
Information and Software Technology 55 (2013) 1165–1199
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Software clone detection: A systematic review

Dhavleesh Rattan a,⇑, Rajesh Bhatia b,1, Maninder Singh c,2

a Department of Computer Science and Engineering and Information and Technology, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib 140 407, Punjab, India
b Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal (Sonepat) 131 039, Haryana, India
c Computer Science and Engineering Department, Thapar University, Patiala 147 004, Punjab, India
a r t i c l e i n f o

Article history:
Received 21 June 2011
Received in revised form 29 December 2012
Accepted 21 January 2013
Available online 14 February 2013

Keywords:
Software clone
Clone detection
Systematic literature review
Semantic clones
Model based clone
0950-5849/$ - see front matter � 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2013.01.008

⇑ Corresponding author. Tel.: +91 9814837334; fax
E-mail addresses: dhavleesh@rediffmail.com (D. Ra

1 Tel.: +91 9467948996; fax: +91 130 2484004.
2 Tel.: +91 9815608309; fax: +91 175 2364498.
a b s t r a c t

Context: Reusing software by means of copy and paste is a frequent activity in software development. The
duplicated code is known as a software clone and the activity is known as code cloning. Software clones
may lead to bug propagation and serious maintenance problems.
Objective: This study reports an extensive systematic literature review of software clones in general and
software clone detection in particular.
Method: We used the standard systematic literature review method based on a comprehensive set of 213
articles from a total of 2039 articles published in 11 leading journals and 37 premier conferences and
workshops.
Results: Existing literature about software clones is classified broadly into different categories. The
importance of semantic clone detection and model based clone detection led to different classifications.
Empirical evaluation of clone detection tools/techniques is presented. Clone management, its benefits
and cross cutting nature is reported. Number of studies pertaining to nine different types of clones is
reported. Thirteen intermediate representations and 24 match detection techniques are reported.
Conclusion: We call for an increased awareness of the potential benefits of software clone management,
and identify the need to develop semantic and model clone detection techniques. Recommendations are
given for future research.

� 2013 Elsevier B.V. All rights reserved.
Contents
1. Introduction & motivation . 1166

1.1. Motivation for work . 1166
2. Background. 1167

2.1. Software clones . 1167
2.2. Types of clones . 1167
2.3. Why clones . 1167
2.4. Advantages of clones. 1167
2.5. Disadvantages of clones . 1167
3. Review method. 1168

3.1. Planning the review . 1168
3.2. Research questions . 1168
3.3. Sources of information . 1168
3.3.1. Additional sources . 1168

3.4. Search criteria . 1169
3.5. Inclusion and exclusion criteria . 1170
3.6. Quality assessment . 1170
3.7. Data extraction . 1170
ll rights reserved.

: +91 1763232113.
ttan), rbhatiapatiala@gmail.com (R. Bhatia), msingh@thapar.edu (M. Singh).

http://dx.doi.org/10.1016/j.infsof.2013.01.008
mailto:dhavleesh@rediffmail.com
mailto:rbhatiapatiala@gmail.com
mailto:msingh@thapar.edu
http://dx.doi.org/10.1016/j.infsof.2013.01.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1166 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
4. Results. 1170

4.1. Current status of clone detection . 1170
4.1.1. Intermediate source representations and match detection techniques. 1170
4.1.2. Clone detection tools . 1173
4.1.2.1. Text based clone detection techniques. 1173
4.1.2.2. Token based clone detection techniques . 1174
4.1.2.3. Tree based clone detection techniques. 1174
4.1.2.4. Graph based clone detection techniques . 1175
4.1.2.5. Metrics based clone detection techniques . 1175
4.1.2.6. Hybrid clone detection techniques . 1175
4.1.3. Comparison and evaluation of clone detection tools and techniques . 1176

4.2. Status of research in semantic and model clone detection techniques . 1179
4.2.1. Semantic clone detection . 1179
4.2.2. Model based clone detection . 1180
4.3. Key sub areas. 1181

4.3.1. Code clone evolution . 1182
4.3.2. Code clone analysis . 1182
4.3.3. Impact of software clones on software quality. 1184
4.3.4. Clone detection in websites . 1186
4.3.5. Cloning in related areas . 1186
4.3.6. Software clone detection in aspect oriented programming/cross-cutting concerns . 1186
4.4. Current status of clone management . 1187

4.4.1. Benefits of clone management. 1187
4.4.2. Clone management – a cross cutting and an umbrella activity. 1187
4.4.2.1. Clone visualization. 1187

4.4.3. Clone management: a systematic map . 1188
4.5. Subject systems . 1188

5. Discussion. 1190
5.1. Key sub areas. 1190
5.2. Clone management – a cross cutting topic . 1190
5.3. Implications for research and practice . 1191
5.4. Limitations of this review . 1191
6. Conclusions and future work. 1191
Acknowledgements . 1192
Appendix A. A quality assessment forms . 1192

A.1. Screening question . 1192
A.2. Screening question . 1192
A.3. Detailed questions. 1192
A.4. Detailed questions. 1193

Appendix B. Data items extracted from all papers. 1193
Appendix C. Journals/conferences reporting most clone related research . 1193
Appendix D. Acronyms. 1194
References . 1194
1. Introduction & motivation

Copying existing code fragments and pasting them with or
without modifications into other sections of code is a frequent pro-
cess in software development. The copied code is called a software
clone and the process is called software cloning. A bug detected in
one section of code therefore requires correction in all the repli-
cated fragments of code. Thus, it is important to find all related
fragments throughout the source code. Considering the high main-
tenance cost, software clone detection has emerged as an active re-
search area. Different programming paradigms and languages have
led to number of clone variants and detection techniques.

