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Since its inception of just over two decades ago, the World Wide Web has become a truly
ubiquitous and transformative force in our life, with millions of Web applications serving
billions of Web pages daily. Through a number of evolutions, Web applications have become
interactive, dynamic and asynchronous. The Web's ubiquity and our reliance on it have made

widely used technique for validating Web applications. It is also a long-standing, active and
diverse research area. In this paper, we present a broad survey of recent Web testing advances
and discuss their goals, targets, techniques employed, inputs/outputs and stopping criteria.
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1. Introduction

Software testing [1] has been widely used in the industry
as a quality assurance technique for the various artifacts in a
software project, including the specification, the design, and
source code. As software becomes more important and
complex, defects in software can have a significant impact
to users and vendors. Therefore, the importance of planning,
especially planning through testing, cannot be underesti-
mated [1]. In fact, software testing is such a critical part of
the entire process of producing high-quality software that an
industry may devote as much as 40% of its time on testing to
assure the quality of the software produced.

In software testing, a suite of test cases is designed to
test the overall functionality of the software—whether it
conforms to the specification document or exposes faults in
the software (e.g., functionality or security faults). However,
contrary to the preconceived notion that software testing is
used to demonstrate the absence of errors, testing is usually
the process of finding as many errors as possible and thus
improving assurance of the reliability and the quality of the
software [1]. This is because, in order to demonstrate the
absence of errors in software, we would have to test for all
possible permutations for a given set of inputs. However,
realistically, it is not possible to test for all the permutations
of a given set of input(s) for a given program, even for a
trivial program. For any non-trivial software systems, such
an exhaustive testing approach is essentially technologi-
cally and economically infeasible [1]. The main objectives of
any testing technique (or test suite) can be summarised as:
�
 Testing is carried out mainly to demonstrate the pre-
sence of errors that exist during a program execution.
�
 A good testing technique will have a higher chance of
discovering an error.
�
 A successful test case should discover a new fault or a
regression fault.
Ever since the creation of the World Wide Web in the early
1990s [2], there has been a tremendous increase in the usage
of Web applications in our daily lives. The idea behind the
World Wide Web was possibly envisioned by C.S. Wallace as
early as 1966 [3, pp. 244–245], where he envisioned that a
central computing system (or the server), or a bank of
computers, could be used to carry out various computing
tasks, such as paying bills, ordering goods, carrying out
engineering tasks, etc., for a large number of users. In these
instances, the time required would be shared equally amongst
all users, which would make the process economically feasible.
This concept was appropriately labelled “Time-Sharing”, since
the time would be shared amongst all users.

AWeb application is a systemwhich typically is composed
of a database (or the back-end) and Web pages (the front-
end), with which users interact over a network using a
browser. A Web application can be of two types – static, in
which the contents of the Web page do not change regard-
less of the user input; and dynamic, in which the contents of
the Web page may change depending on the user input, user
interactions, sequences of user interactions, etc.

The profound transformative impact the Web and Web
applications have brought about on our society has long
been acknowledged. Somewhat surprisingly, however, there
seems to be very limited research that has been done in
surveying the different recent advancements made in the
field of Web application testing over the past 20 years. To the
best of our knowledge, the only other surveys in this field
consists of an early review by Di Lucca and Fasolino [4] on
general approaches to Web application testing, and a survey
by Alalfi et al. [5] focussed on the modelling aspects of
Web application testing. Therefore, this survey paper pro-
vides a much needed source of detailed information on the
progress made in and the current state of Web application
testing.

Compared to traditional desktop applications, Web applica-
tions are unique in a number of ways, and such uniqueness
presents new challenges for their quality assurance and testing.
�
 Firstly, Web applications are typically multilingual. A Web
application usually consists of a server-side backend and a
client-facing frontend, and these two components are
usually implemented in different programming languages.
Moreover, the frontend is also typically implemented with a
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mix of markup, presentation and programming languages
such as HTML, Cascading Style Sheets (CSS) and JavaScript.
The presence of multiple languages in a Web application
poses additional challenges for fully automated continuous
integration (CI) practices, as test drivers for different lan-
guages need to be integrated into the CI process and
managed coherently.
�
 Secondly, the operating environment of typical Web
applications is much more open than that of a desktop
application. Such a wide visibility makes such applica-
tions susceptible to various attacks, such as the distrib-
uted denial-of-service (DDOS) attacks. Moreover, the
open environment makes it more difficult to predict
and simulate realistic workload. Levels of standards
compliance and differences in implementation also
add to the complexity of delivering coherent user
experiences across browsers.
�
 Thirdly, a desktop application is usually used by a single
user at a time, whereas a Web application typically
supports multiple users. The effective management of
resources (HTTP connections, database connections, files,
threads, etc.) is crucial to the security, scalability, usability
and functionality of a Web application. The multi-threaded
nature of Web applications also makes it more difficult to
detect and reproduce resource contention issues.
�
 Last but not least, a multitude of Web application develop-
ment technologies and frameworks are being proposed,
actively maintained and fast evolving. Such constant evolu-
tion requires testing techniques to stay current.
1 http://www.w3.org/Consortium/. This site was last accessed on
January 31, 2013.

2 http://www.w3.org/QA/WG/2005/01/test-faq#why. This site was
last accessed on January 31, 2013.
The rest of this paper is organised as follows. We begin in
Section 2 by motivating the importance of Web application
testing and then outlining major techniques covered in sub-
sequent sections. In Section 3 we cover graph and model based
testing techniques, including finite state machine-based tech-
niques. In Section 4, we briefly discuss mutation testing
techniques. In Section 5, we present search based software
engineering techniques, where testing problems are treated as
optimisation problems. Section 6 is devoted to the discussion
of some popular scanning and crawling techniques and present
their application to security testing of Web applications. In
Section 7, we present random testing, with the use of asser-
tions as the primary oracle, and describe examples of how
random testing can be applied to Web services. Fuzz testing is
a form of random testing that generates invalid inputs with an
aim of discovering defects that are severe and hard to detect.
Section 8 is devoted to fuzz testing. We introduce some white-
box fuzz testing techniques that make use of symbolic execu-
tion techniques introduced in Section 9. A black-box fuzz
testing framework for JavaScript [6] will also be covered.
Concolic testing, a technique that combines symbolic and
concrete random execution to improve testing effectiveness,
is covered in Section 9. We also show how they can be applied
to testing dynamic PHP [7] and JavaScript applications using a
number of examples. In Section 10, we discuss user session-
based techniques and some of the ways to minimise the
number of user sessions during testing. Lastly, in Section 11,
we provide a summary of the different testing techniques and
lay out future directions in which Web application testing
research can proceed.
2. Motivation, challenges and overview of techniques

Many aspects of a Web application may be subject to
testing, which has been a major challenge due to their
heterogeneous nature. Web applications usually comprise
different components that are typically implemented in differ-
ent programming languages, application development frame-
works and encoding standards. Additionally, as we stated
above, compatibility testing has also become a major challenge
with the increased availability of a number of popular brow-
sers. Large Web-based software systems can be quite compli-
cated and contain thousands to millions of lines of code, many
interactions among objects, and involve significant interaction
with users. In addition, changing user profiles and frequent
small maintenance changes complicate automated testing. In
the following 2 subsections we motivate the importance of
testing with two challenges facing Web applications: interoper-
ability and security. In Section 2.4, we then provide a quick
overview of the major testing techniques which are also
summarised in a number of tables for easy reference.

2.1. Interoperability

According to the World Wide Web Consortium (W3C),1 the
main international standards organisation for the World Wide
Web (WWW), testing inWeb applications is very significant. In
order for the Web to reach its full potential, it is paramount
that all the basic Web technologies are compatible with each
other and allow any hardware and software used to access the
Web to work together.2 This goal is referred to as “Web
interoperability” by the W3C. Two different implementations
of a technology are compatible if they both conform to the
same specifications. Conformance to specifications is a neces-
sary but insufficient condition for interoperability; the specifi-
cations must also promote interoperability (by clearly defining
behaviours and protocols). Therefore, in the case of Web
applications and Web technologies, testing must be done to
ensure that the overall functionality of a Web application
conforms to the specification document(s) in addition to
ensuring compatibility across different browsers (e.g., Chrome,
Firefox, Internet Explorer and Safari) and platforms (e.g.,
different operating systems such as, Windows, Linux, Mac OS
X, Android and iOS). Such an articulate version of testing will
also help uncover contradictions, lack of clarity, ambiguity, and
omissions in specification documents.

2.2. Security

Web applications are used by virtually all organisations in
all sectors, including education, health care, consumer busi-
ness, banking and manufacturing, among others. Thus, it is
important to ensure that the Web applications developed are
properly tested due to the importance and the sensitivity of the
information stored in databases of suchWeb applications [8,9].
Thus, the security of Web application becomes an issue of
critical importance. This is because Web applications can be

http://www.w3.org/Consortium/
http://www.w3.org/QA/WG/2005/01/test-faq#why
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accessed by a large number of anonymous users and as a
result, the information can be easily misused, possibly resulting
in huge damages to the organisation and its clients.

Although it is important that Web applications are depend-
able, recent reports have indicated that in practice they are
usually not. For example, one study of Web application
integrity found that 29 of 40 leading e-commerce sites and
28 of 41 government sites exhibit some type of failure when
exercised by a “first-time user” [10]. Similarly, another study by
Kals et al. [8] showed that between 4% and 7% of randomly
chosen Web site forms (from a list of 21,627 forms) were
vulnerable to different categories of Cross-site scripting (XSS)
and SQL injection attacks (more specifically, 6.63% to SQL
injection, 4.30% to Simple XSS injection, 5.60% to Encoded
XSS injection, 5.52% to Form-Redirecting XSS injection, see
Section 6 for more details). Additionally, there have been
recent cases in some high profile corporations, where lack of
security in Web applications resulted in hackers gaining
unauthorised access to the organisation's network and privi-
leged information. For instance, the PlayStation Network of
Sony Computer Entertainment was attacked in April 2011,
resulting in hackers gaining access to the e-mail addresses,
usernames, passwords, online user IDs and credit card details
of nearly 70 million customers who were registered with
Sony's PlayStation Network.3 This large-scale breach of the
security system of the PlayStation Network is believed to have
cost Sony as much as $24 billion,4 in addition to dealing a
major blow to Sony's reputation worldwide.
2.3. Dynamics

Many non-trivial Web applications are divided into a
server-side backend and a client-side frontend. The backend
is responsible for data processing and persistence, and it often
implements complex business logics. The frontend, tradition-
ally concerned about the presentation of data, is becoming
more and more sophisticated and rich in features. Dynamics
are present inWeb applications in several ways, and they bring
unique challenges to the testing of Web applications.

Firstly, theWeb applications themselves may be dynamic in
nature. The so-called Web 2.0 [11] applications are charac-
terised by their abilities to support not only static data
presentation, but also interactive user participation and con-
tent creation. In these interactive Web applications, page
contents can be updated by client-side scripts without a page
refresh, made possible by languages and technologies such as
JavaScript [6] and AJAX (Asynchronous JavaScript and XML)
[12]. Such dynamic content generation mechanisms make
capture-replay style of testing more difficult [13]. For example,
the test driver needs to understand when page contents are
ready to consult the test oracle for validating test results. The
increasing prevalence of single-page Web applications5 further
amplifies the importance of dynamic Web application testing.
3 http://www.wired.com/gamelife/2011/04/playStation-networ
k-hacked/. This site was last accessed on January 31, 2013.

4 http://www.businessinsider.com/playStation-network-breach-
could-cost-sony-24-billion-2011-4. This site was last accessed on January
31, 2013.

5 http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php. This
site was last accessed on November 15, 2013.
Secondly, predominant Web programming languages,
including JavaScript [6], PHP [7], Python [14] and Ruby [15],
are dynamic in nature. For example, JavaScript is the lingua
franca for client-side scripting in Web applications. It is a
powerful language with many advanced features, including
dynamic typing and evaluation, functions as objects, and
various forms of delegation. These features make it very
challenging to thoroughly test a JavaScript application. For
instance, a JavaScript application may accept many kinds of
inputs, including responses from the server and user input
from fields, which are structured as strings [16]. Therefore,
a JavaScript testing tool must be able to discern the
different kinds of inputs and handle them accordingly.

2.4. Overview of techniques

In this survey we broadly categorise Web application
testing techniques into a number of groups, including those
based on graphs and models, scanning and crawling tech-
niques, search-based techniques, mutation testing, concolic
testing, user session-based testing and random testing.

Each of these groups of testing techniques can be
described along a number of dimensions, including a main
purpose (to determine which technique should be used
given the basic testing objectives), evaluation criteria,
inputs and outputs, and criteria for stopping the test. For
easy reference, these dimensions are highlighted in a
number of tables in this subsection.

Table 1 summarises the main purpose of these testing
techniques. Table 2 highlights the different testing techniques,
evaluation criteria on the basis of cost-effectiveness, density of
faults detected, and coverage. Table 3 describes the inputs,
outputs and stopping conditions for each testing technique.

The graph and model based testing approach essentially
creates a model of a Web application. Test cases are then
derived on the basis of the model constructed. The test cases
are generated according to either the all-statement (all state-
ments must be covered/tested) or all-path (all paths/branches
must be covered) coverage criterion. The graph and model
based approach includes finite state machine-based testing,
where a finite state machine depicting the model of the system
is first constructed, from which test cases are then derived. A
variant of finite state machines is the probable finite state
machines, where transitions are associated with probabilities
(this is similar to the probabilistic finite state machines
discussed in [17, Section 7.1], where the shortest length
message can be inferred from the data).

Mutation testing is aimed at detecting the most common
errors that typically exist in a Web site or a Web applica-
tion. In this form of testing, some lines of source code are
randomly changed in a program to check whether the test
case can detect the change. For example, the destination
address on the client side, in an HTML form, may be
replaced with an invalid address, or invalid files may be
included in the server side of the program. If the test suite
can detect the errors (i.e., testing has been properly con-
ducted), then an error message will be displayed. This form
of testing is mainly intended to ensure that testing has
been done properly and also to cover additional faults
which may exist in a Web site, and for which testing has
not been performed.

http://www.wired.com/gamelife/2011/04/playStation-network-hacked/
http://www.wired.com/gamelife/2011/04/playStation-network-hacked/
http://www.businessinsider.com/playStation-network-breach-could-cost-sony-24-billion-2011-4
http://www.businessinsider.com/playStation-network-breach-could-cost-sony-24-billion-2011-4
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php


Table 1
The main purpose of each group of testing techniques and whether or not the techniques are automated.

Testing technique Ref. Automated Main purpose

Model and Graph Based
Testing

[19–21] � Create a model of the application to test

Mutation Testing [22] ✓ Find out rare and most common errors by changing the lines in the source code
Search-based Testing [23] ✓ To test as many branches as possible in an application via the use of heuristics

to guide the search
Scanning and Crawling [8,13,24,25] ✓ Detect faults in Web applications via injection of unsanitised inputs and invalid SQL injections

in user forms, and browsing through a Web application systematically and automatically
[26] � Detects navigation and page errors by systematically exploring pages and filling out form

Random Testing [27–30] ✓ Detect errors using a combination of random input values and assertions
Fuzz Testing [31–33] ✓ Test the application by passing in random, boundary or invalid inputs
Concolic Testing [34,27,35,16] ✓ To test as many branches as possible by venturing down different branches through

the combination of concrete and symbolic execution
User Session Based Testing [36,9] ✓ Test the Web application by collecting a list of user sessions and

replaying them
[37,38] ✓ Reduce thetest suite size in User session-based testing

Table 2
The main evaluation methods of each of the testing techniques. The evaluation methods are indicated by a ‘✓’ for each technique.

Testing technique Ref. Evaluation methods

Cost-effectiveness Density of faults detected Coverage

Model and Graph Based Testing [19–21] ✓ ✓

Mutation Testing [22] ✓ ✓

Search-Based Testing [23] ✓ ✓ ✓

Scanning and Crawling [13,8] ✓

[24] ✓ ✓

[25] ✓ ✓

[26]
Random Testing [27,28] ✓ ✓ ✓

[29] ✓ ✓

[30] ✓ ✓

Fuzz Testing [31,32] ✓ ✓

[33] ✓ ✓

Concolic Testing [34,16] ✓ ✓ ✓

[27] ✓ ✓

[35] ✓ ✓

User Session-based Testing [36–38] ✓ ✓ ✓

[9] ✓ ✓

Y.-F. Li et al. / Information Systems 43 (2014) 20–5424
Search-based software testing aims at testing a majority
of the branches in a Web application. The main aim of this
form of testing is to cover as many branches as possible and
thus improve testing coverage. Usually, some heuristic is
used to ensure that a large number of branches are tested
and thus testing is sufficiently thorough.

