
Information and Software Technology 54 (2012) 1092–1106
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Reducing test effort: A systematic mapping study on existing approaches

Frank Elberzhager a,⇑, Alla Rosbach a, Jürgen Münch b, Robert Eschbach c

a Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
b P.O. Box 68 (Gustaf Hällströmin katu 2b), 00014 Helsinki, Finland
c ITK Engineering AG, Luitpoldstraße 59, 76863 Herxheim, Germany
a r t i c l e i n f o

Article history:
Received 16 August 2011
Received in revised form 24 April 2012
Accepted 28 April 2012
Available online 18 May 2012

Keywords:
Efficiency improvement
Mapping study
Quality assurance
Software testing
Test effort reduction
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.04.007

⇑ Corresponding author. Tel.: +49 631 6800 2248; f
E-mail addresses: frank.elberzhager@iese.fraunho

rosbach@iese.fraunhofer.de (A. Rosbach), juergen.mue
robert.eschbach@itk-engineering.de (R. Eschbach).
a b s t r a c t

Context: Quality assurance effort, especially testing effort, is often a major cost factor during software
development, which sometimes consumes more than 50% of the overall development effort. Conse-
quently, one major goal is often to reduce testing effort.
Objective: The main goal of the systematic mapping study is the identification of existing approaches that
are able to reduce testing effort. Therefore, an overview should be presented both for researchers and
practitioners in order to identify, on the one hand, future research directions and, on the other hand,
potential for improvements in practical environments.
Method: Two researchers performed a systematic mapping study, focusing on four databases with an ini-
tial result set of 4020 articles.
Results: In total, we selected and categorized 144 articles. Five different areas were identified that exploit
different ways to reduce testing effort: approaches that predict defect-prone parts or defect content,
automation, test input reduction approaches, quality assurance techniques applied before testing, and
test strategy approaches.
Conclusion: The results reflect an increased interest in this topic in recent years. A lot of different
approaches have been developed, refined, and evaluated in different environments. The highest attention
was found with respect to automation and prediction approaches. In addition, some input reduction
approaches were found. However, in terms of combining early quality assurance activities with testing
to reduce test effort, only a small number of approaches were found. Due to the continuous challenge
of reducing test effort, future research in this area is expected.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

High-quality software is of crucial importance today. However,
ensuring high-quality software is often costly. Several studies have
shown that one major cost factor is inadequate quality assurance,
especially inadequate testing. Late fault and failure detection nor-
mally leads to huge correction and maintenance costs. Quality
assurance efforts, especially testing efforts, often consume more
than 50% of the overall development efforts [121,136]. Reducing
test effort by accepting quality reductions is often not acceptable.
Therefore, an open problem is how to reduce test effort without
forgoing the quality level of the final software. Unfortunately, an
overview of existing approaches is missing and little guidance is
available regarding the selection of appropriate approaches.

The main objective of this systematic mapping study is the
identification of existing approaches to testing effort reduction.
ll rights reserved.

ax: +49 631 6800 92248.
fer.de (F. Elberzhager), alla.
nch@cs.helsinki.fi (J. Münch),
The results of this study are expected to support practitioners by
identifying options with respect to improving their quality assur-
ance strategies. Researchers might benefit by getting an overview
of current approaches and indications of existing evidence regard-
ing their use, as well as by identifying research gaps and future re-
search directions.

Several existing systematic mapping studies and systematic
literature reviews focusing on related topics already exist. Kitchen-
ham et al. [156] and Da Silva et al. [155] identified and summarized
a large number of software engineering literature surveys. Based
on their results, the following surveys can be seen as closely
related to the mapping study presented in this article: Juristo
et al. [157] and Runeson et al. [158] surveyed and analyzed existing
literature on quality assurance techniques and the empirical
knowledge gathered with such techniques. In particular, testing
and inspection techniques were analyzed. However, effort reduc-
tion was not particularly considered. Zakaria et al. [159] performed
a study surveying and analyzing literature on unit test techniques
for BPEL. Several research questions were addressed, such as the
applicability of testing techniques in a web service environment,
empirical evidence, and efficiency aspects. The focus in that study

http://dx.doi.org/10.1016/j.infsof.2012.04.007
mailto:frank.elberzhager@iese.fraunhofer.de
mailto:alla. rosbach@iese.fraunhofer.de
mailto:alla. rosbach@iese.fraunhofer.de
mailto:juergen.muench@cs.helsinki.fi
mailto:robert.eschbach@itk-engineering.de
http://dx.doi.org/10.1016/j.infsof.2012.04.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1093
is not explicitly on effort reductions. More literature surveys exist
that focus on specific aspects such as fault prediction models [160]
or test automation [161]. Those studies cover a large number of
existing publications. Therefore, they present an appropriate over-
view of the relevant literature regarding the specific topics. These
surveys are expected to be helpful for identifying the relevant lit-
erature on the specific topic and can be seen as additional sources
of information. However, a broader overview of approaches that al-
lows for test effort reduction is missing.

We analyzed more than 4020 research articles in our systematic
mapping study. In the end, 144 articles were selected and used for
classifying existing approaches. We identified five different areas
that exploit different ways to reduce testing effort: approaches that
predict defect-prone parts or defect content, automation, test input
reduction approaches, quality assurance techniques applied before
testing, and test strategy approaches. About three fourths of the
articles present evaluation results, but details about the context
are often missing. Furthermore, results are often preliminary,
unspecific, or even contradictory.

This paper is organized as follows: Section 2 provides the meth-
od used to perform this mapping study. Furthermore, it describes
the research questions, the search string used, and seven phases
applied for choosing articles. In Section 3, the main results of this
mapping study are presented and threats to validity are outlined.
A discussion and implications are given in Section 4. Section 5 pre-
sents the final conclusions that could be drawn from this mapping
study together with future work.
Fig. 1. Search string.
2. Research methodology

The objective of this systematic mapping study is to give an
overview of the state of the art regarding existing approaches that
are able to reduce the effort when applying testing techniques. A
second goal is to identify gaps and future research topics. We per-
formed this systematic mapping study according to Petersen et al.
[110], and enhanced our procedure by some concepts used in a sys-
tematic literature review [75] (e.g., using a protocol). In the first
step, the research questions were defined. Next, we selected suit-
able reference databases and identified appropriate search strings.
The articles found were excluded or included in order to obtain a
final result set based on the defined inclusion and exclusion crite-
ria. Finally, the relevant data was extracted and synthesized for the
presentation of the main findings.

2.1. Research questions

The overall objective of the systematic mapping study is to
identify approaches that are able to reduce testing effort. Reducing
effort when applying testing techniques is one way of improving
the efficiency of testing. Efficiency can be defined as the number
of defects found within a certain time interval, e.g., the number
of defects found per hour. Consequently, improving efficiency
means finding at least the same number of defects within less time
in the scope of this mapping study. The overall goal is divided into
four detailed research questions:

RQ1. What are existing approaches for reducing effort when
applying testing techniques, and how can they be
classified?

RQ2. Which concrete techniques exist to reduce testing effort?
RQ3. How many existing optimization approaches had been eval-

uated and how had they been evaluated?
RQ4. When were existing optimization approaches published and

which publication channels were used?
2.2. Study search strategy

Identifying the selection strategy is the first step towards a suc-
cessful identification of primary studies. The goal of this step of the
systematic mapping study is to ensure that the selected articles are
complete to the extent possible. It contains two steps: (i) selection
of the reference databases and identification of the search strings
and (ii) inclusion or exclusion of articles based on the defined
inclusion and exclusion criteria. The systematic mapping study
was performed by two researchers. Both of them are mainly work-
ing in the area of software inspections and software testing.
2.2.1. Source selection and search string
During a systematic mapping study, reference databases are

searched with appropriate search strings. The result is a set of arti-
cles. These articles are primarily used for answering the research
questions. For this reason, a precise determination of the relevant
reference databases and the appropriate search strings is neces-
sary. The decision was made to use the following four reference
databases:

� Inspec.
� Compendex.
� IEEE Xplore.
� ACM Digital Library.

The main reason for choosing these libraries was that they con-
stitute some of the most relevant sources in software engineering.
Inspec and Compendex are comprehensive databases containing
millions of publications, especially in the engineering and com-
puter science domain. Moreover, these two databases are accessed
by using the Engineering Village interface, which is considered
user-friendly and provides advanced search features. IEEE Xplore
and the ACM Digital Library are not covered by the first two online
libraries. Therefore, they were used in addition to complete the fi-
nal result set.

The search string was formulated as follows: First, the main
search keywords were defined based on our previously defined re-
search questions. We considered terms such as quality assurance,
effort, and reduction. Next, a set of relevant synonyms for the main
search keywords was identified (e.g., supported by the IEEE Stan-
dard Glossary of Software Engineering Terminology [138]). In the
last step, the entire search string was generated. The main key-
words were connected with the chosen synonyms using the logical
operators AND and OR. The search string used for selecting articles
from the databases is shown in Fig. 1.

The entire search string was used to search in the reference dat-
abases Compendex and Inspec. The database fields title, abstract,
and keywords were considered. The entire search string could
not be applied in IEEE Xplore and the ACM Digital Library due to
its length (e.g., IEEE Xplore only allows five wildcards [80]).
Instead, a simplified search string was used. The search string

1094 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
included the main keywords such as quality assurance, testing ef-
fort, time reduction, and cost reduction.

2.2.2. Study selection based on inclusion and exclusion criteria
We formulated a set of suitable inclusion and exclusion criteria

for selecting relevant articles. If a certain article discussed the de-
fined overall research question, it was included in the set of se-
lected articles. Otherwise, if a certain article complied with the
exclusion criteria, it was discarded. In cases where one team mem-
ber was not sure whether to include or exclude an article, both
researchers discussed the article in a meeting and a decision was
made together.

The following inclusion criteria were applied: We included arti-
cles that discussed different test optimization techniques and ap-
proaches that could help to reduce the testing effort. Test
optimization can be supported by combinatorial software testing
[55,85] or by white-box approaches [6], for example. However,
we are aware that some techniques are able to improve effective-
ness (i.e., find more defects) and reduce testing effort at the same
time. In this case, the corresponding article was also included even
if a broader scope is addressed. Furthermore, techniques or tools
used before testing that reduce the number of defects were also in-
cluded. Finally, only articles written in English were included.

To ensure that the most relevant articles were found, we set the
starting year to 1991. Articles published before 1991 were consid-
ered as irrelevant and their implication for today’s effort reduction
was considered as low. Articles within the context of improving
testing but with an emphasis on effectiveness were excluded. Fur-
thermore, articles that included only a description of test tech-
niques without concentrating on effort reduction aspects and
articles that introduced complete proceedings were also consid-
ered as irrelevant.

