
51

Separation of Concerns in Feature Diagram Languages:
A Systematic Survey

ARNAUD HUBAUX, University of Namur
THEIN THAN TUN, The Open University and University of Namur
PATRICK HEYMANS, University of Namur

The need for flexible customization of large feature-rich software systems, according to requirements of
various stakeholders, has become an important problem in software development. Among the many software
engineering approaches dealing with variability management, the notion of Software Product Line (SPL)
has emerged as a major unifying concept. Drawing from established disciplines of manufacturing, SPL
approaches aim to design repertoires of software artifacts, from which customized software systems for
specific stakeholder requirements can be developed. A major difficulty SPL approaches attempt to address
is the modularization of software artifacts, which reconciles the user’s needs for certain features and the
development and technical constraints. Towards this end, many SPL approaches use feature diagrams to
describe possible configurations of a feature set. There have been several proposals for feature diagram
languages with varying degrees of expressiveness, intuitiveness, and precision. However, these feature
diagram languages have limited scalability when applied to realistic software systems. This article provides
a systematic survey of various concerns of feature diagrams and ways in which concerns have been separated.
The survey shows how the uncertainty in the purpose of feature diagram languages creates both conceptual
and practical limitations to scalability of those languages.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; D.2.13 [Reusable
Software]: Domain engineering; D.2.13 [Reusable Software]: Reuse models

General Terms: Design, Documentation

Additional Key Words and Phrases: Software product line, feature diagram, separation of concerns,
variability

ACM Reference Format:
Hubaux, A., Tun, T. T., and Heymans, P. 2013. Separation of concerns in feature diagram languages: A
systematic survey. ACM Comput. Surv. 45, 4, Article 51 (August 2013), 23 pages.
DOI: http://dx.doi.org/10.1145/2501654.2501665

1. INTRODUCTION

First introduced by Kang et al. [1990], a Feature Diagram (FD) is a graphical rep-
resentation of similarities and differences in a family of software systems, called a
Software Product Line (SPL). Similarities and differences in an SPL are expressed in
terms of features. In particular, an FD defines a hierarchy of features and constraints
on their selection. The valid combinations of features define the products, also called

This work is supported by the Interuniversity Attraction Poles Programme of the Belgian State, Belgian
Science Policy, under the MoVES project. A T. T. Tun is partially supported by a Microsoft Software Engi-
neering Innovation Foundation Award and by the European Research Council project ASAP.
Authors’ addresses: A. Hubaux (corresponding author), PReCISE Research Centre, Faculty of Computer
Science, University of Namur, Belgium; email: ahu@info.fundp.ac.be; T. T. Tun, The Open University, UK;
P. Heymans, PReCISE Research Centre, Faculty of Computer Science, University of Namur, Belgium.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/08-ART51 $15.00

DOI: http://dx.doi.org/10.1145/2501654.2501665

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:2 A. Hubaux et al.

Fig. 1. Sample FD of the PloneMeeting eVoting component.

configurations, provided by the SPL. In other words, each product is a valid instance
of the FD. Traditionally, FDs are graphically represented as trees where nodes denote
features and edges represent top-down hierarchical decomposition of features.

Figure 1 presents an example of graphical tree-shaped FD of an eVoting SPL. The
and-decomposition of the root feature Voting implies that all its subfeatures, namely,
Encode, VoteValues, and Default VoteValue, have to be selected in a valid product.
Similarly, the or-decomposition of the Encoder feature means that at least one of its
child features, namely, Manager and Vote, has to be selected. The xor-decomposition of
the Default Vote Value means that one and only one of its subfeatures (No and Yes) must
be selected. Cardinality-based decompositions are often used, such as for VoteValues
in our example. [2..5] indicates that at least two, and at most five, of the child features
of VoteValues should be selected in a valid product. Additionally, the <requires> links
in the diagram denote constraints. For instance, the selection of No under Default vote
values requires the selection of No under Vote Values. FDs also support <excludes>
links (not illustrated here), which denote the mutual exclusion.

This particular view of software systems having a core set of common features, and
differing only in limited ways, is a powerful conceptual tool to characterize many of
the products aimed at the mass market. The apparent simplicity of FDs in describing
feature relationships, and their suitability as a communication device for stakeholders,
are often cited as an important reason for their popularity [Kang et al. 1998]. As a
result, there has been much academic and practical interest in designing precise and
expressive FD languages, automated reasoning tools to support the languages, and
their application to real-life problems [Steger et al. 2004; Jensen 2007; Dordowsky and
Hipp 2009; Wenzel et al. 2009].

As FDs grow, a recurrent problem begins to emerge: They have limited scalability [Sca
2009]. When describing an SPL with a realistic number of features, typically in their
hundreds and even thousands [Berger et al. 2010], the diagrams often become too
large for human cognitive abilities, too imprecise for automated reasoning, and too
overloaded to be purposeful. Evidence for limited scalability of FDs comes from practice
(difficulties in creating, updating, and interpreting FDs) [Reiser and Weber 2006] and
from academic research (difficulties in reasoning about large FDs) [Schobbens et al.
2006].

Recognizing this limitation, many SPL approaches have proposed different ways
to separate concerns, for instance, by splitting the FD according to the stakeholders,
the development stages, or runtime dependency. Although the need for separation of
concerns in feature modeling is recognized, there is no consensus about what the main
concerns of FDs are and how these concerns may be managed. Two issues are addressed
in this article. First, what are the important concerns that should be recognized and
separated in FDs? For instance, FDs may be used to describe design options, choices

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:3

of user functionality, and legal constraints. There are many other legitimate concerns
that may be taken into account in FDs. This article provides a list of possible concerns
for FD languages.

Second, what guidelines are provided by the existing feature diagramming tech-
niques for achieving separation of concerns in FDs? Separated concerns may also in-
teract and overlap with each other, therefore the question of how to make sense of
separated concerns is also important. This article provides a discussion of separation
of concerns techniques in FD languages.

In addition to these two issues, we will examine the level of formality involved in the
FD language and the (possibility of) tool support for achieving separation of concerns.

Other surveys have already studied different aspects of FDs. Schobbens et al. [2006]
survey their formal semantics. Chen and Babar [2009] examine the extent to which
scalability is addressed by feature modeling approaches. Chen et al. [2009] also provide
a systematic review of variability management approaches in software product-line
engineering. Finally, Benavides et al. [2010] conduct a literature review that covers
twenty years of automated analysis on FDs. Our survey is different in the sense that
we systematically review concerns and their separation in FD languages.

The rest of the article is organized as follows. Section 2 discusses the research method
used to elicit concerns and their separation techniques in FD languages. Section 3
reports on the execution of the research method. Sections 4 to 7 summarize our findings
for each of the research questions formulated in Section 2.1. Section 8 discusses the
findings of the survey and threats to its validity (Section 9). Concluding remarks can
be found in Section 10.

2. RESEARCH METHOD

The research method we have followed to collect and review papers is inspired by
the guidelines for performing a literature review proposed by Kitchenham [2004]. Her
method provides systematic ways to identify, evaluate, and interpret research data.
Our method deviates from Kitchenham’s in that we intentionally leave out a detailed
quantitative meta-analysis to favor an in-depth qualitative analysis, primarily because
the data we are handling is largely nonstatistical.

This section begins with the presentation of our research questions followed by the
description of the survey protocol. It then details the survey material and the data
collection forms we used to harvest data systematically.

2.1. Research Questions

This survey addresses four questions. The first two questions focus on the elicitation of
concerns, their separation, and composition. The last two questions evaluate the degree
of formality and the tool support that is provided. They are formulated as follows.

RQ1. What are the main concerns of FDs? We expect there are several FD languages
with different notions of “concerns”. We will define what is meant by concern in the
context of this survey, and list these concerns.
RQ2. How are concerns separated and composed? Not only are there different ways
of separating concerns, there may be different ways of composing concerns too. The
survey will cover these as well.
RQ3. What is the degree of formality? In order to discover whether separation and
composition techniques are amenable to automated processing, we will have to as-
sess the formalism used to define them.
RQ4. Is there (an opportunity for) tool support? Separation of concerns in FDs is not
only a conceptual problem, but a practical problem. Part of the solution is the degree
to which automation is available and possible when managing concerns in FDs.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:4 A. Hubaux et al.

2.2. Survey Protocol

The survey protocol is divided into four main steps that go from the selection of papers
to their analysis. This process is depicted in Figure 2. Starting from the top of the
diagram, the survey material is composed of the whole set of papers indexed by DBLP1

and papers that we know are highly relevant to the research questions. We detail in
Section 2.3 how the material was searched and papers selected.

The second step is the filtering process during which papers are kept for a complete
review. The filtering is based on the search for keywords in the abstract and introduc-
tion. In essence, papers that do not refer to feature modeling and separation of concerns
in general are discarded.

The third step consists in the complete review of the remaining papers. As advocated
in Kitchenham [2004], we define data collection forms, discussed in Section 2.4, to
systematize this task. The paper review was split between the first two authors of this
article. Their task was to review and fill out the forms for every paper on their list. The
final step is a qualitative analysis meant to answer our four research questions.

Our research method combines the completeness of automated search with the reli-
ability of manual reviews. This combined approach helps us minimize the subjectivity
and human effort involved. Reliance on only one of the two techniques can have ma-
jor weaknesses. For instance, the fully automated search by Chen and Babar [2009]
initially missed important publications such as FORM [Kang et al. 1998] because the
terms did not match.

