
Empirical Studies on Quality in Agile Practices: A
Systematic Literature Review

Panagiotis Sfetsos
Department of Informatics,

Alexander Technological Educational Institution,
Thessalonki, Greece
sfetsos@it.teithe.gr

Ioannis Stamelos
Department of Informatics,

Aristotle University
Thessalonki, Greece

stamelos@csd.auth.gr

Abstract— Nowadays one key question for most organizations is
which of the agile practices should be implemented to improve
product quality. This systematic literature review surveys studies
published up to and including 2009 and attempts to present and
evaluate the empirical findings regarding quality in agile practic-
es. The studies were classified into three groups: test driven or
test first development, pair programming, and miscellaneous
agile practices and methods. The findings of most studies suggest
that agile practices can improve quality if they are implemented
correctly. The significant findings of this study, in conjunction
with previous research, could be used as guidelines for practi-
tioners on their own settings and situations.

Keywords- quality; ISO/IEC 12207; ISO/IEC 9126; empirical
studies; agile methods; agile practices; test-driven development;
test-first development; pair programming; systematic literature
review

I. INTRODUCTION
Although software quality is critical for the success of a

software product, as a concept it is difficult to define, describe,
understand and measure [61]. Quality, according to ISO 8402,
is: ‘The totality of characteristics of a product or service that
bear on its ability to satisfy stated and implied needs’ [62]. The
Institute of Electrical and Electronics Engineers (IEEE), de-
fines quality as ‘the degree to which a system, component, or
process meets specified requirements and customer/user needs
or expectations’ [63]. Both definitions are focused on satisfy-
ing the customer’s need for the software product.

To address the issues of software process - and product
quality in agile methods, we considered two well known indus-
try standards, the ISO/IEC 12207 [68] and ISO/IEC 9126 [64-
67] respectively. The ISO/IEC 12207 standard provides a
framework for software life-cycle processes. We focused only
on the development process area of this standard, because
most of the agile practices could be mapped directly on activi-
ties in this process area. Planning game and sprint planning
include the activities that could be mapped on the requirements
definition activities in development process area, while test
driven development, pair programming and continuous integra-
tion belong to the implementation and testing activities in this
area.

The ISO/IEC 9126 standard, intending to ensure the quality
of all software products, specifies software product quality
characteristics and sub-characteristics and associated metrics.
The standard is divided into four parts: quality model, external
metrics, internal metrics and quality in use metrics. The quality
model [64] classifies software quality in a structured set of cha-
racteristics and sub-characteristics. It provides a framework for
organizations to define a quality model for a software product,
by specifying target values for quality metrics. External metrics
[65] are applicable to running software, while internal metrics
[66] are those which do not rely on software execution (i.e.
measure the software itself - static measures). The ‘quality in
use metrics’ [67] are only available when the final product is
used in real conditions. In this systematic review we focused
on all three types of metrics (external, internal and quality in
use metrics).

Agile methodologies promote evolutionary changes within
software development processes. They rely on a set of best
practices that are considered to increase quality assurance and
control. It can be stated that the bunch of these best practices
forms a disciplined process with built-in quality [2]. The quali-
ty assurance and control procedures are integrated across the
entire life-cycle development, from requirements to the final
release. Agile methods build quality into the product through a
combination of best practices, inducing a different perspective
on quality management. Many studies support and evangelize
the advantages of agile practices with respect to quality.

Agile development completely redefines quality assurance
work, from formal roles to day-to-day activities. Value is
created and quality is assured through all the development
phases, when all the parts are integrated into one cohesive
whole. The developers, following a set of engineering best
practices, such as pair programming [3][4] and test-driven de-
velopment (test-first development and refactoring) [5][6], de-
liver software of higher quality, faster, with a higher accep-
tance to end-users. Pair programming, as an intensely social
and collaborative activity, capitalizes on developers’ unique
skills, experiences, idiosyncrasies, and personalities [7]. This
practice serves as a continual design and code review process
resulting in the reduction of the defects [4] and in the im-
provement of design and code quality. Test-driven development

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.17

44

(TDD) or Test-first development (TFD) and refactoring, is an
iterative and incremental approach to programming. In TDD,
developers write automatically executable tests (test cases)
prior to writing the code they test. Developers do detailed de-
sign and think about new functionalities before writing code. In
combination with acceptance tests, which are being used as
requirement-artifacts, and code refactoring [8] developers are
expected to achieve high quality levels. Refactoring is a discip-
lined way to make small changes to source code improving its
design without changing its external behavior. During refactor-
ing, developers reconstruct the code through code inspection,
and achieve error reduction. Agile methods require that the
customer be involved in all the development phases, a practice
that provides vision in the form of high-level requirements,
basic acceptance criteria and perceived satisfaction for the final
product. By employing such practices in an evolutionary, itera-
tive, and incremental development process, the key business
users become strong partners in assuring quality. In agile me-
thods quality, it is not a single persons’ job; all key business
users are responsible for ensuring that the application is fit for
purpose.

The objective of this systematic review is to evaluate ac-
cording to the ISO/IEC 12207 and ISO/IEC 9126 standards,
synthesize, and present, the empirical findings on quality in
agile methods. This review can help practitioners to improve
their agile practices implementation and researchers to under-
stand the current “state of the art” of quality approaches and
metrics in agile practices.

The rest of the paper is organized as follows: Section II
presents the systematic review method, section III presents the
results of the survey, including limitations and section IV con-
cludes the paper.