Scanning and crawling techniques are mainly intended to
check the security of Web applications. In such techniques,
a Web application is injected with unsanitised input, which
may result in malicious modifications of the database if not
detected. The main idea is to detect any such vulnerabilities
that a Web application may have. This is a very important
form of testing, because, as discussed earlier, many Web
site designers do not pay enough attention to security
threats, thus making their Web site vulnerable to potential
intrusion. This form of testing aims to improve the overall
security of a Web site.

In random testing, random inputs are passed to a Web
application, mainly to check whether the Web application
functions as expected and can handle invalid inputs.
A special case of random testing is fuzz testing, where
boundary values are chosen as inputs to test that the Web
site performs appropriately when rare input combinations
are passed as input.

The major aim of concolic testing (concrete, symbolic
testing) is also to cover as many branches as possible in a
program. In this form of testing, random inputs are passed
to a Web application to discover additional and alternative
paths which are taken by the Web application as a result of
different inputs. The additional paths are stored in a queue
in the form of constraints, which are then symbolically
solved by a constraint solver. The process continues until
the desired branch coverage is achieved.

In user session-based testing, testing is done by keeping
track of user sessions. In this case, a list of interactions
performed by a user is collected in the form of URLs and
name-value pairs of different attributes, which are then
used for testing. Due to the large number of user sessions
that can result when a user interacts with a Web site, there
are several techniques for reducing the number of sessions



Table 3
The main inputs, outputs, and stopping conditions for each testing technique.

Testing technique Ref. Inputs Outputs Condition to stop testing

Model and Graph Based
Testing

[19,21] Model of the application Regular expressions from which test
cases can be created

Depends (e.g., all path/all statement criteria)

[20] Lower level finite-state machine (FSM) of the
application

An application-level FSM from which
test cases can be generated

Depends (e.g., all path/all statement criteria)

Mutation Testing [22] A program and mutation operators Mutated program created as a result
of applying the mutation operators

Required mutation operators are applied

Search-based Testing [23] Mutation of application inputs as generated by
different heuristics such as hill climbing, simulated
annealing and evolutionary algorithms

A test suite with the aim of maximise
branch coverage

A pre-determined, fixed number of test executions

Scanning and Crawling [24,13,8,25] Unsanitised user inputs to crash the Web application
(e.g., the database or force the user to enter unsafe
Web sites)

Type of defects and number
of defects

Until all the forms for a given Web application is injected with
different forms of unsanitised user input

[26] A starting URL Type of defects and number
of defects

A maximum depth of exploration is reached

Random Testing [27] WS-CDL Web service choreography specifications Test oracles (a test suite including
assertions)

The stop instrument in the control flow graph is reached

[28] State machine models of WSDL Web service
descriptions

A test suite, and its execution and
visualisation

Depends (e.g., all path/all statement criteria)

[29] A JavaScript program A set of test cases and their execution
results

A pre-determined, fixed number of test cases

[30] A JavaScript program Test oracles in the form of contracts and
random test cases based on contracts

All contracts exhausted

Fuzz Testing [31] Random user inputs which test rare or unlikely
system behaviour (e.g., values near the boundaries)

Test cases with oracles Depends (e.g., all path/all statement criteria)

[32] A JavaScript program and a benign input A test suite and the identified potential
client-side validation vulnerabilities

All identified data flows exhausted

[33] A Program, a grammar and an initial input A test suite and the identified defects All generated inputs exhausted
Concolic Testing [34,27,35,16] Concrete inputs from symbolically solved

previous iteration, start with random initial input
Path constraints at each iteration All constraints exhausted

User Session-based
Testing

[36,38,9] User sessions A combination of URL and the
parameters to be passed to the server

Depends (e.g., certain selected user sessions have been tested or
reasonable coverage has been achieved)

[37] User sessions An updated concept lattice and a
updated test suite

Continue till all the user sessions to be tested have been exhausted
and the test suite and the lattice cannot be modified anymore

Y.-F.Li
et

al./
Inform

ation
System

s
43

(2014)
20

–54
25



Y.-F. Li et al. / Information Systems 43 (2014) 20–5426
to test, such as lattice construction, batch test suite reduc-
tion, incremental reduced test suite update, and test case
reduction through examining URL traces. One of the
aspects of Web application testing that we do not cover
in this survey is usability testing [18]. Usability testing is
primarily a black-box testing technique. The major aim is to
test how users use an application and discover errors and/
or areas of improvement (intended to make the product
more intuitive and user-friendly). Usability testing gener-
ally involves measuring how well users respond in four
main areas while using the application: efficiency, accuracy,
recall, and emotional response. The results obtained from
the first test are usually treated as a baseline against which
all subsequent tests are then compared to indicate
improvement. Generally speaking, in the case of Web
applications, such usability testing would involve the test-
ing of, e.g., (1) the ease of using the application, (2) the
layout and appearance of the Web application on different
devices such as desktops, laptops, and mobile systems, and
(3) whether different messages displayed during the appli-
cation are sufficient and appropriate.

3. Graph- and model-based white-box testing techniques

These testing techniques start with constructing a graph
or a state machine model of the Web application and then
generate test cases from these models.

3.1. Graph-based testing

The most popular white-box graph based testing
approach is the one proposed by Ricca and Tonella [19],
which creates a graph-like model in which nodes in the
graph represent Web objects such as Web pages, forms and
frames, and edges represent the relationship between these
objects (e.g., submit, include, split and link).

To generate test requirements and test cases, a regular
expression to match the graph is generated. For example,
Fig. 1 depicts the graph for a sample Web application. The
regular expression “e1e2þe1e3nþe4e5n”, where a “n” indi-
cates that a transition may be visited any number of times
Fig. 1. The graph model of a sample Online Book ShoppingWeb application
from [19, Fig. 2].
and a “þ” indicates choice, can then be used to generate
test requirements by identifying the set of linearly inde-
pendent paths that comprise it, and applying heuristics to
minimise the number of requirements generated. A linearly
independent path is defined as the path in which at least
one edge has not been traversed earlier while constructing
the paths and all the linearly independent paths together
test all the edges of the graph at least once.

The test cases are sequences of Web pages to be visited
together with their corresponding values (generated from
the path expressions). There are two versions [19] of this
implementation:
�
 Complete test requirements with ad hoc selection of
inputs: This white-box technique attempts to match the
methodology presented in [19]. Test cases are generated
from the path regular expressions and the following
assumptions are made: (1) only linearly independent
paths are tested, (2) we exercise forms that are included
in multiple Web pages, but perform the same function-
ality independent of context (e.g, provide search cap-
ability) from only one source, and (3) ignore circular
paths which link back to the starting page (included just
to facilitate navigation within a page). Then the forms
are filled and test cases are generated.
�
 Complete test requirements with formalised selection of
inputs: This technique uses boundary values as inputs,
and utilises a strategy for combining inputs inspired by
the “each condition/all conditions” strategy [39]. The
test suite contains test cases such that the test cases for
each form comprise tests of empty values for all vari-
ables and one additional test case in which all the
variables have values assigned. For the test cases that
consider just one variable, the values are selected based
on the boundary conditions for such variables. For the
test case that includes all variables at once, one random
combination of values is selected. The objective behind
this strategy is to add formalism to the process of
inputting data into the forms, as recommended in one
of the examples in [19].

One of the main limitations of this approach by Ricca
and Tonella [19] is that the construction of the graph has to
be done manually. Therefore it is very difficult to automate
the process. In addition, only linearly independent paths
are tested. The advantage of this approach seems to be that
there is not much overhead involved in obtaining the
regular expressions after a model of the system is con-
structed (manually). Moreover, the testing involves inputs
chosen randomly, thus making the process simple to
implement.
3.2. Finite state machine testing

A finite state machine usually has a finite set of states S,
a finite set of inputs I, a finite set of outputs O, a transition
function T which determines the transition from the
current state s1 to a next state s2, depending on the input
i1, and an output function O, which determines the output
produced by a transition.
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A few methods have been proposed for deriving test
cases for software systems from finite state machines
(FSMs) [40]. Finite state machine-based approaches have
also been applied to Web testing because a Web application
is essentially a system in which transitions occur from one
Web page to another and outputs are produced according
to the inputs/actions at and the current state.

Test cases for testing a Web application can be generated
from FSMs. The methodology required to generate test cases
from FSMs is described in [20]. A simple Web application
can face the state space explosion problem as there can be a
very large number of possible inputs to a text field, a large
number of options (e.g., checkboxes, links) can be available
on a particular page, and a large number of different orders
in which the options can be selected. For example, for a
simple set of 5 questions each containing 4 possible options
(in the form of checkboxes), there can be 45 (1024) different
combinations of user selected options. Thus, the FSMs must
be expressive enough to test the system effectively and also
be small enough to be practical [20].

Hierarchical FSMs [20] have been employed to alleviate
the state space explosion problem, by reducing the number
of states and transitions in an FSM. The bottom level FSMs
are formed from Web pages and parts of Web application
known as logical Web pages, and the top level FSM
represents the entire Web application. A logical Web page
may either be a simple physical Web page or an HTML form
which accepts inputs from the user and sends it to a
different software module. The logical Web pages (LWP)
can be easily extracted because these are embedded with
HTML “Form” tags.

Next, in order to generate test cases manually from the
Web applications, the following four steps are performed [20]:
1.
 Partitioning the Web application into clusters, where a
cluster comprises software modules and Web pages
which implement a certain logical function. Clustering
is done to identify the different layers of abstraction. At
the top level, clusters are abstractions that implement
functions that can be identified by users. At lower levels,
clusters are a set of Web pages and software modules
which communicate with each other to implement
some user-level functions. At the lowest level, clusters
may be individual Web pages and software modules
that represent single major functions themselves. Indi-
vidual clusters can be identified from the layout of the
site navigation, coupling relationships among the com-
ponents, and the information that can be obtained from
site design [20]. This process is manual, and as a result,
the clusters and the entire partitioning process can have
an impact on the resulting tests [20].
2.
 Extracting Logical Web Pages (LWP). This process can be
automated, because HTML Forms that accept input data
from the user and send it to a back-end software module
are embedded with HTML “Form” tags. The identifica-
tion of LWPs can, therefore, be carried out by extracting
these HTML tags.
3.
 Building FSMs for each cluster. A bottom-up approach is
followed to construct these FSMs. First, the FSMs
are generated from bottom-level clusters that contain
software modules and Web pages (i.e., no clusters).
Next, higher-level cluster FSMs are built by aggregating
lower-level FSMs. Each state or node in these higher-level
FSMs represents a lower-level FSM. This process is
completed manually.
4.
 Building an application FSM for the entire Web applica-
tion. Lastly, an application finite state machine (AFSM)
defines a finite state model of the entire Web applica-
tion, in which the edges represent the navigation or
links between different Web pages in different clusters.
Each FSM is assumed to have a single entry and exit
node (“dummy” or extra nodes may be added to
guarantee this requirement). The final result of this
partitioning is a collection of autonomous (separate
but interacting) finite state machines with the following
two properties. First, they are small enough to efficiently
allow test sequences to be generated. Second, they
clearly define the information that propagates among
the FSMs. This process is accomplished manually.

The state space explosion problem in finite state
machines can be dealt with more effectively by defining a
BNF grammar for the input constraints on the Web applica-
tion. For input values, [20] defines five broad choices,
namely, R (if the input is required, i.e., the user has to enter
a value to transition from one state to another),
Rðparm¼ valueÞ (if the input is required and can only be
chosen from a subset to transition from one state to
another), O (if input is optional), C1 (if the user only needs
to select one input from a given list of inputs, e.g., a radio
button) and Cn (if the user needs to select multiple values
from a list, e.g., check-boxes). In order to define the order of
values, [20] defines two symbols, S (if the values must be
entered in a particular order) and A (if the values can be
entered in any order). The types of inputs can be further
broken down into “text” and “non-text”. FSMs with input
constraints are called “annotated FSMs”. The advantage of
“annotated FSMs” over normal FSMs is shown clearly in
Fig. 2(a) and (b). Assuming that there is a Web application
with input fields “username” and “password”, where the
username and password must differ from each other and
there are only 3 possible choices for usernames and pass-
words, namely “a”, “b” and “c”, then the normal FSM with
different states and transitions will be constructed as
shown in Fig. 2(a). But, if annotated FSMs are used, then
the different states and transitions can simply be replaced
with the “annotated constraints” (such as “R”, “S” and “A”
to test for the order of entered values as well as for the
actual values entered).

The FSMs defined above are then used to generate tests.
Tests are generated as sequences of transitions and the
values for inputs are then selected randomly. A test
sequence is a sequence of transitions in an FSM and the
associated constraints.

The main limitation of this approach is that the finite
state machines have to be constructed manually. Thus, the
process is difficult to be fully automated. The advantage of
this approach is in the reduction in the number of states in
an FSM, which helps solve the state space explosion
problem as discussed above. Also, the extraction of
the logical Web pages (LWPs) can be done automatically.



Fig. 2. A demonstration of the advantages of an annotated FSM over a normal FSM, as given by [20, Fig. 8]. (a) Normal FSM for a simple Web application
with fields username and password. (b) Annotated FSM for the same Web application.

Fig. 3. An example probable FSM as described in [21, Fig. 1].
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The use of annotated FSMs also makes it easier to derive a
model of the complete Web application incrementally.

3.3. Probable FSM

An extension of the FSM described above is the probable
(probabilistic) FSM. A method for generating test cases
from the probable FSM is described in [21], where the
probabilistic FSM is constructed manually, and the test
sequences are selected on the basis of probabilities of a
given sequence. In such an FSM, in addition to the states
and transitions, a probability is also assigned to each
transition. In this case, the transition function T is redefined
to include the current state, the transition t1 and the
probability associated with t1. Thus, the transition function
δðs1; t1; prÞ ¼ s2 means that if the current state is s1 and
there is a transition t1 from s1 with the probability pr (such
that 0rprr1), then there will be a transition from s1 to s2.
The sum of all the values from a given state may not add up
to 1. This is because the individual probabilities of different
transitions represent the probability with which it is
possible to get to another state (e.g., user session). Thus,
there are other events, of very low or negligible probability,
which are not usually modelled in the probable finite state
machine. The proposed PFSM usage model can capture
information about control flow, data flow, transaction
processing and associated probabilistic usage, and critical-
ity information. An example probable FSM [21] with
transitions and states is shown in Fig. 3.

A test case is defined as any path from the source node
(start state) to the target node (final state). In order to
generate test cases, a list of all the path transitions from the
source node to the target node is generated. Then prob-
abilities are calculated for all the individual paths that have
been generated (by multiplying the individual probabilities
for the transitions). A specific threshold value is also
obtained. The test suite then comprises all the paths which
have a probability higher than the threshold value.
For example, in the probabilistic finite state machine
depicted in Fig. 3, there are at least four potential paths
from state s1 to s5, namely:

Path A: k4-k5-k7 (s1-s4-s3-s5)
Path B: k4-k6 (s1-s4-s5)
Path C: k2-k7 (s1-s3-s5)
Path D: k4-k5-k3-k2-k7 (s1-s3-s1-s3-s5)

The probabilities for each of these individual paths are
simply the multiplications of the individual probabilities of
the different transitions. Thus, as per Fig. 3, the probabil-
ities are as follows:

Path A: 0:4 n 0:5 n 0:6¼0.12
Path B: 0:4 n 0:4¼0.16
Path C: 0:2 n 0:6¼0.12
Path D: 0:4 n 0:5 n 0:4 n 0:2 n 0:6¼0.0096



Y.-F. Li et al. / Information Systems 43 (2014) 20–54 29
Now, only the test cases which meet the threshold value
are selected. Thus, assuming that the threshold value was
set to 0.1, only Paths A and B will be selected as the test
cases for the test suite. A high threshold value can be
selected to test only the most frequently used operations
and gradually lowered to involve the rarer and more unique
operations and ensure the satisfactory coverage or relia-
bility for a wider variety of operations. Thus, the threshold
value can be modified to control the number of test cases
generated and its coverage.

The limitation of this work is that the probable FSM
cannot be generated automatically and thus the testing
process will be slow since the FSM construction has to be
done manually. This work also does not explain thoroughly
as to how the probabilities are assigned to different transi-
tions from different states. Also, the FSMs represent an
incomplete model of the system, since only the most
“likely” transitions are modelled, and the unlikely events
are not included in the FSM. Thus, it would be very hard to
test for “rare events”which may be crucial to the security of
Web applications.