There are two landmark literature surveys by Roy and Cordy
[187] and Koschke [135] in the field of software clones. However,
the volume of research in the field is continually increased. This
has led to a need for critical evaluation and integration of the avail-
able research in particular the need for a systematic literature re-
view. Kitchenham and Charters [127], Brereton et al. [25] and
Budgen and Brereton [30] define a systematic literature review
as a means of identifying, evaluating and interpreting all available
research relevant to a particular research question, or topic area, or
phenomenon of interest. This paper reports a systematic literature
review to analyze and report the findings in clone-based research.
Systematic literature reviews are time consuming but provide
transparent and comprehensive view of ongoing research, and
can be used to identify a number of research avenues. This review
identifies different key areas of research on software clones, dis-
cusses the concepts, research method used and major findings.

1.1. Motivation for work

� Software clones are present in many different software artifacts.
Therefore, our study on detection techniques goes beyond
source code.
� Upon assessing state of art in software clone research, we real-

ized the lack of systematic literature review. Thus we summa-
rized the existing research based on extensive and systematic
database search and report the research gaps for further
investigation.

The remainder of this article is structured as follows: Section 2
presents the background, definitions and general theories on soft-
ware clones. Note, a glossary of acronyms used in this paper can be
found in Appendix D. Section 3 describes the research questions,
research method that we used to select and review the data mate-
rial for our research, and presents our chosen framework for anal-

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1167
ysis. Section 4 presents the results of the systematic review. In Sec-
tion 5, we discuss the findings and their implications. For research,
we identify what we believe are the most important research gaps.
Section 6 concludes and provides recommendations for further re-
search in the area of software clone detection.
2. Background

Firstly, we define the different types of software clones, and the
factors leading to software clones. We then summarize the draw-
backs of software cloning and state some points as to why software
cloning is beneficial sometimes.

2.1. Software clones

The Merriam-Webster dictionary defines a clone as one that ap-
pears to be a copy of an original form, thus being synonymous to a
duplicate. In source code and other software artifacts, the original
(code) fragment is copied and pasted with or without modifica-
tions. The pasted (code) fragment is said to be a clone and this
activity is known as (code) cloning. However in software engineer-
ing field, the term code clones is still searching for a suitable defi-
nition. Its vagueness was properly reflected in Ira Baxter’s words:

‘‘Clones are segments of code that are similar according to some
definition of similarity’’.

Roy and Cordy [187] mentions code duplication or cloning as a
form of software reuse. Baker [7] after experimenting with a sam-
ple program concluded that code can shrink by 14% based on exact
matches, and 61% based on parameterized matches. The study sug-
gests that as much as 20–30% of large software systems consist of
cloned code. Fowler et al. [61] mentions duplication of code as one
of the bad practices in software development increasing mainte-
nance cost. The increasing use of open source software and its vari-
ants also increased code reuse. Existing code can be modified to
cater to new requirements thereby facilitating and advancing open
source development. Urgent need to detect software clones has
invigorated software clone detection as an active research area.

2.2. Types of clones

It is quite pertinent to mention that standards in case of nomen-
clature are still missing thereby leading to different taxonomies by
different researchers. We list here basic types of clones
[20,135,187].

Type 1 (exact clones): Program fragments which are identical ex-
cept for variations in white space and comments.

Type 2 (renamed/parameterized clones): Program fragments
which are structurally/syntactically similar except for changes in
identifiers, literals, types, layout and comments.

Type 3 (near miss clones): Program fragments that have been
copied with further modifications like statement insertions/dele-
tions in addition to changes in identifiers, literals, types and
layouts.

Type 4 (semantic clones): Program fragments which are func-
tionally similar without being textually similar.

Structural clones: These are patterns of interrelated classes
emerging from design and analysis space at architecture level.
Structural Clones [14] reflect design level similarities which help
in maintenance.

Function clones: The clones which are limited to the granularity
of a function/method or procedure. Several studies devised the
clone detection methods that found the clones at function level
which can be extracted in a different procedure.

Model based clones: Nowadays graphical languages are replacing
the code as core artifacts for system development. Unexpected
overlaps and duplications in models [47] are termed as model
based clones.
2.3. Why clones

Although cut–copy–paste–adapt techniques are considered bad
practices from a maintenance point of view, many programmers
use them. We list some of the reasons of software cloning.