II. SYSTEMATIC REVIEW METHOD

A. Introduction
We undertook this systematic review following the estab-

lished review process in [1] and [9] for identifying, assessing
and interpreting all available related research evidence about
quality approaches and metrics in agile practices. The study
was conducted in the following distinct stages: development of
review protocol, formulation of the research questions, identifi-
cation of inclusion and exclusion criteria, identification of rele-
vant literature by conducting a comprehensive and exhaustive
search, selection of primary studies based on inclu-
sive/exclusive criteria, data extraction and synthesis of evi-
dence, and interpretation of results. In the rest of this section,
we describe such stages in detail.

B. Protocol development
We developed a protocol for the systematic review by fol-

lowing the guidelines and procedures as described in [1] [9]. In
this protocol we specified the research questions, search strate-
gy, inclusion and exclusion criteria, quality assessment, data
extraction, and methods to synthesize the evidence in order to
answer the research questions.

C. Research Questions
The objective of the review is to answer the following re-

search questions:

1. What is the current state of knowledge on quality in agile
practices?

2. Which are the most significant practices for achieving quali-
ty in agile development?

D. Inclusion and exclusion criteria
To select the primary studies for the review we considered

the following inclusion criteria:

− Studies had to provide empirical data on quality issues and
metrics in agile practices and passed the quality assessment
procedure (see subsection G).

− Studies could come from both Academia and Industry.

− Quantitative and qualitative research studies should be pub-
lished up to 2009.

− Studies should be written in English.

Exclusion criteria were:

− Studies did not focus on quality issues in agile practices.

− Studies did not present empirical data.

− Studies presented only the opinion of the researcher(s),
‘‘lessons learned” studies (papers without a research ques-
tion and research design) and simulation studies.

E. Literature sources and search criteria
The search process included electronic databases and manual
searches of conference proceedings. The following electronic
databases were searched:

 IEEE Xplore,

 ACM Digital Library,

 Kluwer Online,

 SpringerLink,

 ScienceDirect – Elsevier,

 ISI Web of Science,

 CiteseerX Library,

 Wiley Inter Science Journal Finder.

Moreover, all volumes of the following conference pro-
ceedings were searched: XP, Agile Development Conference,
and XP/Agile Universe.

In the 1st stage of the search process (see next section) the
titles, abstracts, and keywords of the articles in the included
electronic databases and conference proceedings were searched
using the following search terms:

1) agile practice AND empirical AND quality

2) agile software development AND quality

3) pair programming AND empirical AND quality

4) test driven development OR test first development AND

 empirical AND quality

5) refactoring AND empirical AND quality

45

6) planning game AND empirical AND quality

7) on site customer AND empirical AND quality

These search terms were also combined by using the Boo-
lean ‘‘OR” operator, ensuring that an article needed to include
any one of the terms to be retrieved.

F. Selection of primary studies
In our preliminary search, using all possible combinations

of search terms, we retrieved 535 articles (see Fig. 1). The
search concerned firstly the titles, abstracts, and keywords of
the articles in the inspected electronic databases and conference
proceedings. All those papers were inserted, stored and orga-
nized in a spreadsheet for further evaluation. Secondly, the
relevant citations for the selected papers were recorded and
sorted separately in the tool EndNote X3. At stage 2, both au-
thors, in a collaborative assessment process, excluded those
studies that did not include empirical data and were outside the
scope of this systematic review. At this stage, 123 papers were
considered for detailed quality assessment and were inserted in
a new EndNote database and spreadsheet.

Figure 1. Primary studies after each stage of screening process.

G. Quality assessment
To assess the quality of the 123 studies, we developed a

quality criteria checklist screening the major important quality
criteria expected from the review. The list contains 11 criteria
based on quality criteria adapted from [1], [10], [11] and [12].
These criteria cover three main quality characteristics that need
to be considered when appraising studies: rigor, credibility and
relevance.

Rigor answers the question: “Does the study follow a rigor-
ous and appropriate approach in the implementation of the var-
ious methods used?” Three criteria were developed to assess a
study’s rationale, aims and context, answering the following
secondary questions:

1. Does the paper present an empirical study?

2. Are the aims of the research clearly stated?

3. Is the context of the study adequately described?

Another five criteria were used to assess the validity of data
collection, the analysis methods, and the trustworthiness of the
findings. These criteria answer the following sub-questions:

4. Is the research design appropriate to address the aims of the
research?

5. Is the recruitment strategy appropriate to the aims of the
research?

6. Is there a control group with which to compare treatments?

7. Is the data collected in a way that addressed the research
issue?

8. Is the data analysis sufficiently rigorous?

Credibility answers the question: “Are the findings of the
study valid, meaningful and well-presented?” Two other crite-
ria were developed to assess whether the findings of the study
are valid and meaningful. These criteria answer the following
sub-questions:

9. Does the involvement of researcher affect the results (“caus-
ing bias”)?

10. Is there a clear statement of findings?

Relevance answers the question: Are the findings relevant
and useful for the software industry and the research communi-
ty? One further criterion was developed to assess the relevance
of a study, answering the following sub-question:

11. Does the study provide value for research or practice?

Each of the 11 criteria was graded on a dichotomous
‘yes/no’ or ‘1/0’ scale. The first of these criteria was used as
the basis for the inclusion or exclusion of a study. The total
sum of grades for the 11 criteria was used as a confident meas-
ure for grading the quality of each assessed study. Of the 123
studies assessed for quality, only 46 passed the assessment. All
disagreements were resolved by discussion that included both
researchers. The results of the quality assessment are shown in
Table II (Appendix A). In this table a ‘1’ indicates ‘yes’ (or
OK) to the question, while ‘0’ indicates ‘no’ (or not OK).