4. Mutation testing

Mutation testing is a form of testing in which a program
P is taken as input. A modified version of the program P is
then created by applying certain mutation operators to the
original program. Test cases are designed with the aim of
detecting program modifications. The modified versions of
the program are called mutants [41–43] and if a test case
can detect a mutant (i.e., the line of code where the
mutation operator has been applied), then the test case is
said to kill the mutant. Otherwise the mutant stays live.

Praphamontripong and Offutt [22] implement mutation
testing for Java Server Pages (JSP) and Java Servlets. The
mutation operators are defined specifically for these appli-
cations and are implemented in a tool called muJava [44].
muJava automatically creates mutants and allows tests to
be run against the mutants. Tests are created manually as
sequences of requests [22].

11 new mutation operators are defined specifically for
Web applications [22]. These mutation operators are
grouped into two categories, (1) operators modifying HTML
applications and (2) operators modifying JSP applications.
Some of the operators for HTML include, e.g., “simple link
replacement (WLR)” which replaces the “oa href¼ 4”

attribute value with another address in the same domain.
The “W” in WLR indicates that the mutation operator deals
with Web-specific features, “R” indicates that the operator
replaces some field and “L” indicates that it exercises the
links in a Web application (e.g., non-existent or incorrect
URLs). Similarly, mutation operator exists for (a) deleting a
link (“simple link deletion (WLD)”, where “D” indicates that
the operator deletes a field), (b) replacing the destination
address of an HTML form (“form link replacement (WFR)”),
(c) replacing “GET” requests with “POST” requests and vice
versa (“transfer mode replacement (WTR)”), and (d) repla-
cing and deleting the form values of type hidden. Also, in
order to detect server side faults, Praphamontripong and
Offutt [22] create mutation operators for replacing and
deleting server side “include” statements (which basically
describes what other files need to be included in a
particular application). Mutation operators for JSP include
operators which change the forwarding destination of a
redirect transition specified in “oJSP : forward4”

(“redirect transition replacement (WRR)”), and deleting
the destination address (“redirect transition deletion
(WRD)”).

Praphamontripong and Offutt [22] apply testing on a
moderate-sized application called the “Small Text Infor-
mation System (STIS)” [45]. STIS comprises 18 Java Server
Pages (JSPs) and 5 Java bean classes and stores the
information in a MySQL database. Praphamontripong
and Offutt [22] applied mutation operators to only the
JSPs and excluded 2 JSPs. A total of 219 mutants of the
application were tested, where the mutants were created
by using the mutation operators described above. The
total number of live mutants in the application (i.e., the
mutants which reveal different faults) and which were
undetected by the tool muJava are 29 [22]. Most of these
undetected faults were related with replacing the form
values of type hidden (23 out of 29). Thus Praphamontri-
pong and Offutt [22] show that mutation testing could be
used to reveal a large number of faults in a Web applica-
tion (nearly 86% in this case). A total of 147 hand-seeded
faults are also planted in the application, out of which 118
were detected (� 80%) [22].

One of the main advantages of mutation testing
approaches for Web applications is that it tests for most
crucial errors which are likely to occur in a Web applica-
tion. For example, a lot of the server errors occur in a Web
application either due to some invalid form attributes,
missing files or as a result of not validating user inputs
properly. The mutation testing technique proposed by
Praphamontripong and Offutt [22] is particularly effective
in detecting such defects which may occur on the server
side. Similarly, on the client-side of the application, a large
number of errors are due to broken links (i.e., errors in the
destination links), missing files or invalid HTML. Again the
mutation testing approach [22] can be effectively applied
for these defects.
5. Search based software engineering (SBSE) testing

Search Based Software Engineering (SBSE) is an approach
that treats software engineering problems as optimisation
problems whose solutions require searching through a state
space [23]. The possible solutions need to be encoded in a
way that makes similar solutions proximate in the search
space. A fitness function is then defined which is then used
to compare possible solutions. Hill climbing is an iterative
incremental algorithm often used in SBSE and found to be
effective for testing [46]. In hill climbing, a random solution
is first chosen and evaluated and then the nearest neigh-
bours (determined by some heuristic, e.g., distance) are
evaluated. This process is iterated by changing a single
element in the solution and thus obtaining new solutions.
If the value of the fitness function of the new solution is
better than the value of fitness function of the older solution,
then the newer solution replaces the previous one. This
process is repeated iteratively until no further improvements
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can be made to the solution. Thus, the algorithm aims to
find a solution which maximises the fitness function (or the
heuristic). This approach is simple and fast. However, it is
dependent on the randomly chosen starting point of the
solution.

For the hill climbing algorithm, Korel [47] introduced the
Alternating Variable Method (AVM) into the search process.
This method changes one variable while ensuring other
variables remain fixed. Branch distance is used to measure
how close an input comes to covering the traversal of a
desired branch. When the execution of a test case does not
converge on the target branch, the branch distance expresses
how close an input came to selecting the correct path/
branch at a particular level and satisfying the predicate
[48]. It also helps in determining the level along the target
branch of the predicate at which control for the test case
went “wrong”; i.e., how close the input was to descending to
the next branch level. The branch distance is computed
using the formula ∣offset�1∣þK , where K is the constant
added when an undesired, alternate branch is taken by the
test case. The lower the absolute value of offset�1, i.e., the
closer the value of offset is to 1, the closer the test case is to
traversing along the correct target branch [48]. A different
branch distance formula is applied depending on the type of
relational predicate. In the case of relational equals, the
branch distance is equal to ∣a�b∣þK . The formulas for
different branch distances depending on the type of rela-
tional predicates are described in [49].

If the changes to a variable affect branch distance, a
larger change is applied in the same direction in the next
iteration. In case, as a result of applying this change, a false
local optimum is chosen, the search is re-started at the
previous best solution seen. The process continues until the
branch is covered or no further improvement is possible.

Alshahwan and Harman [23] apply Search Based Soft-
ware Engineering to testing PHP Web applications. The
main aim of this technique is to maximise the branch
coverage of the application. The algorithm starts with a
static analysis phase that collects static information to aid
the subsequent search based phase. The search based phase
uses an algorithm that is derived from Korel's Alternating
Variable Method (AVM) in addition to constant seeding.

Several issues affect the application of search based
techniques to Web applications, such as Dynamic typing
(e.g., in different languages such as Ruby and PHP, variables
are dynamically typed, which makes it hard to determine
the type of variables used in predicates, which may in turn
lead to problems when deciding which fitness function to
use). Another important issue is Interface Determination,
which means that there is no way of determining the
interface in different PHP or JSP applications. In other
words, there is no way of knowing how many inputs are
required for the application to execute. Other problems also
include client-side simulation of dynamic Web pages and
dynamic server-side include statements.

The algorithms for test data generation in [23] are based
on hill climbing using Korel's AVM [47]. When a target
branch is selected, AVM is used to mutate each input in
turn while all other inputs remain fixed. When the selected
mutation is found to improve fitness value, the change in
the same direction is accelerated. To avoid overestimating
(or over shoot), the change is decelerated when the fitness
function nears 0. Branches which have been reached but
not covered are then targeted in subsequent iterations. That
is, a branch is reached if its immediately controlling
predicate is executed, while a branch is covered if the
branch itself is traversed. The algorithm(s) attempt to cover
a branch only when it is reached, i.e., all transitively
controlling predicates on some path have been satisfied.
This technique is called an explorative approach [23].
At each iteration the algorithm also keeps track of near
miss input values. A near miss input vector results in fitness
improvement for a branch other than the targeted branch.
Near misses are used in place of random values when
initialising a search to cover that branch. This approach is
called Near Miss Seeding (NMS).

The fitness function employed in this approach is similar
to that used by Tracey et al. [49]. This means that for a
predicate “a op b” where op is a relational operator, fitness
is zero when the condition is true and the absolute value of
ja�bjwhen the condition is false. A fitness function has the
value 0 if the test case covers the desired branch of the
program. The main aim of the technique is to minimise the
fitness function values throughout the search process. The
fitness function value is incremented in a similar technique
as Tracey et al. [49]. That is, if the test case is incorrect, then
the value of the fitness function k is incremented by 1. For
strings, Levenshtein distance [50] is used as a fitness
function, following Alshraideh and Bottaci [51]. The
Levenshtein distance is the minimum number of insert,
delete and substitute operations needed to convert one
string to another string [23].

Each execution of a test case returns a list (F) of all
branches in that execution and the branch distances. For
every branch (B) that recorded an improvement in the
branch distance, the list, F, is used to update a coverage
table (C), and the resulting test suite (T). A list of branches,
known as the work list, that have been reached/traversed is
extracted from the coverage table, and is then processed in
an attempt to cover it. To start, the database is initialised and
the user logs into the application. The input vector is then
constructed using the analysis data. Values for variables are
initialised to values that caused a particular branch to be
reached, and random values are selected for any additional
input variables. The input variables are mutated one at a
time, and the process continues until the branch has been
traversed or no further improvements to the fitness function
are possible. The mutation algorithm is quite simple and is
described in [23]. Initially, if no input was selected for
mutation, or the last mutation had no effect on the branch
distance, a new input variable is selected. If the branch
distance is increased as a result of performing a mutation,
then a new mutation operator is selected. Conversely, if the
branch distance decreased as a result of the mutation
operation, the operation is accelerated [23].

Alshahwan and Harman [23] developed a tool called the
“Search based Web Application Tester” (SWAT) to imple-
ment this approach and embed it within an end-to-end
testing infrastructure. SWAT's architecture is illustrated in
Fig. 4. The tool is composed of a pre-processing component,
the Search Based Tester and the Test Harness [23]. The
description of the architecture is given below.



Fig. 4. The architecture of the SWAT system as described in [23, Fig. 2].
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The original source code is transformed through the
Predicate Expander and Instrumenter. In the resulting trans-
formed version of the code, predicates with logical opera-
tors are expanded and control statements are modified to
calculate fitness and the original behaviour of the predi-
cates. The code is also instrumented to collect run-time
values to be used in subsequent dynamically mined value
seeding. The Static Analyser performs the analysis needed
to resolve issues that are associated with the standard Web
scripting and development languages, such as Ruby, Java-
Script, JSP, ASP, PHP, etc. Some issues may include the
distinction between different data types (such as Integer
and String) in dynamically typed languages, the absence of
an explicit header that specifies how many inputs a
program expects and/or their types, handling dynamic
include statements in PHP applications, and identifying
top-level pages when trying to generate the test data.

The results obtained from the above step are stored in
the Analysis Data repository and used later by the Search
Based Tester. The Constant Extractor mines the code for
constants to be used in subsequent Static Constant Seeding.
The Input Format Extractor analyses the code to extract
the input vector comprising the values for input variables.
The File Tree Analyser then generates a tree. In this tree, the
nodes are used to represent files and edges represent
include relationships. This is then used to determine the
top-level test units to be processed. The Input Type and
Login Discoverer performs a conjunction of static and
dynamic analysis to infer the types of input variables and
identify the login process. The results of this the Input Type
and Login Discoverer need to be augmented manually
because the technique for type inference cannot infer types
for all input variables. The Login Discoverer is used to
dynamically extract the variables that need to be set (i.e.,
have a value) during login, such as the variables used to
store the username, password, and the login URL. The
concrete values for “username” and “password” are pro-
vided to the tool. The Test Harness uses the test data
generated to execute the tests on the original source code
in addition to producing coverage and bug data. When a
test case is executed, the generated HTML and the Web
server's error logs are parsed for PHP execution errors. This
different components of this tool are implemented using a
combination of different languages, namely, Perl, Java, and
Stratego/xt (a program transformation language and PHP-
Front provides libraries for Stratego/xt supporting PHP).

The main advantage of Search Based Software Engineer-
ing is that testing is complete and done thoroughly, with
the major aim of improving branch coverage. This is
evident since the algorithm aims to cover branches which
were not covered in a previous iteration. The limitation
would be that the algorithm would probably be slow as
compared to other simpler testing techniques such as
mutation testing, model based testing, or random testing.

6. Scanning and crawling techniques

Security vulnerabilities represent serious risks for Web
applications. In a lot of applications, they result from
generic input validation issues. Examples of such vulner-
abilities are SQL injections and Cross-Site Scripting (XSS)
attacks. The majority of these vulnerabilities are easy to
detect and avoid if the programmers are aware of the
potential pitfalls. However, many Web developers do not
focus on security issues, which leaves the Web applications
vulnerable to malicious attacks. As a result, many Web sites
on the Internet suffer from insufficient security tests and
checks.

Scanners are tools which detect these errors by injecting
invalid inputs into a Web application and then determining
what type of errors exist according to the behaviour of the
Web application. Crawlers are tools that browse the Web
and collects information in a predefined and automated
manner. There are many different scanning and crawling
techniques that are used for detecting vulnerabilities in
Web applications. In most cases, the vulnerability of a Web
application is detected by injecting faults into the Web
application. This is a reliable form of testing Web sites for
security vulnerabilities and can thus be used to detect the
type of bugs present as well as the number of bugs present
in a Web application.

The main advantage of scanners is that it helps in
detecting the bugs which the programmer usually does
not think of testing when designing Web applications.
As was discussed earlier, a large number of Web sites do
not perform proper Web site form validation and this may
result in unwanted reads from and writes to the database.
Thus, this may result in the breach of sensitive private
information on a large scale, especially for popular applica-
tions such as banking and e-commerce Web sites. Addi-
tionally, such bugs may also result in the loss of reputation
of a company. Thus, detecting such bugs helps in improving
the quality and security of the Web site and helps in
preventing major economic losses.

The basic idea behind scanning is that some unsanitised
input is injected into HTML forms, which is then sent to the
server. If the Web application has proper validations and
performs proper input sanitation for user data, then it will
behave normally. Otherwise, there may be breaches in
security and severe implications such as writing unsafe
values to the database and breaching of privatised data.
Scanners can be grouped into two broad categories, black-
box and white-box scanners. Out of these two, black-box
scanners are more popular due to the limitations of the
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white box scanners, in particular due to the heterogeneous
programming environments (i.e., many programming lan-
guages used to develop different parts of the Web applica-
tion). Additional factors which limit the effectiveness of
white-box scanners include the complexity of applications,
which incorporate databases, business logic, and user inter-
face components. In practice, black-box vulnerability scan-
ners are used to discover security problems in Web
applications. These tools operate by launching attacks
against an application and observing its response to these
attacks.

We start with an introduction to two prominent forms
of attacks, cross-site scripting (XSS) and SQL injection in
Section 6.1. In Section 6.2 we present a number of black-
box scanning techniques and systems. Dynamic AJAX-based
Web applications present unique challenges to testing.
We discuss these challenges and survey some JavaScript
and AJAX crawlers and show how they can be used to test
AJAX-based Web applications in Section 6.3.

6.1. XSS and SQL injection detection techniques

SQL Injection (SQLI) and cross-site scripting (XSS)
attacks are forms of attack in which the attacker modifies
the input to the application to either read user data or trick
the user into executing malicious code which may corrupt a
large collection of different user records (e.g., a database).
The serious attacks (also called second-order, or persistent,
XSS) enable an attacker to write corrupt data into the
database so as to cause subsequent users to execute
malicious code. Common approaches to identifying SQLI
and XSS vulnerabilities and preventing exploits include
defensive coding, static analysis, dynamic monitoring, and
test generation. Each of these techniques has their advan-
tages and drawbacks.

Web applications usually read in user data which is then
sent to the server side for processing. This data can then be
used as parameters to SQL queries on the server side.
Therefore, it is important to sanitise the user input because
if the data is not properly processed prior to SQL query
construction, malicious patterns that result in the execution
of arbitrary SQL or even system commands being injected.
Assume there are two field variables named “userName”

and “passWord” in a “login” form. Then, in order to check
for a valid user login, an SQL query can be constructed (after
these two fields are sent to the server side) as follows
[24, pp. 150]:
This code checks if there are any rows returned from the
database with the user entered “userName” and “pass-

Word” fields. If 0 rows are returned, then this means the
login is invalid, otherwise it is valid. However, if the user
input is not sanitised, a malicious hacker will be able to
enter values for both fields such as X’ OR ’1’¼’1’. Now,
this results in the SQL statement being converted to:
Since the condition ’1’¼’1’ will always evaluate to
true, the entire condition in the WHERE clause evaluates to
true and no checking is done for the user entered values.
As a result of executing this query, information about
all users will be returned, which is a serious security
breach.