2.3. Survey Material

Our survey is restricted to: (1) research papers published in peer-reviewed workshops,
conferences, and journals, (2) books and other manuscripts, such as technical reports,
cited by the peer-reviewed papers, and (3) material accompanying commercial and
noncommercial automated tools.

We considered two input sources for our survey: the DBLP computer science bib-
liography and a collection of papers the authors have amassed in their research on
SPL over several years. The search on DBLP was executed through the following five
queries on the titles of the papers:

Q1. program*.famil*

Q2. software*.famil*

Q3. product*.famil* concern*|separat*|dimension*|aspect*|modul*|view*

Q4. product*.line* concern*|separat*|dimension*|aspect*|modul*|view*

Q5. feature*|variabil* concern*|separat*|dimension*|aspect*|modul*|view*

The . makes two strings undividable, meaning that only white spaces can separate
the left-hand side from the right-hand side. The * is the classical wild card substituting
any sequence of nonspace characters. Finally, the | denotes the boolean or and the white
space the boolean and. The first query is to find papers with titles containing terms such
as program family, program families, and programs families. The second query is to
find papers with titles containing terms such as software family and software families.
The third query is to find papers with titles containing terms such as product families
and concern, or product families and separation, or product families and dimension.
The fourth and fifth queries are similar to the third, but use terms such as product line
and feature variability, instead of product families.

During sample tests of the queries, the version of Q5 presented before returned
more than 600 papers, many of which are false positives. To reduce this number, we
automatically excluded all the papers that were not published at one of the venues

1See http://www.informatik.uni-trier.de/~ley/db/.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:5

2 ltering

DBLP
database

1 Survey material
elicitiation

Already collected
literature

(12 papers)

Paper base
(151 papers)

Rejected papers
(24 papers)

Abstract & introduction
review

[abstract or introduction contains
feature diagram or feature model or variability model]

TRUEFALSE

TRUEFALSE

[abstract or introduction contains
concern or separat or dimension or aspect or modul or view]

Accepted papers
(127 papers)

3 Full paper review

Filled data collection forms

4 Content analysis

Initial node

Exit point

Final node

Activity

Artefact

Decision

Execute
querries

DBLP papers
(144 papers)

Fig. 2. Survey protocol.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:6 A. Hubaux et al.

1questionResearch
Field valuesPossibleDescription
Concern textformFreepapertheinaddressedConcerns
Stakeholders textformFreeconcernsthebytargetedStakeholders
Artefacts textformFreeconcernsthebytargetedArtefacts

stages/tasksDevelopment developmentsoftwaretheinStages
concernsthebytargetedcycle

textformFree

Scope todeterminesconcerntheofscopeThe
torelatedisconcerntheextentwhat

environmentitsoritselfsoftwarethe

ofsome { ex-internal,
ternal}

domainTarget concernthewhichtodomainofType
applies

textformFree

Rationale con-theforneedtheforMotivation
cerns

textformFree

Evaluation provetoconductedevaluationofType
concernstheofrelevancethe

ofsome {illustration,
experiment,controlled

re-surveystudies,case
ethnographies,search,

mixedresearch,action
approach}

2questionResearch
Field valuesPossibleDescription

techniquesSeparation sepa-andidentifytousedTechniques
FDainconcernsrate

textformFree

techniquesComposition con-thecomposetousedTechniques
FDaofcerns

textformFree

3questionResearch
Field valuesPossibleDescription

artefactsFormalised informalisedanddiscussedArtefacts
paperthe

textformFree

formalityofLevel usednotationtheofformalityofLevel ofone { + , +, , -, -
}

formalisationofMeans textformFreeusedtechniqueformalisationofType

4questionResearch
Field valuesPossibleDescription

activitiesSupported textformFreetoolthebysupportedActivities
techniquesImplementation ac-theimplementtousedTechniques

tivities
textformFree

automationofDegree beis/canactivitytheextentwhatTo
automated

ofone {+, , -}

StatusImplementation implementa-theofmaturityofLevel
tion

ofone { proto-mature,
conceptofprooftype, }

Fig. 3. Data collection forms.

returned by the first four queries. This way, we reduced the number of papers from
600+ to 69.

2.4. Data Collection Forms

To systematically collect data answering the research questions, we created four data
collection forms. To evaluate their clarity and completeness prior to the beginning of
the actual review, we conducted a pilot test, as recommended in Kitchenham [2004].
Five papers were thus randomly selected and assigned to the two researchers. Their
task was to fill out the forms and report on their fitness. The adapted forms used for
the survey are presented in Figure 3. For each field, we provide a short description and
the type of expected input. The main result, after some iterations of the form, was that
both researchers were producing similar reports on the five papers.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:7

Table I. Distribution of Papers by Events and Journals

Event # Papers/Event
SPLC 21
VAMOS 10
ICSE, SAC 7
GPCE, SEKE 6
ICSR, MODELS, OOPSLA 5
AOSD, HICSS 4
APSEC, COMPSAC, ECBS, PFE, RE 3
ARES, DAGSTUHL, ICSOFT, PROLAMAT 2
ACISICIS, CSSE, ECOOPW, EMISA, GCSE, ICAISC, ICECCS, ISPE,
ISPW, IWSAPF, MKWI, REFSQ, SERA, SERP, SIGSOFT, UML,
VVEIS, WCRE, WICSA

1

Journal # Papers/Journal
TAOSD 5
SIGSOFT, TSE, JUCS, EOR 2
CONCURRENCY, IBIS, IEE, IJMR, IJSEKE, JSS, RE, SCP, SOPR,
SPIP, TLSDKCS

1

The possible values for the evaluation field in RQ1 are taken from Shull et al. [2007].
We added the illustration criterion to account for cases where the authors do not
explicitly characterize the type of validation they performed. In the level of formality
in RQ3, + means that a complete formal semantics is provided. + means that a formal
semantics is provided but some aspects are still informally defined. ◦ means that only
the abstract syntax is defined by a metamodel or formal grammar. - means that only the
concrete syntax is introduced. - means that only informal descriptions are proposed.
Similarly in RQ4, + means that the activity is fully automated. ◦ means that the
automation of the activity is partial and still requires manual processing. - means that
no automation is provided.

3. EXECUTION

We now report on the execution of the paper elicitation process. First we focus on the
results returned by the queries, and then discuss the total number of papers sorted by
venues.

The five queries were executed on DBLP database on 13 December 2010, using
CompleteSearch developed by Bast [2010]. We developed shell scripts to automatically
extract papers and merge the results of the various queries. The aggregate result of
five queries is a total of 144 papers.

Of these 144 papers, 122 papers appeared in proceedings and 22 in journals. Table I
synthesizes the distribution of the papers by events and journals. We removed 5 papers
that are clearly irrelevant to our survey, and added 12 papers that we know are relevant
but whose titles were not matched by the queries. This raised the count of papers to
151. Our qualitative analysis is based on the remaining 151 papers.

From the 151 papers, 15 were not included because they did not match our criteria.
Nine more were discarded because they were extended by longer papers. Our qualita-
tive analysis is based on the remaining 127 papers. Sections 4 to 7 build upon these
papers to respectively answer RQ1 to RQ4.

4. CONCERNS

Two types of concerns are proposed in the literature: (1) concerns that group features
together according to some given criteria; and (2) concerns that differentiate relation-
ships between features.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:8 A. Hubaux et al.

Table II. Concerns Separating Groups of Features

References Concern
Functional and non-functional property

[Hallsteinsen et al. 2006] Adaptivity
[Thompson and Heimdahl 2003] Fault tolerance
[Colyer et al. 2004] Flexibility
[Etxeberria and Mendieta 2008; Hallsteinsen et al. 2006] Functionality
[Etxeberria and Mendieta 2008] Quality

Facet
[Saleh and Gomaa 2005a; Elsner et al. 2008] Artefacts
[Choi et al. 2009] Binding
[Kang et al. 1990; Kang et al. 1998; Lee et al. 2002; Kang et al. 2002] Capability
[Choi et al. 2009] Configuration
[Kang et al. 1990; Kang et al. 1998; Lee et al. 2002; Kang et al.
2002; Classen et al. 2008; Hartmann and Trew 2008; Tun et al.
2009; Moreira et al. 2005]

Context

[Savolainen and Kuusela 2001] Declarative
[Savolainen and Kuusela 2001] Deductive
[Kang et al. 1990; Kang et al. 1998; Lee et al. 2002; Kang et al. 2002] Domain technology
[Pohl et al. 2005] External variability
[Thompson and Heimdahl 2003] Hardware platform
[Kang et al. 1990; Kang et al. 1998; Lee et al. 2002; Kang et al. 2002] Implementation techniques
[Pohl et al. 2005] Internal variability
[Grünbacher et al. 2009] Market needs
[Hartmann and Trew 2008; Grünbacher et al. 2009; Reiser and
Weber 2006]

Multiple product lines

[Fey et al. 2002; Schobbens et al. 2006] Non-primitive feature
[Choi et al. 2009] Operational dependency
[Reiser and Weber 2007; Mannion et al. 2009; Grünbacher et al.
2009]

Organisational structure

[Deelstra et al. 2009; Metzger et al. 2007; Moreira et al. 2005;
Kircher et al. 2006; Classen et al. 2008; Tun et al. 2009;
Grünbacher et al. 2009]

Provided variability (solution space)

[Deelstra et al. 2009; Metzger et al. 2007; Kircher et al. 2006; Tun
et al. 2009; Thompson and Heimdahl 2003; Classen et al. 2008]

Required variability (problem space)

[Choi et al. 2009] Structure
[Choi et al. 2009] Traceability
[Pohl et al. 2005] Variability in time
[Pohl et al. 2005] Variability in space

Configuration process
[Kang et al. 1990; Lee et al. 2002; Kang et al. 2002; Lee et al. 2004;
Fey et al. 2002; Hubaux et al. 2008; Schmid and Eichelberger 2008]

Binding time

[Lee et al. 2009] Binding state
[Czarnecki et al. 2005; Classen et al. 2009] Configuration levels
[Czarnecki et al. 2004] Configuration stages
[Hubaux et al. 2009] Configuration tasks

4.1. Feature Groups

Concerns grouping features can be further separated into three categories, as reported
in Table II.