H. Data Extraction
Data extraction was carried out on the 46 studies that

passed the quality assessment process. The data from each one
of the studies were first recorded using a data extraction form
and then saved as a new textual document file. The following
data were recorded in the data extraction form of each paper:
title, abstract, type of empirical study (experiment, case study,
survey, mixed, etc.), research environment, population, agile
practice in use, research question (if any), main results - evi-
dence on quality in the practice (if any) and conclusions. This
form helped us extract, in a table, all details we needed for each
of the studies (see Table III - Appendix B).

The data extraction process faced some difficulties because
the quality achievements were not clearly reported in certain
studies. Due to this fact, all data from the studies were ex-
tracted by both authors in consensus meetings. All disagree-
ments were resolved by discussion during these meetings.

I. Synthesis of findings
The study followed the conceptual synthesis method which

brings together different understandings or concepts with pur-
pose to create a new concept or concepts. The most known
approach of this method is the Meta-ethnography approach
which combines the results of different studies to create an
understanding of the phenomena under study greater than the
individual ethnographic studies [13]. Following this approach,
in the first phase we identified and recorded in tables the main
concepts concerning findings about quality issues, from each
study. In the second phase the findings were interpreted and

 Number of studies
after

search process

535

Number of studies after
evaluation of title

and abstract

123

Number of studies after
final quality assessment

46

46

compared. This phase revealed the different approaches used in
these studies for measuring and confirming quality (see section
III). It seems that the difference in findings between some stu-
dies is mainly caused by the difference in methods, characteris-
tics, or metrics they utilized. Finally, the findings were trans-
lated, compared, and synthesized in ordered to answer our re-
search questions.

III. RESULTS
Of the 46 empirical studies considered in the systematic re-

view, 24 were experiments, 17 were case studies and 5 were
mixed studies (experiment/case study, experiment/survey, case
study/survey and survey/qualitative). The selected studies cov-
er a wide range of the researched topics and conducted in dif-
ferent settings, varying from professional projects to university
courses. We classified studies in three main categories: quality
in TD/TF development, quality in pair programming and quali-
ty in other practices. The types of studies per category are
summarized in Table I.

TABLE I. TYPE OF STUDIES

We now address our research questions, starting by discuss-
ing what we found regarding quality in agile practices.

A. Quality in TD/TF development
Recent empirical studies, included also in this systematic

review, re-considered test-driven development as the most crit-
ical enabling practice for quality in the agile software devel-
opment. Most of the experiments [17], [19], [20], [23], [28],
[30], [31] and case studies [14], [15], [16], [21], [22], [24],
[26], [27] showed extensive improvement in external quality.
External quality in a control setting (i.e. experiment) was usual-
ly measured by the number of passed acceptance tests or the
total number of defects or number of defects/KLOC (defect
density). In the case studies or mixed studies, external quality
was usually measured by the number of defects found before
release or defects reported by customers. The defects were de-
creased from 5% - 45% [21], [22], [24], [14], [26] [28] up to
50% - 90% [14], [16], [26], [27], [30]. Case studies showed a
stronger improvement in external quality than the experiments,
and this may be due to the controlled settings and the limita-
tions of time. Only two experiments showed non significant
differences in the external quality [25], [29].

Internal quality was usually measured by different code me-
trics such as code size, cyclomatic complexity, coupling and
cohesion. Improvement in internal quality was reported in [15],
while no significant differences were found in [18] and [20].
Code and design complexity were reported to decrease [15],
[20], especially for small design units. Code reusability was

reported to increase [29], while code cohesion did not improve
[18]. One study showed that the total development cost was
decreased because of the decrease of the avoidable fault cost
[21]. Two studies included effort as a research variable [17],
[19]. One of these studies showed that effort for testing was
increased [17], while another showed that the total develop-
ment effort was decreased [19]. Two case studies showed that
development time was increased [14], [16]. Productivity stu-
dies reported contradictory results. Two experiments reported
increased productivity [17], [19], one case study reported de-
creased productivity [15], while another one showed no signif-
icant differences [27].

B. Quality in Pair Programming
Pair Programming, already used with success in both indus-

try and academia, has been exhaustively researched during the
last years. Design and code quality improvement, varying from
15% [35] up to 65% [33], is one of the most significant results
reported by most of the reviewed studies [32], [33], [34], [35],
[36], [37], [38], [40], [41], [42], [44], [45], [49]. For unknown,
complex and challenging programs, pair programming proved
to provide better code than solo programming [32], [46], [47],
[48], [50]. Fewer defects in code were reported in [33], [47],
and no significant difference in code defects was reported in
[39]. The results for productivity [43], [44] and time spent [32],
[33], [34], [39], [40] were contradictory. Many other benefits
were reported such as improved quality of teamwork and
communication [45], [49], code spreading and understanding
[33], [34], better information and knowledge transfer [41],
[49], better and faster design of algorithms [44], increased mo-
rale [38], and more confident programmers [50]. Disadvantag-
es that were reported include increased effort [35] and cost
[40], especially for higher quality products [46], minor loss in
efficiency [34], schedule problems and the personality conflicts
[33]. Compatibility issues of pair programmers were re-
searched in some of the studies included in this review [37],
[45], [48]. Certain combinations of pair programmers concern-
ing skills, knowledge and experiences can increase productivity
[48]. Moreover, certain personality traits ensure higher quality
code, namely Openminded and Responsible [37], or heteroge-
neous personalities/temperaments [45].

C. Quality in other practices
Most of the studies applied XP - key practices, such as

planning game, pair programming, test driven development and
refactoring, in combination, were found to lead in higher quali-
ty [51], [52], [53], [54], [55], [56], [59]. Only in one study no
difference was reported in either internal or external quality
between the XP and the traditional teams [57]. Planning game
was found to lead in better work estimation of the work size
[55]. Refactoring was found to increase quality [51], [59].
Productivity was increased in [52], [53], [56], [59].