The two team members conducted the selection of articles for
the study in the middle of 2010. The main phase of this selection
comprised exclusion based on titles, abstracts, and full text. In car-
rying out the six selection phases, we applied our defined inclusion
and exclusion criteria. A seventh phase was added in 2011 for com-
plementing the main findings with additional articles published in
2010 that could not have been found during the first selection
procedure.

2.2.2.1. Phase 0. The search string (see Fig. 1) was used to search in
the two databases Inspec and Compendex. We found 4020 articles
in total. In order to manage such a large number of articles, we
used the open source reference tool Zotero [135]. This tool allows
adding notes, tags, and attachments to each article. The 4020 found
articles were imported into Zotero and sorted by titles. After man-
ual elimination of duplicates, 3150 articles remained.

2.2.2.2. Phase 1. Prior to the inclusion and exclusion of articles
based on the titles, the common understanding of the two team
members regarding the selection of articles was measured. For this
purpose, the Cohen’s Kappa value for measuring agreement
between two members was calculated. Each researcher indepen-
dently assessed 110 articles. We rated most of the articles equally
(91 articles). Nineteen articles were rated differently. The inclusion
or exclusion of these articles was discussed afterwards. The result-
ing Cohen’s Kappa value was K = 0.71. This result shows that the
two team members exhibited a substantial degree of agreement
between them. Based on this rating, some exclusion and inclusion
criteria were clarified again.

2.2.2.3. Phase 2. Next, we conducted the inclusion based on titles.
In order to reduce study selection effort, the 3150 articles were
divided into two groups. Each team member had to independently
check one set of articles and decide whether the articles should be
included or excluded based on the titles. Included articles, ex-
cluded articles, and articles classified as ‘not sure’ were recorded
in a protocol. If a team member was not sure whether to include
or exclude an article, the article was discussed later in a meeting
with the other team member and a decision was made. At first,
273 articles were included, 2780 articles were excluded, and 97
articles were classified as not sure. The main exclusion criteria
were complete proceedings (as those do not provide articles di-
rectly, but only the title of a conference and sometimes a general
introduction), articles from different domains and areas (e.g.,
focusing on hardware testing), and articles that do not consider
any improvement (e.g., focusing only on allocation of effort). In a
later meeting, the two team members discussed the 97 articles
which were classified as not sure. Of the 97 articles, 29 articles
were included and 68 articles were excluded in the end. The main
result of this phase is that a total of 302 relevant articles were iden-
tified based on titles.

2.2.2.4. Phase 3. In this phase, the abstracts of 302 articles were
read. Similarly as before, the articles were divided into two sets,
one for each team member. The researchers independently read
the abstracts of the appropriate articles and again classified the
articles as ’include’, ’exclude’, or ’not sure’. Before the independent
selection was done, 20 abstracts were read by both researchers and
the consistency with the decisions was checked. Based on those ab-
stracts, the decision was changed for only three papers. 167 were
included, 100 were excluded, and 35 articles were classified as
’not sure’. At the next meeting, the two team members decided
that nine articles from the latter group should be included in the
study. Consequently, the number of relevant articles was 176 after
this phase. The main exclusion criteria in this phase were again
articles from different domains as well as articles that do not con-
sider any improvement, but describe only a certain test technique.

2.2.2.5. Phase 4. In the next step of the study selection, we decided
whether to include or exclude a certain article based on the full
text of the article. The relevant articles were also divided into
two sets as in the previous phases. They were checked indepen-
dently and finalized in a meeting. Before the independent selection
was done, 20 full texts were read by both researchers and the con-
sistency with the decisions was checked again. Based on those arti-
cles, the decision was changed for only one paper. In total, 176
articles were investigated, of which 121 were included and 55
were excluded. The main exclusion criteria were articles that com-
pare different testing techniques with another focus (e.g., the user
friendliness of various testing techniques) or describe a single test-
ing technique without focusing on effort improvements.

While carrying out the study selection based on the articles
found by Inspec and Compendex, we identified 121 articles that
were relevant. In the next step, the databases IEEE Xplore and
ACM Digital Library had to be searched to ensure that we did not
miss any relevant article.

2.2.2.6. Phase 5. It was not possible to apply the original search
string in IEEE Xplore and the ACM Digital Library since these dat-
abases have a simplified search user interface. For this reason,
the search string was simplified. The new search string included
only the main keywords, e.g., quality assurance, testing, reduction,
test effort, and software. The databases IEEE Xplore and ACM Dig-
ital Library were searched with the new search string. The study
selection was carried out in the same manner as described above
for Inspec and Compendex. While performing the study selection,
we found seven relevant articles in addition, which were not in-
cluded in the study selection from Inspec and Compendex. It
should be mentioned that the most relevant articles from IEEE
Xplore and ACM Digital Library had already been found in Inspec

Fig. 2. Overview of the search procedure.

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1095
and Compendex. Thus, the main work was done while carrying out
the study selection from these databases.

Finally, 121 relevant articles were selected from the databases
Inspec and Compendex and seven articles from the databases IEEE
Xplore and ACM Digital Library.

2.2.2.7. Phase 6. As the analysis and the dissemination of the results
needed some time, we decided to scan again for articles that were
published in 2010 after the initial search (see phases 0–5). Based
on the experience made with Compendex and Inspec and the fact
that about 90% of the articles were considered as irrelevant, we fo-
cused only on IEEE Xplore and ACM Digital Library in this phase.
Those databases cover a suitable number of publications, and we
had already found many of the selected articles using the other
two databases before. This phase was only conducted by one of
the two researchers since the other one was unavailable. Sixteen
new articles were found.

In total, 144 relevant articles were found. Fig. 2 presents an
overview of the search procedure and the number of articles we se-
lected after each phase.

2.3. Data extraction and synthesis

We performed the data extraction according to the procedure
described in the previous section. Microsoft Excel was used to
summarize the relevant data. During data extraction, we analyzed
the full texts of all 144 primary papers. The relevant articles were
divided into two sets, one set for each team member. Then each
team member read the assigned articles and extracted the required
data from the articles in order to answer the corresponding re-
search questions. We collected three kinds of information from
each paper. In the first step, standard information was gathered,
like title of the article, author’s name, the whole reference, the pub-
lication channel, and the type of publication (e.g., conference, sym-
posium, journal).

The second and third steps included information directly re-
lated to answering the previously defined research questions. In
the second step, the goal was to identify for each relevant article
the kinds of approaches and methods used to reduce testing effort.
At the same time, a first rough classification of those approaches
and methods was made, supported by a keywording approach
[110]. The final step included gathering information about the
evaluation of the approaches and methods. Based on different scor-
ing rubrics stated by Ivarsson and Gorschek [137], we considered
some of those aspects in our analysis. Our objective was to identify
whether the existing optimization approaches had been evaluated
and how they had been evaluated. This means we extracted infor-
mation on the kind of evaluation that had been performed (i.e., re-
search method, such as lessons learned, case study) and on the
context in which the evaluation had been performed (e.g., indus-
trial or academic). The results of the synthesized data are pre-
sented in the next section.
3. Results

The results of the systematic mapping study are presented next,
ordered along the four research questions.
3.1. RQ1: What are existing approaches for reducing effort when
applying testing techniques, and how can they be classified?

The purpose of research question one was to investigate which
approaches for reducing testing effort when applying testing tech-
niques exist and how they can be classified. Petersen et al. [110]
suggest using keywording to develop a classification. Following
this approach, abstracts are considered first for extracting relevant
keywords, which can be complemented by adding keywords from
introductions and conclusions. We also followed this approach
when extracting the main ideas in each article about how testing
effort could be reduced, and clustered the different approaches
afterwards. Table 1 first presents the five main categories that were
identified. Furthermore, the table shows the distribution of articles
based on the different categories of the classification.

Most articles, namely about 50%, discuss test automation. This
result is not surprising, because when applying test automation
approaches, a lot of testing time can be saved. One example is auto-
mating manual effort-consuming tasks such as automated test
execution instead of manual performance, automated test report
generation instead of manual derivation, or analysis of the test
results instead of manual analysis of a huge set of data. Test tools
often support automation. A refinement of this category can be

Table 1
Distribution of articles based on classification.

Category # Articles %

Test automation 71 49.3
Prediction 41 28.5
Test input reduction 22 15.2
Quality assurance (QA) before testing 7 4.9
Test strategy 3 2.0

144 100%

1096 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
made with respect to different test phases, such as planning, prep-
aration, execution, and analysis.

Predictions are the next major kind of approaches that can be
used to reduce testing effort. About 28% of the articles fall into this
category. Predictions can support decisions on how much testing
effort is needed or how testing effort should be distributed. For
example, data about defect-proneness of modules can be used to
focus testing effort. A distinction into prediction approaches for de-
fect content and defect-proneness was made. Defect content pre-
diction means how many defects are expected; defect-proneness
prediction means in which areas defects are expected.

The category test input reduction contains about 15% of all
articles. This category includes mainly articles that propose differ-
ent test case selection and prioritization approaches. They are
summarized as test suite reduction approaches. In addition, a test
sequence reduction approach was found. Finally, comparison stud-
ies have evaluated different test input reduction approaches.

Running test cases in order to test a software system usually re-
quires a lot of time. At first, appropriate test data and the expected
output have to be determined for each test case. Then, all test cases
have to be executed. Finally, the results of the test case execution
have to be evaluated. Selecting appropriate test cases and exclud-
ing redundant test cases can save a lot of testing time and thus, im-
prove the efficiency of testing.

Test input reduction approaches can be applied in the area of
regression testing, whose aim is to test a modified software sys-
tem. To rerun all of the test cases in the original test suite is quite
expensive and takes a lot of testing time. Thus, it is necessary to
optimize the test suite. For this reason, different regression test
selection methods exist that reuse test cases from an original test
suite.

Quality assurance before testing (QA before testing) was only
found in about 5% of the articles. In these articles, results from sta-
tic quality assurance activities, such a code inspection and reviews,
are used to reduce effort for later testing activities. Defects already
found by inspections are generally less costly than defects found by
testing activities.

Furthermore, results from inspections that are performed be-
fore testing can be used to make a decision on how much testing
effort is needed as a minimum, or how to distribute available test-
ing effort.

The category test strategy includes articles within the context of
test optimization that address comprehensive approaches, such as
Table 2
Word cloud analysis for each category.