� Programmers limitation and time constraints: The software is sel-
dom written under ideal conditions. Limitations of program-
mer’s skills and hard time constraints inhibit proper software
evolution [122]. Only way out is copying/pasting/editing.
� Complexity of the system: The difficulty in understanding large

systems only promotes copying the existing functionality and
logic.
� Language limitations: Kim et al. [122] conducted an ethno-

graphic study on why programmers copy and paste code. They
concluded that sometimes programmers are forced to copy and
paste code due to limitations in programming languages. Many
languages lack inherent support for code reuse, leading to
duplication.
� Phobia of fresh code: Programmers often fear to bring in new

ideas in existing software. They fear that introduction of new
code may result in a lengthy software development life cycle.
Furthermore, it is easier to reuse the existing code than to
develop a fresh solution since new code may introduce new
errors [99,152].
� Lack of restructuring: Programmers delay restructuring (refac-

toring, abstraction, etc.) of code due to time limits. Often,
restructuring gets delayed until after product delivery which
increases subsequent maintenance costs. [141].
� Forking/templating: Forking is the reuse similar solutions, with

the hope that evolution of the code will occur independently
at least in short term [120]. Use of structural and functional
templates are often mentioned as reuse mechanisms.

2.4. Advantages of clones

Sometimes software developers intentionally introduce code
clones into existing software. The study by Kapser and Godfrey
[118,120] discusses this issue. Some of the points are mentioned
below:

� It is a fast and immediate method of addressing change
requirements.
� Some programming paradigms encourage the use of Templates

in programming.
� If a programming language lacks reuse and abstraction mecha-

nism, it is the only way left to quickly enhance the existing
functionality.
� The overhead of procedure calls sometimes promotes code

duplication for efficiency considerations.

2.5. Disadvantages of clones

� Higher maintenance costs: Two studies [170,172] confirm that
presence of code clones in software greatly increase the post
implementation maintenance (preventive and adaptive) effort.
� Bug propagation: If a code fragment contains a bug and that

fragment is pasted at different places, the same bug will be
present in all the code fragments. So code cloning increases
the probability of bug propagation [104,158].
� Bad impact on design: Code cloning discourages the use of refac-

toring, inheritance, etc. [61,147]. It leads to bad design practice.

1168 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
� Impact on system understanding/improvement/modification: It is
quite common that the person who developed the original system
is not the one who is maintaining it. Moreover the presence of
duplicated code not only complicates the design but leads to
decreased understanding thereby hampering improvements and
modifications. In the long run, the software may become so com-
plex that even minor changes are hard to make [136,170].
� Strain on resources: Code cloning increases the size of the soft-

ware system thereby putting a strain on system resources
[104,135]. It degrades the overall performance in terms of com-
pilation/execution time and space requirements.
3. Review method

The systematic review reported in this paper was done follow-
ing the guidelines of Kitchenham et al. [127,128,25]. The steps in-
cluded in the review include: development of a review protocol,
conducting the review, analyzing the results, reporting the results
and discussion of findings.
3.1. Planning the review

The review protocol includes the research questions framework,
the databases searched, methods used to identify and assess the
evidence. Conducting the review comprises identification of pri-
mary studies, applying inclusion and exclusion criteria and synthe-
sizing the results. To reduce researcher bias, the protocol,
described in the remainder of this section, was developed by one
of the authors, reviewed by the other authors and then finalized
through discussion, review, and iteration. Electronic databases
were extensively searched and its studies are reported. Moreover,
some of the leading software engineering journals and conference
proceedings which fail to come in electronic search were searched
manually. In total 2039 articles appeared in electronic and manual
search as shown in Table 2. Study selection procedure is shown in
Fig. 1.
Table 1
Research question, sub question and motivation.

Research question Motiv

(1) What is the current status of clone detection? It hel
repre
tool a
ment
evalu
empi
type

(1.1) What methods of clone detection (intermediate representation and
match detection technique) are used and what granularity of clone do they
use?

(1.2) What tools are available for software clone detection, what method do
they use, what clone type do they address, how frequently are they cited?

(1.3) Which studies have evaluated methods/tools and with what results?
(2) Research status in semantic and model based clone detection It is h

gener
to loc
in de

(2.1) What are different studies in semantic clone detection and their
comparative analysis?

(2.2) What are the different studies in model based clone detection and
comparative analysis?

(3) Key sub areas It hel
the n
resea

(3.1) What are the important areas related to software clones, number of
studies in each classified area and their findings?

(3.2) A time based count to show how the area has evolved over time.
(4) What is the current status of clone management Clone

shifti
focus
sub-t
touch
and c

(4.1) What are the studies discussing benefits of clone management?
(4.2) What is the current status of research in clone management and

visualization?
(4.3) A systematic map showing cross cutting nature of clone management

(5) What is the subject system used It wil
carrie
analy

(5.1) What is the size of software used in LOC?
(5.2) What is the programming language of the subject system and whether

the system is open source or commercial?
3.2. Research questions

The main goal of this systematic review was to identify and
classify the existing literature focusing on clone detection, clone
management, semantic clone detections and model based clone
detection techniques. To plan the review, a set of research ques-
tions were needed. Table 1 list the specific research questions
and sub questions.
3.3. Sources of information

A broad perspective is necessary for an extensive and broad cov-
erage of the literature. Before starting the search, an appropriate set
of databases must be chosen to increase the probability of finding
highly relevant articles. [25,127] recommends searching widely in
electronic sources and following databases were searched:

� ACM Digital Library (www.acm.org/dl).
� IEEE eXplore (ieeexplore.ieee.org).
� ScienceDirect (www.sciencedirect.com).
� Springer (www.springerlink.com).
� Wiley Interscience (www3.interscience.wiley.com).
� Scientific Literature Digital Library and Search Engine (http://

citeseerx.ist.psu.edu/).