XP practices were found to produce better results for small
teams [59]. Scrum process was used in one case study; in this
study an improvement in both the product quality (30%) and in
customer satisfaction was reported [58].

D. Limitations of this systematic review
The internal validity (credibility) and external validity (ge-

neralizability) of the study results are defined in Lincoln and

 Experiments Case
Studies

Mixed Total

TDD/TFD

8 8 2 18

Pair Pro-
gramming

14 3 2 19

Other agile
practices

2 6 1 9

Total 24 17 5 46

47

Guba [60]. The two limitations of this systematic review are
bias in the selection of the studies and inaccuracy in data ex-
traction. To minimize the bias in the selection process, we de-
veloped a research protocol which defined the research ques-
tions, and review process. Based on this protocol we developed
the search terms for the identification of the relevant literature.
However, it must be emphasized that the search process was a
difficult process, because many quality key terms were not
standardized according to some international quality standard
(i.e. ISO/IEC 12207 or ISO/IEC 9126) or were used as context-
or language- specific. To minimize the selection bias we uti-
lized a multistage process that involved both researchers. Data
extraction process was hindered by the way some studies re-
ported their context, their research questions, their sampling
process, the methods and the metrics used, the data collection
process and their results. Therefore, there exists a possibility
that some of the extracted data are inaccurate. The generaliza-
bility of the results may be hindered also by the uncontrolled
variables and metrics used in some of the studies. It is impossi-
ble to directly compare the results of these studies.

IV. CONCLUSION
This paper presented the initial results of a systematic re-

view evaluating quality approaches and metrics, according to
ISO/IEC 12207 and ISO/IEC 9126 standards, in agile practices.
We identified 535 studies of which 46 were found to be empir-
ical studies with acceptable rigor, credibility and relevance.
The studies were categorized in three main groups concerning
quality: test driven or test first development, pair programming
and other practices.

A number of reported benefits and limitations of agile prac-
tices, concerning quality, was identified. A wide range of im-
provements were reported for TDD or /TFD and refactoring,
including among others improvement of external quality. TDD
helps significantly in the improvement of software quality, in
terms of decreased fault rates, when employed in an industrial
context. Such effect was not so clear in the studies conducted
in Academia, even though none of those studies reported de-
creased quality. The productivity effects of TDD were contra-
dictory, and the results varied for different contexts.

 Pair programming was found to be a successful agile prac-
tice. The main finding for this practice is that it strongly im-
proves code and design quality. In addition, it improves the
quality of teamwork, improving communication, understanding
and knowledge transfer. In combination with TDD / TFD and
refactoring, pair programming becomes a key practice for
quality improvement. Planning game and on-site customer are
also some of the XP-practices that contributed in quality im-
provement.

The initial findings of this study are expected to help man-
agers and researchers, in the field of agile methods, to better
understand how to approach quality issues when implementing
the agile practices.

REFERENCES

[1] B. Kitchenham. “Guidelines for performing Systematic Literature Re-

views in Software Engineering”, Version 2.3, Keele University and Uni-
versity of Durham, EBSE Technical Report, 2007.

[2] I. Stamelos and P. Sfetsos, “Agile Software Development Quality As-
surance”, IGI Publishing, 2007, ISBN: 978-159904216-9.

[3] K. Beck. “Extreme programming explained: embrace change”, Addison-
Wesley, Boston, USA, 2000.

[4] A. Cockburn and L. Williams, "The Costs and Benefits of Pair Pro-
gramming," in Extreme Programming examined, G. Succi and M. Mar-
chesi, Eds. Boston: Addison-Wesley, 2001, pp. xv, 569 p.

[5] D. Astels. “TestDriven Development: A Practical Guide”. Upper Saddle
River, New Jersey, USA, Prentice Hall, 2003.

[6] K. Beck. “Test-driven development: By example”. Boston: Addison-
Wesley, 2003.

[7] P. Sfetsos, I. Stamelos, L. Angelis, I. Deligiannis. “An Experimental
Investigation of Personality Types Impact on Pair Effectiveness in Pair
Programming”. Empirical Software Engineering, Volume 14, Number
21/April, 2009 p.p. 187-226.

[8] M. Fowler. “Refactoring: Improving the design of existing code”. Menlo
Park, Calif.: Addison-Wesley Longman, Inc, 1999.

[9] J.P.T. Higgins, S. Green (Eds.), Cochrane Handbook for Systematic
Reviews of Interventions, Version 5.0.0 (updated February 2008), The
Cochrane Collaboration, 2008. Available from: <www.cochrane-
handbook.org>.

[10] P. D. Leedy, J. E. Ormrod, Practical Research Planning and Design,
Pearson Merril Prentice Hall, 2005.S

[11] L. Spencer, J. Ritchie, J. Lewis, L. Dillon, Quality in qualitative evalua-
tion: A framework for assessing research evidence. London: Govern-
ment Chief Social Researcher’s Office, 2003.

[12] Critical Appraisal Skills Programme (CASP), Available from:
www.phru.nhs.uk/Pages/PHD/CASP.htm. .

[13] G.W. Noblit, R.D. Hare, Meta-Ethnography: Synthesizing Qualitative
Studies, Sage Publications, London, 1988.

[14] N. Nagappan, E. M.Maximilien, T. Bhat and L.Williams. “Realizing
quality improvement through test driven development: results and expe-
riences of four industrial teams”, Empirical Software Engineering, Vo-
lume 13, Number 3, June, 2008.

[15] C. Sanchez, L. Williams, E.M. Maximilien. “On the Sustained Use of a
Test-Driven Development Practice at IBM”, Proceedings of the AGILE
2007, pp. 5-14, 2007.