Category Prominent terms

Test automation (preparation) Test, cases, generation, data, coverage,
Test automation (execution) Test, case, software, component, data,
Test automation (analysis) Test, case, generated, changes, data, re
Prediction (defect content) Software, testing, faults, model, reliab
Prediction (defect-proneness) Software, testing, metrics, prediction,
Test input reduction Test, cases, coverage, selection, reduct
QA before testing Software, inspection, defects, faults, te
Test strategy Test, levels, cases, techniques, system,
selecting different test techniques for various test levels to save
test time (and be more effective).

We performed an automated analysis creating word clouds for
all 144 selected articles and for each category. Considering all arti-
cles, the most prominent words were test or testing and software,
which represent our main context. Furthermore, some prominent
word groups containing similar terms were found that show par-
ticular directions in this area, such as the following:

� Data, number, values, results, metrics, study: A lot of data is given,
analyzed, or created to substantiate approaches.
� Execution, analysis, generation: Typical test phases are

considered.
� Model, models, algorithm, method, techniques: A lot of different

approaches are used to address testing.
� Time, cost, effort: Those terms are relevant for addressing our

main goal.
� Fault, faults, defect: The main goal of testing as such is finding

problems.
� Suite, cases, set: Test suites, test cases, and test sets are often

considered and approaches are aimed at reducing them.

With respect to the word clouds for each category, we found
prominent words that express the categories quite well, which is
an indicator for a suitable categorization of the articles found.
For example, each test automation sub-category describes what
is the main focus of the articles, such as generation of tests (typical
terms here are generation, coverage, path, or input) or analyzing
the results (typical terms here are results, information, data, or
faults). An overview of the most prominent terms for the different
categories can be found in Table 2.

3.2. RQ2: Which concrete techniques exist to reduce testing effort?

Next, we will explain each of the five categories in detail regard-
ing how testing effort can be saved with respect to the identified
techniques and approaches.

3.2.1. Category automation
The category automation with 71 articles contains most of the

articles found in this systematic mapping study. The result is not
surprising because applying test automation approaches and using
test tools offers many advantages, e.g., saving testing effort due to
reduced execution time. Manual intervention for repeated tasks
and effort to run tests manually can also be reduced.

In this study, we use typical phases of a test process to catego-
rize the large number of test automation approaches.

A test process for software usually includes the following
phases: planning, preparation, execution, and analysis. In the plan-
ning phase, a test plan for the activities that will be carried out dur-
ing testing has to be defined. In particular, a test plan defines the
test goals and indicates what should be tested, how it should be
tested, and by whom the test should be executed.
program, path, input, method, number, software
execution, method, numbers, segments, system, tool
sults, information, version, value, statistical, coverage, behavioral, number, fault

ility, number, optimal, testing-effort, system, cost
defect, data, faults, complexity, files, system, model, class, code
ion, regression, suite, modified, algorithm, fault, program
sting, code, detection, tools, techniques
technologies, reuse, software, strategy, faults, effort, phases

Fig. 3. Distribution of articles in the automation category. (See above-mentioned references for further information.)

Fig. 4. Distribution of articles in execution phase. (See above-mentioned references for further information.)

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1097
In the preparation phase, test scenarios, test cases, test data
sets, and test scripts needed for test execution have to be devel-
oped. During test execution, testers execute the developed soft-
ware (or parts of it). This phase is based on the test plan defined
before. After the test results are reported, a decision should be
made in the analysis phase on whether the test is sufficient or
whether further tests are necessary. Some of the articles could be
classified into more than one phase (see Fig. 3).

First of all, no articles were found that can be classified into the
planning phase.

Second, 60 articles were found that discuss the preparation
phase. More specifically, different methods, approaches, and tech-
niques for test case generation were described in these articles.
Most techniques are supported by tools for automating an entire
test process or just certain parts of test processes. For example,
automated test case definition substitutes or extends manual test
case derivation and is thus much faster. Consequently, effort can
be saved. In addition, a lot more test cases can be defined with
automation. Various coverage criteria are considered during test
case definition, such as branch coverage, statement coverage, data
flow coverage, and mc/dc coverage.

We observed that articles use different terms to describe test
case generation (e.g., test case generation, test data generation,
or test suite generation). However, they mainly perform the same
activities. Thus, we categorized these articles in one group.

In most articles, concrete test case generation techniques and
methods are proposed. Just a few articles present detailed case
studies. For example, Bertolino et al. [1] conducted a case study
that aimed at improving the branch testing process. They validated
a method for the automatic generation of test paths, and defined a
bound on the number of tests needed.

The generation of test cases is based on different algorithms and
methods. Again, one frequently pursued goal here is to reduce the
effort for defining test cases. In some articles, information about
the test basis is presented, e.g., using specifications and UML
diagrams for the generation of test cases.

Furthermore, there are some articles that present special
techniques and methods for improving the test case generation
process. For example, Li et al. [53] propose a method for guiding
users through test case generation. An experiment of this method
showed a good result regarding test effort reduction.

18 articles were assigned to the execution phase in the testing
process. These articles mainly propose different techniques, meth-
ods, and approaches for reducing the execution time of test cases.
To support the proposed techniques, several testing tools were
developed that automate test execution on the following test lev-
els: unit, integration, and system test level (see Fig. 4). Some of
these articles discuss various test levels.

Only five articles were found that could be assigned to the anal-
ysis phase [47,81,104,117,143]. Gerlich et al. [81] propose an ap-
proach that automatically generates test cases based on
information about the source code (prototype specification and
code structure). Furthermore, this approach includes automated
test evaluation and comprehensive presentation of results. The
method described in [47] allows performing conformance evalua-
tion considering different levels. Xie et al. [104] present an ap-
proach that focuses on analyzing and maintaining test scripts in
order to be more efficient. Travison and Staneff [117] present a pat-
tern that helps to automate some steps of the manual process of
failure identification by using instrumentation, annotation, and
recognition techniques. Finally, Jin et al. [143] analyze outputs of
test cases from different versions for focusing testing. Due to the
automation, a reduction of the effort can be assumed.

3.2.2. Category prediction
The category prediction includes 41 articles (see Fig. 5). In this

category, two main sub-categories are distinguished: prediction
of the number of expected defects and prediction of the defect-
prone parts of a system. Predicting the number of defects can make
it easier to decide when to stop testing; predicting defect-prone
parts of the system can focus testing efforts. A large variety of con-
crete methods was found. Many of these approaches present
empirical evaluations.

One article discusses how to decide when to stop testing based
on the cost-estimation models COCOMO2 and COQUALMO [78].
For this purpose, consideration is primarily given to risk. Thirteen

Fig. 5. Distribution of articles in category prediction. (See above-mentioned references for further information.)

1098 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
articles discuss the prediction of software reliability and the
remaining number of expected defects. These approaches are
based on software reliability growth models (SRGMs).

SRGMs attempt to predict software reliability using test data.
The test data are collected during the test execution phase. The
SRGMs try to correlate found failure data with known mathemat-
ical functions such as an exponential function. If there is a good
correlation, the known function can be used to estimate the reli-
ability of the software system to be developed and to predict the
number of defects remaining in the software. This knowledge can
help to make a decision on whether or not the software is ready
for release and how much more testing is required if the software
is not ready for release. In particular, a decision such as when to
stop testing can be made, which helps to reduce the effort of test-
ing activities. The SRGMs can also be used to estimate how many
failures will occur when the software system is used in the field.

There are various types of SRGMs. All these models are based on
different assumptions, for instance, experience of the testers; de-
fects are repaired immediately as soon as they are detected; no
new code is implemented during the testing phase; failures have
different failure rates and failures with the highest rates should
be corrected first.

Fig. 6 gives an overview of the aspects of the software develop-
ment and testing process that the models focus on in particular.
The article by Htoon and Thein [88] has no specific focus. All other
articles focus on a specific aspect, such as different defect types
[6,73]. Teng and Pham [17], for example, propose an SRGM for N-
version programming systems. The presented model explicitly
considers the error-introduction rate and the error-removal effi-
ciency. Furthermore, this model is able to predict system reliability
for N-version programs more accurately than the independent
model and can be used to make a decision on when to stop testing.
Most often test effort or test resources are considered within the
Fig. 6. Focus of SRGMs. (See above-mentioned references for further information.)
models. The aim is to improve such models with respect to their
precision and the consideration of real context.

Another approach in this category is to predict defect-prone
areas. If such areas are identified, testing activities can be focused
on these parts. Because not all parts are tested with the same
intensity, testing effort can be saved. Twenty-six articles were clas-
sified into this category. Most of the articles use metrics for pre-
dicting defect-prone parts. Typical metrics are size or complexity.
Current releases before and after delivery are considered, as well
as historical data. Most often, the predictions are made on the code
level; however, some approaches focus on the system level (e.g.,
[52]).

Fig. 7 gives an overview of the kind of input (i.e., top-level met-
ric) used to perform the predictions; four cases can be
distinguished:

1. Product metrics, e.g., size metrics (e.g., lines of code), complex-
ity metrics (e.g., McCabe complexity), or code structure metrics
(e.g., number of if-then-else).

2. Process metrics, e.g., development metrics (e.g., number of code
changes), or test metrics (e.g., number of test cases).

3. Object-oriented metrics, e.g., weighted method per class, depth
of inheritance.

4. Defect metrics, e.g., customer defects, or defects from previous
releases.

Some articles use different kinds of top-level metrics. For in-
stance, Sherriff et al. consider product and process metrics [60].
A lot of different detailed metrics are often used when considering
one top-level metric (e.g., Tang et al. [27] consider five different ob-
ject-oriented metrics). Consequently, different approaches and
ideas are used to improve the prediction of defect-proneness in or-
der to allocate testing effort in the most suitable manner, and thus,
to reduce testing effort.

Of the remaining three articles (see Fig. 5), one suggests using a
defect classification that can be used to focus on certain defect
classes [83]. Besides mentioning different metrics that can be used
to predict defect-prone parts, two articles present approaches on
how to evaluate such metrics in order to find the most suitable
ones in a given environment [18,27]. Knowing the most appropri-
ate metrics can help to focus on those parts that are most likely to
be defect-prone and thus, will save effort compared to an unfo-
cused testing activity.

3.2.3. Category test input reduction
We assigned twenty-two articles to the category test input

reduction (see Fig. 8). The techniques and methods discussed in
these articles are based on different methods and algorithms.

Twenty of these articles focus on test suite reduction, which is
sometimes also called test case reduction or selection. Especially

Fig. 7. Metrics used in approaches predicting defect-proneness. (See above-mentioned references for further information.)

Fig. 8. Distribution of articles in the test input reduction category. (See above-mentioned references for further information.)

Table 3
Test suite reduction approaches.