4.1.1. Functional and Nonfunctional Property. Some authors represent concerns that group
features according to nonfunctional, a.k.a. quality, aspects such as adaptivity, fault
tolerance, flexibility, or arbitrary qualities that the system possesses [Hallsteinsen et al.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:9

2006; Colyer et al. 2004]. Others group them by functional requirements provided by
the system [Etxeberria and Mendieta 2008; Hallsteinsen et al. 2006].

4.1.2. Facet. Several approaches group features according to the artifacts of which
they model the variability. Some of these approaches directly embed variability into
artifacts such as UML models [Ziadi et al. 2004; Gomaa and Shin 2008; Heidenreich
et al. 2010]. These approaches do not consider variability models as first-class citizens,
in the sense that variability is not the main concept that drives the construction of
models and other artifacts. Instead, they treat variability as an additional concept
in UML models. Conversely, other approaches handle the variability model and base
model separately. For instance, Orthogonal Variability Modeling (OVM) [Pohl et al.
2005] models variation points individually and links these to base models. Czarnecki
et al. [2005] and Czarnecki and Pietroszek [2006] separate FDs from the base UML
model, Classen et al. [2010] formally relate an FD to a behavioral model and reason
about them both, and Heidenreich et al. [2010] map FDs to other models such as
use cases, class diagrams, or statecharts. Our work focuses only on approaches that
recognize FDs as first-class citizens. In this context, a concern is defined as the mapping
between the FD and a set of models.

Choi et al. [2009] divide FDs according to five views. By views, they mean ways
to characterize extensions to FD languages as opposed to describing what the main
concerns of FDs are. In the structure view, feature relationships such as aggregation
and generalization are described. In the configuration view, mandatory, optional, and
alternative features, together with feature cardinality and group cardinality, are de-
scribed. In the binding view, feature binding units representing groups of features
bound together are described. In the operational dependency view the interactions
between features are addressed through the identification of dynamic dependencies
among them. In the traceability view, the implemented-by relationships between fea-
tures are shown. These views are, in a sense, particular to concerns of developers. Pohl
et al. [2005] distinguish between external variability—relevant to customers— and in-
ternal variability—relevant to developers. A similar distinction is also made by several
other authors when recognizing that there are two kinds of variability: product-line
variability and software variability. The former is concerned with the “ability of a soft-
ware system or art[i]fact to be efficiently extended, changed, customized or configured
for use in a particular context” [Svahnberg et al. 2005]. The latter is concerned with
“the variation between the systems that belong to an SPL in terms of properties and
qualities, like features that are provided or requirements that are fulfilled” [Metzger
et al. 2007].

Furthermore, in addition to human agents, such as customers, a number of en-
vironmental factors may also affect variability. The context concern, or the operating
environment concern, addresses attributes of the environment in which the application
is used (e.g., geographic region or legal system) that determine implicit relationships
between features. The domain technologies gather features related to a technology
that is specific to a given domain (such as aviation). Features in this concern are
hardly reusable from one domain to the other. In contrast, the implementation tech-
nologies layer addresses technologies that are not specific to a particular domain (e.g.,
the computer realm). For instance, this category points to features used to describe dis-
play format or database technologies. Business and management concerns also drive
the decomposition of the variability along the market needs as well as business con-
straints [Grünbacher et al. 2009]. In collaborative development environments, view
mechanisms [Hubaux et al. 2011] can be used to create projections of FDs that are
specific to individual development teams. At a fundamental level, some versions of the
semantics of FDs (e.g., Schobbens et al. [2007]) add dummy features whose presence

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:10 A. Hubaux et al.

is required for formal processing. These features, being a technicality, are usually not
shown to the users.

Some feature variability is specific to system properties. Savolainen and Kuusela
[2001] distinguish between deductive and declarative properties. Deductive properties
regroup the functionalities of the system as extracted from the requirements. Declara-
tive properties, on the other hand, determine constraints over these requirements (e.g.,
optional versus mandatory versus alternative choices). These latter are part of the
domain knowledge that constrains the design space. Thompson and Heimdahl [2003],
echoing Lutz [2008], have discussed properties related to hardware platform and fault
tolerance.

Finally, since software systems are likely to change over time, FDs may also have to
evolve. Pohl et al. [2005] differentiate between variability in time—denoting changes
to artifacts over time—and variability in space—denoting static variability of artifacts.

4.1.3. Configuration Process. A major concern during the configuration process is the
time at which a variant is bound, that is, selected. The list of possible binding times
varies from one project to the other and often depends on the technologies that imple-
ment the SPL. They typically include design time, compile time, load time, and runtime.
Lee et al. [2009] provide a further analysis of feature-binding time analysis. They add
the feature binding state view that determines when a given feature can be bound; it
includes inclusion, modification, and activation rule states.

Czarnecki et al. [2004] and Czarnecki et al. [2005] propose a suite of staged config-
uration approaches where FDs are specialized in a stepwise fashion, and instantiated
according to the stakeholders’ interests at each development stage. With specialization
they refer to a process in which variation points in FDs are removed. In other words,
a more specialized FD has fewer variation points than its originating FD. A fully spe-
cialized FD has no variability. A configuration, on the other hand, is an instantiation
of an FD. Staged configuration has been formalized in the dynamic semantics of FDs
by Classen et al. [2009].

With multilevel staged configuration, Czarnecki et al. [2005] refer to a sequential
process in which an FD is configured and specialized alternately by stakeholders in
the development stages. For instance, a stakeholder will instantiate an FD by selecting
features that are relevant to its requirements. The instance of the model is then used
to specialize the FD by removing parts of the model that are no longer available. The
resulting FD is then instantiated by another stakeholder, and so the process repeats
itself.

Hubaux et al. [2009] generalize multilevel staged configuration and propose a com-
bined formalism that maps views on an FD [Hubaux et al. 2010b] to tasks in a workflow
that models the configuration process. They thus achieve better separation of concerns
between configuration process and model. Unlike multilevel staged configuration, they
also allow complex processes to be modeled. In the same vein, White et al. [2009]
describe a model of configuration steps.

4.2. Feature Relationships

The second type of concern determines the nature of the relationship between two or
more features. Table III collects the different kinds of relationships we accumulated.
Relationships defined as propositional formulas [Batory 2005] that are not explicitly
qualified are left out of this table.

Cho et al. [2008] identify, based on Lee and Kang [2004], several feature relations
and feature dependencies. These are: aggregation relationship, generalization rela-
tionship, required configuration dependency, excluded configuration dependency, usage

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:11

Table III. Concerns Separating Relationship among Features

References Concern
[Cho et al. 2008] Aggregation relationship
[Lee et al. 2002] Composed-of
[Cho et al. 2008] Concurrent activation dependency
[Fey et al. 2002] Conflict
[Cho et al. 2008] Excluded configuration dependency
[Cho et al. 2008] Exclusive activation dependency
[Classen et al. 2008; Tun et al. 2009] Entailment
[Lee et al. 2002; Cho et al. 2008] Generalisation/specialisation
[Czarnecki et al. 2008] Hard constraint
[Lee et al. 2002] Implemented by
[Chen et al. 2006a] Interaction
[Cho et al. 2008] Modification dependency
[White et al. 2009] Point configuration constraint
[Fey et al. 2002] Provided by
[Tun et al. 2009] Quantitative constraints
[Cho et al. 2008] Required configuration dependency
[Cho et al. 2008] Sequential activation dependency
[Czarnecki et al. 2008] Soft constraint
[Cho et al. 2008] Subordinate activation dependency
[Cho et al. 2008] Usage dependency
[Chen et al. 2006a] Weaving
[Metzger et al. 2007] X-links (i.e., cross-links)

dependency, modification dependency, exclusive activation dependency, subordinate ac-
tivation dependency, concurrent activation dependency, and sequential activation de-
pendency. The conflict and provided-by relationships proposed by Fey et al. [2002] are
similar to the original excludes and requires constraints defined in FODA.

Chen et al. [2006a] divide requirements into candidate features for crosscutting
requirements and identify two types of feature dependencies, called interaction and
weaving. Interactions are derived from the flows between responsibilities (e.g., meth-
ods) included in different containers (e.g., classes). Weaving refers to the flows between
responsibilities inside the same container.

Lee et al. [2002] use composed-of, generalization/specialization, and implemented-by
relationships. This indicates that FDs also show the refinement relationships between
artifacts.