3.3.1. Additional sources

� Reference lists from primary studies and other review articles.
� Books and Technical Reports.
� Code clone literature website: http://students.cis.uab.edu/tair-

asr/clones/literature/.

These databases are highly relevant as far as software clone re-
search is concerned. Refs. [127,128] recommend looking for studies
in related disciplines for rigorous search. Many developers of tools/
algorithms are queried for additional information. The main goal is
not to limit the coverage but to make systematic review goal ori-
ation

ps in understanding the clone detection techniques. Various intermediate
sentations and match detection techniques used in clone detection technique/
re reported. Various tools/techniques for clone detection developed till date are
ioned with their chare of usage. The research question explores the studies which
ated/compared different clone detection technique. We mentioned studies which
rically compared different clone detection tools. The number of studies for each
of clone is also reported
ard to detect semantic clones. Functional equivalence problem is undecidable in
al and subgraph isomorphism is NP-complete. Model based clones are quite hard
ate too. So any research indication for the same is immensely helpful. It will help
vising better and highly scalable strategies

ps in knowing the type of study carried out in the article. It is important to know
umber of studies for each sub area which helps in identifying key areas for further
rch. A time based count shows how the key area has evolved over time

management has turned out to be a cross cutting topic. Recent research is
ng towards efficient clone management techniques. The research questions
es on understanding the current status of research in clone management and its
opics like clone visualization. Different key area identified in research question 3

clone management. It is important to know different clone detection methods
lone detection tools overlapping with clone management topics
l help in building the database on which the clone detection research can be
d out. It is a step towards benchmarking and standardization of comparative
sis studies

http://www.acm.org/dl
http://www.sciencedirect.com
http://www.springerlink.com
http://www3.interscience.wiley.com
http://www.citeseerx.ist.psu.edu/
http://www.citeseerx.ist.psu.edu/
http://www.students.cis.uab.edu/tairasr/clones/literature/
http://www.students.cis.uab.edu/tairasr/clones/literature/

Fig. 1. Study selection procedure.

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1169
ented and such that the future directions are clear for further
research.

3.4. Search criteria

In almost all the searches, the keyword ‘‘clone’’ is included in
abstract. It is an extensive and time consuming process. Table 2
shows the defined search strategy from different e-resources. We
tried to extract as much of relevant literature as possible.
Table 2
Search strings.

Sr.
no.

E-resource Search string Dates Produ
type

1 ieeexplore.ieee.org Abstract: Clone 1988–2011 Confe
Journ
Stand

2 www.acm.org Abstract: Clone All dates Journ
Proce
Trans
Maga

3 www.sciencedirect.com Abstract: Clone All Years All so
4 www.springerlink.com Title: CloneAll Text:

(Software/Code)
Entire range
of
publication
dates

All so

5 www3.interscience.wiley.com Article Title: Clone Full
Text/Abstract: code or
software

All dates Journ
work
We undertook a meticulous database search to ensure the com-
pleteness of our study. Even so some of the known research papers
were not included in predefined search strategy due to number of
reasons. It may be due to different article title, search string not in
abstract, etc. It is a hard fact that research community is still striv-
ing for standard definition of the term ‘‘clone’’. Due to this, many
traditional research studies refer to clones as duplication of code,
etc. These studies are included in the database by keyword search
to make review process complete. Redundancy, duplication, copy
ct/content Subjects #

rences,
als and
ards

Computing and Processing (Hardware and Software),
general topics for Engineers (Math, Science and
Engineering), Engineering Profession

967

al,
edings,
action and
zine

All subjects 485

urces Computer Science, Decision Sciences and Engineering 134
urces All subjects 245

als, Reference
s, Databases

All subjects 208

http://ieeexplore.ieee.org
http://www.acm.org
http://www.sciencedirect.com
http://www.springerlink.com
http://www3.interscience.wiley.com

1170 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
and paste are some of the keywords which usually replace clone in
article title and abstracts.

3.5. Inclusion and exclusion criteria

In the first stage, irrelevant papers were excluded manually
based on titles. In our case, the number of irrelevant papers is high
as research articles on clones in biology, mathematics and net-
works are hard to distinguish from software clones in online dat-
abases search. In addition, there are many plagiarism detection
tools which overlap with software clone detection tools. Studies
were eligible for inclusion in the review if their focus of study
was software clone detection or software clones in general. Studies
of both students and professional software developers were in-
cluded. The systematic review included qualitative and quantita-
tive research studies, published up to and including 2011 starting
from the initial date of the digital library to make the database
search comprehensive. Only studies written in English were in-
cluded. We included technical reports in our study. Fig. 1 shows
the exclusion at different stages. Studies were excluded if their fo-
cus, or main focus, was not software clones. Research papers
repeating in different e-resources and databases were individually
excluded to ensure our research database remained normalized.
Position papers were excluded from the literature review but some
of the position papers showing future directions are mentioned in
the conclusion and future work section. Some of the articles were
first published in conferences and then extended versions appear
in journals. Such preliminary studies were excluded. All missing
relevant papers were found manually using references of identified
papers. Some of the journals like Journal of Software Maintenance
and Evolution: Research and Practice were individually searched to
verify the results from electronic keyword search.