As with SQL injection, cross-site scripting is also asso-
ciated with undesired data flow. In order to understand it, a
following scenario can be provided. A Web site for selling
computer-related merchandise holds a public online forum
for discussing the newest computer products. Messages
posted by users are submitted to a CGI (Common Gateway
Interface) program that inserts them into the Web applica-
tion's database. When a user sends a request to view posted
messages, the CGI program retrieves the messages from
the database, generates a response page, which is then sent
to the Web browser used by the client of the Web applica-
tion. In this scenario, a hacker can post messages contain-
ing malicious scripts into the forum database. When other
users view the posts, the malicious scripts are delivered via
the response page and can be spread on a user's machine as
a result of them using the Web application [52].



Fig. 5. A diagram showing WAVES architecture as described in [24, Fig. 7].

Y.-F. Li et al. / Information Systems 43 (2014) 20–54 33
Most browsers enforce a Same Origin Policy6 that limits
scripts to accessing only those cookies that belong to the server
from which the scripts are delivered. In this scenario, even
though the executed script was written by a malicious hacker,
it was delivered to the browser on behalf of the Web applica-
tion. Such scripts can therefore be used to read the Web
application's cookies and break its security mechanisms.

A tool for detecting such SQL injections and cross-site
scripting, Web Application Vulnerability and Error Scanner
(WAVES), is proposed [24]. In WAVES, the crawler (for
exploring a Web site) tries to search for the existence of
links inside a Web page by detecting HTML anchor tags,
framesets, meta refresh directions, client-side image maps,
form submissions, JavaScript event generated executions,
JavaScript variable anchors and checking for JavaScript redir-
ections and new windows. In addition, the crawlers act as
interfaces between Web applications and software testing
mechanism and allow the application of testing techniques
to Web applications. WAVES performs an event-generation
process to stimulate the behaviour of active contents. This
allows WAVES to detect malicious components and assist in
the URL discovery process. During stimulation, JavaScripts
located within the assigned event handlers of dynamic
components are executed, possibly revealing new links.

The WAVES architecture is represented diagrammati-
cally in Fig. 5. The main purpose of the Injection Knowledge
Manager (IKM) is to bypass the existing validation proce-
dures in the Web application by producing variable candi-
dates. This knowledge can also be used during the crawl
process. When a crawler crawls through a form, it sends a
query to the IKM. The data produced by the IKM is then
submitted by the crawler to the Web application for
discovery of further back-end pages, i.e., deep page dis-
covery. In order to make the crawl process faster, a URL
hash is implemented. This completely eliminates disk
access during the crawl process. The global bottlenecks at
the URL hash are further reduced by the presence of a
distinct 100-record cache. This implementation strategy is
similar to the one described in [53].

In WAVES, a sample site was established to test several
academic and commercial crawlers, including Teleport,7

WebSphinx [54], Harvest [55], Larbin,8 Web-Glimpse [56],
and Google. None were able to crawl beyond the fourth
level of revelation (which is nearly about one-half of the
revelation capability of the WAVES crawler, which is 7).
Revelations 5 and 6 are the result of WAVES ability to
interpret JavaScripts. Revelation 7 refers to link-revealing
JavaScripts, but only after different user-generated events
such as “onClick” and “onMouseOver”.

6.2. Black-box Web vulnerability scanners

Black-box Web application vulnerability scanners are
automated tools that test Web applications for security
6 http://www.w3.org/Security/wiki/Same_Origin_Policy. This site was
last accessed on January 31, 2013.

7 http://www.tenmax.com/teleport/home.htm. This site was last
accessed on January 31, 2013.

8 http://larbin.sourceforge.net/index-eng.html. This site was last
accessed on January 31, 2013.
vulnerabilities. Black-box scanner does not have access to
source code used to build the application. While there are
intrinsic limitations of black-box tools, in comparison with
code walk through, automated source code analysis tools,
automated black-box vulnerability scanners also have
advantages. Black-box scanners mimic external attacks
from hackers, provide cost-effective methods for detecting
a range of important vulnerabilities, and may configure and
test defenses such as Web application firewalls. The effec-
tiveness of a black box scanner depends on three factors,
namely:
1.
31,

31,
whether the scanner can detect key vulnerabilities of
interest to the Web developers, i.e., the class/type of
vulnerabilities detected by scanners,
2.
 effectiveness of the scanner in detecting faults, and

3.
 whether the vulnerabilities detected by scanners are

representative of the general vulnerabilities of Web
applications.

Bau et al. [25] performed a comparative study on 8 well-
known commercial scanners and tested them on well-
known Web applications such as phpBB,9 Drupal10 and
Wordpress.11 It was discovered that all of them had
vulnerabilities. A custom application was described [25]
to measure elapsed scanning time and scanner-generated
network traffic.

Bau et al. tested the scanners for false positive perfor-
mance and vulnerability detection. They found that the
vulnerabilities tested most extensively by scanners are, in
ascending order, Information Disclosure, Cross Site Script-
ing (XSS), SQL injection, and other forms of Cross Channel
Scripting (XCS). This vulnerability distribution for faults is
9 http://www.phpbb.com/. This site was last accessed on January
2013.
10 http://drupal.org/. This site was last accessed on January 31, 2013.
11 http://wordpress.com/. This site was last accessed on January
2013.

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.tenmax.com/teleport/home.htm
http://larbin.sourceforge.net/index-eng.html
http://www.phpbb.com/
http://drupal.org/
http://wordpress.com/
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nearly the same as the distribution of vulnerability popula-
tions in the wild.

The authors also found that most scanners are
only effective at following destination links which
are mentioned explicitly in the Web pages (e.g.,
oahref¼ destinationAddress4). In other words,
most scanners were not effective at following implicit links
through active content technologies such as Java applets
and Flash.

Another important finding in Bau et al. [25] highlights
that most scanners were effective in detecting type 1 or
simpler XSS vulnerabilities (in which no invalid data is
written to the database), e.g., the average percent of
“reflected cross-site scripting” faults detected by scanners
are 60%. The scanners were also poor at detecting “stored”
vulnerabilities (e.g., the “stored XSS” detection rate was
roughly 15%, and no scanner could detect second-order SQL
injection vulnerabilities) [25]. In stored XSS vulnerabilities,
unsanitised user input is directly written to the database
and the test cases are then tested by reading in unsanitised
values from the database. First-order SQL injection is an
SQL injection that the scanner probes for vulnerabilities by
executing an SQL command with unsanitised user input.
Similar to stored XSS, a second-order SQL injection means
that unsanitised values are actually written to the database
and then the test cases are checked by reading in invalid
values from the database.

Other advanced XSS vulnerabilities include the usage of
non-standard tags and keywords, such as prompt() and
ostyle4 [57]. In comparison, the study [25] found the
following detection rates for different type of faults:
�

(htt
app
31,
“XSS type 1” were detected with 62.5% success rate,

�
 “XSS advanced” was detected with 11.25% success rate,

�
 20.4% of XCS (Cross Channel Scripting) vulnerabilities

were detected,

�
 21.4% of “SQL first order” vulnerabilities were detected,

�
 32.5% of configuration vulnerabilities were

detected, and

�
 26.5% of session vulnerabilities were detected.

All the scanners used in the study had been approved
for PCI Compliance testing.12 The different types of SQL
injection vulnerabilities and XSS (Cross site scripting)
vulnerabilities detection techniques are discussed in more
detail in the following subsection.

SecuBat [8] is a black-box vulnerability scanner which
tries to crawl through Web sites in order to check for SQL
and XSS (Cross-site scripting) validation and find security
flaws in a Web site through passing it unsanitised user
input. There are three main components of the SecuBat
vulnerability scanner, namely, the crawlingcomponent, the
attack component and the analysis component. These are
described in more detail below:

The crawling component: The main purpose of this
component is to gather a list of Web sites/Web applications
12 The original URL in [25] is no longer accessible. The following URL
ps://www.pcisecuritystandards.org/approved_companies_providers/
roved_scanning_vendors.php. This site was last accessed on January
2013.) seems to contain the current listing.
to target by the SecuBat scanner. In order to start with a
crawling session, the crawler is seeded with a valid default
root (Web) address. This address is used as the starting
point and a list of all the pages and Web forms which are
accessible from this default Web address are collected. This
process can be repeated as many times as desired as there
are configurable settings in the SecuBat crawler to control
the maximum link depth, maximum number of pages per
domain to explore/crawl/collect, the maximum time for
which the crawling process should continue and the option
of whether or not to collect the external links in any page.
In order to improve the crawling efficiency, several con-
current worker threads are run during a particular crawling
session. Depending on the performance of the host
machine, the bandwidth, the targeted Web servers, usually
10 to 30 threads run concurrently during any crawling
session. The major implementation of the crawler is based
on existing crawling systems, such as the implementation
of SharpSpider by Moody and Palomino [58] and WebSpider
by David Cruwys.13

The attack component: After the crawling phase of
SecuBat is completed, the processing of the list of collected
Web pages starts. The attack component scans each Web
page collected during the scanning phase for Web forms.
This is mainly because the unsanitised Web inputs (to
detect Web vulnerabilities) are submitted to the different
Web forms, and as a result, these Web forms serve as the
entry points for different unsanitised inputs. For each form,
SecuBat automatically extracts the address mentioned in
the action field of the forms (i.e., the address to which the
unsanitised inputs are sent) along with the method field
(i.e., GET or POST). The different form fields and the CGI
parameters are also collected. Then, the unsanitised inputs
for the various form fields are selected depending on the
type of the attack launched (SQL injection, simple XSS,
encoded XSS or form-redirecting XSS). Finally, the form
contents, with the different fields being set to values
chosen, are uploaded to the server specified by the action
address (using either a GET or POST request). According to
the HTTP protocol, the attacked server responds to such a
Web request by sending back a response page via HTTP.

The analysis component: After the attack is launched by
SecuBat and a response page is sent back by the Web server
via HTTP, the analysis component then parses and inter-
prets the response sent. In order to determine whether the
attack was successful, an attack-specific response criteria
and various keywords (e.g., “sqlexception”, “runtimeexcep-
tion”, “error occurred” and “NullPointerException”) are
used to calculate a confidence value. Usually, the confidence
value is chosen such that false positives (i.e., the attack is
actually not successful but the confidence value indicates
otherwise) are reduced.

SecuBat is implemented in C# using Microsoft's Visual
Studio.NET 2003 Integrated Development Environment
(IDE). In order to store the list of the Web pages collected
from the crawling step and the data used to launch, attacks
are stored in a Microsoft SQL Server 2000 database server.
13 http://www.codeproject.com/Articles/6438/C-VB-Automated-Web
Spider-WebRobot. This site was last accessed on January 31, 2013.
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Using a DBMS has the advantages of efficient storage and
logging of crawling and attack data, custom querying, easy
and efficient report generation of crawl and attack sessions
and easy access to data collected in previous sessions. The
actual architecture of SecuBat is shown in Fig. 6. The tool
comprises crawling and attack components, as described
earlier and these can be invoked independently. Thus, the
architecture allows a user to initiate a crawling session
without having to launch an attack, to launch an attack on
previously collected historical data from crawling sessions,
or to perform a combined crawl and attack step. SecuBat is
able to launch about 15–20 parallel attack and response
sessions on a typical desktop computer without reaching
full load [8].

The tool uses a dedicated crawling queue. This queue
includes the crawling tasks for each Web page, such as
target forms and associated links. A queue controller checks
the crawling queue periodically for new tasks which are
then sent to the thread controller. The thread controller
then chooses a free worker thread, which then executes a
task. The workflow controller is notified of the discovered
links and forms in a Web page by a thread when it has
finished executing a task. New crawling tasks are then
generated by the workflow controller. Similarly, attack
tasks which comprise the attack data to be inserted into
the Web pages are stored in a separate queue, known as the
attacking queue. The queue controller processes the tasks in
the queue and assigns them to the worker threads which
are available. This assignment is done via the common
thread controller.

6.3. Crawling and testing AJAX applications

AJAX-based Web 2.0 applications rely on stateful asyn-
chronous client/server communication, and client-side run-
time manipulation of the Domain Object Model (DOM) tree.
This not only makes them fundamentally different from
traditional Web applications, but also more error-prone and
harder to test. In order to detect a fault, a testing method
should meet the following criteria [59,60]:
�
 Reach the fault-execution statements: These statements
cause the fault to executed.
�
 Trigger the error-creation: This causes the fault execu-
tion process to generate an incorrect intermediate state.
�
 Propagate the error: This helps cause a detectable out-
put error as a result of propagating the incorrect inter-
mediate state to the output.
Compared to traditional Web applications, meeting the
reach/trigger/propagate criteria is more difficult for AJAX
applications [13]. The general approach in testing Web
applications has been to request a response from the server
(via a hypertext link) and to analyse the resulting HTML.
This testing approach based on the page-sequence para-
digm has serious limitations meeting even the first reach
condition on AJAX sites. Recent tools such as Selenium [61]
use a capture-replay style for testing AJAX applications.
However, a substantial amount of manual effort is required
for testing.

Benedikt et al. [26] present VeriWeb, a tool for auto-
matically exploring paths of multi-page Web sites through
a crawler and detector for abnormalities such as navigation
and page errors (which are configurable through plugins).
In contrast to traditional tools of this sort (e.g., spiders) that
usually only explore static links, VeriWeb can also auto-
matically explore the dynamic contents of the Web site,
including form submission and execution of client-side
scripts [26]. VeriWeb uses SmartProfiles to extract candidate
input values for form-based pages. Broadly, user-specified
SmartProfiles are sets of pairs of attributes and the value
for attributes. These attribute-value pairs are then used
to automatically populate forms. The specification of the
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SmartProfile is independent of the structure of the Web site
being tested. Although VeriWeb's crawling algorithm has
some support for client-side scripting execution, it is not
clear if it would be able to be used for testing in AJAX
applications.

The server side of AJAX applications can be tested with
any conventional testing technique. On the client side,
testing can be performed at different levels. Unit testing
tools such as JsUnit can be used to test JavaScript on a
functional level. The most popular AJAX testing tools are
currently capture-replay tools such as Selenium,14 Sahi,15

and Watir,16 which allow DOM-based testing by capturing
events resulting from user interaction. Such tools have
access to the DOM, and can assert expected UI behaviour
defined by the tester and replay the events.

However, significant manual effort is required on the part of
the tester. These include reaching the fault in the Web
application automatically. Another challenge includes the fact
that faulty inputs in AJAX applications can be triggered by
various UI events. Thus it becomes important to detect the data
entry points in an AJAX applications. In AJAX applications, the
data entry points are usually forms in the DOM tree. Also, a
faulty state can be triggered by incorrect sequences of event
executions. Thus, there is a need to generate and execute
different event sequences. Also, in AJAX, responses to any
client-side event are injected in the single-page interface and
faults propagated to the DOM level. These faults are also
manifested at the DOM level. Thus, in order to analyse and
detect the propagated errors, access to the dynamic runtime
DOM is required.

Mesbah and van Deursen propose [13] to use the Java-
Script and AJAX crawler CRAWLJAX [62,63] to infer a model of
the navigational paths and states by crawling through
different UI states and exercising all user interface events
of an AJAX site. CRAWLJAX is capable of detecting and firing
events on clickable elements on the Web interface. CRAWLJAX

can access client-side code and identify clickable elements
that result in a state change within the browser's inbuilt
DOM. Once the state changes are discovered, a state-flow
graph is created, which comprises the states of the user
interface and the (event-based) transitions which may exist
between them. A UI state change in an AJAX application is
defined as a change in the DOM tree structure caused either
by server-side state changes or client-side state changes.
The paths to these DOM changes are also recorded.

Once the different dynamic states have been discovered,
the user interface is checked against different constraints.
These constraints are expressed as invariants on the DOM
tree which allows in checking any state.

Mesbah and van Deursen classify these invariants into three
categories based on a fault model, namely DOM-tree invar-
iants, DOM-state invariants and application-specific invariants.
The generic DOM-tree invariants are described below.

Validated DOM : this invariant mainly makes sure that
there is a valid DOM structure (or valid HTML/JavaScript
code) on every possible path of the execution. The DOM
14 http://seleniumhq.org/. This site was last accessed on January
31, 2013.