[16] T. Bhat, and N. Nagappan. “Evaluating the efficacy of test-driven devel-
opment: industrial case studies”. Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering, ACM: 356-
363, 2006.

[17] L.Huang and M. Holcombe. “Empirical investigation towards the effec-
tiveness of Test First programming”. Information and Software Tech-
nology, 51(1):182-194, 2009.

[18] D. Janzen and H. Saiedian. Does Test-Driven Development Really Im-
prove Software Design Quality? EEE Software, 25(2):77-84, March-
April 2008.

[19] A. Gupta and P. Jalote. An experimental evaluation of the effectiveness
and efficiency of the test driven development. In ESEM '07: Proceedings
of the First International Symposium on Empirical Software Engineering
and Measurement, pages 285-294, Washington, DC, USA, 2007.

[20] C.Desai, D. S. Janzen. Implications of integrating test-driven develop-
ment into CS1/CS2 curricula. Proceedings of the 40th ACM technical
symposium on Computer science education. Chattanooga, TN, USA,
ACM: 148-152, 2009.

[21] L.O. Damm and L. Lundberg. Results from introducing componentlevel
test automation and Test-Driven Development. Journal of Systems and
Software, 79(7):1001-1014, 2006.

[22] L.O. Damm and L. Lundberg. Quality impact of introducing componen-
tlevel test automation and test-driven development, in: P. Abrahamsson,
N. Baddoo, T. Margaria, R. Messnarz (Eds.), Software Process Im-
provement, Vol. 4764 of Lecture Notes in Computer Science, Springer,
2007, pp. 187-199.

[23] G. Melnik and F. Maurer. A cross-program investigation of students'
perceptions of agile methods. In ICSE '05: Proceedings of the 27th In-
ternational Conference on Software Engineering, pages 481-488, 2005.

[24] R. A. Ynchausti, Integrating Unit Testing Into A Software Development
Team's Process, in: M. Marchesi, G. Succi (Eds.), XP 2001: Proceedings
of the 2nd International Conference on Extreme Programming and Flex-
ible Processes in Software Engineering, Sardinia, Italy, 2001, pp. 84-87.

[25] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar. Towards empirical
evaluation of test-driven development in a university environment. In

48

EUROCON '03: Proceedings of the International Conference on Com-
puter as a Tool, pages 83-86, 2003.

[26] L. Williams, E. M. Maximilien, and M. Vouk. Test-Driven Development
as a Defect-Reduction Practice. In ISSRE '03: Proceedings of the 14th
International Symposium on Software Reliability Engineering, pages 34-
48, Washington, DC, USA, 2003.

[27] E.M. Maximilien, and L. Williams. Assessing test-driven development
at IBM. Proceedings of the 25th International Conference on Software
Engineering. Portland, Oregon, IEEE Computer Society: 564-569, 2003.

[28] B. George and L. A. Williams. A structured experiment of test-driven
development. Information and Software Technology, 46(5):337-342,
2004.

[29] M. Müller, O. Hanger, Experiment about Test-First programming, IEEE
Proceedings on Software 149 (5) pp. 537–544, 2002.

[30] S. H. Edwards. Using TestDriven Development in the Classroom: Pro-
viding Students with Automatic, Concrete Feedback on Performance. In-
ternational Conference on Education and Information Systems: Tech-
nologies and Applications, USA, 2003.

[31] H. Erdogmus, M. Morisio and M. Torchiano. "On the effectiveness of
the testfirst approach to programming." IEEE Transactions on Software
Engineering 31(3): 226 - 237, 2005.

[32] E. Arisholm, Gallis, H., Dyba, T., Sjoberg, D., "Evaluating Pair Pro-
gramming with Respect to System Complexity and Programmer Exper-
tise", IEEE Transactions in Software Engineering, 33(2), pp. 65 - 86,
2007.

[33] A. Begel and N. Nagappan. “Pair programming: what's in it for me?”,
ESEM '08: Proceedings of the Second ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measuremen, pp. 120–128,
2008.

[34] T. Bipp, A. Lepper, and D. Schmedding. "Pair programming in software
development teams - An empirical study of its benefits." Information
and Software Technology 50(3): 231-240, 2008.

[35] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, C.A. Visaggio. ”Evaluat-
ing performances of pair designing in industry”, Journal of Systems and
Software, Volume 80 , Issue 8 pp: 1317-1327, 2007.

[36] C. McDowell, L. Werner, H. Bullock, J. Fernald. "Pair programming
improves student retention, confidence, and program quality." Commun.
ACM 49(8): 90-95, 2006.

[37] J. Chao, and G. Atli, Critical Personality Traits in Successful Pair Pro-
gramming. AGILE’06, IEEE Computer Society, 2006.

[38] J.T. Nosek, “The Case for Collaborative Programming,” Comm. ACM,
Vol. 41, No. 3, pp. 105–108, 1998.

[39] J. Nawrocki and A. Wojciechowski, “Experimental Evaluation of Pair
Programming”, proc. of European Software Control and Metrics (Es-
com), 2001.

[40] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, "Streng-
thening the Case for Pair Programming," IEEE Software, vol. 17, no. 4,
pp. 19–25, 2000.

[41] C. McDowell, L. Werner, H. Bullock, and J. Fernald, "The Effects of
Pair-Programming on Performance in an Introductory Programming
Course," proc. Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pp. 38–42, 2002.

[42] L. Madeyski. “Is External Code Quality Correlated with Programming
Experience or Feelgood Factor?”, In proc. XP 2006, LNCS 4044, pp 65-
74, 2006.