Czarnecki et al. [2008] propose using probabilistic FDs in the context of mining FDs
from existing systems. In this approach, both hard constraints (constraints imposed by
the model) and soft constraints (conditional probabilities on the selection of features)
can be expressed and reasoned about.

Classen et al. [2008] use an essential relationship that must hold between the com-
ponents of a requirements document: the logical entailment. They build upon the work
of Jackson [1995], Zave and Jackson [1997], and Gunter et al. [2000] to give a precise
definition of a feature as a triple composed of requirement (R), specification (S) and do-
main assumptions (W) such that S and W entail R: S, D � R. It means that for a set of
assumptions W on the application domain, and a system S, the requirements R must
be satisfied. Tun et al. [2009] further constrain the relationship between S, D, and
R with quantitative constraints in order to generate configurations that satisfy both
the elicited requirements and other quantitative constraints (e.g., maximum memory
footprint).

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:12 A. Hubaux et al.

Table IV. Separation Techniques Identified in This Survey

References Separation technique
[Saleh and Gomaa 2005a; Lee et al. 2006; Noda and Kishi
2008; Colyer et al. 2004; Elsner et al. 2008]

Aspect

[Mendonça et al. 2008] Configuration spaces
[Hubaux et al. 2010b] Configuration views
[Kang et al. 1990; Kang et al. 1998; Lee et al. 2002; Kang
et al. 2002; Thompson and Heimdahl 2003; Reiser and Weber
2006, 2007; Mannion et al. 2009]

Hierarchical layering

[Czarnecki et al. 2005; Classen et al. 2009] Level
[Thompson and Heimdahl 2003] n-Dimensions
[Batory et al. 2003] Origami matrix
[Czarnecki et al. 2005; Classen et al. 2009] Stage
[White et al. 2009] Step
[Hubaux et al. 2009] Task

X-links denote cross-links that capture constraints between the provided and re-
quired provided variability.

Point configuration constraints were introduced by White et al. [2009] to denote
constraints external to the FD that, for instance, require a given feature to be selected
at all times (e.g., safety constraint). They determine which configurations are allowed
at a given point in time.

Here again the concept of relationship is rather imprecise. It is alternatively used
to specify the parent/child relationship (e.g., aggregation or composition), to constraint
feature selection (e.g., requires or excludes), and to provide dependency information
(e.g., implemented by or usage). Furthermore, the semantics of these relationships is
for the most part completely overlooked.

However, implementation-specific relationships differ from implementation-specific
feature groupings. Relationships restrict the selection by enforcing constraints imposed
by business or technological decisions. Groups present domain options that are related
to each other. Even though concerns can focus on implementation-specific features, they
only expose choices and do not import extraneous constraints from the implementation
layer.

5. SEPARATION AND COMPOSITION TECHNIQUES

Techniques for separating and composing concerns are often closely related. However,
for consistency of presentation, they will be discussed separately here.

5.1. Techniques for Separating Concerns

In the same way that we have many possible concerns of FDs, there are also many
ways to separate concerns including aspect oriented, view oriented, tabular, visual-
ization, staged configuration, and requirements-oriented approaches. Many of these
approaches are summarized in Table IV.

Although aspect-oriented programming was initially proposed as a mechanism for
separating concerns in program code, many authors have argued that the idea can be
extended to analytical models of software systems, including FDs. The granularity of
these aspects ranges from aspects at code level [Saleh and Gomaa 2005a] to model-
ing artifacts [Noda and Kishi 2008]. The separation techniques are as diverse as the
elements involved in the separation.

Batory et al. [2003] transpose an approach for multidimensional separation of con-
cerns [Tarr et al. 1999] in SPLs, which recognizes that features may be partitioned in

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:13

Table V. Composition Techniques Identified in This Survey

References Composition technique
[Batory et al. 2003] Cartesian combination
[Mendonça et al. 2008] Configuration plan
[Metzger et al. 2007; Tun et al. 2009] Crosscutting constraints
[Hubaux et al. 2009] Feature configuration workflow
[Reiser and Weber 2006, 2007; Mannion et al. 2009] Resolution rules
[Czarnecki et al. 2005] Specialisation
[Saleh and Gomaa 2005a; Chen et al. 2006a] Weaving
[Elsner et al. 2008] Workflow weaving

a number of ways (dimensions) and calls the results of each partitioning units2. For in-
stance, the features of a text editor are regarded as a dimension and the characteristics
of the supported languages are another. Another example would have two classes in
the first dimension—a singly-linked list and a doubly-linked list—and the operations
in the second dimension—insert and delete operations. They propose using the origami
matrix for describing the relationships between dimensions. Batory et al. [2003] make
two important claims about this approach: (1) it prevents possible invalid combinations
of elements; for instance, it does not permit the selection of a doubly-linked list with
operations for singly-linked, because folding always has to happen between rows or
columns, and not between cells, (2) complexity of n dimensions can be reduced to the
complexity of one dimension by folding them.

As discussed in Section 4.1, the concerns for configuration levels, stages, steps, and
tasks also come with their separation mechanisms. Hubaux et al. [2010b] propose a
more generic technique for separation that includes them under the concept of view.
A view is a simplified representation of an FD that has been tailored for a specific
stakeholder, role, task, or, to generalize, a particular combination of these elements.

The vertical separation of concerns in FDs (e.g., from requirements to implementa-
tion decisions) corresponds to the generic notion of hierarchical layering. Thompson
and Heimdahl [2003] use general dimensions that can capture both the operational
decomposition (e.g., hardware platform) and quality aspects of the system (e.g., fault
tolerance).

Having a diversity of approaches in itself is an advantage. However, since the pur-
poses and concerns of FDs are not clear, the concerns to which these techniques are to
be applied remain a question. What is required, in our view, is a clarification in the pur-
poses of FDs, a systematic way to separate and compose FDs, according to well-defined
criteria. The Jackson-Zave framework (and related) for requirements engineering gives
a systematic way to separate requirements, specifications, and domain properties. We
believe that FD languages will benefit such a framework. For instance, in our work in
Classen et al. [2008] and Tun et al. [2009], we have separated variability in require-
ments from variability in the system context and from the software itself. There are
clear criteria for separation and relating properties in requirements, system context,
and the software, which has been formally defined by Gunter et al. [2000].

5.2. Techniques for Composing Concerns

Separation of concerns is only one side of a two-sided story: Having separated concerns,
there is a need to reason about how concerns might be related and negotiated. These
techniques are summarized in Table V.

2Although this approach is focused on features rather than FDs, the way concerns are separated is of interest
to this survey.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:14 A. Hubaux et al.

Mendonça et al. [2008] present algorithms that aggregate features into coherent
groups, called configuration spaces, and then compute possible configurations plans
that determine the sequence in which these groups can be configured.

In their origami matrix approach, Batory et al. [2003] use Cartesian combination
of the classes. In their example, Cartesian combination of the classes and operations
gives four possible programs (a two-by-two table). Units can be “folded” along each
dimension: If the operation dimension is folded, there are two available classes, each
with insert and delete operations. The class dimension can also be folded in the same
way.

Resolution rules define default behaviors to resolve conflicts in, for instance, multi-
level feature trees [Reiser and Weber 2007] and viewpoint-oriented variability mod-
els [Mannion et al. 2009]. Essentially, these rules define conflictual patterns and the
corresponding resolution strategies. For instance, if feature f is optional in a concern
and mandatory in the other, f becomes mandatory in the aggregate version of the FD.

Crosscutting constraints appear to be a basic yet powerful and formal way of handling
concern composition. Hubaux et al. [2009] top these constraints with a workflow that
further constrains the order in which concerns can be composed.

As for aspects, concern weaving techniques highly depend on the artifacts involved
and the abstraction level. Faced with this disparity of techniques, we could not elaborate
a meaningful comparison strategy.

Elsner et al. [2008] argue that current workflow languages are not adequate in
expressing feature-based modularization of software systems. They propose an aspect-
oriented approach to separate out the base workflow from additional workflows, which
can be weaved into the base workflow when additional features are selected.

Regarding the composition of concerns, we see a deep synergy between SPL and re-
quirements engineering research. For instance, techniques on viewpoints [Easterbrook
and Nuseibeh 1996], inconsistency management [Spanoudakis and Zisman 2001],
model synthesis [Uchitel and Chechik 2004], and model merging [Brunet et al. 2006;
Acher et al. 2009] may shed new light on how concerns of FDs should be managed.

6. FORMALIZATION

In terms of level of formality, most of the FD languages we surveyed are largely in-
formal. We believe that the question of having an expressive and succinct formal FD
language is no longer a major problem. The major problem is that most of the ap-
proaches to separation and composition of concerns are weakly formalized. Only 19 out
of the 127 papers obtained a score of + (complete formal semantics given) or + (partial
formal semantics given). Ten other papers obtained ◦ (abstract syntax given) because
they provide metamodel or abstract syntax of the concepts they use. Some of the papers
we reviewed formalize concepts that are not directly related to FDs (e.g., Ahmed and
Capretz [2006]). In general, what we observed is an informal and loose definition of the
concept of concern.

Adittionally, the very nature of concern varies. Besides the distinction between group
concerns and relationships, more fundamental differences can be noticed. For group
concerns, some seem to be “attributes” characterizing features like the binding time.
Others make a clear separation between FDs achieving different objectives like pro-
vided versus required variability. Finally, a concern can be captured by a link to an
external model. The same observation holds for relationship concerns that can either
denote a specific type of constraint or represent a form of conceptual consistency like
entailment.