As shown in Fig. 1, Our search returned over 2039 total papers,
which were narrowed down to 269 papers based on their titles,
and 229 papers based on their abstracts. Then, these 229 papers
were read entirely to select a final list of 213 papers based on
the inclusion and exclusion criterion.

3.6. Quality assessment

After using the inclusion and exclusion criterion to select rele-
vant papers, a quality assessment was performed on the remaining
papers. Since the field is eclectic, a large number of different jour-
nals and conferences include research papers of our interest. Qual-
ity assessment was done in accordance to CRD guidelines as cited
by [127], i.e., each study was assessed for bias, internal validity and
external validity of the results.

Using the quality assessment as per Appendix A, all of the in-
cluded papers contain high-quality software clone research, pro-
viding additional confidence in the database of selected papers.

In the quality assessment form (Appendix A), the high level
question in Section 1 set the basis for screening the study. After
the research paper was included, the paper was studied for classi-
fication based on questions in Section 2. Then we proceeded to Sec-
tions 3 and 4.

3.7. Data extraction

Appendix B identifies the guidelines for data extraction from all
the 213 studies included in the systematic literature review. The
data extraction form was designed when we started the informa-
tion gathering process which is sufficient to address the research
questions framed.

Quality assessment form in Appendix A sets the basis for inclu-
sion/exclusion criteria of the study. To some extent, our quality
assessment form and data extraction form overlapped. When we
started the systematic literature review, we experienced many
problems. It was difficult to extract all the relevant data (Appendix
B) from many studies. Due to this, it was necessary to contact
many researchers to find the required details which we were not
able to infer from the research paper.

The data extraction procedure can be summarized as:

� One of the authors reviewed all of the papers and extracted data
from all the 213 agreed primary studies.
� To check the consistency of data extraction, another researcher

performed data extraction on a random sample of primary stud-
ies and the results were cross checked.
� If there were any disagreement when papers were cross-

checked, consensus meetings among the authors were used to
resolve them.

4. Results

The goal of this study is to investigate the available literature as
per the research questions mentioned in Table 1. Out of 213 pa-
pers, seventeen are published in leading journals and the rest is
published in premier conferences and workshops on software
engineering, programming languages and allied areas. Appendix
C lists the journals and conferences publishing most clone related
research, including the number of papers which report software
clone detection as prime study from each source.

It is worth mentioning regarding the publication for that papers
on software clone detection are published in wide variety of jour-
nals and conference proceedings. We noticed that conferences like
International Conference on Software Engineering, International
Conference on Software Maintenance, and Working Conference
on Reverse Engineering contribute large share of studies. Premier
journals like IEEE Transactions on Software Engineering, Journal
of Software Maintenance Evolution: Research and Practice, Journal
of Systems and Software contribute greatly to our study domain.

A 83% of the studies were published in conferences and work-
shops and 17% of the literature appeared in journals.

4.1. Current status of clone detection

There are a large number of clone detection tools/techniques.
For any technique/tool, the source representation and the match
detection technique are most the important characteristics.

4.1.1. Intermediate source representations and match detection
techniques

Initially, source code is pre-processed to remove any uninterest-
ing parts (e.g. comments and blank lines). Then suitable transfor-
mation techniques are applied to the pre-processed code to
obtain an intermediate representation of the code. Intermediate
representation is a way of extracting useful information based
upon which comparison is done. Clone granularity defines the
boundary of comparison. It can be fixed, e.g. function, class, etc.
or free, e.g. number of statements. We listed granularity level for
each intermediate representation.

Different clone granularity levels apply to different intermedi-
ate source representations. We list all of them in Table 3. Abstract
Syntax Trees (ASTs) or Parse trees, Source code or text and Regular-
ized tokens are the most frequently used intermediate
transformation.

Match detection algorithms are the prominent issue in clone
detection process. After a suitable source code representation
and granularity level is decided, an appropriate match detection
technique is applied to the units of the source code representa-
tion. The output is a list of matches with respect to the trans-
formed code. All the match detection algorithms found in our

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1171
primary studies are shown in Table 4. We have listed primary
studies that discuss each match detection algorithm. The most
frequently occurring match detection techniques are Metric/Fea-
ture Vector clustering, Suffix tree based token by token compar-
ison, Substring/Subtree/Model comparison and Dynamic
Table 3
Intermediate representations, relative count, granularity and citations.

Sr.
no.

Intermediate
representation/
transformation
technique

Code # Clone granularity level

1 Regularized tokens S1 16 Set of statements, set of tokens, fragm
sequence diagrams, files, functions

2 AST/parse tree S2 28 Number of tokens, lines of source code
instructions, code regions, methods, fu
threshold set by user

3 Partite sets and vertices S3 1 Program
4 Source code/text S4 16 Functions, methods, threshold as set b

number of words/lines
5 Call graph S5 1 Functions
6 Vector space

representation
S6 3 Methods, blocks

7 One dimensional array S7 1 Fragments of sequence diagrams
8 PDG S8 5 A set of statements that can be extract

function, threshold as set by user, non
clones

9 Index and inverted index S9 1 Set of statements
10 Sparse, labeled directed

graph
S10 3 Fragments of graph

11 Recorded parsing actions
and lexical information

S11 1 Set of statements

12 Abstract memory states S12 1 Procedures
13 Description logic S13 1 Functions, methods, control blocks

Table 4
Match detection techniques.