No. Approach Reference

1 Model-based approach, statistical calculations considering
historical data

[3]

2 Approach using greedy algorithms [25]
3 High-level abstraction approach [31]
4 Approach using greedy algorithms [34]
5 Particle swarm optimization algorithm [36]
6 Bi-object model approach based on MC/DC coverage

criterion
[50]

7 Dynamic basic block approach [82]
8 Textual differencing approach [97]
9 Model-checker based approach [101]

10 Model-based approach using UML Activity diagrams [103]
11 Semantic change algorithm and pattern-based approach [106]
12 Bi-object model approach based on MC/DC coverage

criterion
[109]

13 Control-flow graph based approach [126]
14 Approach using genetic algorithms considering a test

history
[140]

15 Merging approach of particular test case pairs [145]
16 Multi-objective approach considering selective coverage of

test requirements
[148]

17 Static path algorithm approach [149]
18 Approach using random testing methods, invariants, and

genetic algorithms
[153]

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1099
during regression testing, reducing test cases in a test suite can
play an essential role in saving testing costs. A test suite includes
not only original test cases but also new ones. Such a test suite con-
tains many redundant test cases. To rerun all the test cases is very
expensive and often not efficient.

One article [12] was found that discusses test sequence reduc-
tion. This article proposes an approach for eliminating redundancy
among test sequences that results in reducing software testing
costs. Another article by Usaola and Mateo [147] focuses on reduc-
ing the number of mutants during mutation testing.

The twenty articles about test suite reduction mentioned above
can be further differentiated.

Two articles present comparisons of different regression test
selection techniques [26,63]. In those studies, the relative costs
and benefits of five regression test selection techniques are inves-
tigated. The studies can be helpful for testers in selecting appropri-
ate regression test selection techniques.

Eighteen articles discuss different test case selection tech-
niques, mainly applied for reducing the set of test cases for regres-
sion testing. For example, Pan et al. [50] and Prabhu et al. [109]
both present similar techniques for test suite reduction based on
modified condition/decision coverage. Both methods consider the
coverage degree of test cases for test requirements and the capabil-
ity of test cases to reveal defects. Smith and Kapfhammer [25] and
Ding et al. [34] used greedy algorithms and improved greedy arith-
metic as a basis for the proposed test suite reduction techniques.
Hla et al. [36] propose an approach for regression test case selec-
tion based on prioritization of the test cases. This means that the
test cases have to be prioritized to the best new order considering
the modified software components. Then the test cases with high
priority can be selected for regression tests. Tsai et al. [3] presents
a test case selection and ranking technique. The aim of this tech-
nique is to select and eliminate test cases with similar coverage,
and to rank the test cases according to their potency and coverage.
The proposed approach can be applied not just to perform
regression testing but also to conduct other tasks, such as N-ver-
sion programming, web services testing, or standard-based testing.

Two other articles [31,82] also propose test suite reduction
techniques, but not directly for regression testing. Woo et al. [31]
present a domain-specific approach for test suite reduction with
respect to re-targeted compilers. Baudry et al. [82] present a meth-
od for test case selection considering fault localization.

Consequently, the articles found use a very heterogeneous set of
techniques. Table 3 gives an overview of these approaches.

1100 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
3.2.4. Category QA before testing
Seven articles [2,4,29,65,84,116,124] were found that can be

classified into the category QA before testing. Those articles discuss
different approaches that help to reduce the overall testing effort.
Two articles [2,4] were written by Kim et al. The first article [2]
presents a case study where the authors investigated how software
testing can be improved through code reviews and analysis of code
quality. They analyzed how testing activities can be optimized by
considering the improvements obtained from code review and
analysis. Furthermore, they analyzed the characteristics of soft-
ware and the current project situation in order to adjust the level
of test case design. In the second article [4], Kim et al. present an
extended Software Failure Mode Effect Analysis (SW-FMEA) model.
Both proposed methods can be used to identify and prevent defects
during early development stages. Consequently, defects are found
and corrected early, and subsequent costs for testing are saved.

Two articles [116,84] investigate the interactions between soft-
ware inspections and testing activities, meaning that the possible
benefits obtained from bundling software inspections and testing
are explored. The article written by Gupta and Jalote [116] presents
an experiment where two possible execution orders of applying
code inspection and unit testing were compared. The results of this
experiment indicate that execution order does not affect the code
inspection, but unit tests can be more efficiently and effectively
applied after code inspection. Winkler et al. [84] focus on the
question of whether software inspections support test case gener-
ation. The results of this study show that the collaboration be-
tween software inspections and software testing can affect defect
detection performance and test case generation positively based
on the inspection results. The results of this study can be helpful
in supporting project and quality managers in defining inspection
and testing effort more precisely.

Laitenberger and Debaud [65] performed a survey in the area of
software inspection. They analyzed the entire work done in this
area. In particular, they propose a taxonomy that utilizes a generic
development life-cycle to contextualize software inspection in de-
tail. This taxonomy can be helpful for practitioners who need to
make a decision about which inspection method to choose for a
particular development life-cycle stage. Gegick and Williams
[124] investigated the correlation between findings generated by
static source code analyzers and vulnerabilities discovered by
manual analyses and testing. The results show that the alerts gen-
erated by source code analyzers can identify high-risk components
in the software system early on. Furthermore, the results can be
helpful for software engineers who need to make risk management
decisions that consider the prioritization of redesign, inspections,
Fig. 9. Evaluation of se
and testing efforts. Finally, Wagner et al. [29] compared two static
analysis tools and claimed that the output could be used to focus
testing effort; however, the defects found by the tool were differ-
ent from real field defects in a given context.

3.2.5. Category test strategy
The category test strategy includes three articles [32,123,150].

Wojcicki and Strooper [32] propose a systematic strategy for
selecting certain verification and validation (V&V) combinations.
For the user, it is important to know how the available V&V tech-
niques should be combined in order to make testing activities
effective and efficient. Perez and Kaiser [123] propose a new
test-level integration approach that allows reusing test cases from
higher levels at lower test levels. Afzal et al. [150] compare differ-
ent search-based techniques for predicting the improvement
potential in different testing phases. They propose using defect-
slippage results for a more suitable allocation of effort to different
testing activities.

3.3. RQ3: How many existing optimization approaches had been
evaluated and how had they been evaluated?

We extracted the relevant data about the evaluation of the se-
lected approaches and techniques to answer research question
three. In the first step, we divided the articles into two groups:
evaluated and unevaluated. Of the 144 articles, 103 articles (72%)
were assigned to the evaluated group, and 41 (28%) to the uneval-
uated group. For the evaluated group, we further broke down the
evaluation by context (industrial or academic) and by method
(experience, experiment, case study, or empirical study). Almost
50% of these articles did not provide information about the context
in which the evaluation had been performed. Furthermore, in most
cases, experiments and case studies had been carried out. The re-
sults of this investigation are presented in Fig. 9, which summa-
rizes the main findings.

Compared to the general overview regarding evaluations,
Table 4 presents more detailed results with respect to each of
the categories. The first two columns describe the main category
and, if appropriate, the sub-category. Evaluation category 1 shows
how many approaches were evaluated, and, if an approach was
evaluated, its context. Evaluation category 2 shows the research
method that was applied during evaluations. For the categoriza-
tion of the research method, we considered the wording from
the articles found, which might be designated incorrectly [110].
Furthermore, the sum of the articles counted for all sub-catego-
ries may be higher than for the category itself because some arti-
lected approaches.

Table 4
Evaluation of effort reduction approaches.

Category Evaluation category I Evaluation category II

I II No Yes Experience Experiment Case study Empirical study

Industrial Academic ?

Test automation Preparation 24 6 4 26 8 15 10 3
Test automation Execution 6 3 3 6 2 4 5 1
Test automation Analysis 3 0 1 1 0 0 1 1
Automation 28 9 4 30 9 18 13 3

Prediction Defect content 3 4 3 4 3 8 0 0
Prediction Defect-proneness 3 23 0 0 2 4 14 3
Prediction Defect classification 0 0 0 1 1 0 0 0
Prediction 6 27 3 5 6 12 14 3

Test input reduction Test suite reduction 2 4 2 12 1 10 5 2
Test input reduction Test sequence reduction 0 0 0 1 0 0 1 0

Test input reduction Mutation reduction 1 0 0 0 0 0 0 0
Test input reduction 3 4 2 13 1 10 6 2
QA before testing 3 2 0 2 0 2 2 0
Test strategy 1 2 0 0 0 0 1 1

Table 5
Distribution of articles by year and class.

Category 1991–1995 1996–2000 2001–2005 2006–2010 Total

Test automation 4 5 16 46 71
Prediction 3 3 13 22 41
Test input reduction 1 3 2 16 22
QA before testing 0 1 0 6 7
Test strategy 0 0 0 3 3

Total 8 12 31 93 144
%: 5.6 8.3 21.5 64.6

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1101
cles were categorized into more than one sub-category (e.g., see
category test automation).

First of all, the category ‘‘test automation’’, which contains the
highest number of articles, shows poor evaluation results. Only
nine approaches had been evaluated in an industrial setting,
whereas 30 articles provide no information. Based on a scoring
scale for relevance provided by Ivarsson and Gorschek [137], the
contribution could be considered as rather low. The category ‘‘pre-
diction’’ shows the most positive results, as 27 articles provide
industrial evaluation results, most of them case studies or experi-
ments. Most of them focus on defect-proneness predictions, i.e.,
predicting areas where more defects are expected. One main con-
clusion is that metrics could be used to focus test efforts. However,
no universal metric exists that fits best in all contexts. This means
that the best metrics have to be identified again in each new con-
text. Moreover, concrete data about specific effort savings are
hardly given. The category ‘‘test input reduction’’ is similar to the
‘‘test automation’’ category. The context is often unclear and thus,
conclusions could hardly be generalized. Consequently, a lot more
sound evaluations are necessary. The remaining two categories,
both containing a very low number of articles, present initial re-
sults, which were positive, but could not be generalized due to a
lack of replications.

3.4. RQ4: When were existing optimization approaches published and
which publication channels were used?

The purpose of research question 4 was to investigate when
existing optimization approaches were published and in which dif-
ferent publication channels. Table 5 presents the distribution of the
identified optimization approaches between 1991 and 2010 in
intervals of 5 years. It can be observed that until 2000, less atten-
tion was given to test optimization approaches and methods and
starting from 2001, more articles about reducing testing effort
were published. Therefore, it can be concluded that in recent years
testing optimization has received increased interest, and that this
area has large potential for future research. As we conducted the
analysis until 2010, we did not include articles from 2011.

