OOExpert System”, Proceedings of the
IECI Japan Workshop 2000 (IJW-2000), pp. 89-93,
Japan, March 2000.

[Romi et al., July 2000] Romi Satria Wahono and B.H. Far, “Hybrid

Reasoning Architecture for Solving Object Class

 108

Identification Problem in the OOExpert System”,
Proceedings of the 14th Annual Conference of
Japanese Society for Artificial Intelligence, Tokyo,
Japan, July, 2000.

[Gouda et al., 2001] Gouda Sumihiko, Romi Satria Wahono, and B.H.

Far, “Design Pattern Usage Support System for
Software Design”, Technical Report of IEICE,
KBSE2000 54-65, pp. 39-44, January 2001.

[Romi et al., 2001] Romi Satria Wahono and B.H. Far, “Towards the

Use of Intelligence Agents in Collaborative
Object-Oriented Analysis and Design”, Proceedings
of the International Session of 15th Annual
Conference of Japanese Society for Artificial
Intelligence, Matsue Japan, May, 2001. (To appear)

 109

GGlloossssaarryy

Attributive Statements Attributive statement (AS) is a requirement

statement used to identify object attributes,
which consists of subject (S), verb (V), and
object (O) as well as the English (E) natural
language.

Behavioral Statements Behavioral Statement (BS) is a requirement

statement used to identify object behaviors,
which consists of subject (S), verb (V), and
object (O) as well as the English (E) natural
language.

Class A class is a blueprint or prototype that

defines the variables and methods common
to all objects of a certain kind.

Collaborative Statements Collaborative Statement (CS) is a

requirement statement used to identify
objects, and association between objects,
which consists of subject (S), verb (V), and
object (O) as well as the English (E) natural
language.

 110

Encapsulation Encapsulation is the concept of the

localization of knowledge within a module.
Because objects encapsulate data and
implementation, the user of an object can
view the object as a black box that provides
services. Instance variables and methods can
be added, deleted, or changed, but as long as
the services provided by the object remain
the same, code that uses the object can
continue to use it without being rewritten.

Description Statements Description Statement (DS) is a requirement

statement used to write an overview of the
system that we want to build, which consists
of Requirement ID, Requirement Name,
Language, and Description.

Generalization and Specialization Generalization and Specialization are

relationships between concepts. Any type of
A, each of whose objects is also an instance
of a given type B, is called a specialization
(or subtype) of B and is written as BA ⊂ .
B is also called the generalization (or
supertype) of A.

Inheritance Inheritance is a mechanism for sharing

attributes and behaviors among classes
based on a hierarchical relationship.

Inheritance Statements Inheritance Statement (IS) is a requirement

statement used to organize classes by using
inheritance, and to share common object
attributes and behaviors, which consists of
subject (S), verb (V), and object (O) as well
as the English (E) natural language.

 111

Object Object is the principal building blocks of
object-oriented programs. Each object is a
programming unit consisting of attribute
(instance variables) and behavior (instance
methods). An object is a software bundle of
variables and related methods.

Object-Based Formal Specification Object-Based Formal Specification (OBFS)

is a semi-formal requirements template used
to reveal ambiguity, incompleteness, and
inconsistency in an object-oriented software
system, and to guide end users take an
active role while describing their problem
statements. OBFS is composed of
Description Statements (DS), Collaborative
Statements (CS), Attributive Statements
(AS), Behavioral Statements (BS), and
Inheritance Statements (IS).

Object Model Creation Process Object model creation process is a main

process of object-oriented analysis and
design process, which starts with
identification of objects, behaviors,
attributes, and associations from
requirements, and ends with object
refinement with inheritance process.

Object-Oriented Analysis and Design Object-Oriented Analysis and Design

(OOAD) is a way of thinking about
problems using models organized around
real-world concepts.

Polymorphism Polymorphism means that the same

behavior may behave differently on different
classes.

	Contents
	List of Figures
	List of Tables
	Abstract
	�Introduction
	Overview Of Object-Oriented Analysis And Design
	Object-Orientation Concepts
	Object-Oriented Analysis and Design and Its Problems

	Overview Of Intelligent Agent
	Agent Concepts
	Multi-Agent System Concepts
	Benefits of Agents
	Areas of Agent Application

	Research Motivations And Objectives
	How This Thesis Is Organized

	�Object Model Creation Process and Its Computational Model
	Priming the Object Model Creation Process
	Requirements Specification and Its Computational Model
	Requirements Specification and Acquisition Concepts
	Models for Requirements Specification

	Object Identification and Its Computational Model
	Object Identification Concepts
	Models for Object Identification

	Attribute Identification and Its Computational Model
	Attribute Identification Concepts
	Models for Attribute Identification

	Association Identification and Its Computational Model
	Association Identification Concepts
	Models for Association Identification

	Behavior Identification and Its Computational Model
	Behavior Identification Concepts
	Models for Behavior Identification

	Object Refinement with Inheritance and Its Computational Model
	Object Refinement with Inheritance Concepts
	Models for Object Refinement with Inheritance

	�System Architecture And Design
	Agent Model of OOExpert
	Agent Framework of OOExpert
	Issues and Guidelines for OOExpert Agent Framework
	Communication Engine
	Reasoning Engine and Knowledge Base

	Design of OOExpert Agents

	�Implementation
	Implementing OOExpert Agents Using Java
	The Main Reasons to Deal with Java
	Implementing Reasoning Engine Using Java
	Implementing Communication Engine Using Java

	How the OOExpert Works
	Getting Started with OOExpert
	Working with OOExpert
	Summary of How the OOExpert Works

	�Conclusion
	System Evaluation and Future Directions
	Summary and Conclusion

	Acknowledgements
	Bibliography
	List of Publications
	Glossary