[43] H. Hulkko, and P. Abrahamsson. “A Multiple Case Study on the Impact
of Pair Programming on Product Quality”. In: ICSE ’05: Proceedings of
the 27th International Conference on Software Engineering, New York,
NY, USA, ACM Press 495–504, 2005.

[44] K.M.Lui and K.C.C Chan. “When Does a Pair Outperform Two Individ-
uals?”, LNCS, volume 2675/2003, XP 2003, pp. 225-233, 2003.

[45] P. Sfetsos, I. Stamelos, L. Angelis, I. Deligiannis. “An Experimental
Investigation of Personality Types Impact on Pair Effectiveness in Pair
Programming”. Empirical Software Engineering, Volume 14, Number
21/April, p.p. 187-226, 2009.

[46] M.M. Müller. "Two controlled experiments concerning the comparison
of pair programming to peer review." Journal of Systems and Software,
78(2): pp. 166-179, 2005.

[47] M.M. Müller. "Do programmer pairs make different mistakes than solo
programmers?" Journal of Systems and Software 80(9): pp. 1460-1471,
2007.

[48] K.M. Lui and K.C.C. Chan. Pair programming productivity: novice–
novice vs. expert–expert. Int. J. Human-Comput Studies 64(9):pp. 915–
925, 2006.

[49] T.H. DeClue, Pair programming and pair trading: effects on learning and
motivation in a CS2 course, Journal of Computing Sciences in Colleges,
May 2003, 18(5), 2003.

[50] B. Hanks, C. McDowell, D. Draper, M. Krnjajic. Program quality with
pair programming in CS1, Proceedings of the 9th annual SIGCSE confe-
rence on Innovation and technology in computer science education, pp.
176-180, 2004.

[51] S. Xu and V. Rajlich. “Empirical Validation of Test-Driven Pair Pro-
gramming in Game Development”. Proceedings of the 5th IEEE/ACIS
International Conference on Computer and Information Science, 2006.

[52] L. Layman, L. Williams, L. Cunningham, Exploring extreme program-
ming in context: an industrial case study, Agile Development Confe-
rence, 2004.

[53] S. Ilieva, P. Ivanov, E. Stefanova, Analyses of an agile methodology
implementation, in: Proceedings 30th Euromicro Conference, IEEE
Computer Society Press, 2004, pp. 326–333.

[54] C.A. Wellington, T. Briggs, C.D. Girard, Comparison of student expe-
riences with plan-driven and agile methodologies, in: Proceeedings of
the 35th ASEE/ IEEE Frontiers in Education Conference, 2005.

[55] B. Tessem, Experiences in learning xp practices: a qualitative study, in:
XP 2003, vol. 2675, Springer Verlag, Berlin, pp. 131–137, 2003.

[56] G. Melnik, and F. Maurer, A cross-program investigation of student’s
perceptions of agile methods, in: International Conference on Software
Engineering (ICSE), St. Louis, MI, USA, 2005.

[57] F. Macias, M. Holcombe, M. Gheorghe, A formal experiment comparing
extreme programming with traditional software construction, in: Pro-
ceedings of the Fourth Mexican International Conference on Computer
Science (ENC 2003), 2003.

[58] S. Lee and H.S. Yong, Distributed agile: project management in a global
environment, Empirical Software Engineering, Volume 15, Nubr. 2, pp.
204-217, 2010.

[59] R. Moser, P. Abrahamsson, W. Pedrycz, A.Sillitti and G. Succi, A Case
Study on the Impact of Refactoring on Quality and Productivity in an
Agile Team, LNCS, Volume 5082/2008, pp. 252-266, 2008.

[60] Y.S.Lincoln, E.G.Guba . Naturalistic inquiry. Sage, Thousand Oaks,
1985.

[61] B. Kitchenham and J. Walker, A quantitative approach to monitoring
software development, Software Engineering Journal, pp. 1-13, 1989.

[62] ISO, “ISO 8402 Quality Vocabulary,” in International Organization for
Standardization. Geneva, 1986.

[63] IEEE, “IEEE Std 1074 -1997 - Standard for Software Life Cycle
Processes,” 1998.

[64] ISO/IEC, "ISO/IEC 9126-1 Software engineering- Product quality- Part
1: Quality model," 2001.

[65] ISO/IEC, "ISO/IEC 9126-2 Software engineering -Product quality- part2:
External metrics," 2002.

[66] ISO/IEC, "ISO/IEC 9126-3 Software engineering -Product quality- part3:
Internal metrics," 2002.

[67] ISO/IEC, "ISO/IEC 9126-4 Software engineering -Product quality- part4:
Quality In Use metrics," 2002.

[68] ISO/IEC, "ISO/IEC ISO/IEC 12207: Information Technology - Soft-
ware Life Cycle Processes, 1995.

49

APPENDIX A

TABLE II. QUALITY ASSESSMENT OF STUDIES.