Sr.
no.

Match detection
algorithm

Code # Clone granularity level

1 Suffix Tree based
token by token
comparison

M1 12 Fragments of sequence diagrams, functio
fragments, number of tokens as set by us
words

2 Weighted partite
matching

M2 2 Number of blocks, program

3 LSI based clustering
algorithms

M3 2 Code segments, functions, files

4 Metrics/feature
vectors clustering

M4 17 Set of instructions, code regions, function
Threshold set by user, blocks

5 Fingerprinting M5 3 Number of lines, set of statements, block
6 Anti-unification M6 3 Threshold of tokens set by user, sub expr
7 Hashing/LSH M7 6 Set of instructions, code regions, files
8 FIM M8 3 Higher level similarities, i.e. ADT, classes
9 Program Slicing M9 2 Procedure, non-contiguous clones
10 DP M10 8 Methods, set of statements, programs
11 Suffix arrays M11 4 Function, sequence of tokens
12 LCS M12 6 Program, variable size
13 ICA M13 1 Methods, blocks
14 Associative array M14 1 Number of tokens, lines of source code
15 Nearest neighbor M15 1 Set of statements
16 Canonical labeling M16 2 Fragments of graph
17 Substring/subtree/

model comparison
M17 9 Set of tokens, number of lines of code

18 k-Length patch
matching

M18 1 Threshold as set by user

19 Partitioning algorithm M19 1 Different components of the program
20 Tree kernel M20 1 Class, method, set of statements
21 Levenshtein distance M21 1 Class, method, set of statements
22 Semantic web

reasoner
M22 1 Functions, methods, control blocks

23 Random testing M23 1 Lines of source code
24 Dot plot/scatter plot M24 2 Lines of source code
programming. In post-processing, detected clones are screened
for false positives manually. Since many software systems con-
tain large duplication, the outcome of the clone detection results
is reported using techniques like scatter plots and other forms of
visualization.
Citations

ents of [7,16,17,27,35,68,89,103,105,106,113,152,153,157,199,230]

, set of
nctions,

[3,4,8,19,22,24,27,31,36,40,58,59,67,95,132–
134,147,150,153,170,176,196,202,208,214,226,231]

[37]
y user, [13,41,42,56,102,104,129,146,164,168,179,180,191,207,209,228]

[35]
[74,154,210]

[155]
ed into a
-contiguous

[63,84,85,130,138]

[149]
[47,90,182]

[166]

[125]
[202]

Citations

ns, program
er, number of

[7,59,68,105,106,113,134,153,155,157,166,214]

[37,47]

[164,168]

s and methods, [3,4,8,35,42,95,129,132,133,146,147,154,170,176,179,180,196]

s [36,104,180]
essions [27,31,150]

[22,63,89,176,196,199]
[17,152,226]
[84,130]
[8,22,41,67,106,132,147,231]
[16,35,103,230]
[67,89,125,191,210,231]
[74]
[58]
[149]
[90,182]
[13,19,24,56,63,85,207–209]

[138]

[85]
[40]
[95]
[202]

[102]
[56,228]

Table 5
Tool type, tool/first author name, source representation/match detection technique, number of studies referring it and citations.

Tool/1st author Method # Citations

Text based
duploc Source Code, Substring Comparison/Dot Plot

Scatter Plot
5 [20,56,57,195,227]

Simian Source Code, Substring Comparison 12 [13,21,55,139–143,202–204,207]
DuDe Source Code, Dot Plot/Scatter Plot 2 [83,228]
SDD Index and Inverted Index, Nearest Neighbor 1 [149]
CSeR AST, Metrics/Levenshtein Distance 1 [95]
NICAD Source Code, LCS 6 [129,169,190,191,193,194]
EqMiner Source Code, Random Testing 1 [102]
Johnson Source Code, Fingerprinting 1 [104]
Cordy Source Code, DP 1 [41]
Marcus Source Code, LSI 1 [168]
Barbour Source Code, Substring Comparison 1 [13]

Token based
dup Tokens, Suffix Tree 7 [7,20,57,60,68,195,227]
CCFinder (X) Tokens, Suffix Tree 54 [2,13,15,20,21,24,29,32,38,57,62,66,75–77,82,83,94,95,98,101,112–114,116–120,123–

125,137,158,160,165,172–174,186,197,199,201–204,219,223,224,227,230,232,234,235]
D-CCFinder Tokens, Suffix Tree 2 [156,157]
RTF Tokens, Suffix Array 1 [16]
clones/cscope AST, Suffix Tree 1 [134]
iClones Tokens, Suffix Tree 2 [68,70]
CP-Miner Tokens, FIM 3 [76,100,152]
SHINOBI Tokens, Suffix Array 1 [230]
FCFinder Tokens, LSH 1 [199]
Jian-lin Tokens, Suffix Array 1 [103]
Chilowicz Tokens/Call Graph, Metrics/Suffix Array 1 [35]