Fig. 10 shows an overview of the concentration of publications
with respect to different publication channels. The articles about
testing optimization were published in numerous different jour-
nals, conferences, symposiums, and workshops. Most of the articles
were published across different publication channels. This fact is
demonstrated by the biggest circle, which shows that in 86 differ-
ent publication channels, only one article was published. The next
circle indicates that in each of the nine publication channels
mentioned (e.g., ESEM, FATES), two articles were published, and
so on. The last circles demonstrate the main concentration of
publications with respect to test effort reduction approaches.
These are the International Conference on Software Engineering
(ICSE, nine articles, i.e., nine relevant articles were published at
ICSE during the given timeframe) and IEEE Transactions on Soft-
ware Engineering (TSE, six articles). It can be concluded that this
research field is very heterogeneous. Many different aspects are
considered, which are published at different conferences, sympo-
siums and workshops, and in different journals.
3.5. Threats to validity

Different factors may influence the results of a systematic map-
ping study, such as the researchers who performed the study, the
databases selected, the search string created, and the time
constraints selected. The results become more acceptable and

Fig. 10. Distribution of articles per number of publication channels.

1102 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
accurate when these threats to validity are considered, which is
done in the next paragraphs.

3.5.1. Conclusion validity
We performed a systematic mapping study and every step per-

formed was clearly described. Each step was presented in detail,
which allows other researchers to repeat the mapping study.

However, if the selection of articles had been performed by dif-
ferent researchers, it is likely that some articles that were excluded
would be included and vice versa, because the decision about the
exclusion or inclusion of a certain article depends on the research-
ers who performed the mapping study. However, it is highly unli-
kely that these differences based on personal assessments would
change the main conclusions drawn from the identified set of arti-
cles, which is a general classification of approaches.

3.5.2. Construct validity
The aim of the performed mapping study was to obtain a set of

relevant articles covering the given research topic. The result set
should be as complete as possible. For this reason, we derived
the search string systematically. While creating a search string,
not all appropriate words are used due to the number of relevant
articles found using a search string. For example, the word ‘‘verifi-
cation’’ was included in the search string and ‘‘validation’’ was ex-
cluded. The term ‘‘validation’’ is only a synonym for the term
‘‘testing’’, which was used instead and considered as being more
precise in the context of this study. Furthermore, certain terms,
such as ‘‘validation’’, are used inconsistently in literature. ‘‘Valida-
tion’’ sometimes does not consider only testing activities, but all
quality assurance activities along the software development cycle
(including inspections or reviews), which is beyond the scope of
this mapping study. In conclusion, different or additional terms
used in the search string might have resulted in a different set of
final articles; however, this would only have a minor influence
on the general classification derived, and further articles could eas-
ily be categorized according to the presented classification.

3.5.3. Internal validity
We presented all inclusion and exclusion criteria. In this map-

ping study, the selection of relevant articles was performed by
two researchers working independently. It is possible that some
relevant articles were not included due to the different degree of
understanding between the researchers. However, the results of
the pilot selection of the relevant articles show that both research-
ers possessed a high level of agreement (the result of Cohen’s
Kappa value was about 0.65).
3.5.4. External validity
The references within the relevant articles were not examined,

even though additional articles might have been found had these
references been examined. However, experience has shown that
most such articles discuss other aspects of the found techniques.

Furthermore, the classification presented here can only be used
in the given context. These results can serve as a starting point for
researchers and practitioners working in this field.
4. Discussion and implications

4.1. General findings

The results of the systematic mapping study confirm that the
reduction of test effort during testing is a major goal in modern
software development, as the costs for testing are often high. The
topic has received increased attention in recent years, which was
demonstrated by the number of recent publications.

Automation is an approach that is widely applied for reducing
test effort. The automation of certain test process steps, such as
creating test cases or executing them, can reduce the amount of
testing time. Furthermore, prediction approaches and test input
reduction approaches are widely used to save test effort. Prediction
approaches support the focusing of testing activities and avoid or
reduce the need for each part of a system to be tested with the
same effort. As defects are often not distributed equally, the test ef-
fort can be reduced by such an approach. Test input reduction ap-
proaches mainly support reducing the number of test cases when
regression testing is conducted, whereas the same number of de-
fects should be found with the reduced set of test cases. Quality
assurance activities conducted before testing, which reduce the
number of defects proactively, are the fourth approach identified
to reduce test effort. However, only a small set of articles was iden-
tified that support the combination of early quality assurance and
testing.

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1103
4.2. Implications for practitioners

We presented existing approaches, methods, and techniques
that aim at reducing effort when conducting test activities. In addi-
tion, we illustrated existing evidence about the approaches that
show their maturity. Our classification indicates whether an ap-
proach is an established solution applied in an industrial context
or merely in academic environments. Automation approaches are
one major solution for reducing test effort, although concrete effort
reductions are often unclear. Consequently, practitioners have to
decide carefully what and how to automate. Furthermore, concen-
trating testing on parts that are expected to be defect-prone is an-
other big trend. The current evaluation results imply that at least
one metric can be identified in each context that will lead to appro-
priate prediction results. However, such an analysis may take some
time and requires the collection of metrics. New trends, such as the
use of defect data from static quality assurance activities that are
available early, may refine such approaches. In general, practitio-
ners can get an idea of which approaches and techniques may be
suitable for optimizing testing activities in their own context.
However, in this case, adaptations of the techniques may be neces-
sary and the effort improvement has to be analyzed in order to as-
sess the benefit in the given context.
4.3. Implications for researchers

The main objective of this systematic mapping study was to
provide an overview of existing improvement approaches that re-
duce the effort required for testing activities. Only a small number
of approaches could be found where quality assurance activities
performed before testing were conducted in order to test effort.
It may be worthwhile to concentrate on this direction for future re-
search in order to further improve this kind of efficiency, as it is
well known that early defect detection is able to reduce costs. Fur-
thermore, adaptation of existing approaches to new contexts and
their specific requirements is another implication for future re-
search. In addition, more evidence is necessary for assessing the
approaches. This includes, for example, replications of studies
and a more concise definition of the context in order to make re-
sults comparable. Finally, combinations of improvement ap-
proaches could lead to much greater improvements in effort
reduction.
5. Conclusion

We performed a mapping study and presented the state of the
art regarding existing approaches that are able to reduce the effort
of testing techniques.

During the mapping study, 144 articles were found that de-
scribe different approaches and techniques for reducing testing ef-
fort. We classified the articles into five different categories: test
automation, prediction, test input reduction, quality assurance be-
fore testing, and test strategy. The numbers of articles per category
are highly uneven. Fifty percent of the articles discuss test automa-
tion, and another 30% describe prediction approaches. Predictions
determine, for example, when to stop testing or which modules
or classes are defect-prone. They can support a test manager in
deciding, e.g., how much testing effort is required. The category
test input reduction contains about 15% of all articles and includes
mainly articles that present different test case selection and prior-
itization techniques, as well as methods for optimizing and reduc-
ing test suites. Quality assurance before testing is only covered by a
few of the relevant articles. In these articles, results from static
quality assurance activities, such as code inspections and reviews,
are used to reduce effort for later testing activities. Three other
articles were classified as test strategy.

While performing the mapping study, the starting year for
including articles was set to 1991 to ensure that the most relevant
research works would be included, and the last year for inclusion
were publications from 2010. Until 2000, less attention was given
to test optimization approaches and methods, and starting from
2001, more articles about reducing testing effort were published.
Furthermore, it can be concluded that in recent years, testing opti-
mization has received increased interest. In relative numbers, test
input reduction and quality assurance before testing had the high-
est increase during the past 5 years, followed by test automation
and test strategy. Consequently, this research is of high interest
and various results are expected in the future. This is also reflected
by the high number of different publication channels.

About 70% of the approaches found in the articles had been
evaluated. However, the information about the context in which
the evaluation had been performed (i.e., industrial or academic)
was not clearly stated in all categories except prediction. Though
a large number of evaluations could be identified, their rigor and
relevance seem to be rather poor based on our initial analysis,
and many more sound evaluations are necessary to generalize
the conclusions drawn. Furthermore, very little explicit effort
reduction data were found. Thus, conclusions about the potential
of these approaches can often not be determined and generalized.

In summary, it can be stated that there are numerous ap-
proaches to reducing test effort. Only few articles were found that
present a combination of static and dynamic quality assurance
activities, for example a combination of software inspections and
testing. The synergies that might emerge from the combination
of these two techniques remain unexplored.

Based on the results of this mapping study, the objective of one
of our current research projects is to develop an integrated ap-
proach that describes how inspection and testing techniques can
be applied together to reduce the overall costs for testing. Specifi-
cally, we want to investigate the relationships between inspections
and testing. One goal is to draw conclusions on how inspection re-
sults can improve the prediction of defect-prone parts for focusing
testing activities [96,131]. Such an integrated approach should be
able to reduce testing effort.
Acknowledgments

Parts of this work have been funded by the Stiftung Rheinland-
Pfalz für Innovation project ‘‘Qualitäts-KIT’’ (Grant No. 925). We
would like to thank Sonnhild Namingha for proofreading.
References

[1] A. Bertolino, R. Mirandola, E. Peciola, A case study in branch testing
automation, in: Third International Conference on Achieving Quality in
Software, 1997, pp. 47–59.

[2] K. Young, H. Soo, A case study on the improvement of software test
effectiveness through static testing, Journal of KISS: Software and
Applications 34 (March) (2007) 212–218.

[3] W. Tsai, Xinyu Zhou, R. Paul, Yinong Chen, Xiaoying Bai, A coverage
relationship model for test case selection and ranking for multi-version
software, in: IEEE International Symposium on High Assurance, Systems
Engineering, 2007, pp. 105–112.

[4] H. Kim, H. Han, A defect prevention model based on SW-FMEA, Journal of
KISS: Software and Applications 33 (July) (2006) 605–614.

[5] T. Xie and J. Zhao, A framework and tool supports for generating test inputs of
AspectJ programs, in: 5th International Conference on Aspect-oriented
Software, Development, 2006, pp. 190–201.

[6] O. Shatnawi, P. Kapur, A generalized software fault classification model,
WSEAS Transactions on Computers 7 (2008) 1375–1384.

[7] F. Belli, A. Hollmann, M. Kleinselbeck, A graph-model-based testing method
compared with the classification tree method for test case generation, in: 3rd
IEEE International Conference on Secure Software Integration Reliability
Improvement, 2009, pp. 193–200.

1104 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
[8] M. Penaloza, A. Logar, J. Johnson, M. Boucher, A Java unit and integration
testing tool, in: Proceedings of the ISCA 16th International Conference
Computers and their Applications, 2001, pp. 358–61.