15 http://sahi.co.in/. This site was last accessed on November 5, 2013.
16 http://watir.com/. This site was last accessed on November 5, 2013.
tree obtained after each state change is transformed into an
HTML instance. A W3C validator acts as an oracle to ensure
there are no warnings or errors. This is important because,
although most browsers do not give errors as a result of
slightly erroneous HTML code, all HTML validators expect
that the structure and content is present in the HTML
source code. In AJAX applications, however, changes are
made on the single-page user interface as a result of
partially updating the DOM via JavaScript. Since HTML
validators cannot validate client-side JavaScript, this is a
problem.

Error messages in DOM : this invariant ensures that the
states never contain a string pattern which is the result of
an error message. Error messages should be detected
automatically (e.g., client-side error messages such as
“404 Bad Request”, “400 Not Found” or server-side error
messages such as “500 Internal Server Error” and “MySQL
Error”).

Other invariants: these include invariants for other
things such as discovering links, placing additional security
constraints, and invariants which may result in better
accessibility anytime throughout the crawling process, etc.

The DOM state machine invariants are described below.
No dead clickables: this invariant mainly ensures that

there should be no “dead” or “broken” physical links in an
AJAX application. This is important because any clickable
link in an AJAX application may actually change the state by
retrieving data from the server through JavaScript in the
background, which can also be broken. Such error messages
are usually masked by the AJAX engine and no dead links
are propagated to the user interface. The dead links/click-
ables can be detected by listening to the client/server
request/response traffic after each event.

Consistent back button: this is one of the more common
problems in AJAX Web applications (the existence of a
broken back button in the browser). Clicking the back
button makes the browser completely exit the application's
page. Through crawling, a comparison can be made
between the expected state in the graph with the state
after the execution of the back button and inconsistencies
or errors can be automatically detected.

7. Random testing and assertion-based testing of Web
services

Random testing of Web applications is a simple and well
known technique in which the application is tested by
providing random inputs to the application. It can be very
effective in certain cases, e.g., Miller, Cooksey and Moore
[64] used random testing to detect errors in Mac OS
applications, including 135 command-line Unix utilities
and 30 graphical applications. They showed that of the
135 command-line utilities which were tested, only 7% of
them crashed or hung, which was much better than
previous studies. However, it is also well-known [65] that
in a lot of cases of random testing, the code coverage is low.
This is due to the fact there is a very small probability that
all random numbers will be generated correctly to explore
all branches of the code. For example, if there is a code
block if (x¼¼10) then.., and x is an integer, then there
is only 1=232 � 2:33 n 10�10 chance that the value of x

http://seleniumhq.org/
http://sahi.co.in/
http://watir.com/
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generated randomly is 10. The ineffectiveness of random
testing in terms of coverage is also demonstrated elsewhere
[66], where a code coverage of only 39% is obtained by
using this technique. In other words, random testing does
not perform exhaustive testing. However, random testing
can be useful if the software under test is complicated that
normal testing would require lots of resources, and when a
low to moderate coverage is not a concern. It can also be
useful when special value conditions, boundary conditions
or invalid conditions need to be checked.

Assertion-based testing is a technique using assertions
as an oracle to check whether the test case has been
successful or not. Assertions are very commonly used as
an oracle to check whether the application behaves cor-
rectly or not (e.g., checking expected value against the
actual value received). In the following two subsections, we
discuss the application of random testing and assertion
based testing to Web services. In Section 7.3, we present
Artemis, a random testing frame for JavaScript applications.
7.1. Jambition: random testing to Web service

The usage of Web Services has been growing rapidly
during the last decade, uncovering new business possibi-
lities. These Web services have also had a very broad and
far-reaching influence on our daily life. In addition, the
proliferation of Third Generation (3G) and later mobile
devices reinforces such growth and leads to new business
requirements which takes into account user mobility and
connectivity. As a consequence, the Web Service paradigm
has to evolve to cope with emerging issues such as:
�
 more users directly connected and directly interacting
with Web Services,
�
 users connected from any place to each other, and

�
 increasing levels of complexities for growing business

opportunities.

The validation of Web Services is a complex issue and
testing solutions must be provided in order to deal with the
emerging complexity. For instance, several Web Services
involve logical dependencies between their operations.
These operations cannot be invoked independently or with
any particular order. In addition, a Web service may be a
stateful service, which means that the results of a particular
operation may depend on the data from the previously
executed operations of the service. Similarly, the service
logic may be dependent on user inputs. As a result,
validating these Web services requires developing compli-
cated and thorough test cases. In addition, these test cases
should take into account operation dependencies, the
states of the service, and data to simulate user inputs. As
a result, if test cases were generated automatically, the
overall effort required to create a test suite would be greatly
lowered, primarily because rigorous validation of Web
services does not need to be done by following the detailed
program specifications. However, in order to ensure that a
set of test cases achieve adequate validation coverage,
testing should rely on detailed behaviour specification
models [28].
Frantzen et al. [28] propose a tool called Jambition,
which is a Java tool developed to automatically test Web
Services based on functional specifications. In addition, the
testing approach adopted by Jambition is random and on-
the-fly. This means an input is chosen randomly from a
given set of inputs, which is then passed to the service and
some operation is invoked. The returned message is then
retrieved from the service. If the returned message is not
allowed by the formal specification, an error is reported,
otherwise the next input is chosen and the testing
continues.

The on-the-fly approach of Jambition differs from more
classical testing techniques by not following the normal
practice of generating a set of test cases beforehand which
are then executed on the system. On the contrary, test case
generation, test case execution, and test case assessment
happen in lockstep. As a result, this approach reduces the
state space explosion problem faced by several conven-
tional model-based testing techniques. This is because if a
tester generates a test case beforehand, the tester needs to
test for all possible combinations of inputs and outputs
returned. However, if a tester is generating and developing
test cases on-the-fly, then the tester deals with specific
observed output and hence can develop test cases more
appropriately. Jambition was tested on the eHealth Alarm
Dispatcher service [28], and several types of errors were
detected during the specification importation and service
validation stages. The errors found during the specification
importation stage are described below:
�
 consistency errors in the models, such as a data type
being incorrectly referenced in the specification,
�
 consistency errors between the models and the
deployed service: for instance, a parameter of a service
operation was declared with different types in the
deployed service and in the model, and
�
 incomplete service deployment problems.

The errors discovered by Jambition during service vali-
dation stage are:
�
 violation of transitional guards: this means that, for
example, an emergency condition was not considered
fatal even if the functional specification mentioned it
as fatal,
�
 Infinitely running operations or invalid operations, this
means that some operations would never terminate due
to some defect or no message would be returned by the
service or the entire operation would be stopped, and
�
 unreachable states and transitions: this means that
some states or transitions could not ever be reached
either due to the faults within the model itself or
missing features in the service.

7.2. Testing Web services choreography through assertions

Another approach to test Web services has been
proposed by Zhou et al. [27] for specifications written
in the Web Service Choreography Description Language



Fig. 7. A diagram showing the program structure of a WS-CDL program as described in [27, Fig. 1].
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(WS-CDL),17 a W3C recommendation for Web Services
choreograph. The structure of a WS-CDL program is shown
diagrammatically in Fig. 7. The root choreography is the
entrance of the WS-CDL program, which is defined
uniquely. The specific logic for each choreography is
depicted by activity notation. Both the entrance and the
behaviour of the choreographies are fixed.

The design and implementation of Web services-based
systems require the combination of different distributed
services together to achieve the business goal. Thus, it is
essential to logically analyse and compose the complex
behaviours of Web services. Service Oriented Architecture
(SOA) meets this requirement by defining the Web Services
compositional languages such as Business Process model-
ling Language (BPML18) and WS-BPEL19. There are two
models for Web services representation, namely, orches-
tration model and choreography model. The orchestration
model gives a local view from a particular business part to
handle interactions which allows a particular Web service
to perform various internal activities and communicate
with other services. The choreography model gives a global
view regarding collaboration amongst a collection of Web
services. Typically such services involve multiple different
organisations or independent processes.

WS-CDL gives a global view on the collaboration among
a collection of services having multiple participants
or organisations. WS-CDL is not an executable language,
thus testing it is harder, but testing for Web service
17 http://www.w3.org/TR/ws-cdl-10/. This site was last accessed on
January 31, 2013.

18 http://www.ebpml.org/bpml.htm. This site was last accessed on
January 31, 2013.

19 http://www.ibm.com/developerworks/library/specification/
ws-bpel/. This site was last accessed on January 31, 2013.
choreographies is an effective mechanism to ensure the
qualities of system designs [27]. The automated testing
approach described by Zhou et al. [27] is very similar to
concolic testing approach for testing Web applications
(discussed in Section 9). Assertions are used as an oracle
in this approach. The dynamic symbolic execution techni-
que is applied to generate test inputs. Assertions are used
as test oracles. During the process of symbolic execution, a
simulation engine for WS-CDL is used to perform the
execution of WS-CDL programs. At the end of each execu-
tion, path constraints, which are generated as a result of
symbolic execution, are put into a SMT (Satisfiability
Modulo Theories) solver. These constraints are then solved
to generate new input data and then further constraints are
generated in the next simulation. The SMT solver is then
used to test whether the assertion predicates evaluate to
true under current path conditions for the test data, which
further improves the quality of testing.

The analysis of WS-CDL programs is important for the
development of Web Services systems. It is also important
that the defects are removed as early as possible from these
systems, as early defect detection improves quality and
cost-effectiveness of the systems. The testing approach
proposed by Zhou et al. [27] is shown in Fig. 8.

A WS-CDL program is firstly processed by a custom
parser. Since there is an entrance unit for a WS-CDL
program, a random value is used initially to drive the
choreography. The simulation program performs the dual
tasks of simulating the program behaviours and recording
the choreography state. Additionally, at the end of every
simulation, the symbolic values are analysed by means of
symbolic execution. The different predicates which appear
in different branches in any simulation are collected
together and these predicates then form a Path Constraint
(PC). The SMT solver Z3 [67] is used. Z3 solves the path

http://www.w3.org/TR/ws-cdl-10/
http://www.ebpml.org/bpml.htm
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
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constraint by negating the last term of the current path
constraint, and the process is continued until a solution for
the variables in the path constraint is obtained. The solu-
tion obtained is taken as new input for service choreogra-
phies to process the next simulation. The testing process
finishes when all the branches in the choreography have
been traversed by the simulation engine.

The assertions are designed to test whether the current
program path or statement satisfies some property. Two
methods were designed to generate assertions [27]. The
first method uses the current generated test/input data to
check whether an assertion is satisfied. However, this
method only tests a given assertion using the current data,
thus, even if the current data makes the assertion true,
there may be some other data which will make the
assertion false. The second method enhances the assertion
testing where symbolic execution is used along with a
constraint solver to achieve a proof that can decide
whether the assertion is satisfied under the execution of
current path. This process is continued for all the paths for
which a given assertion can be tested. When the assertion
is satisfied for all the paths in the program, then the
assertion is proved to be true for service choreographies.
This technique is similar to the one used for bounded
model checking proposed in [68]. The main goal in
Bounded Model Checking is to search for a counterexample
in a certain number of executions. The length of the
number of executions has an upper bound of some integer,
k. If no bug/error is found in k executions, then the value of
k is increased progressively until the testing technique can
detect the presence of a bug, or the program becomes
intractable, or some pre-known upper bound, known as the
Completeness Threshold is reached. An experiment was also
performed by Zhou et al. [27] for five WS-CDL programs to
mainly test path coverage and the number of violated
assertions. It was found out that 20% of the assertions
resulted in violations and the path coverage for feasible
paths was roughly 75%.

7.3. Artemis: a feedback-directed random testing framework
for JavaScript applications

In a typical Web application development environment,
test frameworks such as Selenium, Sahi and Watir enable
capture-replay style testing of Web applications. However,
test cases still need to be manually constructed by devel-
opers and testers. Given JavaScript's dynamic event-driven
nature, it may be difficult to achieve a high coverage and
construct test cases that exercise a particular path through
execution.

To alleviate the burden of manual test case construction
and achieve a high code coverage, Artzi et al. propose
Artemis [29], a random testing framework for guided,
automated test case generation. The Artemis framework
consists of instantiations of three types of main compo-
nents: (1) an execution unit that models the browser and
the server, (2) an input generator that generates new input
sequences, and (3) a prioritiser that provides feedback to
guide the exploration of the JavaScript application's
state space.

The Artemis framework starts at an initial seed URL and
iteratively generates, prioritises and executes test inputs.
The execution unit triggers events using test inputs, main-
tains coverage information and records program state and
test failures and exceptions. The prioritiser computes the
priority of all test inputs and reorders them accordingly.
If the program state is not yet visited, the input generator
then generates new test inputs in one of three ways:
�
 it can create an equal-length event sequence by modify-
ing the last event,
�
 it can produce a longer event by extending the current
test input with a new event, or
�
 it can start executing at a different URL.
The generation of new inputs is guided by feedback
provided by the prioritisation strategies and input genera-
tion strategies. Artemis define three prioritisation strate-
gies. The default strategy assigns the same priority to all
event sequences. The coverage-based strategy assigns
priority to event sequences based on the product of cover-
age of all events in the sequence. The third strategy
priorities event sequences by the proportion of written
and read variable and parameters in a sequence.

Artemis defines two input generation strategies. The
default strategy chooses reasonable default values for
parameters. The advanced strategy keeps track of constants
while an event is being executed. Such constants are then
used as new test inputs. Such a strategy may be more
targeted than the default strategy as new inputs are drawn
from constants, which have already appeared during
execution.

Based on the above prioritisation and input generation
strategies, four feedback-directed input generation algo-
rithms are defined. These include the simple algorithm
events that uses the default strategies, to the most sophis-
ticated algorithm, all, which uses all three prioritisation
strategies and the advanced input generation strategy.

An experiment with 10 JavaScript programs is con-
ducted to evaluate the effectiveness of Artemis. The evalua-
tion shows that the feedback-directed algorithms (1)
improve code coverage significantly over the baseline,
which is not feedback-directed and (2) uncover signifi-
cantly more errors in the programs under test.
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The experiment also demonstrates the efficiency of the
Artemis framework. As Artemis does not employ sophisti-
cated, expensive constraint-solving algorithms (like that
used in Kudzu [16], discussed in Section 9.4), it only takes at
most 2 min to generate 100 test cases with all the input
generation algorithms. In comparison, a 6-h timeout is
applied for Kudzu.

7.4. JSContest: contract-driven random testing of JavaScript

Heidegger and Thiemann propose JSConTest [30], a
random testing framework, that includes a contract lan-
guage for JavaScript that allows a programmer to annotate
a JavaScript program with functional contracts. The lan-
guage supports the following contracts.
�
 The traditional type-based contracts, such as
/nn (object) - bool n/.
�
 Composite contracts that are built from primitive ones
and enriched by static analysis information. Such infor-
mation, including @numbers, @strings and @labels,
can be used as guide to collect information from the
annotated function.
�
 Dependencies that may exist among function para-
meters. Such dependencies can be used to more effi-
ciently find a counterexample.
�
 Annotations that control the generation of assertions
and tests. These includẽ noAsserts, which specifies
that no assertions should be generated for a given
contract,̃ noTests, which specifies that no contracts
should be added to the test suite, and #Tests:i, which
specifies the number of tests to be generated for a given
contract.

A simple JavaScript program with two contracts is
shown in Fig. 9.

JSContest relies on annotations such as @numbers to
guide the generation of random tests in order to improve
the possibility of finding a counterexample.

JSConTest also includes a runtime monitoring tool for
contracts that insert assertions into function bodies and
check whether function execution is successful or not.

The framework is evaluated on a custom JavaScript
implementation of a Huffman decoder. Mutation testing
techniques are employed to generate mutant programs
with a small number of mutation operators. Out of the
716 generated mutants, about 88% are rejected by the
Fig. 9. A simple JavaScript progra
JSContest test suite. Such a high mutant killing percentage
suggests that JSContest is effective at detecting type errors.
8. Fuzz testing

Fuzz testing is an effective technique for finding security
vulnerabilities in software by testing the application with
boundary values, invalid values or values that are rarely used.
Fuzz testing tools create test data by (1) applying random
mutations to well-formed inputs of a program or (2) by
generating new test data based on models of the input. Fuzz
testing can in generally be divided into two categories,
namely, white-box fuzz testing and black-box fuzz testing.

The main advantage of fuzz testing is that testing is
focussed on using special values as input to the program
under test and thus helps it in detecting critical, exploitable
bugs which would probably not be detected by model-
based approaches. Additionally, the overall approach to
testing is quite simple (it is essentially random testing
combined with symbolic execution) and complete (i.e., it
tries to cover as many branches as possible).