Study 1 2 3 4 5 6 7 8 9 10 11 Total
Research Aim Context Research

design
Sampling Control

Group
Data

collection
Data

analysis
Relation

ship
Findings Value

S1 1 1 1 1 1 0 1 1 0 1 1 9
S2 1 1 1 1 0 0 1 1 0 1 1 8
S3 1 1 1 1 0 0 1 1 0 1 1 8
S4 1 1 1 1 1 1 1 1 0 1 1 10
S5 1 1 1 1 1 1 1 1 0 0 1 9
S6 1 1 1 1 0 1 1 1 0 1 1 9
S7 1 1 1 0 0 1 0 1 0 1 1 7
S8 1 1 1 1 0 0 1 1 0 1 1 8
S9 1 1 1 1 0 0 1 1 0 1 1 8

S10 1 1 1 1 0 0 1 1 1 1 1 8
S11 1 1 1 0 0 0 0 1 0 1 1 7
S12 1 1 1 1 0 1 1 1 0 1 1 9
S13 1 1 1 1 0 0 1 1 0 1 1 8
S14 1 1 1 1 0 0 1 1 0 1 1 8
S15 1 1 1 1 1 1 1 1 0 1 1 10
S16 1 1 1 0 1 1 1 1 0 1 1 9
S17 1 1 1 0 0 0 1 1 0 1 1 7
S18 1 1 1 0 1 1 1 1 0 1 1 9
S19 1 1 1 1 1 1 1 1 0 1 1 10
S20 1 1 1 1 0 0 1 1 1 1 1 9
S21 1 1 1 1 0 0 1 1 0 1 1 8
S22 1 1 1 0 0 1 1 1 0 1 1 8
S23 1 1 1 1 0 0 1 1 0 1 1 8
S24 1 1 1 0 0 0 1 1 0 1 1 7
S25 1 1 1 0 0 1 1 1 0 1 1 8
S26 1 1 1 0 0 0 1 1 0 1 1 7
S27 1 1 1 1 1 1 1 1 0 1 1 10
S28 1 1 1 1 1 1 1 1 0 1 1 10
S29 1 1 1 0 0 0 1 1 0 1 1 7
S30 1 1 1 0 0 1 1 1 0 1 1 8
S31 1 1 1 0 0 0 1 1 0 1 1 7
S32 1 1 1 1 1 1 1 1 0 1 1 10
S33 1 1 1 1 1 1 1 1 0 1 1 10
S34 1 1 1 1 1 1 1 1 0 1 1 10
S35 1 1 1 1 1 1 1 1 0 1 1 10
S36 1 1 1 0 0 1 1 1 0 1 1 8
S37 1 1 1 0 0 1 1 1 0 1 1 8
S38 1 1 1 0 0 0 1 1 0 1 1 7
S39 1 1 1 1 0 1 1 1 0 1 1 9
S40 1 0 1 1 0 1 1 1 0 1 1 8
S41 1 1 1 1 0 1 1 1 0 1 1 9
S42 1 1 1 1 0 0 0 0 1 1 1 7
S43 1 1 1 1 1 0 1 1 0 1 1 9
S44 1 1 1 1 0 1 1 1 0 1 1 9
S45 1 1 1 1 0 0 1 1 0 1 1 8
S46 1 1 1 1 0 0 1 1 1 1 1 9

50

APPENDIX B

TABLE III. OVERVIEW OF PRIMARY STUDIES

ID Authors Type of study Agile
Practice

Research
Environment

Popula-
tion

Results

S1 N. Nagappan et al.
(2008)

Case Study TDD Professional 3 teams − The defect density of the four products
decreased between 40% and 90% com-
pared to similar projects that did not use
the TDD practice.

− 15–35% increase in initial development
time after adopting TDD.

S2 C. Sanchez et al.
(2007)

Case Study TDD Professional 1 team − Improved external and internal quality for
the same products.

− The use of TDD decreases the degree to
which code complexity increases.

S3 T. Bhat, and N. Na-
gappan (2006)

Case Study TDD Professional 6 (A)
5-8 (B)

− 15%(project B) - 35%(project A) longer
development time

− decreased defects/KLOC by 62%(project
A) -76% (project B)

S4 L.Huang and M.
Holcombe (2009)

Experiment TFD Academic 39 − external quality of delivered software ap-
plications increased with the percentage of
time spent on testing regardless of the test-
ing strategy

− More effort on testing
− 70% higher productivity but the improve-

ment is not statistically significant.
S5 D. Janzen and H.

Saiedian (2008)
-Experiment
-Case Study

TDD Mixed
Professional
Academic

19 -
N/A

− test-first programmers are more likely to
write software in more and smaller units
that are less complex and more highly
tested.

− coupling analysis does not provide clear
answers

− cohesion is not improved
S6 A. Gupta and P. Ja-

lote (2007).
Experiment TDD Academic 22 − improves external code quality (affected by

the actual testing efforts)
− reduces overall development efforts
− improves developers’ productivity

S7 C. Desai, and D. S.
Janzen (2009).

Experiment TDD Academic 14 − Test-Last group had 39% more defects than
their Test-First counterpart (external qual-
ity).

− No increase of the internal quality
S8 L.O. Damm and L.

Lundberg (2006)
Case Study TDD Professional 50 − 5-30% decrease in fault-slip-through rate

− 60% decrease in avoidable fault cost
− total project cost reduced by 5-6%

S9 L.O. Damm and L.
Lundberg (2007)

Case Study TDD Professional 50 − ratio of faults decreased from 60-70% to 0-
20%

S10 G. Melnik and F.
Maurer (2005)

-Qualitative
- Survey

-Agile
practices

-TFD

Academic 240 − 73% of students perceived that TF im-
proves quality

S11 R. Ynchausti (2001) Case Study TDD-TFD Professional 5 − improvements in quality ranged from 38%
to 267% fewer defects.

S12 M. Pancur et al.
(2003)

Experiment TDD Academic 34 − small difference in external quality (exter-
nal tests passed)

− lower code coverage
S13 L. Williams et al.

(2003)
Case Study TDD Professional 9 − reduced defect rate by 40%

S14 E.M. Maximilien,
and L. Williams

(2003).

Case Study TDD Professional 1 team − 50% lower defect rate. No productivity
decrease.

S15 B. George and L.
Williams (2004)

Experiment TDD Professional 24 − TDD programmers produce higher quality
code because they passed 18% more func-
tional black-box test cases.