There is apparently no determination to reach a unified definition, which prevents a
rigorous comparison of the approaches. To systematize the way the problem is tackled
and to converge on a solution, the following questions should be answered.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:15

—What are the types and subtypes of concerns? Different types of concern exist. Tables II
and III lay the foundation stone by collecting two of them, that is, feature groups
and feature decomposition relationships. Future work should tell which more fine-
grained types are needed, and should categorize them more precisely. However, a
more pressing matter might be to produce solid empirical evidence that these con-
cerns are actually relevant in practice. Therefore, further investigation is needed to
populate a repertoire of relevant concerns.

—How is a concern defined? Several papers suggested formal definitions of a concern
(e.g., Batory et al. [2003], Reiser and Weber [2006], Hubaux et al. [2009; Hubaux et al.
[2010b], and Mendonça et al. [2008]). However, these definitions focus on feature
groups with simple parent/child relationships and boolean constraints. Efforts are
still needed to integrate and extend these definitions to accommodate the different
types of concerns (e.g., using an attribute versus using a link to an external model
that contains equivalent information).

7. TOOL SUPPORT

Many of the tools we came across are little more than simple diagramming tools or
standard aspect code-weaving tools. Table VI synthesizes tools that provide built-in
support for separation of concerns on top of a variability model. For the most part, they
are prototypes or proofs of concept.

The concerns they address range from code over UML models to binding time. The
separation and composition techniques also vary widely. This disparity in functional-
ities and purposes renders their comparison irrelevant. It is also another symptom of
the very exploratory state in which multiconcern FDs stand.

Overall, meaningful and efficient reasoning about multiconcern FDs remains an
area for further research. How separation of concerns and their recomposition should
be supported by an automated tool is underexplored. This is a likely consequence of the
limited research on concern formalization. Better specification of the problem would
lead to more robust and efficient tool support.

Despite the apparent difficulties, SPL engineers in various industries have been suc-
cessfully producing commercial software used by many customers. Insightful reports
on how SPL engineers actually manage concerns in FDs would have a positive influ-
ence on research. Yet, as Hubaux et al. [2010a] discuss in their preliminary review on
the application of FDs in practice, reports in the literature on the actual use of FDs
are scarce. The absence of incentive for practitioners to publish experience reports and
restrictions imposed by nondisclosure agreements are among the possible causes. In
this context, it is hard to tell how commercial tools like pure::variants [Beuche 2008],
which enable the addition of numerous attributes to a feature, can serve as a sound
basis for concern modeling.

8. DISCUSSION

This survey has shown that when FD languages were first introduced, their main
concern was about distinguishing features that are particular to certain members of the
product family from those that are common across all members. FDs address something
that few other modeling languages do: to treat groups of programs as having common
functionality with only minor varying features. This could encourage reuse across
programs and design more stable architectures. As Figure 1 shows, the concepts used
in the language were also simple: mostly with AND (aggregation/consist-of) and OR
(alternatives/optional/mutually exclusive OR) relationships, together with some notion
of feature attributes and “requires” or “excludes” relationships [Kang et al. 1990].

Having said that, even the seminal report by Kang et al. [1990] has a fundamental
ambiguity about the notion of variability. The report is not precise about many possible

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:16 A. Hubaux et al.

Ta
bl

e
V

I.
To

ol
s

S
up

po
rt

in
g

S
ep

ar
at

io
n

of
C

on
ce

rn
s

in
V

ar
ia

bi
lit

y
M

od
el

s

R
ef

er
en

ce
s

T
oo

ln
am

e
C

on
ce

rn
s

S
ep

ar
at

io
n

C
om

po
si

ti
on

[B
as

h
ro

u
sh

et
al

.2
00

8]
4V

M
B

u
si

n
es

s,
B

eh
av

io
u

ra
l,

R
el

at
io

n
sh

ip
,A

rc
h

it
ec

tu
re

S
ep

ar
at

e
m

od
el

s
C

om
po

si
ti

on
ru

le
s

[B
ro

w
n

et
al

.2
00

3]
A

D
L

A
R

S
S

ys
te

m
,T

as
k,

C
om

po
n

en
t

S
ep

ar
at

e
m

od
el

s
T

ra
n

sf
or

m
at

io
n

[B
at

or
y

an
d

B
ör

ge
r

20
08

]
A

H
E

A
D

F
ea

tu
re

F
ea

tu
re

F
u

n
ct

io
n

al
co

m
po

si
ti

on
[A

pe
le

t
al

.2
00

6]
A

M
L

F
ea

tu
re

A
sp

ec
ts

,F
ea

tu
re

s
W

ea
vi

n
g

[U
ba

ya
sh

ia
n

d
N

ak
aj

im
a

20
07

]
A

sp
ec

tV
D

M
C

on
te

xt
A

sp
ec

ts
W

ea
vi

n
g

[L
ou

gh
ra

n
an

d
R

as
h

id
20

04
]

F
ra

m
ed

A
sp

ec
ts

F
ra

m
e

F
ra

m
e

C
om

po
si

ti
on

ru
le

s
[B

at
is

ta
et

al
.2

00
8]

M
aR

iP
L

A
A

rt
ef

ac
ts

S
ep

ar
at

e
m

od
el

s
A

T
L

[W
h

it
e

et
al

.2
00

9]
M

U
S

C
L

E
S

te
p

S
te

p
/

[G
om

aa
an

d
S

h
in

20
04

,2
00

8]
P

L
U

S
E

E
A

rt
ef

ac
ts

S
ep

ar
at

e
m

od
el

s
O

C
L

[A
lv

es
et

al
.2

00
7]

P
L

P
A

sp
ec

ts
A

sp
ec

ts
R

ef
ac

to
ri

n
g

[A
h

m
ed

an
d

C
ap

re
tz

20
06

]
S

P
F

B
E

T
B

u
si

n
es

s
D

im
en

si
on

s
F

u
zz

y
L

og
ic

[S
al

eh
an

d
G

om
aa

20
05

b]
S

P
L

E
T

F
ea

tu
re

A
sp

ec
ts

W
ea

vi
n

g
[A

lf
ér

ez
et

al
.2

00
9]

V
M

L
4R

E
R

eq
u

ir
em

en
ts

S
ep

ar
at

e
m

od
el

s,
F

ea
tu

re
s

M
od

el
tr

an
sf

or
tm

at
io

n

[Z
h

an
g

et
al

.2
00

1]
X

V
L

C
A

rt
ef

ac
ts

B
re

ak
po

in
t

X
-F

ra
m

e
[R

ei
se

r
an

d
W

eb
er

20
06

]
N

A
O

rg
an

is
at

io
n

al
st

ru
ct

u
re

H
ie

ra
rc

h
ic

al
la

ye
ri

n
g

R
es

ol
u

ti
on

ru
le

s
[E

br
ae

rt
et

al
.2

00
9]

N
A

C
h

an
ge

C
h

an
ge

A
lg

or
it

h
m

[T
u

n
et

al
.2

00
9]

N
A

P
ro

vi
de

d,
R

eq
u

ir
ed

,C
on

te
xt

S
ep

ar
at

e
m

od
el

s
C

ro
ss

cu
tt

in
g

co
n

st
ra

in
ts

[M
et

zg
er

et
al

.2
00

7]
N

A
P

ro
vi

de
d,

R
eq

u
ir

ed
S

ep
ar

at
e

m
od

el
s

C
ro

ss
cu

tt
in

g
co

n
st

ra
in

ts
[V

öl
te

r
an

d
G

ro
h

er
20

07
]

N
A

A
rt

ef
ac

ts
S

ep
ar

at
e

m
od

el
s

T
ra

n
sf

or
m

at
io

n
,W

ea
vi

n
g

[S
ch

m
id

an
d

E
ic

h
el

be
rg

er
20

08
]

N
A

B
in

di
n

g
ti

m
e,

C
on

st
ra

in
t

M
et

a-
va

ri
ab

il
it

y
/

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:17

meanings of variability: whether variability is in the requirements, in the design, or in
the running system; or whether it is inside the software or out in the system context; or
whether it is to be determined from the perspective of the user or the developer. At times
Kang et al. [1990] treat FDs as a “domain analysis” tool, suggesting that the feature
analysis should focus on the application domain; at other times, they indicate that
FDs can be used to describe relationships between features of different binding times:
Compile time, load time, and runtime. An FD is also a “communication medium between
users and developers” [Kang et al. 1990], a description of the “user’s understanding of
the general capabilities of applications in a domain” [Kang et al. 1990], and a tool for
communication between developers and designers. The list of concerns recognized by
the surveyed approaches, in particular by Lee et al. [2002] and Kang et al. [1998], is very
comprehensive, ranging from cost of features, platform to organizational structure.

This attempt to cater for such diverse purposes unfortunately overloads FDs and
confuses the concerns recognized by FDs. We did not find any later work on FD lan-
guages remeding this weakness. Rather conversely, there were proposals for even more
concerns, such as organizational concerns [Grünbacher et al. 2009], configuration con-
cerns [Czarnecki et al. 2005], and feature interaction concerns [Chen et al. 2006b], to
be recognized in FDs. This tendency to expand the scope of FDs by including a growing
share of concerns, as this survey reveals, inevitably contributes to increasing the size
and complexity of FDs. We believe that a framework for defining, distinguishing, and
relating these concerns is an urgent research problem for FD languages and methods.