In Section 8.1 we introduce the notion of white-box fuzz
testing, and present several techniques to improve its
efficiency. In Section 8.2, FLAX, a black-box fuzz testing
framework for JavaScript, is presented to demonstrate the
application of such techniques in Web application testing.
8.1. White-box fuzz testing

White-box fuzzing [31] techniques combine fuzz testing
with dynamic test generation [65,69]. White-box fuzzing
executes the program under test with an initial, well-
formed input, both concretely and symbolically. During
the execution of conditional statements, symbolic execu-
tion creates constraints on program inputs. Those con-
straints capture how the program behaves when fed
these inputs, and satisfying assignments for the negation
of each constraint define new inputs that exercise different
control paths. White-box fuzzing repeats this process for
the newly created inputs, with the goal of exercising many
different control paths of the program under test and
finding bugs as fast as possible using various search
heuristics. In practice, the search is usually incomplete
due to a large and infeasible number of control paths and
because the precision of symbolic execution, constraint
generation and solving is inherently limited. However, it
m with contracts [30, Fig. 1].
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is a commonly used approach in detecting program vulner-
abilities in large applications.

The current effectiveness of white-box fuzzing is limited
when testing applications with highly structured inputs,
such as compilers and interpreters. The inputs for these
applications are processed in stages, such as lexing, parsing
and evaluation. Due to the large number of control paths in
early processing stages, white-box fuzzing, in the presence
of a well-formed input set, rarely proceeds beyond these
initial input processing stages. For instance, there are many
possible sequences of blank spaces, tabs and carriage
returns separating tokens in most structured languages,
each of which corresponds to a different control path in the
lexer. In addition to path explosion, symbolic execution
may fail in early processing stages. For instance, lexers
often detect language keywords by comparing their pre-
computed, hard-coded hash values with the hash values of
strings read from the input. This effectively prevents sym-
bolic execution and constraint solving from ever generating
input strings that match the keywords since hash functions
cannot be inversed (i.e., if we have a constraint x¼hash

(y) and a value of x is given, then we cannot compute y

which satisfies the constraint).
One possible approach to overcoming this problem is

proposed in [31], where the algorithm records an actual run
of the software under test on a well-formed input, symbo-
lically evaluates the recorded trace and records the different
constraints on inputs, which shows how the program
behaves under the inputs. The collected constraints are then
negated one by one and solved with a constraint solver,
producing new inputs that allow the exploration of different
control paths in the program. This process is repeated with
the help of a code-coverage maximising heuristic designed
to find defects as fast as possible. This approach employs
dynamic test generation techniques such as DART [65] and
EXE [69], which are introduced in Section 9.

For example, for the symbolic execution of the code
fragment if (x¼¼20), the initial value of the variable x is
set to 5, then the execution of the program leads to the
constraint x !¼20. This constraint is then negated and
solved, which results in the new constraint x¼20, which
ensures that the if statement is executed and further
constraints are collected. This allows to exercise and test
additional code for security bugs, even without specific
knowledge of the input format. Furthermore, this approach
automatically discovers and tests corner cases where pro-
grammers may fail to properly allocate memory or manip-
ulate buffers, leading to security vulnerabilities.

This algorithm is implemented in the Microsoft white-
box testing tool SAGE (Scalable, Automated, Guided Execu-
tion) [31], which is a tool employing x86 instruction-level
tracing and emulation for white-box fuzzing of arbitrary
file-reading Windows applications.

SAGE was used for testing several windows applications.
Without any format-specific knowledge, SAGE detects the
MS07-017 ANI vulnerability,20 which was missed by exten-
sive black-box fuzzing and static analysis tools. SAGE has
20 http://technet.microsoft.com/en-us/security/bulletin/ms07-017.
This site was last accessed on January 31, 2013.
also discovered more than 30 new bugs in large Windows
applications including image processors, media players,
and file decoders.

Another approach to solve the limited coverage problem
due to white-box fuzz testing is proposed by Godefroid et al.
[33], which enhances white-box fuzzing when applying it to
complex structured-input applications with a grammar-based
specification of valid inputs. A novel dynamic test generation
algorithm is proposed where symbolic execution directly
generates grammar-based constraints whose satisfiability is
checked using a custom grammar-based constraint solver. The
algorithm is implemented and evaluated on a large security-
critical application, the JavaScript interpreter of Internet
Explorer 7 (IE7). Results of these experiments show that
grammar-based white-box fuzzing explores deeper program
paths and avoids dead-ends due to non-parsable inputs.
Compared to regular white-box fuzzing, grammar based
white-box fuzzing increased coverage of the code generation
module of the IE7 JavaScript interpreter from 53% to 81% while
using three times fewer tests [33]. Moreover, the grammar-
based constraint solver can complete a partial set of token
constraints into a fully defined valid input, hence avoiding
exploring many possible non-parsable completions. By restrict-
ing the search space to valid inputs, grammar-based white-box
fuzzing can exercise deeper paths, and focus the search on the
harder-to-test, deeper processing stages.

8.2. FLAX: a black-box fuzz testing framework for JavaScript

Saxena et al. [32] have adopted a hybrid technique
which is a combination of dynamic taint analysis [70] and
fuzz testing. Dynamic taint analysis basically executes a
program and then determines which combination of pro-
gram paths is affected by user inputs or other predefined
taint sources. Dynamic taint analysis can also be used to
detect inappropriate user input values during a program
execution [71]. For example, dynamic taint analysis can be
used to prevent attacks caused as a result of an attacker
entering malicious lines of code into the user input fields,
which may result in the user (of the Web application)
inadvertently executing some undesirable code (also
known as code injection attacks), by monitoring whether
user input is executed [72,71]. However, dynamic taint-
tracking alone cannot determine if the application has been
sufficiently validated against unsafe data before using it,
especially when parsing and validation checks are syntac-
tically indistinguishable. If an analysis tool treated all string
operations on the input as parsing constructs, then the
validation checks will not be identified and the taint
analysis will result in an enhanced number of false posi-
tives [32]. Conversely, if the analysis treats any use of
unsafe data which has been parsed and/or passed through
a validation construct as safe, it will probably miss many
bugs, which will result in false negatives.

Saxena et al. [32] use their testing technique to detect
client-side validation (CSV) vulnerabilities. These vulner-
abilities primarily arise as a result of not doing enough
validations on the unsafe data/input used at the client-side
(usually written in JavaScript) of Web applications. This
testing technique is light-weight, efficient, and have no
false positives. Saxena et al. [32] incorporate this technique

http://technet.microsoft.com/en-us/security/bulletin/ms07-017
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into a prototype, called FLAX. This tool also scales to real-
world applications. The dynamic analysis approach pro-
posed in FLAX [32] to discover vulnerabilities in Web
applications is called taint enhanced blackbox fuzzing. This
technique overcomes the above-mentioned limitations of
dynamic taint analysis by using random fuzz testing to
generate test cases that concretely demonstrate the pre-
sence of a CSV vulnerability. This eliminates the problem of
false positives and false negatives which would otherwise
result from the usage of a purely taint-based analytic tool.
In the preliminary study comprising 40 real-world and
popular JavaScript-intensive programs, it was found that
FLAX was able to discover 11 CSV vulnerabilities in the wild.
These JavaScript-based programs included several third-
party iGoogle gadgets, Web sites, AJAX applications and
third-party libraries. These vulnerabilities were unknown
prior to the experiments. These findings also confirmed
[32] that CSV vulnerabilities are both conceptual and wide-
spread in Web applications today.

9. Concolic Web application testing

Concolic (concrete and symbolic) testing techniques
automate test input generation by combining the concrete
and symbolic (concolic) execution of the software under
test. Most test input generation techniques use either
concrete execution or symbolic execution that builds con-
straints and is followed by a generation of concrete test
inputs from these constraints [73]. Concolic testing, on the
other hand, combines both these techniques, which take
place simultaneously. The goal in concolic testing is to
generate different input data which would ensure that all
paths of a sequential program of a given length are covered.
The program graphs, which depict program statements and
the program execution, are provided as inputs.

In Section 9.1, we introduce concolic execution and
testing in general, motivating its effectiveness through a
small example, and present a number of well-known
concolic testing tools.

PHP is a very popular Web application programming
language. It is a scripting, interpreted language that is
widely used to create server-side applications. JavaScript
is a widely used, client-side scripting language found in
virtually all Web applications. Their popularity and dynamic
nature make their thorough testing difficult yet highly
critical. In Sections 9.2– 9.4, we present three concolic
testing approaches that generate tests and defects detection
for PHP and JavaScript applications, exploiting string- and
Fig. 10. A simple pseudo
path-based constraints, respectively. The benefits of concolic
testing, especially on dynamic languages such as PHP and
JavaScript, can be evidently demonstrated through case
studies.

9.1. Concrete, symbolic execution

Concolic testing uses concrete values as well as symbolic
values for input and executes a program both concretely
and symbolically, called concolic execution. The concrete
part of concolic execution is where the program is normally
executed with concrete inputs, drawn from random testing.
The symbolic part of concolic execution collects symbolic
constraints over the symbolic input values at each branch
point encountered along the concrete execution path.
At the end of the concolic execution, the algorithm com-
putes a sequence of symbolic constraints corresponding to
each branch point. The conjunction of these symbolic
constraints is known as path constraints. More formally, a
path constraint (PC) is defined as the conjunction of
conditions on variables as a result of executing the Web
application with concrete values. All input values that
satisfy a given path constraint will cover the same execu-
tion path. Concolic testing first generates random values for
primitive inputs and the NULL value for pointer inputs. The
algorithm then executes the program concolically in a loop.
At the end of execution, a symbolic constraint is negated in
the original path constraint (which contains a conjunction
of symbolic constraints) and the alternative branches of the
program are explored. The algorithm is continued with the
newly generated concrete inputs for the new path con-
straint. As a result, concolic testing combines random
testing and symbolic execution, thus overcomes the limita-
tions of random testing, such as the inefficient and ad hoc
nature of the test cases generated [64], the difficulty in
traversing the different paths in a program, redundant test
input data which lead to the same observable program
behaviours [74], and the low coverage obtained (due to the
random nature of the input data) [65].

In order to obtain a better understanding of how these
concolic testing techniques work for a program, we could
consider the code block shown in Fig. 10.

Since it is very difficult with random testing or manual
testing to generate input values that will drive the program
through all of its different execution paths, Concolic testing
is better suited to obtaining the desired program coverage
because it is able to dynamically gather knowledge about
the execution of the program in a directed search.
procedural program.
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In the above code block, a concolic testing technique
assigns random values to both x and y in the function h.
Assume that the concrete values assigned to x and y are
x¼0 and y¼1. With these assignments, the inner if

statement is not reached (since f(x)¼0 and xþ10 !¼
10). Along with the normal concrete execution, the pre-
dicates x0ay0 and 2nx0 ¼ x0þ10 are formed on-the-fly
according to how the conditionals evaluate. In this case, x0
and y0 are symbolic variables which represent the memory
locations of the concrete variables x and y. The expression
2nx0, or f(x) is defined through an inter-procedural
dynamic tracing of symbolic expressions.

Sometimes, the path constraints may be too compli-
cated for a constraint solver to generate concrete values to
satisfy the constraint. In such cases, some symbolic con-
straints are replaced with concrete values. Thus, concolic
testing is complete only if a given oracle can solve all
constraints in a program, and the length and the number of
paths are finite [73]. There are a few concolic testing tools
which are commonly used. The most popular ones are EXE
[69], DART [65], and CUTE [74].

EXE [69] is an effective bug finding tool that automati-
cally generates inputs with the aim of crashing real code.
Instead of running code on manually or randomly con-
structed input, EXE runs on symbolic inputs, initialised
with a random input. EXE tracks the symbolic constraints
for each memory location. If a statement uses a symbolic
value, EXE does not execute it as a normal statement.
Instead the constraint is added as a conjunction to the list
of path constraints. If a symbolic execution is checked
conditionally by a program, EXE forks execution, and the
expression is constrained to be true on the true branch, and
false on the other branches. Since EXE takes into account all
the possible values along a path, it can force the program to
be executed down any feasible program path, and at
statements or along program points where dangerous
operations (e.g., a pointer dereference) are allowed/per-
formed, it can identify whether the current path con-
straints would allow any value that causes a defect [69].
When a path terminates or hits a bug, EXE automatically
generates a test case by solving the current path constraints
to find concrete values using its constraint solver, the
Simple Theorem Prover (STP) [75]. For an assert state-
ment, EXE can reason about all possible input values on the
given path that may cause the assert to fail. If the assert
does not fail, then either, (1) no input on this path
can cause it to fail, (2) EXE does not have the full set of
constraints or (3) there is a bug in EXE.

The ability to automatically generate concrete inputs to
execute program paths has several features. First, EXE can
test all paths/branches of a program exhaustively (given
enough time), which is impossible to do in cases of manual
or random testing. Second, EXE generates actual attacks.
Third, the presence of a concrete input allows the user to
easily discard error reports due to bugs in EXE or STP: the
user can confirm the error report by simply rerunning an
uninstrumented copy of the checked code on the concrete
input to verify that it actually hits the bug (both EXE and
STP are sound with respect to the test cases generated, and
therefore false positives can only arise due to implementa-
tion bugs in EXE and/or STP).
Proper customisation makes STP often 100 times faster
than more traditional constraint solvers while handling a
broader class of examples. Crucially, STP efficiently reasons
about constraints that refer to memory using symbolic
pointer expressions, which presents a few challenges. For
example, given a concrete pointer a and a symbolic variable
i with the constraint 0rirn, the conditional expression
“if (a[i]¼¼10)” is essentially equivalent to testing all
the different values of a[i], where i is between 1 and 10.
Thus, we are essentially testing a big disjunction of differ-
ent possible conditions which may be true: “ifða½0� ¼ ¼
10J…Ja½n� ¼ ¼ 10Þ”. Similarly, an assignment a[i]¼42

represents a potential assignment to any element in the
array between 0 and n.

Directed Automated Random Testing (DART) [65], simi-
lar to EXE [69], is used for automatically testing software
and is composed of three main techniques, (1) automated
extraction of the interface of a program with its external
environment using static source-code parsing, (2) auto-
matic generation of a test driver for this interface that
performs random testing to simulate the most general
environment the program can operate in and (3) dynamic
analysis of how the program behaves under random testing
and automatic generation of new test inputs to direct
systematically the execution along alternative program
paths.

CUTE [74] stands for Concolic Unit Testing Engine. CUTE
implements a solver so that the test inputs are generated
incrementally for both arithmetic and pointer constraints.
This solver performs several optimisations [74], which help
to improve the testing time by several orders of magnitude.
The experimental results demonstrated in [74] confirm that
CUTE can efficiently explore branches in a C program and
achieve high branch coverage. CUTE was also shown to be
efficient at detecting software bugs that result in assertion
violations, segmentation faults, or infinite loops [74].

The methodology used in CUTE that makes it efficient to
test programs written in C efficiently is based on separating
pointer constraints from the simpler arithmetic constraints.
Additionally, in order to make the entire symbolic execu-
tion light-weight and ensure that the constraint solving
procedure is tractable, pointer constraints are kept simple.
The logical map, which keeps tracks of the different pointer
relations, is used to simplify and replace complex symbolic
pointer constraints with simpler symbolic pointer con-
straints. For example, if p is an input pointer to a struct

with a field f, then a constraint on p-f will be reduced
to a constraint on f0 , where f0 is the symbolic value
representing the constraint p-f . Although this over-
simplification of complex symbolic pointer expressions
may give rise to some approximations that do not precisely
capture all executions, the original relationship between
the different pointers (as defined in the logical map) is still
maintained, and the approximations are also sufficient for
testing purposes. Furthermore, this simplification of poin-
ter constraints results in pointer constraints of the form
x¼ y or xay, where x and y are either symbolic pointer
variables or the special C constant NULL. The advantage of
reducing complex pointer constraints to simpler con-
straints of the above-mentioned form is that such simple
constraints can be solved efficiently [74].



Y.-F. Li et al. / Information Systems 43 (2014) 20–5444
9.2. A string-based concolic testing approach for PHP
applications

Wassermann et al. [35] develop a concolic testing-based
framework for detecting SQL injection defects through
dynamic test input generation by manipulating string
operations in PHP. String operations are modelled using
finite state transducers. Constraints are then used to gen-
erate new string values. An algorithm is then used to
validate whether a string constitutes an SQL injection
attack. Finally, backward slices are dynamically constructed
at runtime to enable testing beyond unit level.