[9] A. Boklund, C. Selvefors, A low budget approach to distributed automated
black-box testing, in: International Conference on Software Engineering
Research and, Practice, 2005, pp. 302–308.

[10] P. Neto, R. Resende, C. Padua, A method for information systems testing
automation, in: 17th International Conference on Advanced Information
Systems Engineering, 2005, pp. 504–18.

[11] E. Diaz, J. Tuya, R. Blanco, A modular tool for automated coverage in software
testing, in: Proceedings. Eleventh Annual International Workshop on
Software Technology and Engineering, Practice, 2004, pp. 241–246.

[12] H. Miao, P. Liu, J. Mei, H. Zeng, A new approach to automated redundancy
reduction for test sequences, in: 15th IEEE Pacific Rim International
Symposium on Dependable, Computing, 2009, pp. 93–98.

[13] Y. Cui, L. Li, and S. Yao, A new strategy for pairwise test case generation, in:
3rd International Symposium on Intelligent Information Technology
Application, 2009, pp. 303–306.

[14] B. Biswal, P. Nanda, D. Mohapatra, A novel approach for scenario-based test
case generation, International Conference on Information Technology 2008
(2008) 244–247.

[15] M. Catelani, L. Ciani, V. Scarano, A. Bacioccola, A novel approach to automated
testing to increase software reliability, in: IEEE Instrumentation and
Measurement Technology Conference, 2008, pp. 1499–502.

[16] L. Briones, E. Brinksma, M. Stoelinga, A semantic framework for test coverage,
in: 4th International, Symposium on Automated Technology for Verification
and Analysis, 2006, pp. 399–414.

[17] X. Teng, H. Pham, A software-reliability growth model for N-version
programming systems, IEEE Transactions on Reliability 51 (2002) 311–321.

[18] E. Arisholm, L. Briand, E. Johannessen, A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models,
Journal of Systems and Software 83 (January) (2010) 2–17.

[19] S. Ali, L. Briand, H. Hemmati, R. Panesar-Walawege, A systematic review of
the application and empirical investigation of search-based test case
generation, IEEE Transactions on Software Engineering 99 (2010) 1.

[20] E. Martins, M. de Fatima Mattiello-Francisco, A tool for fault injection and
conformance testing of distributed systems, in: First Latin-American,
Symposium on Dependable Computing, 2003, pp. 282–302.

[21] M. Gallagher, V. Lakshmi Narasimhan, ADTEST: a test data generation suite
for Ada software systems, IEEE Transactions on Software Engineering 23
(1997) 473–484.

[22] F. Wang, S. Wang, Y. Ji, An automatic generation method of executable test
case using model-driven architecture, in: 4th International Conference on
Innovative Computing, Information and Control, 2009, pp. 389–393.

[23] A.G. Koru, J. Tian, An empirical comparison and characterization of high
defect and high complexity modules, Journal of Systems and Software 67
(2003) 153–163.

[24] Y. Shin, L. Williams, An empirical model to predict security
vulnerabilities using code complexity metrics, in: 2nd International
Symposium on Empirical Software Engineering and, Measurement, 2008,
pp. 315–317.

[25] A.M. Smith, G.M. Kapfhammer, An empirical study of incorporating cost into
test suite reduction and prioritization, in: 24th Annual ACM Symposium on
Applied, Computing, 2009, pp. 461–467.

[26] T. Graves, M. Harrold, J. Kim, A. Porter, G. Rothermel, An empirical study of
regression test selection techniques, ACM Transactions on Software
Engineering and Methodology 10 (2001) 184–208.

[27] M. Tang, M. Kao, M. Chen, An empirical study on object-oriented metrics, in:
Proceedings of METRICS ‘99: Sixth International Symposium on Software
Metrics, 1999, pp. 242–249.

[28] H.M. Olague, L.H. Etzkorn, S.L. Messimer, H.S. Delugach, An empirical
validation of object-oriented class complexity metrics and their ability to
predict error-prone classes in highly iterative, or agile, software: a case study,
Journal of Software Maintenance and Evolution 20 (2008) 171–197.

[29] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, M. Schwalb, An evaluation
of two bug pattern tools for Java, in: 1st International Conference on Software
Testing, Verification and Validation, 2008, pp. 248–257.

[30] J. Sant, A. Souter, L. Greenwald, An exploration of statistical models for
automated test case generation, in: Proceedings of the Third International
Workshop on Dynamic, Analysis, 2005, pp. 1–7.

[31] G. Woo, H. Seok Chae, H. Jang, An intermediate representation approach to
reducing test suites for retargeted compilers, in: 12th Ada-Europe
International Conference on Reliable Software Technologies, 2007, pp. 100–
113.

[32] M.A. Wojcicki, P. Strooper, An iterative empirical strategy for the systematic
selection of a combination of verification and validation technologies, in: 5th
International Workshop on Software, Quality, 2007, p. 9.

[33] L. Kawakami, A. Knabben, D. Rechia, D. Bastos, O. Pereira, R. Pereira e Silva,
L.C. Dos Santos, An object-oriented framework for improving software reuse
on automated testing of mobile phones, in: 19th IFIP TC6/WG6.1
International Conference on Testing of Communicating Systems and 7th
International Workshop on Formal Approaches to Testing Software, 2007, pp.
199–211.

[34] W. Ding, J. Kou, K. Li, Z. Yang, An optimization method of test suite in
regression test model, in: WRI World Congress on Software Engineering,
2009, pp. 180–183.
[35] R. Selby, V. Basili, Analyzing error-prone system structure, IEEE Transactions
on Software Engineering 17 (1991) 141–152.

[36] K.H.S. Hla, Y.S. Choi, J.S. Park, Applying particle swarm optimization to
prioritizing test cases for embedded real time software retesting, in: 8th IEEE
International Conference on Computer and Information Technology
Workshops, 2008, pp. 527–532.

[37] N. Oster, Automated generation and evaluation of dataflow-based test data
for object-oriented software, in: 1st International Conference on the Quality
of Software Architectures and 2nd International Workshop on Software,
Quality, 2005, pp. 212–226.

[38] D. Mohapatra, P. Bhuyan, D.P. Mohapatra, Automated test case generation
and its optimization for path testing using genetic algorithm and sampling,
in: WASE International Conference on Information, Engineering, 2009, pp.
643–646.

[39] M. Harman, F. Islam, T. Xie, S. Wappler, Automated test data generation for
aspect-oriented programs, in: 8th ACM International Conference on Aspect-
Oriented Software, Development, 2009, pp. 185–196.

[40] R. Gupta, M. Soffa, Automatic generation of a compact test suite, Algorithms,
Software, Architecture. Information Processing, in: IFIP 12th World Computer
Congress, 1992, pp. 237–243.

[41] H.K. Seung, S.K. Hyeon, Automatic generation of testing environments for
web applications, in: International Conference on Computer Science and,
Software Engineering, 2008, pp. 694–697.

[42] R. Romli, S. Sulaiman, K. Zamli, Automatic programming assessment and test
data generation a review on its approaches, in: International Symposium in
Information Technology, 2010, pp. 1186–1192.

[43] A. Khamis, M. Girgis, A. Ghiduk, Automatic software test data generation for
spanning sets coverage using genetic algorithms, Computing and Informatics
26 (2007) 383–401.

[44] B. Baudry, F. Fleurey, J. Jezequel, Y. Le Traon, Automatic test case
optimization: a bacteriologic algorithm, IEEE Software 22 (2005) 76–82.

[45] N. Oster, F. Saglietti, Automatic test data generation by multi-objective
optimisation, in: 25th International Conference on Computer Safety
Reliability, and Security, 2006, pp. 426–38.

[46] P. Bokil, P. Darke, U. Shrotri, R. Venkatesh, Automatic test data generation for
C programs, in: Third IEEE International Conference on Secure Software
Integration and Reliability Improvement, 2009, pp. 359–368.

[47] D.L. Barbosa, H.S. Lima, P.D.L. Machado, J.C.A. Figueiredo, M.A. Juca, W.L.
Andrade, Automating functional testing of components from UML
specifications, International Journal of Software Engineering and Knowledge
Engineering 17 (2007) 339–358.

[48] K. Im, T. Im, J.D. McGregor, Automating test case definition using a domain
specific language, in: 46th Annual Southeast Regional Conference on XX,
2008, pp. 180–185.

[49] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J. Kazmeier, Automation
of GUI testing using a model-driven approach, in Proceedings of the 2006
international workshop on Automation of software test, 2006, p. 9.

[50] L. Pan, B. Zou, J. Li, H. Chen, Bi-objective model for test-suite reduction based
on modified condition/decision coverage, in: Proceedings. 11th Pacific Rim
International Symposium on Dependable, Computing, 2005, p. 7.

[51] R. Zhao, Z. Li, Boundary value testing using integrated circuit fault detection
rule, in: Testing: Academic and Industrial Conference – Practice and Research,
Techniques, 2009, pp. 3–12.

[52] E. Moritz, Case study: how analysis of customer found defects can be used by
system test to improve quality, in: 31st International Conference on, Software
Engineering, 2009, pp. 123–129.

[53] J.J. Li, D. Weiss, H. Yee, Code-coverage guided prioritized test generation,
Information and Software Technology 48 (2006) 1187–1198.

[54] R.S. Sisodia, V. Channakeshava, Combinatorial approach for automated
platform diversity testing, in: 4th International Conference on Software,
Engineering Advances, 2009, pp. 134–139.

[55] R. Kuhn, R. Kacker, Yu Lei, J. Hunter, Combinatorial software testing,
Computer 42 (2009) 94–96.

[56] M. Hamill, K. Goseva-Popstojanova, Common trends in software fault and
failure data, IEEE Transactions on Software Engineering 35 (2009) 484–496.

[57] C. Huang, Cost-reliability-optimal release policy for software reliability
models incorporating improvements in testing efficiency, Journal of
Systems and Software 77 (2005) 139–155.

[58] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-Miner: a tool for finding copy-paste and
related bugs in operating system code, in: Proceedings of the Sixth Symposium
on Operating Systems Design and Implementation, 2004, pp. 289–302.

[59] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic
test input generation for web applications, in: Proceedings of the 2008
International Symposium on Software Testing and, Analysis, 2008, p. 249.

[60] M. Sherriff, N. Nagappan, L. Williams, M. Vouk, Early estimation of defect
density using an in-process Haskell metrics model, in: 1st International
Workshop on Advances in Model-Based Testing, 2005.

[61] N. Ohlsson, A.C. Eriksson, M. Helander, Early risk-management by
identification of fault-prone modules, Empirical Software Engineering 2
(1997) 166–173.