Many of the concern separation and composition techniques are based on the Aspect-
Oriented Programming (AOP) paradigm. When FD concerns are treated as “crosscut-
ting” concerns in program design, features have a restricted meaning. For instance,
Colyer et al. [2004] regard global properties such as flexibility and configurability as
FD concerns that can be separated and weaved using AOP techniques. Although it is
clear that some FD concerns can be addressed using AOP techniques, there remains
a question about how concerns such as requirements and stakeholder concerns can be
handled using the same techniques.

In terms of formalization, although many of the existing work use semiformal nota-
tions, the formal semantics of FD language is now clear. For instance, Schobbens et al.
[2006] has provided a general semantics for FD languages. As shown by Schobbens
et al. [2007], from the semantic perspective, a relatively simple FD language can have
a high degree of expressiveness and succinctness. Therefore, we have to conclude that
making FD languages richer does not necessarily make them more scalable. Although
the semantics of FD languages is clear, such formalisms treat the individual features
simply as nodes in a graph. There has also been progress in defining the content of
a feature formally, for example, using a kind of state transition graph [Classen et al.
2010]. Depending on the analysis to be performed, alternative formalizations of fea-
tures, accommodating variability, are also possible.

Tool support for defining concerns, and for separating and composing them, is very
limited at the moment. Many of the tools focus on visualization of FDs, allowing partial
views of the FDs. Concerns within an FD are difficult to distinguish using the current
tool support. For instance, it is difficult to visualize FDs from the perspective of a
particular stakeholder or for a particular stage in the development. Many research
questions are still outstanding in this area.

9. THREATS TO VALIDITY

The last step of our survey is a critical look at the research method and the collected
results. For each point, the threats to validity are discussed with the presumed conse-
quences on the global validity of the results.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:18 A. Hubaux et al.

Single bibliographical database. The only bibliographical database we used to col-
lect papers is DBLP. The bias that could have been introduced was, however, mit-
igated by: (1) the automatic inclusion in DBLP of papers from other electronic li-
braries (ACM, IEEE, Springer, etc.), and (2) the list of papers we manually added.
The latter reduced the risk to miss relevant papers not caught by the queries or not
encoded in DBLP.
No meta-analysis. We favored a qualitative approach over a quantitative one. Con-
sequently, we neither completed a meta-analysis nor a sensitivity analysis. A meta-
analysis is usually meaningful to aggregate results from various yet similar stud-
ies [Brereton et al. 2007]. The variability among the papers we collected simply
rendered such aggregation impossible. It turned out that tabulated data [Brereton
et al. 2007] was the only way for us to compare the results. This, in turn, made a
sensitivity analysis inappropriate.
No external expert. We did not appoint an external expert to control the complete-
ness and consistency of the review. The impact of this decision upon the final results
is hard to tell given the broad scope of our investigation. We tried to lessen the
possible negative impact by appointing two different researchers with some over-
lap in their assignments to make sure that their evaluations were consistent and
comparable.
Inconsistent content validation. We observed significant differences in the valida-
tion of the results presented in the papers. For instance, many papers claimed that
their results were validated with case studies. Yet, few of them followed a rigor-
ous approach to empirically validate their results such as Shull et al. [2007]. That
threat affects research on separation of concerns in FDs in general. Our study can
only reflect the current state-of-the-art in that domain.
No quality evaluation. To build a complete repertoire of concerns, all papers were
equally evaluated without any discrimination regarding the source (e.g., journal,
conference, or workshop) or venue. A quality evaluation would have excluded several
papers that contained valuable input for our repertoire. The overall impact on the
quality of our study, however, is hard to predict. In fact, the fairly low level of
empirical validation in all the papers led us to believe that no significant gains in
quality would have been perceived if we had been more selective over venues.

10. CONCLUSION

In this article, we have presented the results of a systematic survey of the litera-
ture on separation of concerns in feature diagram languages. Our research method is
well-founded and covers both quantitative and qualitative aspects. The main research
question of the survey has been to identify the most important concerns, or purposes, of
feature diagrams, how they are separated and composed in existing SPL approaches,
the level of formalism used, and the tool support available. The keys findings of the
survey are the following.

—The inherent vagueness in the feature abstraction and in the purpose of feature
diagrams makes realistic feature diagrams hard to comprehend and analyze. Since a
more expressive feature diagram language is unlikely to solve the problem, we have
concluded that a clarification in the purpose of feature diagrams and the meaning of
features in various artifacts will go some way towards solving this problem.

—Separation and composition techniques for concerns in feature diagrams have been
found rudimentary: They range from hierarchical layering of feature diagrams to
selective projection of feature diagrams using a visualization tool.

—In terms of formalization, expressive and succinct formal feature diagram languages
already exist. However, the extension of this formalization to concerns is still partial.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:19

—Tool support for aspect-oriented approaches seems to offer some opportunity, but
so far they have been mainly applied to code, rather than feature diagrams. We
have concluded that a firmer conceptual footing for concern definition, separation,
and composition will enhance tool support for separating and composing concerns in
feature diagrams.

Based on these findings, we conclude that in order to make feature diagram languages
scalable, there is a need for a consensus about the key concerns of feature diagrams
and formalism for better separation and composition of concerns in feature diagrams.

In terms of extending the work, there is still a long way to go before an agreed list
of most important and valuable concerns can be provided. Additional work is needed
to comprehend the relationship between feature diagrams and other types of model.
Besides introducing new concerns, many extra separation and compositions techniques
mixing features and heterogeneous model elements will need to be considered.

REFERENCES

ACHER, M., COLLET, P., LAHIRE, P., AND FRANCE, R. 2009. Composing feature models. In Proceedings of the 2nd

International Conference on Software Language Engineering (SLE’09). Springer, 62–81.
AHMED, F. AND CAPRETZ, L. F. 2006. Maturity assessment framework for business dimension of software

product family. Int. J. Interoper. Bus. Inf. Syst. 1, 1, 9–32.
ALFEREZ, M., SANTOS, J., MOREIRA, A., GARCIA, A., KULESZA, U., ARAUJO, J., AND AMARAL, V. 2009. Multi-view

composition language for software product line requirements. In Proceedings of the 2nd International
Conference on Software Language Engineering (SLE’09), M. van den Brand, D. Gasevic, and J. Gray,
Eds., Lecture Notes in Computer Science, vol. 5969, Springer, 103–122.

ALVES, V., MATOS, P., COLE, L., VASCONCELOS, A., BORBA, P., AND RAMALHO, G. 2007. Extracting and evolving code
in product lines with aspect-oriented programming. Trans. Aspect-Orient. Softw. Devel. 4, 117–142.

APEL, S., LEICH, T., AND SAAKE, G. 2006. Aspectual mixin layers: Aspects and features in concert. In Proceedings
of the 28th International Conference on Software Engineering (ICSE’06). 122–131.

BASHROUSH, R., SPENCE, I. T. A., KILPATRICK, P., BROWN, T., AND GILLAN, C. 2008. A multiple views model for
variability management in software product lines. In Proceedings of the 2nd International Workshop on
Variability Modeling of Software-Intensive Systems. 101–110.

BAST, H. 2010. Completesearch: http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php.
BATISTA, T. V., BASTARRICA, M. C., SOARES, S., AND DA SILVA, L. F. 2008. A marriage of mdd and early aspects in

software product line development. In Proceedings of the Workshop on Early Aspects (EA’08) collocated
with the Software Product Line Conference (SPLC’08). 97–103.

BATORY, D., LIU, J., AND SARVELA, J. N. 2003. Refinements and multi-dimensional separation of concerns.
SIGSOFT Softw. Engin. Not. 28, 5, 48–57.

BATORY, D. S. 2005. Feature models, grammars, and propositional formulas. In Proceedings of the 9th Inter-
national Conference on Software Product Lines (SPLC’05). 7–20.

BATORY, D. S. AND BORGER, E. 2008. Modularizing theorems for software product lines: The jbook case study.
J. Univers. Comput. Sci. 14, 12, 2059–2082.

BENAVIDES, D., SEGURA, S., AND RUIZ-CORTES, A. 2010. Automated analysis of feature models 20 years later: A
literature review. Inf. Syst. 35, 6, 615–636.

BERGER, T., SHE, S., LOTUFO, R., WASOWSKI, A., AND CZARNECKI, K. 2010. Variability modeling in the real: A
perspective from the operating systems domain. In Proceedings of the 25th International Conference on
Automated Software Engineering (ASE’10). ACM Press, New York, 73–82.

BEUCHE, D. 2008. Modeling and building software product lines with pure variants. In Proceedings of the 12th

International Software Product Line Conference (SPLC’08). IEEE Computer Society, 358.
BRERETON, P., KITCHENHAM, B. A., BUDGEN, D., TURNER, M., AND KHALIL, M. 2007. Lessons from applying the

systematic literature review process within the software engineering domain. J. Syst. Softw. 80, 4,
571–583.

BROWN, T. J., SPENCE, I. T. A., AND KILPATRICK, P. 2003. A relational architecture description language for
software families. In Proceedings of the 5th International Workshop on Software Product-Family En-
gineering (PFE’03). F. van der Linden, Ed., Lecture Notes in Computer Science, vol. 3014, Springer,
282–295.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:20 A. Hubaux et al.