Tree based
Deckard PDG/Parse Tree, LSH/Subtree Comparison 10 [55,63,64,100,109,125,151,184,220,221]
CloneDR AST, LSH/DP 9 [20,22,32,60,75,206,212,217,227]
SimScan AST, Subtree Comparison 11 [6,13,21,54,55,60,87,158,174,208,223]
Asta AST, Associative Array 1 [58]
Clone Digger AST, Anti-unification 2 [31,40]
Sim Parse Tree, DP/LCS 1 [67]
ClemanX AST, Metrics/Feature Vector Clustering/LSH 1 [176]
JCCD API AST, Subtree Comparison 1 [24]
ccdiml AST, Subtree Comparison 3 [19,29,223]
CloneDetection AST, FIM 1 [226]
cpdetector AST, Suffix Tree 1 [134]
clast Parse Tree, Suffix Tree 1 [59]
Chilowicz AST, Fingerprinting 1 [36]
Saebjornsen AST, Metrics/Feature Vector Clustering/LSH 1 [196]
Tairas AST, Suffix Tree 1 [214]
Lee AST, Anti-unification 1 [150]
Yang Parse Tree, DP/LCS 1 [231]
Brown Tokens/AST, Anti-unification 1 [27]

Graph based
PDG-DUP PDG, Program Slicing 2 [29,130]
Scorpio PDG, Program Slicing 1 [84]
Duplix PDG, k- length patch matching 3 [20,138,227]
Choi Partite Sets and Vertices, Weighted Partite

Matching
1 [37]

Horwitz PDG, Substring Comparison/Partitioning
Algorithm

1 [85]

Metrics based
CLAN/Covet AST, Metrics 10 [4,20,32,34,51,60,144,170,195,227]
Li Vector Space Representation, Metrics/

Feature Vector Clustering
1 [154]

Kontogiannis AST, Metrics/Feature Vector Clustering/DP 2 [132,133]
Similar Methods

Classifier
AST, Metrics/DP 1 [8]

Antoniol AST, Metrics 1 [3,4]
Dagenais Source Code, Metrics 1 [42]
Kodhai Source Code, Metrics 1 [129]
Patenaude Source Code, Metrics 1 [179]
Perumal Source Code, Metrics/Fingerprinting 1 [180]
Lavoie AST, Metrics/DP 1 [147]
Lanubile Source Code, Metrics/Feature Vector

Clustering
1 [146]

Model based
CloneDetective/

ConQAT
Tokens, Suffix Tree/DP 10 [48,49,52,96,105–109]

1172 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199

Table 5 (continued)

Tool/1st author Method # Citations

ModelCD Sparse labeled direct graph, canonical
labeling

2 [49,182]

DuplicationDetector One Dimensional Array, Suffix Tree 1 [155]
MQlone Model/Source Code, Model Comparison 1 [209]
Clone Detective Sparse labeled direct graph, Weighted

Partite Matching
1 [47]

Hummel Sparse labeled direct graph, canonical
labeling

1 [90]

Hybrid
Clone Miner Tokens, FIM 4 [14,17,18,236]
MeCC Abstract Memory States, LCS 1 [125]
Maeda Recorded Parsing Actions and Lexical

Information, Suffix Tree
1 [166]

Lucia Source Code, LSI 1 [164]
Li Tokens/AST, Suffix Tree 1 [153]
Hummel Tokens, LSH/LCS 1 [89]
Sutton Vector Space Representation, LCS 1 [210]
Cordy Vector Space Representation, ICA 1 [74]
DL_Clone AST/Description Logic, Semantic Web

Reasoner
1 [202]

Corazza AST, Tree Kernel 1 [40]

Table 6
Number of studies referring to different types of clones.

Sr. no. Type of clone # Citations

1 Type 1/exact clones 11 [56,57,59,89,104,129,134,153,157,180,226]
2 Type 2/parameterized clones 23 [7,16,56,57,59,68,83,89,103,113,129,134,148,153,157,166,170,180,214,225,226,230,233]
3 Type 3/near miss clones 27 [22,27,36,40,41,57,59,67,74,83,84,101,106,131,133,134,138,148,150,166,170,179,191,193,203,210,214]
4 Type 4/semantic clones 8 [37,63,102,125,130,138,168,202]
5 Structural clones 3 [14,17,18]
6 Model based clones 7 [47,49,90,105,155,182,209]
7 Function clones 3 [35,58,193]
8 File clones 1 [199]
9 Contextual clones 1 [169]

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1173
4.1.2. Clone detection tools
Numerous tools have been developed for clone detection. We

have conducted an extensive survey regarding the penetration
and usage of clone detection tools for instructors, research or com-
mercial purpose. Table 5 shows tools name/first author name, its
source representation and match detection method, which papers
have cited it. The table includes clone detection based not only in
source code but also on the usage of the tool in other areas like
web applications and requirement specifications. As shown in
Table 5 we have classified the techniques roughly into seven types:
text based, token based, tree based, graph based, metrics based,
model and hybrid clone detection techniques. Apart from model-
based techniques, these techniques and the tools that use them
are discussed in more detail later in this section. Model-based
techniques are discussed in more detail in Section 4.2.2.