[62] W.E. Wong, Y. Lei, X. Ma, Effective generation of test sequences for structural
testing of concurrent programs, in: 10th IEEE International Conference on
Engineering of Complex Computer Systems, 2005, pp. 539–548.

[63] T.L. Graves, M.J. Harrold, J. Kim, A. Porter, G. Rothermel, Empirical study of
regression test selection techniques, Proceedings of the, International
Conference on Software Engineering 1998 (1998) 188–197.

F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106 1105
[64] R. Gupta, M. Soffa, Employing static information in the generation of test
cases, Software Testing, Verification and Reliability 3 (1993) 29–48.

[65] O. Laitenberger, J. Debaud, Encompassing life cycle centric survey of software
inspection, Journal of Systems and Software 50 (2000) 5–31.

[66] C. Lin, C. Huang, Enhancing and measuring the predictive capabilities of
testing-effort dependent software reliability models, Journal of Systems and
Software 81 (2008) 1025–1038.

[67] T. Ummu Salima, A. Askarunisha, N. Ramaraj, Enhancing the efficiency of
regression testing through intelligent agents, in: International Conference on
Computational Intelligence and Multimedia Applications, 2008, pp. 103–108.

[68] S. Kpodjedo, F. Ricca, G. Antoniol, P. Galinier, Evolution and search based
metrics to improve defects prediction, in: 1st International Symposium on
Search Based, Software Engineering, 2009, pp. 23–32.

[69] P.L. Li, J. Herbsleb, M. Shaw, B. Robinson, Experiences and results from
initiating field defect prediction and product test prioritization efforts at ABB
Inc., in: 28th International Conference on, Software Engineering, 2006, pp.
413–422.

[70] T. Illes-Seifert, B. Paech, Exploring the relationship of a file’s history and its
fault-proneness: an empirical method and its application to open source
programs, Information and Software Technology 52 (2010) 539–558.

[71] T. Illes-Seifert, B. Paech, Exploring the relationship of history characteristics
and defect count: an empirical study, in: Workshop on Defects in Large
Software Systems, 2008, pp. 11–15.

[72] S. Kuo, C. Huang, M. Lyu, Framework for modeling software reliability, using
various testing-efforts and fault-detection rates, IEEE Transactions on
Reliability 50 (2001) 310–320.

[73] O. Shatnawi, Generalized software fault classification model, in: 12th WSEAS
International Conference on Computers, 2008, pp. 993–998.

[74] Y. Yu, S. Ng, E. Chan, Generating, selecting and prioritizing test cases from
specifications with tool support, in: Proceedings. Third International
Conference on Quality Software, 2003, pp. 83–90.

[75] B. Kitchenham, Guidelines for Performing Systematic Literature Reviews in
Software Engineering, Version 2.3. Technical Report S.o.C.S.a.M. Software
Engineering Group, Keele University and Department of Computer Science
University of Durham, 2007.

[76] G. Fraser, B.K. Aichernig, F. Wotawa, Handling model changes: regression
testing and test-suite update with model-checkers, Electronic Notes in
Theoretical Computer Science 190 (2007) 33–46.

[77] M.N. Ngo, H.B.K. Tan, Heuristics-based infeasible path detection for dynamic
test data generation, Information and Software Technology 50 (2008) 641–
655.

[78] L. Huang, B. Boehm, How much software quality investment is enough: a
value-based approach, IEEE Software 23 (2006) 88–95.

[79] A. Beer, S. Mohacsi, C. Stary, IDATG: an open tool for automated testing of
interactive software, in: Proceedings of the 1998 IEEE 22nd Annual
International Computer Software & Applications Conference, 1998, pp. 470–
475.

[80] IEEE Xplore, <http://ieeexplore.ieee.org/search/advsearch.jsp>.
[81] R. Gerlich, R. Gerlich, T. Boll, P. Chevalley, Improving test automation by

deterministic methods in statistical testing, in: DASIA: Data Systems In
Aerospace, 2006, p. Eurospace.

[82] B. Baudry, F. Fleurey, Y. Le Traon, Improving test suites for efficient fault
localization, in: 28th International Conference on, Software Engineering,
2006, pp. 82–91.

[83] J. Chaar, M. Halliday, I. Bhandari, R. Chillarege, In-process evaluation for
software inspection and test, IEEE Transactions on Software Engineering 19
(11) (1993) 1055–1070.

[84] D. Winkler, S. Biffl, K. Faderl, Investigating the temporal behavior of defect
detection in software inspection and inspection-based testing, in: 11th
International Conference on Product-Focused Software Process Improvement,
2010, pp. 17–31.

[85] A. Calvagna, A. Gargantini, IPO-s: incremental generation of combinatorial
interaction test data based on symmetries of covering arrays, in: IEEE
International Conference on Software Testing, Verification, and Validation
Workshops, 2009, pp. 10–18.

[86] R. Paul, Metrics based classification trees for software test monitoring and
management, in: Proceedings Sixth International Conference on Tools with,
Artificial Intelligence, 1994, pp. 534–540.

[87] J. Michura, M. Capretz, Metrics suite for class complexity, in: Proceedings.
ITCC International Conference on Information Technology: Coding and,
Computing, 2005, pp. 404–409.

[88] C.Y. Htoon, N.L. Thein, Model-based testing considering cost, reliability and
software quality, in: 6th Asia-Pacific Symposium on Information and
Telecommunication Technologies, 2005, pp. 160–164.

[89] I. Bluemke, Object oriented metrics useful in the prediction of class testing
complexity, in: Proceedings of the 27th EUROMICRO Conference, 2001, pp.
130–136.

[90] P.R.F. Nunes, S. Hanazumi, A.C.V. De Melo, OConGraX – Automatically
generating data-flow test cases for fault-tolerant systems, in: 21st IFIP
International Conference on Testing of Communicating Systems and 9th
International Workshop on Formal Approaches to Testing of Software, 2009,
pp. 229–234.

[91] R. Lea, S. Chen, and C. Chung, On generating test data from prototypes, in:
Proceedings of the Fifteenth Annual International Computer Software and
Applications Conference, 1991, pp. 345–350.
[92] C. Huang, J. Lo, S. Kuo, M. Lyu, Optimal allocation of testing resources for
modular software systems, in: Proceedings 13th International Symposium on
Software, Reliability Engineering, 2002, pp. 129–138.

[93] C. Huang, J. Lo, J. Lin, C. Sue, C. Lin, Optimal resource allocation and sensitivity
analysis for modular software testing, in: Proceedings. IEEE Fifth
International Symposium on Multimedia, Software Engineering, 2003, pp.
231–238.

[94] P. Jha, D. Gupta, Bo Yang, P. Kapur, Optimal testing resource allocation during
module testing considering cost, testing effort and reliability, Computers &
Industrial Engineering 57 (2009) 1122–1130.

[95] C. Huang, M.R. Lyu, Optimal testing resource allocation, and sensitivity
analysis in software development, IEEE Transactions on Reliability 54 (4)
(2005) 592–603.

[96] F. Elberzhager, J. Muench, D. Rombach, B. Freimut, Optimizing cost and
quality by integrating inspection and test processes, in: Proceedings of
the International Conference on Software and Systems Process, 2011, pp.
3–12.

[97] F. Vokolos, P. Frankl, Pythia: a regression test selection tool based on textual
differencing, in: Proceedings of 3rd International Conference on Reliability,
Quality and Safety of Software-Intensive, System, 1997, pp. 3–21.

[98] M. Marre, A. Bertolino, Reducing and estimating the cost of test coverage
criteria, in: Proceedings of IEEE 18th International Conference on, Software
Engineering, 1996, pp. 486–94.

[99] V. Jagannath, Yun Young Lee, B. Daniel, D. Marinov, Reducing the costs of
bounded-exhaustive testing, in: 12th International Conference on
Fundamental Approaches to Software Engineering, 2009,
pp. 171–185.

[100] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B. Paech, D. Suliman, Reducing
verification effort in component-based software engineering through built-in
testing, Information Systems Frontiers 9 (2) (2007) 151–162.

[101] G. Fraser, F. Wotawa, Redundancy based test-suite reduction, in: 10th
International Conference on Fundamental Approaches to, Software
Engineering, 2007, pp. 291–305.

[102] N. Li, T. Xie, N. Tillmann, J. de Halleux, W. Schulte, Reggae: Automated test
generation for programs using complex regular expressions, in: 2009 24th
IEEE/ACM International Conference on Automated Software Engineering,
2009, pp. 515–519.

[103] E. Martins, V. G. Vieira, Regression test selection for testable classes, in: 5th
European Dependable Computing Conference, 2005, pp. 453–470.

[104] Q. Xie, M. Grechanik, C. Fu, REST: a tool for reducing effort in script-based
testing, in: 24th IEEE International Conference on Software, Maintenance,
2008, pp. 468–469.

[105] W. Tsai, L. Yu, X. Liu, A. Saimi, Y. Xiao, Scenario-based test case generation for
state-based embedded systems, in: Conference Proceedings of the IEEE
International Performance, Computing, and Communications Conference,
2003, pp. 335–342.

[106] D. Binkley, Semantics guided regression test cost reduction, IEEE Transactions
on Software Engineering 23 (8) (1997) 498–516.

[107] C. Huang, J. Lo, S. Kuo, M.R. Lyu, Software reliability modeling and cost
estimation incorporating testing-effort and efficiency, in: Proceedings of the
1999 10th International Symposium on Software Reliability Engineering,
1999, pp. 62–72.

[108] M.J. Gallagher, V. Narasimhan, Software test data generation using program
instrumentation, in: Proceedings of the IEEE 1st International Conference on
Algorithms and Architectures for Parallel Processing, Part 1, 1995, pp. 575–
584.

[109] J. Prabhu, N. Malmurugan, G. Gunasekaran, R. Gowtham, Study of ERP test-
suite reduction: based on modified condition/decision coverage, in: Second
International Conference on Computer Research and, Development, 2010, pp.
373–378.

[110] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies
in software engineering, in: Proceedings of the 12th International
Conference on Evaluation and Assessment in, Software Engineering, 2008,
pp. 1–10.

[111] F. Pinte, N. Oster, F. Saglietti, Techniques and tools for the automatic
generation of optimal test data at code, model and interface level, in:
30th International Conference on, Software Engineering, 2008, pp. 927–
928.

[112] L. Lazic, N. Mastorakis, Techniques to reduce a set of test cases, WSEAS
Transactions on Computers 5 (11) (2006) 2813–2826.