Scripting languages such as PHP support meta-
programming capabilities and hence are more dynamic.
For instance, PHP allows function call names and variable
names to be constructed dynamically, from user inputs. The
presence of such dynamic language features makes it very
hard for static analysis tools to analyse PHP programs. The
approach [35] tackles this challenge by using a concolic
approach that records variable values in concrete execution
and use them as constraints to generate new inputs
symbolically.

For example, the PHP program in Fig. 11 contains an
unsafe database call: on line 18 the value of variable
userid is used without sanitisation, making it vulnerable
to SQL injection attacks.

In this framework, new string-typed test inputs are
generated from current string values through the use of
constraints. The generation of such constraints is enabled
by modelling string operations and type casts as finite state
transducers (FSTs), finite state machines with an input tape
and an output tape. As in concolic testing, constraints are
Fig. 11. An example PHP program from [35, Fig. 1
generated, solved and inverted to generate new test inputs
to cover different paths of the PHP program under test.

Focused on detecting SQL injection vulnerabilities, this
framework makes use of Grasp [76], a modified PHP
interpreter, as test oracle. Grasp performs character-level
tainting, allowing security policies, in this case those
related to SQL injections, to be defined. Symbolic execution
and FSTs are used in combination to record and generate
new query strings that are potentially attacks.

The state space of any non-trivial program may be too
large for a concolic testing technique to handle efficiently.
Sometimes, significant portions of a program's execution,
such as logging, are not relevant to the properties of
interest. This problem is alleviated [35] by analysing pro-
gram points that are (directly or indirectly) relevant to
possible failure, in a backward manner. Starting at function
calls that send a query to the database, other functions
where this call occurs are iteratively added. Control depen-
dency and data dependency are resolved by maintaining a
stack trace of function calls, and by examining symbolic
values during execution. Approximately this process con-
structs a backward program slice, and is shown to drama-
tically reduce the number of constraints generated,
sometimes by several orders of magnitude.

The proposed framework is implemented and evaluated
on three PHP Web applications with known SQL injection
vulnerabilities: Mantis 1.0.0rc2, Mambo 4.5.3 and Utopia
News Pro 1.3.0. The concolic testing framework manages to
detect SQL injection vulnerabilities in all three applications
using at most 23 inputs. In the case of Mantis and Mambo,
as few as 4 and 5 inputs are required respectively to detect
a vulnerability.
] that contains an SQL injection vulnerability.
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9.3. Apollo: a path-based concolic testing framework for PHP
applications

Artzi et al. [34] propose a concolic testing technique for
PHP Web applications. The path constraints which are
generated from symbolic execution are stored in a queue.
The queue is initialised with the empty path constraint. A
constraint solver is then used to find a concrete input that
satisfies a path constraint taken from the queue. The
program is executed concretely on the input and tested
for failures. The path constraint and input for each detected
failure are merged into the corresponding bug report. Now
the program is executed symbolically on the same concrete
input value (chosen by the constraint solver) and different
path constraints are obtained (i.e., a boolean expression
with a conjunction of conditions which are true when the
application is executed with an input). New test inputs are
then created by solving modified versions of the path
constraint obtained. If a solution exists to an alternative
path constraint which corresponds to an input, then the
execution of the program will be completed along the
opposite branch [34].

In order to obtain the different modified versions of the
path constraint, the last condition in the original path
constraint is removed and the last conjunct in the new
path constraint is negated. For example, assuming the
original path constraint obtained from initial concrete input
is the following:

x4y4z
Fig. 12. A simple PHP program from [34
Then, the additional path constraints are

x4:y4:z; x4:y and :x
The PHP program in Fig. 12 illustrates how Apollo can be

applied to testing PHP applications.
The program execution starts with the empty input,

with the variable page being set to the initial value 0 after
line 3 of the program execution. Since the variable login is
not defined, the function validateLogin() (not shown
here) is not invoked, generating the following path con-
straint (PC), where NotSet(page) is due to the conditional
statement in line 3 being executed:

PC : NotSetðpageÞ4page¼ 04page2a13374logina1

This original path constraint is then updated by remov-
ing the last constraint and negating the last constraint from
this updated path constraint. Thus, in this case, 4 new path
constraints are generated (PC1 to PC4).

PC1 : NotSetðpageÞ4page¼ 04page2a13374login¼ 1

PC2 : NotSetðpageÞ4page¼ 04page2¼ 1337

PC3 : NotSetðpageÞ4pagea0

PC4 : SetðpageÞ

Similarly, these constraints are solved by the constraint
solver that enables exploration of different paths of the
program execution. For example, for the path constraint
PC3, the constraint solver may assign any value to “page”

other than 0.
, Fig. 1] that contains some defects.
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9.3.1. Minimisation of path constraints
A defect report, or a bug report contains a set of path

constraints leading to inputs exposing the failure. A lot of
dynamic test generation tools [65,74,69] present the entire
input to the user without an indication of which subset of
the input is responsible for the failure. In order to remove
the irrelevant constraints, path constraints can be mini-
mised [34].

In order to do this, the intersection of the different path
constraints exposing a failure is taken for a given defect
report. Iteratively, each condition from the intersection of
the path constraints is removed one by one. If the shorter
path constraint (after removing the condition) does not
expose the failure, the constraint is added back as it is
required for exposing the failure. From the minimised path
constraint, the algorithm produces a concrete input that
exposes the failure. Although the algorithm does not
guarantee that the algorithm returns the shortest path
constraint necessary to expose the failure, the algorithm
is simple, fast and effective.

For example, for the two path constraints PCa and PCb,
which expose the same failure and the constraints are:

PCa : x4y4z4a

PCb : :x4y4z

Taking the intersection of these two path constraints,
the new path constraint PCnew is PCnew : y4z. The algo-
rithm takes out conditions from the constraint one by one.
If the remaining constraint exposes the failure, that condi-
tion is removed and PCnew is updated, otherwise it is kept.
The algorithm terminates when there are no more condi-
tions which can be removed.
9.3.2. Implementation technique
Artzi et al. [34] also proposed a tool to implement the

technique proposed by them. The architecture of the
framework is shown in Fig. 13. As shown in the diagram,
the framework Apollo comprises three major components,
the Executor, the Input Generator and the Bug Finder. The
Executor carries out the testing of a particular PHP file(s)
with a given input. The Executor ensures that the database
Fig. 13. The architecture of Apollo as shown in [34, Fig. 4].
is in an appropriate state before each cycle of an execution.
The Executor has two sub-components, namely:
�
 The Database Manager: This component, as the name
suggests, is responsible for initialising a database for
use during the execution stage by the PHP application.
The state of the database is also restored after each
execution.
�
 The Shadow Interpreter: This component is mainly a
modified PHP interpreter responsible for storing the
different path constraints (PC) generated throughout
the program execution. This component also stores
different positional information regarding the input.
Similarly, the Bug Finder uses an oracle to find HTML
failures, keeps a track of the different bug reports and
minimises the path constraints which are responsible for a
particular fault. The Bug Finder mainly comprises three
components, which are:
�
 The Oracle: The oracle is basically a heuristic which is
used to find defects in any given program. In the case of
PHP applications, the oracle is designed to detect HTML
failures (such as invalid HTML syntax) in the program
output.
�
 The Bug Report Repository: This is responsible for storing
all the bug reports containing a detailed description of
the different HTML failures and execution failures found
during program execution.
�
 Input Minimiser: The Input Minimiser takes a given bug
report as the input and finds the smallest set of path
constraints on the input parameters required to produce
the same (type of) faults as those described in the bug
report.
The Input Generator contains the main implementation
of the algorithm for obtaining a collection of path con-
straints and minimising them. The Input Generator com-
prises the following three sub-components:
�
 The Symbolic Driver: This component generates new
path constraints and also selects a path constraint
(according to the state of the priority queue) to be
solved for a given execution.
�
 The Constraint Solver: This is mainly used to compute the
assignment of values to input parameters that satisfies a
given path constraint (i.e., it is used to find solutions to a
path constraint).
�
 The Value Generator: This component generates values
for input parameters that are not constrained. The
values are either randomly generated or constant values
extracted from the program source code.
This technique [34] gives a practical example of how
concolic testing can be applied to testing Web applications.
The algorithm used for minimisation of path constraints
also helps minimise the time taken for the testing process.
Additionally, the testing process is complete as the testing
process continues until all the branches are covered.
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9.4. Kudzu: a symbolic testing framework for JavaScript

JavaScript [6] is the lingua franca for client-side scripting
in Web applications. It is a powerful language with many
advanced features, including dynamic typing and evaluation,
functions as objects, and various forms of delegation. Such
features enable sophisticated, interactive Web applications to
be created using JavaScript. These features also make it very
challenging to thoroughly test a JavaScript application. For
instance, a JavaScript application may accept many kinds of
inputs, including responses from the server and user input
from fields, which are structured as strings. A JavaScript
testing tool must then be able to discern the different kinds
of inputs and handle them accordingly.

Kudzu [16] developed by Saxena et al. is a symbolic
testing framework for JavaScript with the aim of detecting
client-side code injection vulnerabilities. Kudzu groups
JavaScript inputs into two categories: (1) event space that
encompasses states and sequence of actions of UI elements,
and (2) value space that encompasses values supplied by
external entities, including form data from users, HTTP
requests and URLs. Kudzu produces high-coverage test
cases systematically by generating constraints about such
inputs in its own constraint language, which supports
Boolean, bit vectors and string constraints. A practical
constraint solver, Kaluza, is developed as part of Kudzu to
solve such constraints.

The overall architecture of Kudzu can be seen in Fig. 14.
The core components of the system are those shaded in gray.
�
 The GUI explorer selects a random ordering of user
events and executes them. Concrete inputs of an execu-
tion is recorded, and then symbolically executed by the
dynamic symbolic interpreter.
�
 The path constraint extractor takes the results of sym-
bolic execution and constructs constraints with the aim
to exercise different execution paths of the JavaScript
code. Kudzu uses a generational search strategy pro-
posed in [31] (introduced in Section 8.1) to decide the
order of exercising branches.
�
 The constraint solver solves the constraints by finding
satisfying assignments to variables, therefore generating
new values to be used as inputs. Finally, the input
feedback system sends the newly generated inputs back
to the JavaScript program to drive new execution.
Fig. 14. The overall architecture o
specific. Specifically,

The other three components in Fig. 14 are application-
�

f Ku
The sink–source identification components identify cri-
tical sinks that may receive untrusted inputs using a
data flow analysis technique.
�
 The vulnerability condition extractor combines formulae
generated by the symbolic interpreter and path con-
straints to create formulae that describe input values to
the critical sink.
�
 Finally, the attack verification component executes tests
with the generated inputs and determines whether an
attack is executed.

The Kudzu system is evaluated on 18 real-world JavaScript
applications, which are used to evaluate the authors' previous
system, FLAX [32] (discussed in Section 8.1). Compared to
FLAX, Kudzu has a number of advantages. Firstly, Kudzu
requires a test suite to reach vulnerable code, whereas Kudzu
automatically generates test inputs that lead to high code
coverage. Secondly, FLAX only performs black-box fuzzing, a
form of random testing, whereas Kudzu, based on concolic
execution, is able to reason about possible vulnerabilities,
hence is more directed. As a result, Kudzu manages to find
code injection vulnerabilities in 11 of the 18 applications.
Among the vulnerabilities discovered by Kudzu 2 were not
known prior to the experiments and are missed by FLAX.
10. User session-based testing

The white-box testing approach is often limited in nature
because the inputs have to be selected manually in order to
adequately test the different parts of the system. The selection
of such inputs is a complicated process and may take a long
time. A user session starts when a request from a new IP
address is received by the server and ends when the user
leaves the Web site or the session times out [36,9]. User
session-based testing techniques help alleviate both of the
above problems. In user session-based testing, a list of inter-
actions performed by the user in the form of URLs and name-
value pairs (of different attributes), or cookies, are collected,
from which test cases are then generated.

The rationale and advantages of user session-based testing
are based on the fact that since most Web application
dzu as shown in [16, Fig. 1].
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operations comprise receiving requests from the client and
then processing those requests, the collection of client requests
can be done with minor tweaks to the server. For example,
with minimal configuration changes, the Apache server can log
all the received GET requests. Utilising Java servlet filters is yet
another alternative that enables the dynamic interception of
requests and responses at the server side. Another advantage
of user session testing is that since we are only concerned with
the sessions' data (URL and name-value pair), it provides a
high-level abstraction of the heterogeneous nature of the
different components. This lessens the dependencies of user
session-based testing techniques on changes in components of
the Web application under test.

Assuming we have a set of m user sessions
U ¼ fμ1; μ2;…; μmg, such that each user session μi sends n
requests {r1; r2;…; rn} to the Web server, where each
request rj consists of a URL and a name-value pair, Elbaum
et al. [36] propose three different techniques for generating
test cases from user sessions, namely:
�
 Using user session data directly. In this technique,
different user sessions are replayed individually. More
specifically, each individual request rj from a user ses-
sion μi is formatted into a HTTP request which is then
sent to the server. The resulting test suite thus com-
prises m test cases for user sessions. Elbaum et al. only
include requests that are the result of a sequence of the
user's events at the server site.
�
 Replaying a mixture of different session interactions
from different users. This method is supposed to expose
the error conditions caused when conflicting data is
provided by different users. The test cases are generated,
and a new test suite is created from the set of different
user sessions, U, according to Algorithm 1.
�
 Mixing regular user requests with requests that are likely to
be problematic (e.g., navigating backward and forward
while submitting a form). In this case, the test cases are
generated by replaying user session with some modifica-
tions. This technique involves randomly deleting characters
in the name-value pair strings whichmay result in different
scenarios being explored (e.g., deleting one character from
the username and password in a login form leads to an
incorrect test case). The algorithm can be described more
formally [36] as demonstrated in Algorithm 2:
Elbaum et al. [36] show that these capture-and-replay
techniques for user session-based testing are able to dis-
cover certain special types of faults which cannot be
exposed by white-box testing. However, their technique
cannot detect faults that are a result of rarely entered data.
They also show that as the number of user sessions
increases, the effectiveness (percentage of faults detected)
of these techniques increases. However, as the number of
user sessions increases, the time and the cost associated
with collecting the data, analysing the data and generating
the test cases also increase. Thus, there is a need for
prioritising and reducing the number of test cases.

Algorithm 1. The replay algorithm used in user session-
based testing where the interactions of different sessions of
different users are taken into account [36].

Algorithm 2. Test suite selection algorithm.

10.1. Test case prioritisation and reduction for user session-
based testing

Elbaum et al. propose two techniques for test suite size
reduction. The first technique [36] is based on the test suite



Fig. 15. A graphical representation of a lattice construction from the
different objects and attributes given in Table 4. This figure is adapted
from [37, Fig. 1].
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reduction technique of Harold et al. [77], and is applied to
the test cases which are generated from user sessions
directly. The basic idea behind this technique is that some
heuristics are applied to select the smallest subset t of the
test suite T, which achieves the same functional coverage as
T. Elbaum et al. show that for functional coverage, this
technique reduces the test suite size by 98% while not
detecting 3 out of 20 faults; for block coverage, it reduces
test suite size by 93% while missing two faults; and for
transition coverage, it reduces size by 79% while missing
one fault. Thus, the overall effectiveness in terms of cover-
age and fault detection is reduced by a small margin (� 2%
for functional coverage, � 7% for block coverage, and
� 20% for transition coverage).

The second method used by Elbaum et al. [36] for
reducing the test cases is based on clustering analysis. They
group similar test cases in clusters, using a hierarchical
agglomerative approach and Euclidian distance as the mea-
sure of similarity (similar to the procedure employed by
Dickinson et al. [78]). They then generate a reduced test suite
by randomly selecting one test case from each cluster. A
smaller number of clusters provides greater test reduction at
a cost of fault detection effectiveness. For example, when the
cluster size is 4, the test suite is reduced by 98% and three
faults are undetected. Clustering of user sessions is also
discussed elsewhere [79], clustering is done according to a
user session-based technique. In this case, the user sessions
are clustered based on the service profile and then a set of
representative user sessions are selected from a particular
cluster. The user sessions are then further enhanced by
adding additional requests, which take into account the
dependence relationships between different Web pages. It
was also found out, through two separate empirical analyses
conducted, that the resulting test suite reduced the number
of test cases, and also could detect a majority of the faults
detected by the original test suite (greater than 90%) [79].