S16 M..M. Müller, and O.
Hagner (2002).

Experiment TFD Academic 19 − no differences in quality
− better reuse with TDD

S17 S. H. Edwards (2003) Experiment TDD Academic 59 − 45 % fewer defects with TDD
S18 H. Erdogmus et al.

(2005)
Experiment TFD Academic 24 − the minimum external quality increased

with the number of tests
− TF-students wrote more tests
− More consistent quality results with TDD

51

S19 E. Arisholm et al.
(2007)

Experiment PP Professional 295 − on the more complex system, the pair
programmers had a 48% increase in the
proportion of correct solutions

− no significant differences in the time taken
to solve the tasks correctly

S20 A. Begel and N.
Nagappan (2008)

- Survey
- Qualitative

PP Professional 487 − (65.4%): pair programming produces
higher quality code,

− fewer bugs, spreading code understanding,
− increased working time, scheduling prob-

lems, and personality conflicts.
S21 T. Bippet al. (2008) Case Study PP Academic 100 − less time than solo programming.

− more code knowledge,
− higher quality code,
− minor loss in efficiency.

S22 G. Canfora et al.
(2007)

Experiment PP Professional N/A − quality improvement is higher than 15%,
− increment of effort to complete the task.

S23 C. McDowell, et al.
(2006)

Case Study PP Academic 554 − pairing students produce higher quality
programs, are more confident in their
work, and enjoy it more,

− female programmers benefit from pair
programming.

S24 J. Chao and G. Atli
(2006)

- Survey
- Experiment

PP Professional
Academic

60
58

− certain personality traits ensure higher
quality code(i.e. Openminded and Respon-
sible),

− differences were statistically significant.
S25 J. T. Nosek (1998) Experiment PP Professional 10 − the pairs produced higher quality solutions

(readability and functionality),
− increased morale (qualitative assessment).

S26 J. Nawrocki and A.
Wojciechowski

(2001)

Experiment PP Academic 21 − no difference in quality (lines of code and
number of resubmissions due to defects in
code),

− no difference in the development time.
S27 L. Williams et al.

(2000)
Experiment PP Academic 41 − increased quality (number of passed test

cases)
− (40 – 50%) less time than the individuals,

but at increased cost
S28 C. McDowell et al.

(2002)
Experiment PP Academic 313 − increased quality (functionality and read-

ability)
− better information and knowledge transfer

S29 L. Madeyski (2006) Experiment PP Academic 188(132pp) − external code quality (here the number of
acceptance tests passed) is correlated with
the feelgood factor, and in using a classic
testing approach.

S30 H. Hulkko, and P.
Abrahamsson (2005)

Case Study PP Professional 4-6 − contrasting results in the defect density
(quality)

− contrasting results in productivity
S31 K.M. Lui and K.C.C.

Chan (2003)
Experiment PP Professional 15 − increased quality

− better and faster designing of algorithms
− increased productivity

S32 P. Sfetsos et al. Experiment PP Academic 70 − heterogeneous personality groups are more
effective (more acceptance tests passed,
better design/code, increased velocity and
better communication)

S33 M.M. Müller (2005) Experiment PP Academic 38 − for same level of correctness, pair and solo
programming have same cost.

− for different level of correctness pair pro-
duces higher quality at the expense of in-
creased cost.

S34 M.M. Müller (2007) Experiment PP Academic 38 (42-
projects)

− pair programming suitable for complex
and challenging problems

− less faulty expression defects for pairs
S35 K.M. Lui and K.C.C.

Chan
Experiment PP Academic 40 − pair programming effectively helps devel-

opers solve unfamiliar programming prob-
lems

− novice–novice pairs against novice solos
are much more productive than expert–
expert pairs against expert solos.

52

S36 T.H. DeClue
(2003)

Experiment PP Academic 24 − increased quality (design/code)
− improved quality of teamwork, commu-

nication skills, comprehension and learn-
ing

S37 B. Hanks et al.
(2004)

Experiment PP Academic N/A − pairing students produce programs that
are shorter and less complex

− more confident in their work
− more likely to complete CS1

S38 S. Xu and V. Raj-
lich (2006)

Case Study PP+TDD+Refactoring Academic 12 − higher quality (more test cases, cleaner
code with higher cohesion, more reason-
able number of methods)

S39 L. Layman et al.
(2004)

Case Study XP – practices Professional 10 − 65% improvement in prerelease quality
− 35% improvement in post-release quality
− 46% increase in productivity

S40 S. Ilieva et al.
(2004)

Case Study XP – practices Professional 4 − 13% fewer defects reported
− 42% increase in productivity

S41 C.A.Wellington et
al. (2005)

Experiment XP – practices Academic 16 − improved quality measurements
− significantly greater code quality

S42 B. Tessem (2003) Case Study XP – practices
PP+TDD

Academic 6 − pp leads to higher quality
− better work estimation of the work size

with planning game.
− TFD leads to higher code/design quality

S43 G. Melnik, and F.
Maurer (2005)

Mixed XP – practices Academic 240 − 76% suggested that XP improves the
quality of code

− 78% believe or strongly believe that us-
ing XP improves the productivity of
small teams

S44 F. Macias et al.
(2003)

Experiment XP – practices Academic 4-5 − no difference in either internal or external
quality between the XP teams and the
traditional teams

− no difference in product size between the
XP teams and the traditional teams

S45 S. Lee and H.S
Yong (2010)

Case Study Scrum Professional − distributed agile projects and Scrum:
30% improvement in the product quality

− more customer satisfaction
S46 R. Moser et al.

(2008)
Case Study XP – practices

Refactoring
Professional 4 − refactoring leads to higher quality and

productivity
− better results for small teams

53