[113] P. Saraph, M. Last, A. Kandel, Test case generation and reduction by
automated input-output analysis, in: Conference Proceedings. 2003 IEEE
International Conference on Systems, Man and Cybernetics, 2003, pp. 768–
773.

[114] Y. Yongfeng, L. Bin, L. Minyan, L. Zhen, Test cases generation for embedded
real-time software based on extended UML, in: International Conference on
Information Technology and Computer Science, 2009, pp. 69–74.

[115] A. Spillner, Test criteria and coverage measures for software integration
testing, Software Quality Journal 4 (4) (1995) 275–286.

[116] A. Gupta, P. Jalote, Test inspected unit or inspect unit tested code? in: First
International Symposium on Empirical Software Engineering and
Measurement, 2007. ESEM 2007, 2007, pp. 51–60.

[117] D. Travison, G. Staneff, Test instrumentation and pattern matching for
automatic failure identification, in: 1st International Conference on Software
Testing, Verification and Validation, 2008, pp. 377–386.

http://ieeexplore.ieee.org/search/advsearch.jsp

1106 F. Elberzhager et al. / Information and Software Technology 54 (2012) 1092–1106
[118] M. Hirayama, O. Mizuno, T. Kikuno, Test item prioritizing metrics for
selective software testing, IEICE Transactions on Information and Systems
87 (12) (2004) 2733–2743.

[119] R. Hewett, P. Kijsanayothin, D. Smavatkul, Test order generation for efficient
object-oriented class integration testing, in: 20th International Conference on
Software Engineering & Knowledge, Engineering, 2008, pp. 703–708.

[120] C. Baek, S. Park, K. Choi, TEST: an effective automation tool for testing
embedded software, WSEAS Transactions on Information Science and
Applications 2 (2005) 1214–1219.

[121] Health, Social, and Economic Research, The Economic Impacts of Inadequate
Infrastructure for Software Testing, National Institute of Standards and
Technology, 2002.

[122] D. Talby, The perceived value of authoring and automating acceptance tests
using a model driven development toolset, in: Workshop on Automation of
Software, Test, 2009, pp. 154–157.

[123] A. Perez, S. Kaiser, Top-down reuse for multi-level testing, in: 17th IEEE
International Conference and Workshops on Engineering of Computer-Based
Systems, 2010, pp. 150–159.

[124] M. Gegick, L. Williams, Toward the use of automated static analysis
alerts for early identification of vulnerability- and attack-prone
components, in: 2nd International Conference on Internet Monitoring
and Protection, 2007.

[125] Z. Li, J. Zhu, L. Zhang, N. Mitsumori, Towards a practical and effective method
for Web services test case generation, in: Workshop on Automation of
Software, Test, 2009, pp. 106–114.

[126] J. Zhao, T. Xie, N. Li, Towards regression test selection for AspectJ programs,
in: 2nd Workshop on Testing Aspect-oriented Programs, 2006, pp. 21–26.

[127] T. Khoshgoftaar, Xiaojing Yuan, E. Allen, W. Jones, J. Hudepohl, Uncertain
classification of fault-prone software modules, Empirical Software
Engineering 7 (4) (2002) 297–318.

[128] P. Kapur, O. Shatnawi, A. Aggarwal, R. Kumar, Unified framework for
developing testing effort dependent software reliability growth models,
WSEAS Transactions on Systems 8 (4) (2009) 521–531.

[129] K. Whitmill, Usage based test case generation, in: Proceedings Software
Testing Analysis and, Review, 1996, pp. 123–152.

[130] N. Nagappan, L. Williams, M. Vouk, J. Osborne, Using in-process testing
metrics to estimate post-release field quality, in: 18th IEEE International
Symposium on Software, Reliability Engineering, 2007, pp. 209–214.

[131] F. Elberzhager, R. Eschbach, J. Muench, Using inspection results for
prioritizing test activities, in: Proceedings of the 21st International
Symposium on Software Reliability Engineering, Supplemental Proceedings,
2010, pp. 263–272.

[132] P. Pocatilu, Using open source software testing tools for automated unit
testing, Open Source Science Journal 1 (1) (2009) 163–172.

[133] T. Ostrand, E. Weyuker, R. Bell, Using static analysis to determine where to
focus dynamic testing effort, in: Second International Workshop on Dynamic
Analysis and 26th International Conference on, Software Engineering, 2004,
pp. 1–8.

[134] M. Nita, D. Notkin, White-box approaches for improved testing and analysis
of configurable software systems, in: 31st International Conference on,
Software Engineering, 2009, pp. 307–310.

[135] Zotero, <http://www.zotero.org/>.
[136] D. Jackson, M. Thomas, L.I. Millett (Eds.). Software for Dependable Systems:

Sufficient Evidence? Committee on Certifiably Dependable Software Systems,
National Research Council, National Academy of Sciences, 2007.

[137] M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Empirical Software Engineering 16 (3)
(2011) 365–395.

[138] IEEE Standard 610.12-1990. IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[139] A.K. Amanpreet, A.S. Brar, P.S. Sandhu, An empirical approach for software
fault prediction, in: Fifth International Conference on Industrial and,
Information Systems, 2010, pp. 261–265.
[140] S. Nachiyappan, A.Vimaladevi, C.B. SelvaLakshmi, An evolutionary algorithm
for regression test suite reduction, in: International Conference on
Communication and Computational Intelligence.

[141] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug prediction
approaches, in: 7th IEEE Working Conference on Mining Software
Repositories, 2010, pp. 31–41.

[142] D. Chen, X. Li, S. Zhao, Auto-generation and redundancy reduction of test
cases for reactive systems, in: 2nd International Conference on Software
Technology and, Engineering, 2010, pp. 125–130.

[143] W. Jin, A. Orso, T. Xie, Automated behavioral regression testing, in: Third
International Conference on Software Testing, Verification and Validation,
2010, pp. 137–146.

[144] W. Xu, D. Huang, Automated testing for database system, in:
International Conference on Biomedical Engineering and Computer
Science, 2010, pp. 1–4.

[145] H. Cichos, T.S. Heinze, Efficient reduction of model-based generated test
suites through test case pair prioritization, in: Workshop on Model-Driven
Engineering, Verification, and Validation, 2010, pp. 37–42.

[146] L. Yunfeng, B. Kerong, Metrics selection for fault-proneness prediction of
software modules, in: International Conference on Computer Design And
Appliations, 2010, pp. 191–195.

[147] M.P. Usaola, P.R. Mateo, Mutation testing cost reduction techniques: a survey,
IEEE Software 27 (3) (2010) 80–86.

[148] Q. Gu1, B. Tang, D.X. Chen, Optimal regression testing based on selective
coverage of test requirements, in: International Symposium on Parallel and
Distributed Processing with Applications, 2010, pp. 419–426.

[149] B. Jiang, Y. Mu, Z. Zhang, Research of optimization algorithm for path-based
regression testing suit, in: Second International Workshop on Education
Technology and Computer Science, 2010, pp. 303–306.

[150] W. Afzal, R. Torkar R. Feldt, G. Wikstrand, Search-based prediction of fault-
slip-through in large software projects, in: 2nd International Symposium on
Search Based, Software Engineering, pp. 79–88.

[151] L.T. Giang, D. Kang, D.H. Bae, Software fault prediction models for web
applications, in: 34th Annual IEEE Computer Software and Applications
Conference Workshops, pp. 51–56.

[152] R. Lincke, T. Gutzmann, W. Löwe, Software quality prediction models
compared, in: 10th International Conference on Quality Software, 2010, pp.
82–91.

[153] N. Pan, F. Zeng, Y.H. Huang, Test case reduction based on program invariant
and genetic algorithm, in: 6th International Conference on Wireless
Communications Networking and Mobile, Computing, 2010, pp. 1–5.

[154] A.K. Pandey, N.K. Goyal, Test effort optimization by prediction and ranking of
fault-prone software modules, in: 2nd International Conference on
Reliability, Safety & Hazard, 2010, pp. 136–142.

[155] F.Q.B. da Silva, A.L.M. Santos, S. Soares, A.C.C. Franca, C.V.F. Monteiro, F.F.
Maciel, Six years of systematic literature reviews in software engineering: an
updated tertiary study, Information and Software Technology 53 (2011) 899–
913.

[156] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S.
Linkmann, Systematic literature reviews in software engineering – a
systematic literature review, Information and Software Technology 51
(2009) 7–15.

[157] N. Juristo, A.M. Moreno, S. Vegas, Reviewing 25 years of testing technique
experiments, Empirical Software Engineering Journal 1–2 (2004) 7–44.

[158] P. Runeson, C. Andersson, T. Thelin, A. Andrews, T. Berling, What do we know
about defect detection methods?, IEEE Software 23 (3) (2006) 82–86

[159] Z. Zakaria, R. Atan, A.A.A. Ghani, N.F.M. Sani, Unit testing approaches for
BPEL: a systematic review, in: 16th Asia Pacific, Software Engineering
Conference, 2009, pp. 316–322.

[160] C. Catal, B. Diri, A systematic review of software fault prediction studies,
Expert Systems with Applications 36 (4) (2009) 7346–7354.

[161] B. Haugset, G.K. Hanssen, Automated acceptance testing: a literature review
and an industrial case study, Agile, 2008, pp. 27–38.

http://www.zotero.org/

	Reducing test effort: A systematic mapping study on existing approaches
	1 Introduction
	2 Research methodology
	2.1 Research questions
	2.2 Study search strategy
	2.2.1 Source selection and search string
	2.2.2 Study selection based on inclusion and exclusion criteria
	2.2.2.1 Phase 0
	2.2.2.2 Phase 1
	2.2.2.3 Phase 2
	2.2.2.4 Phase 3
	2.2.2.5 Phase 4
	2.2.2.6 Phase 5
	2.2.2.7 Phase 6

	2.3 Data extraction and synthesis

	3 Results
	3.1 RQ1: What are existing approaches for reducing effort when applying testing techniques, and how can they be classified?
	3.2 RQ2: Which concrete techniques exist to reduce testing effort?
	3.2.1 Category automation
	3.2.2 Category prediction
	3.2.3 Category test input reduction
	3.2.4 Category QA before testing
	3.2.5 Category test strategy

	3.3 RQ3: How many existing optimization approaches had been evaluated and how had they been evaluated?
	3.4 RQ4: When were existing optimization approaches published and which publication channels were used?
	3.5 Threats to validity
	3.5.1 Conclusion validity
	3.5.2 Construct validity
	3.5.3 Internal validity
	3.5.4 External validity

	4 Discussion and implications
	4.1 General findings
	4.2 Implications for practitioners
	4.3 Implications for researchers

	5 Conclusion
	Acknowledgments
	References