Sampath et al. [37] further extend on the test reduction
techniques proposed by Elbaum et al. [36], by applying the
formal concept analysis techniques [80,9]. Formal concept
analysis aims at organising a set of objects O into a
hierarchy. Besides the set of objects O, formal concept
analysis takes as input a set of attributes A and a binary
relation R known as a context, such that RDO� A. The
relationship R evaluates to boolean values and is true only if
a set of objects, oDO shares a set of attributes, aDA.

A tuple, t, for a subset of objects, Oi, and a subset of
attributes, Aj, can be defined such that all and only the
objects in Oi share all and only attributes in Aj. A concept is a
tuple t ¼ ðOi;AjÞ in which OiDO and AjDA. In this techni-
que, a concept lattice is first formed which is a partial
ordering on the set of all concepts. The graph formed is a
directed acyclic graph in which the nodes represent the
concept and the edges denote the partial ordering. The top
element > of the lattice represents the most general
concept which represents the subset of attributes in A
which are shared by all the objects O in the lattice. The
bottom element ? represents the most special concept and
represents the subset of objects in O that shares all the
attributes in A.

In terms of user session-based testing, the set O repre-
sents the set of user sessions (i.e., the number of test cases)
and the set A represents the URLs for the user sessions.
Although an attribute comprises both URLs and name-value
pairs for a user session μi, the effectiveness of choosing only
URLs as the attribute set is demonstrated by Sampath et al.
[37]. Thus, for a given pair of user session μi and URL rj, the
binary relation R is true iff μi requests rj.

A lattice of user sessions is represented diagrammati-
cally in Fig. 15. The different user sessions are shown in
Table 1. The objects O are represented in rows, where the
prefix “G”, indicates GET requests, and the prefix “P” indi-
cates POST requests), both of which prefix the different
attributes A (columns of Table 1). The lattice shown in
Fig. 15 is then constructed from the first 6 user sessions.

Once the lattice is formed, there are two techniques
proposed by Sampath et al. to reduce the test suite, which
are discussed in the following subsections.
10.2. Batch test suite reduction

This technique is similar to the clustering technique
proposed by Elbaum et al. [36] because it selects the
smallest set of user sessions (objects) similar to each other
that exercises all the URLs which are executed by the
original test suite. This technique also executes the com-
mon URL subsequences of different use cases as repre-
sented by the original test suite. The heuristic for selecting
user sessions (or test cases) for this technique is to include
a user session from each node next to the bottom element
? , i.e., one level up from the bottom node ? . These nodes
are called next-to-bottom nodes. This is because the simi-
larity of a set of user sessions Ui is defined by the number of
attributes shared by all of the user sessions in Ui. Therefore,
the set of objects which are closer to the bottom are more
highly similar than the set of objects closer to the top of the
lattice. If the bottom element ? is non-empty, the set of
user sessions in ? are also included in the test suite. Thus,
test cases are chosen from different clusters of similar use
cases. The advantage of this technique is that the heuristic



Table 4
A tabular representation of the different objects and attributes used to construct a lattice. Only the first 6 user sessions are used for the construction of the
lattice shown in Fig. 15. In this table, an “X” for a particular column/URL indicates that a user belonging to a specific user session accessed the URL. For
example, the “X” symbols in the first row indicate that the user “us1” accessed/requested the URLs “GDef”, “GReg”, and “GLog”. This table is adapted from
[37, Fig. 1].

Session GDef GReg GLog PLog GShop GBooks GMyInfo

us1 X X X
us2 X X X X X
us3 X X X X X
us4 X X X X X
us5 X X X
us6 X X X X X X
us7 X X X X X X
us8 X X X
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is very simple to compute and label the next-to-bottom
nodes, i.e., nodes that are included in the updated test suite.
The limitation of the method is that all the user sessions are
considered together, which may result in increased com-
plexity of the overall approach.
Fig. 16. A graphical representation of a new and updated lattice construc-
tion from two new user sessions, “us7” and “us8” (see Table 4). The new
lattice includes user session “us7” as a next-to-bottom-node. The new user
session “us7” will now be added to the updated test suite. This figure is
adapted from [37, Fig. 1].

Fig. 17. The new lattice does not include user session “us8” (see Table 4) as
a next-to-bottom-node. The new user session “us8” will therefore not be
added to the updated test suite. This figure is adapted from [37, Fig. 1].
10.3. Incremental reduced test suite update

This algorithm utilises the incremental concept forma-
tion algorithm developed by Godin et al. [80]. This
technique starts with an initial concept lattice L and an
initial reduced test suite T formed from an initial user
session data set S. It then updates the test suite T 0 and the
concept lattice L0 as more user sessions are analysed. After
every addition of a user session, the concept lattice L0 is
updated, and if a user session Si replaces a next-to-bottom
node in the lattice (i.e., the nodes which are connected to
the bottom element ?), Si is then added to the updated
test suite T 0 and the replaced next-to-bottom node repre-
senting user session is removed from the test suite T 0. If,
however, a user session Si does not replace a next-to-
bottom node in the lattice, the test suite is not changed
and the user session (i.e., the test case) is ignored.
The existing internal nodes, however, will never “sink” to
the next-to-bottom nodes because the partial ordering of
the existing internal nodes with respect to existing next-
to-bottom nodes remain unchanged.

This is again demonstrated in Figs. 16 and 17, where the
second lattice shows that the user session “us7” will be
added to the test suite. However, in the third lattice, since
“us8” does not replace a “next-to-bottom” node, it is not
added to the test suite. The advantage of this approach is
that not all the user sessions are considered together,
which reduces the complexity of the overall approach.

Sampath et al. show that these techniques result in test
suite size reduction by 87.8%, replay time reduction by
74.2%, 3.8% loss in statement coverage and no loss in
function coverage. The effectiveness of the reduced test
suite, however, was found to be 20% less than that of the
original test suite [9].

Sampath et al. [37] also propose an automated proto-
type framework which enables the collection of user
session data and hence helps in generation of reduced test
suite. The test cases are replayed to generate coverage
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Fig. 18. Diagram depicting the framework proposed by Sampath et al. [37]. This figure is taken from [37, Fig. 3].
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reports and perform fault detection analysis. As shown in
Fig. 18, the process begins with the collection of user
session data, in Step 1 in the diagram. This phase is known
as the Web application execution or logging phase. Sampath
et al. [37] develop a modified version of the Resin21 Web
server's AccessLog class to collect user session data attri-
butes of interest. These include information relating to each
user request, such as IP address, timestamp, requested URL
(s), GET/POST data and cookies. Timestamp of a given
request ri is tracked. A user session begins when a request
arrives from a new IP address and ends when the user
leaves the Web site or the session times out. If requests are
more than 45 min apart, then they are considered to be
requests from distinct sessions. The access log data is then
provided to a tester (Step 2 in the diagram). Then the access
log is parsed to generate a relation table, similar to the one
depicted in Fig. 15. The test suite reducer implements the
heuristic (Batch test suite reduction) for obtaining a
reduced test suite. The concept analysis tool depicted in
the figure outputs a lattice.

The test coverage evaluator (Step 4) comprises the Java
code coverage tool “Clover”,22 which instruments the Java
files that are generated by the server. The reduced test suite
is then replayed (Step 5). The GNU Unix utility “wget” was
used as the replay tool. Input parameters to the “wget”
utility include cookie information and POST/GET data
associated with the request to maintain the application
state information. To guarantee consistency in replay, the
database is also restored to its original state before replay.
The coverage report is then generated (Step 6). The test
suite is then incrementally updated in Steps 7, 8 and 9 with
new user sessions coming from New Access Log (Step 7) and
21 http://www.caucho.com/resin/. This site was last accessed on
January 31, 2013.

22 http://www.thecortex.net/clover/. This site was last accessed on
January 31, 2013.
the current lattice L getting updated and the current test
suite T getting updated (Step 9).

10.4. Test case reduction through examining URL trace

Another technique for reduced test case selection is
proposed by Zhongsheng [38]. It involves identifying
whether a URL trace (or a sequence of URL requests) in a
particular user session Uα is the prefix of a URL trace
requested by another user session Uβ . A trace α is the prefix
of another trace β iff α is the subsequence of β and they
have the same initial symbol (or request). For example, if
α¼ abc, β¼ abcde, then α is a prefix of β). If a URL trace in
one user session Uα is the prefix of another URL trace in Uβ ,
then the user session Uα is removed from the test case. The
number of user sessions required for testing from this
algorithm can be reduced greatly. The algorithm can also
be easily implemented. It also covers all the URLs requested
by the original set of user sessions and keeps the sequence
of URL requests, i.e., it guarantees that the original test
requirements are satisfied.

The user sessions reduced by the algorithm are then
further divided into subgroups, each of which is
regarded as an individual test suite. In order to group
these user sessions together, different discontinuous
threshold values, to compare against the lengths of
greatest common prefixes of user sessions, and denoted
by ζ1; ζ2;…; ζk, such that ζiZ1 for 1r irk, are defined.
All user sessions whose greatest common prefix (the
longest common prefix between different user sessions)
lies between certain threshold values are grouped
together. For example, let us consider three different
threshold values, ζ1; ζ2; ζ3, such that ζ1 ¼ 2, ζ2 ¼ 4, and
ζ1 ¼ 7. Let us also consider four different user traces,
such that γ1 ¼ “abcdefg”, γ2¼“abcdeh”, γ3¼“abcd”, and
γ4 ¼ “cde”. Let us denote the length of the greatest
common prefix of a particular group of user traces by
α. Then, depending on the threshold values, ζ1; ζ2; ζ3, we

http://www.caucho.com/resin/
http://www.thecortex.net/clover/
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can divide these traces into two groups/sets, such that
the values of α for these groups lie within the range of
the threshold values, ζ1; ζ2; ζ3. One way to split these
user traces could be to group it into two sets, namely,
{γ1, γ2}, where the length of the greatest common prefix
(the string “abcde”) is 5, which is between ζ2 and ζ3 (or
more formally, 4o ∣α∣r7), and {γ3, γ4}, where the length
of the greatest common prefix is 0, which is less than
the threshold value of ζ1 (or, more formally, ∣α∣r2). The
user traces could also have been split differently into
two groups, namely, {γ1, γ2, γ3}, where the length of the
greatest common prefix (the string “abcd”) is 4, which is
between ζ1 and ζ2 (or more formally, 2o ∣α∣r4), and
{γ4}, where the length of the greatest common prefix is
0, which is less than ζ1 (or, more formally, ∣α∣r2) [38].

The test suite with the shortest greatest common prefix
is executed first [38]. This is because these user sessions
indicate special or different URL requests, which represent
distinct requirements for Web applications. Since these
requests represent the sequence of URLs which is rarely
executed in user interactions, it is especially important to
test these scenarios as something could easily go wrong.
The rest of the test suites are prioritised according to their
descending lengths of their greatest common prefixes, i.e.,
the test suite with the longest greatest common prefix is
executed, then the one with second longest greatest com-
mon prefix, and so on. In each test suite, the test cases are
prioritised according to the coverage ratios of URLs
requested, i.e., the test case with longer URL trace
requested is executed earlier. If the lengths of URL traces
of several test cases in the same test suite are equal, the
order of execution is randomly determined.

11. Conclusion and future directions

The World Wide Web has become an indispensable part
of our society in two short decades. With the rapid
advances in hardware infrastructure and software technol-
ogies, Web applications, and software that runs on a Web
server enabling users to interact with the application via a
browser or other software services have grown to be so
sophisticated that it supports complex interactions with
users (and other Web applications). Additionally, these
applications are also able to complete complex transactions
in a secure manner in a relatively short period of time. The
ubiquity of the Web and the central role Web applications
on the Web play make it imperative to ensure that Web
applications are secure, correct and efficient.

Testing is a validation and quality assurance approach
widely practised by companies. Software testing in general
and Web application testing specifically have also been an
active research area. Despite the importance of Web appli-
cations, major research efforts in the testing of Web
applications have not been surveyed in a substantial way.
In this paper, we present some recent advances in Web
testing techniques and discuss the strengths and weak-
nesses of these techniques.

Of the different techniques, some are more effective at
finding faults, including scanning and crawling techniques,
mutation testing and fuzz testing, in existing applications,
whereas others are more effective at ensuring that the
application has been adequately tested. In other words,
different testing techniques have different goals and tar-
gets, and thus some testing techniques may be more
adequate than others depending on the nature of the
testing that needs to be performed on a Web application.
Moreover, each of these techniques differs in their inputs,
outputs, conditions for stopping the test, and their primary
purpose (as summarised in Tables 1–3 in Section 2).
Additionally, we also discuss how the different techniques
can be applied to Web applications and ensure that the
Web applications have been adequately tested.

As we have already discussed, due to the heterogeneous
nature and the ever growing complexity of Web applica-
tions, it is important that proper attention is given to
testing Web applications. Also, since a large number of
users use Web applications to carry out a host of different
tasks, including financial transactions, appointment book-
ing and communications (emails, instant messaging and
voice/video calls), it is important to ensure the privacy of
users and the integrity of the transactions. Therefore, if a
Web application is not properly tested, it means that a lot of
potential users could risk losing their private data and/or
facing severe financial losses. One of the most critical areas
of Web application testing – and one that can cause severe
financial and data losses if compromised or not done
rigorously enough – is Web security. As we described in
Section 6, there are several scanning and crawling techni-
ques which test specifically to test if a given Web applica-
tion contains security flaws by injecting unsanitised inputs.
Some of these scanners are also open-source and readily
available, including SecuBat [8], Selenium [61], and JsUnit,
which we discussed in the paper. In addition, we also
discussed Mutation testing in Section 4, where lines of
code in a piece of software are modified and then test cases
are deemed successes or failures depending on whether or
not they can detect the change in the software code. All
these techniques expose that the security flaws in Web
applications, thus ensuring safer and more robust Web
applications.

Moreover, we have also discussed various testing tech-
niques which ensure that the application functions consis-
tently with the specification(s) as required. Some of these
techniques include creating an overall model of the appli-
cation, from which test cases are derived for the test suite,
such as Graph based techniques [19], the Finite State
Machine [20], and the probable FSM [21]. Other techniques
to ensure that the application behaves consistently with
the specification include search-based software engineer-
ing techniques [23], which ensure that a Web application is
tested as thoroughly as possible, as measured by the
coverage of its branches; Concolic testing techniques [73]
– such as DART [65], EXE [69] – combine concrete execu-
tion and symbolic execution to ensure that the program
traverses along different paths/branches. Furthermore, we
have also discussed how concolic testing can be applied to
test PHP Web Applications [34]. In addition, we also
discussed user session-based testing techniques in Section
10, in which test cases are derived from data collected from
user sessions (URLs and name-value pairs).

However, there is also significant future work and
research that can be done on testing of Web applications.
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In the case of user session-based testing, the potential
benefits of integrating user session data with traditional
testing techniques have yet to be fully realised and requires
further investigation [36]. Furthermore, the technique
could also be extended to take into account concurrent
user requests and keep track of Web application states.
Similarly, in order to truly exploit the power of user-session
data, user-session data could be used to assess the appro-
priateness of an existing test suite in the face of shifting
operational profiles [36]. In addition, a more holistic and
empirical analysis of techniques proposed to reduce the
number of user sessions in a test suite could be done in
future (e.g., by conducting experiments on a larger set of
URLs, etc.) [37].

Similarly, in the case of the finite state machine-based
testing technique [20], further work needs to be done with
regards to automating the testing technique. Another
limitation of the Finite State Machine-based (FSM-based)
testing technique is that it has limited support for unanti-
cipated, user-controlled transitions, called operational tran-
sitions [81]. This includes a user going directly to an
internal Web page with a bookmark, URL rewriting and
unanticipated back and forward navigation. In order to test
these transitions, a method will have to be found to model
operational transitions in a tractable manner, that is, there
are no space explosion problems. This could be as simple as
keeping a list of potential operational transitions and
selecting them at various points in a test sequence [20].
This issue has already been discussed to some extent in Wu
and Offutt [81], and therefore future work could involve
combining these two techniques.

In the case of scanning and crawling techniques, more
plug-ins to initiate different types of attacks could be added
to a scanner [8]. Furthermore, most of the scanning
techniques discussed in this paper (e.g., SecuBat, WAVES)
do not consider the number or lengths of queries required
to detect a flaw in a Web application. More work could be
done in this area, perhaps in combination with similar
works done by Madhavan et al. [82], to reduce the length of
query strings when accessing the deep Web [82] (i.e., the
part of the Web that is hidden from the user and acts as the
back-end for most Web applications, e.g., the database).
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