BRUNET, G., CHECHIK, M., EASTERBROOK, S., NEJATI, S., NIU, N., AND SABETZADEH, M. 2006. A manifesto for
model merging. In Proceedings of the International Workshop on Global Integrated Model Management
(GaMMa’06). ACM Press, New York, 5–12.

CHEN, K., ZHAO, H., ZHANG, W., AND MEI, H. 2006a. Identification of crosscutting requirements based on feature
dependency analysis. In Proceedings of the 14th International Conference on Requirements Engineering
(RE’06). 300–303.

CHEN, K., ZHAO, H., ZHANG, W., AND MEI, H. 2006b. Identification of crosscutting requirements based on feature
dependency analysis. In Proceedings of the 14th International Conference on Requirements Engineering
(RE’06). IEEE Computer Society, 300–303.

CHEN, L. AND BABAR, M. A. 2009. A survey of scalability aspects of variability modeling approaches. In
Proceedings of the Workshop on Scalable Modeling Techniques for Software Product Lines (SCALE’09).
119–126.

CHEN, L., BABAR, M. A., AND ALI, N. 2009. Variability management in software product lines: A systematic
review. In Proceedings of the 13th International Software Product Line Conference (SPLC’09). 81–90.

CHO, H., LEE, K., AND KANG, K. C. 2008. Feature relation and dependency management: An aspect ori-
ented approach. In Proceedings of the 12th International Software Product Line Conference (SPLC’08).
3–11.

CHOI, H., LEE, K., LEE, J., AND KANG, K. C. 2009. Multiple views of feature models to manage complexity. In
Proceedings of the Workshop on Scalable Modeling Techniques for Software Product Lines (SCALE’09).
127–133.

CLASSEN, A., HEYMANS, P., AND SCHOBBENS, P.-Y. 2008. What’s in a feature: A requirements engineering per-
spective. In Proceedings of the 11th International Conference on Fundamental Approaches to Software
Engineering (FASE’08). Springer, 16–30.

CLASSEN, A., HEYMANS, P., SCHOBBENS, P.-Y., LEGAY, A., AND RASKIN, J.-F. 2010. Model checking lots of sys-
tems: Efficient verification of temporal properties in software product lines. In Proceedings of the 32nd

International Conference on Software Engineering (ICSE’10). ACM Press, New York, 335–344.
CLASSEN, A., HUBAUX, A., AND HEYMANS, P. 2009. A formal semantics for multi-level staged configuration. In

Proceedings of the 3rd International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’09). 51–60.

COLYER, A., RASHID, A., AND BLAIR, G. 2004. On the separation of concerns in program families. Tech. rep.
COMP-001-2004, Lancaster University.

CZARNECKI, K., HELSEN, S., AND EISENECKER, U. W. 2004. Staged configuration using feature models. In Pro-
ceedings of the 3rd International Software Product Line Conference (SPLC’04). 266–283.

CZARNECKI, K., HELSEN, S., AND EISENECKER, U. W. 2005. Staged configuration through specialization and
multi-level configuration of feature models. Softw. Process. Improv. Pract. 10, 2, 143–169.

CZARNECKI, K. AND PIETROSZEK, K. 2006. Verifying feature-based model templates against well-formedness
ocl constraints. In Proceedings of the 5th International Conference on Generative Programming and
Component Engineering (GPCE’06). ACM Press, New York, 211–220.

CZARNECKI, K., SHE, S., AND WASOWSKI, A. 2008. Sample spaces and feature models: There and back again. In
Proceedings of the 12th International Software Product Line Conference (SPLC’08). 22–31.

DEELSTRA, S., SINNEMA, M., AND BOSCH, J. 2009. Variability assessment in software product families. Inf. Softw.
Technol. 51, 1, 195–218.

DORDOWSKY, F. AND HIPP, W. 2009. Adopting software product line principles to manage software variants in
a complex avionics system. In Proceedings of the 13th International Software Product Line Conference
(SPLC’09). 265–274.

EASTERBROOK, S. M. AND NUSEIBEH, B. A. 1996. Using viewpoints for inconsistency management. Softw. Engin.
J. 11, 1.

EBRAERT, P., VALLEJOS, J., AND VANDEWOUDE, Y. 2009. Flexible features: Making feature modules more reusable.
In Proceedings of the ACM Symposium on Applied Computing (SAC’09). S. Y. Shin and S. Ossowski,
Eds., ACM Press, New York, 1963–1970.

ELSNER, C., LOHMANN, D., AND SCHRODER-PREIKSCHAT, W. 2008. Towards separation of concerns in model transfor-
mation workflows. In Proceedings of the Workshop on Early Aspects (EA’08) collocated with the Software
Product Line Conference (SPLC’08). 81–88.

ETXEBERRIA, L. AND MENDIETA, G. S. 2008. Variability driven quality evaluation in software product lines. In
Proceedings of the 12th International Software Product Line Conference (SPLC’08). 243–252.

FEY, D., FAJTA, R., AND BOROS, A. 2002. Feature modeling: A meta-model to enhance usability and useful-
ness. In Proceedings of the 2nd International Software Product Line Conference (SPLC’02). Springer,
198–216.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:21

GOMAA, H. AND SHIN, M. E. 2004. A multiple-view meta-modeling approach for variability management in
software product lines. In Proceedings of the 8th International Conference on Software Reuse: Meth-
ods, Techniques and Tools (ICSR’04). Lecture Notes in Computer Science, vol. 3107, Springer, 274–
285.

GOMAA, H. AND SHIN, M. E. 2008. Multiple-view modelling and meta-modelling of software product lines. IET
Softw. 2, 2, 94–122.

GRUNBACHER, P., RABISER, R., DHUNGANA, D., AND LEHOFER, M. 2009. Structuring the product line modeling space:
Strategies and examples. In Proceedings of the 3rd International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS’09). 77–82.

GUNTER, C. A., GUNTER, E. L., JACKSON, M., AND ZAVE, P. 2000. A reference model for requirements and
specifications. IEEE Softw. 17, 3, 37–43.

HALLSTEINSEN, S. O., STAV, E., SOLBERG, A., AND FLOCH, J. 2006. Using product line techniques to build adap-
tive systems. In Proceedings of the 10th International Software Product Line Conference (SPLC’06).
141–150.

HARTMANN, H. AND TREW, T. 2008. Using feature diagrams with context variability to model multiple prod-
uct lines for software supply chains. In Proceedings of the 12th International Software Product Line
Conference (SPLC’08). 12–21.

HEIDENREICH, F., SANCHEZ, P., SANTOS, J., ZSCHALER, S., ALFEREZ, M., ARAUJO, J., FUENTES, L., KULESZA, U.,
MOREIRA, A., AND RASHID, A. 2010. Relating feature models to other models of a software product line - A
comparative study of feature-mapper and vml*. Theory Aspect-Oriented Softw. Devel. 7, 69–114.

HEYMANS, P., KANG, K. C., METZGER, A., AND POHL, K., EDS. 2008. ICB research report. In Proceedings of the
2nd International Workshop on Variability Modeling of Software-Intensive Systems.

HUBAUX, A., CLASSEN, A., AND HEYMANS, P. 2009. Formal modelling of feature configuration workflow. In
Proceedings of the 13th International Software Product Lines Conference (SPLC’09). 221–230.

HUBAUX, A., CLASSEN, A., MENDONÇA, M., AND HEYMANS, P. 2010a. A preliminary review on the application of
feature diagrams in practice. In Proceedings of the 4th International Workshop on Variability Modeling
of Software-Intensive Systems (VaMoS’10). 53–59.

HUBAUX, A., HEYMANS, P., AND BENAVIDES, D. 2008. Variability modelling challenges from the trenches of
an open source product line re-engineering project. In Proceedings of the 12th International Software
Product Line Conference (SPLC’08). IEEE Computer Society, 55–64.

HUBAUX, A., HEYMANS, P., SCHOBBENS, P.-Y., AND DERIDDER, D. 2010b. Towards multi-view feature-based con-
figuration. In Proceedings of the 16th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ’10). Springer.

HUBAUX, A., HEYMANS, P., SCHOBBENS, P.-Y., DERIDDER, D., AND ABBASI, E. 2011. Supporting multiple perspectives
in feature-based configuration. Softw. Syst. Model. 12, 3, 641–663.

JACKSON, M. 1995. Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices.
ACM Press, New York.

JENSEN, P. 2007. Experiences with product line development of multi-discipline analysis software at overwatch
textron systems. In Proceedings of the 11th International Software Product Line Conference (SPLC’07).
35–43.

KANG, K., COHEN, S., HESS, J., NOVAK, W., AND PETERSON, S. 1990. Feature-oriented domain analysis (foda)
feasibility study. Tech. rep. CMU/SEI-90-TR-21, SEI, Carnegie Mellon University. November.

KANG, K. C., DONOHOE, P., KOH, E., LEE, J., AND LEE, K. 2002. Using a marketing and product plan as a key
driver for product line asset development. In Proceedings of the 2nd International Software Product Line
Conference (SPLC’02). 366–382.

KANG, K. C., KIM, S., LEE, J., KIM, K., SHIN, E., AND HUH, M. 1998. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann. Softw. Engin. 5, 143–168.

KIRCHER, M., SCHWANNINGER, C., AND GROHER, I. 2006. Transitioning to a software product family approach -
Challenges and best practices. In Proceedings of the 10th International Software Product Line Conference
(SPLC’06). 163–171.

KITCHENHAM, B. A. 2004. Procedures for undertaking systematic reviews. Tech. rep. 0400011T.1, Computer
Science Department, Keele University (TR/SE-0401) and National ICT Australia Ltd.

LEE, J., KANG, K. C., AND KIM, S. 2004. A feature-based approach to product line production planning. In
Proceedings of the 3rd International Software Product Line Conference (SPLC’04). 183–196.

LEE, K., BOTTERWECK, G., AND THIEL, S. 2009. Aspectual separation of feature dependencies for flexible fea-
ture composition. In Proceedings of the 33rd IEEE International Computer Software and Applications
Conference (COMPSAC’09). S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov, L. Liu, H. Ming, and
R. Subramanyan, Eds., IEEE Computer Society, 45–52.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

51:22 A. Hubaux et al.

LEE, K. AND KANG, K. C. 2004. Feature dependency analysis for product line component design. In Proceedings
of the 8th International Conference on Software Reuse: Methods, Techniques and Tools (ICSR’04). Lecture
Notes in Computer Science, vol. 3107, Springer, 69–85.

LEE, K., KANG, K. C., KIM, M., AND PARK, S. 2006. Combining feature-oriented analysis and aspectoriented
programming for product line asset development. In Proceedings of the 10th International Software
Product Line Conference (SPLC’06). 103–112.

LEE, K., KANG, K. C., AND LEE, J. 2002. Concepts and guidelines of feature modeling for product line software
engineering. In Proceedings of the 7th International Conference on Software Reuse. Springer, 62–77.

LOUGHRAN, N. AND RASHID, A. 2004. Framed aspects: Supporting variability and configurability for aop. In Pro-
ceedings of the 8th International Conference on Software Reuse: Methods, Techniques and Tools (ICSR’04).
Lecture Notes in Computer Science, vol. 3107, Springer, 127–140.

LUTZ, R. R. 2008. Enabling verifiable conformance for product lines. In Proceedings of the 12th International
Software Product Line Conference (SPLC’08). 35–44.

MANNION, M., SAVOLAINEN, J., AND ASIKAINEN, T. 2009. Viewpoint-oriented variability modeling. In Proceedings
of the 33rd Annual IEEE International Computer Software and Applications Conference (COMPSAC’09).
67–72.

MENDONÇA, M., COWAN, D. D., MALYK, W., AND DE OLIVEIRA, T. C. 2008. Collaborative product configuration:
Formalization and efficient algorithms for dependency analysis. J. Softw. 3, 2, 69–82.

METZGER, A., HEYMANS, P., POHL, K., SCHOBBENS, P.-Y., AND SAVAL, G. 2007. Disambiguating the documenta-
tion of variability in software product lines: A separation of concerns, formalization and automated
analysis. In Proceedings of the 15th International Conference on Requirements Engineering (RE’07).
243–253.

MOREIRA, A., RASHID, A., AND ARAUJO, J. 2005. Multi-dimensional separation of concerns in requirements
engineering. In Proceedings of the 13th International Conference on Requirements Engineering (RE’05).
285–296.

NODA, N. AND KISHI, T. 2008. Aspect-oriented modeling for variability management. In Proceedings of the 12th

International Software Product Line Conference (SPLC’08). 213–222.
POHL, K., BOCKLE, G., AND VAN DER LINDEN, F. J. 2005. Software Product Line Engineering: Foundations,

Principles and Techniques. Springer.
REISER, M.-O. AND WEBER, M. 2006. Managing highly complex product families with multi-level feature

trees. In Proceedings of the 14th International Conference on Requirements Engineering (RE’06). IEEE
Computer Society, Los Alamitos, CA, 146–155.

REISER, M.-O. AND WEBER, M. 2007. Multi-level feature trees. Requir. Engin. 12, 2, 57–75.
SALEH, M. AND GOMAA, H. 2005a. Separation of concerns in software product line engineering. In Proceedings

of the Workshop on Modeling and Analysis of Concerns in Software (WACS’05). ACM Press, New York,
1–5.

SALEH, M. AND GOMAA, H. 2005b. Separation of concerns in software product line engineering. ACM SIGSOFT
Softw. Engin. Not. 30, 4, 1–5.

SAVOLAINEN, J. AND KUUSELA, J. 2001. Consistency management of product line requirements. In Proceedings
of the 5th International Conference on Requirements Engineering (RE’01). 40–47.

SCA. 2009. Workshop on Scalable Modeling Techniques for Software Product Lines (SCALE’09) held at the
13th International Software Product Line Conference (SPLC’09).

SCHMID, K. AND EICHELBERGER, H. 2008. Model-based implementation of meta-variability constructs: A case
study using aspects. In Proceedings of the 2nd International Workshop on Variability Modeling of
Software-Intensive Systems. 63–71.

SCHOBBENS, P.-Y., HEYMANS, P., AND TRIGAUX, J.-C. 2006. Feature diagrams: A survey and a formal semantics. In
Proceedings of the 14th International Conference on Requirements Engineering (RE’06). IEEE Computer
Society, Los Alamitos, CA, 136–145.

SCHOBBENS, P.-Y., HEYMANS, P., TRIGAUX, J.-C., AND BONTEMPS, Y. 2007. Generic semantics of feature diagrams.
Comput. Netw. 51, 2, 456–479.

SHULL, F., SINGER, J., AND SJØBERG, D. I. K. 2007. Guide to Advanced Empirical Software Engineering. Springer.
SPANOUDAKIS, G. AND ZISMAN, A. 2001. Inconsistency management in software engineering: Survey and open

research issues. In Handbook of Software Engineering and Knowledge Engineering, S. K. Chang, Ed.,
World Scientific Publishing, 329–380.

STEGER, M., TISCHER, C., BOSS, B., MULLER, A., PERTLER, O., STOLZ, W., AND FERBER, S. 2004. Introducing pla
at bosch gasoline systems: Experiences and practices. In Proceedings of the 3rd International Software
Product Line Conference (SPLC’04). 34–50.

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

Separation of Concerns in Feature Diagram Languages 51:23

SVAHNBERG, M., VAN GURP, J., AND BOSCH, J. 2005. A taxonomy of variability realization techniques. Softw.
Pract. Exper. 35, 8, 705–754.

TARR, P. L., OSSHER, H., HARRISON, W. H., AND JR., S. M. S. 1999. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the 21st International Conference on Software Engineering
(ICSE’99). 107–119.

THOMPSON, J. M. AND HEIMDAHL, M. P. E. 2003. Structuring product family requirements for ndimensional and
hierarchical product lines. Requir. Engin. 8, 1, 42–54.

TUN, T. T., BOUCHER, Q., CLASSEN, A., HUBAUX, A., AND HEYMANS, P. 2009. Relating requirements and feature
configurations: A systematic approach. In Proceedings of the 13th International Software Product Lines
Conference (SPLC’09).

UBAYASHI, N. AND NAKAJIMA, S. 2007. Context-aware feature-oriented modeling with an aspect extension of
vdm. In Proceedings of the ACM Symposium on Applied Computing (SAC’07). Y. Cho, R. L. Wainwright,
H. Haddad, S. Y. Shin, and Y. W. Koo, Eds., ACM Press, New York, 1269–1274.

UCHITEL, S. AND CHECHIK, M. 2004. Merging partial behavioural models. In Proceedings of the 12th

ACM/SIGSOFT International Symposium on Foundations of Software Engineering (FSE’04). 43–52.
VOLTER, M. AND GROHER, I. 2007. Product line implementation using aspect-oriented and model-driven soft-

ware development. In Proceedings of the 11th International Software Product Line Conference (SPLC’07).
IEEE Computer Society, 233–242.

WENZEL, S., BERGER, T., AND RIECHERT, T. 2009. How to configure a configuration management system - An
approach based on feature modeling. In Proceedings of the 1st International Workshop on Model-Driven
Approaches in Software Product Line Engineering (MAPLE’09). 99–105.

WHITE, J., BENAVIDES, D., DOUGHERTY, B., AND SCHMIDT, D. C. 2009. Automated reasoning for multistep software
product-line configuration problems. In Proceedings of the 13th International Software Product Lines
Conference (SPLC’09).

ZAVE, P. AND JACKSON, M. 1997. Four dark corners of requirements engineering. ACM Trans. Softw. Engin.
Methodol. 6, 1, 1–30.

ZHANG, H., JARZABEK, S., AND SWE, S. M. 2001. Xvcl approach to separating concerns in product family as-
sets. In Proceedings of the 3rd International Conference on Generative and Component-Based Software
Engineering (GCSE’01). J. Bosch, Ed., Lecture Notes in Computer Science, vol. 2186, Springer, 36–47.

ZIADI, T., HELOUET, L., AND JEZEQUEL, J.-M. 2004. Towards a uml profile for software product lines. In Proceed-
ings of the 5th International on Software Product-Family Engineering. F. van der Linden, Ed., Lecture
Notes in Computer Science, vol. 3014, Springer, 129–139.

Received February 2011; revised May 2012; accepted August 2012

ACM Computing Surveys, Vol. 45, No. 4, Article 51, Publication date: August 2013.