Different types of clones are detected by different techniques.
Many tools/techniques are able to detect only a subset of clone
types. In Table 6, we have enumerated the type of clones and iden-
tify the studies discussing each type of clone. Table 6 makes it clear
that clone research has concentrated primarily on clones of Types 2
and 3, clones of Type 1, Type 4 and Model based clones have been
given some attention, but the remaining four clone types have
been the subject of very little research.

4.1.2.1. Text based clone detection techniques. In text based clone
detection techniques, two code fragments are compared with each
other in the form of text/strings/lexemes and similar fragments are
reported as code clones. Johnson [104] applied a fingerprinting
technique for comparison of source code. Ducasse et al. [56] devel-
oped a language independent clone detection tool duploc which re-
quired no parsing. Line based comparison is done using dynamic
pattern matching and results are displayed in the form of dot plot.
DuDe [228] is another line based clone detection tool which is
able to detect duplication chains consisting of a number of smaller
size exact clones. Simian [207] is able to detect clones in different
programming languages. If Simian does not recognize program-
ming language of the source file, then it treats it as a plain text file
to find clones. The SDD (Similar Data Detection) [149] tool is help-
ful in detecting code clones in large size systems. The technique is
based on generating index and inverted index for code fragments
and their positions. Then an n-neighbor distance algorithm is used
to find similar fragments.

NICAD [188,191] is a text based hybrid clone detection tool
which is able to detect type 3 clones effectively. It is based on
a two stage process, viz. identification and normalization of po-
tential clones using pretty printing and code normalization and
code comparison using longest common subsequences. Variants
of NICAD [190] have been used to calculate recall and precision
by applying a mutation/injection based framework. NICAD has
been used to detect function clones in open source systems writ-
ten in Python to discover any changes in cloning patterns as
compared to traditional software systems [194]. Martin and Cor-
dy [169] use NICAD to detect and analyze similar web services in
the form of contextual clones. Cordy et al. [41] detected near-
miss clones in HTML web pages using island grammar to identify
and extract all structural fragments and applying UNIX diff as
comparator. Barbour et al. [13] used the Knuth–Morris–Pratt
algorithm for string comparison to update the clone information
from the server incrementally to save time in a client server set-
up. Later on, only relevant clones are retrieved by individual
developers. The technique is found to be faster than string based
Simian and AST based SimScan. However, since it uses string
based technique, it fails to detect clones with minor and major
changes.

1174 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
4.1.2.2. Token based clone detection techniques. It is more meaning-
ful in parameterized clone detection as tokens are better than sim-
ple keyword matches. In token based clone detection techniques,
firstly, tokens are extracted from the source code by lexical analy-
sis. Then some set of tokens (at a specific granularity level) is
formed into a sequence. Suffix tree or suffix array based token by
token comparison is the heart of token based clone detection
algorithms. This match detection technique is the most frequently
cited in the literature and was used in one of the first clone detec-
tors dup [7]. Token sequences are fed into a suffix tree. The ap-
proach used ‘‘functor’’ as an abstraction of concrete values of
identifiers and literals that maintains their order. The study re-
ported a greater number of parameterized matches than exact
matches in the same subject system. CCFinder [113], a token based
clone detection tool uses suffix tree matching algorithm to find
identical subsequences. It is a popular tool among researchers
and has been widely used for code clone analysis, code clone man-
agement, etc. Many researchers have worked to enhance the out-
put of CCFinder by devising clone visualization tools. For instance,
CCFinder is used by Basit et al. [15] to study patterns of clones in
a standard template library (STL). In their work, they increased
the threshold in CCFinder to filter small clones. Livieri et al. [157]
developed a distributed version of CCFinder, viz. D-CCFinder for
large systems by using 80 workstations in master slave configura-
tion. CCFinderX [114] was used to study code clone genealogies at
release level. Two studies [197,137] used it for analysis of the rela-
tions between open source software quality and code cloning.
Monden et al. [173] concentrated on detecting type 2 clones using
CCFinderX. The number of tokens of largest clone pair and the per-
centage of duplication within the most suspicious source file pair
are important metrics in distinguishing Type 2 clones in their
study.

CP-Miner [152] is a token-based tool using frequent itemset
mining to detect bugs in the software induced by cloning. Clone
Miner detects structural clones which are high level abstractions.
RTF [16] works by applying suffix array on tokens. Suffix array on
source code tokens is also used by Jian-lin and Fei-peng [103].

Koschke et al. [134]’s tool clones uses a parser and generates ab-
stract syntax tree. Then the AST is serialized and input to suffix tree.
The technique is able to detect syntactic units which are not possible
by applying suffix tree only. Göde and Koschke [68] developed the
incremental tool iclones by extending clones to detect clones for mul-
tiple versions. Li and Thompson [153] used two techniques, viz. com-
bination of token stream and the AST to detect and remove code
clones. The two representations are used for their accuracy and
speed. Match detection is done with the help of a suffix tree. Another
modern multi-input open source clone detector framework ConQAT
[105,106] detects clones using a suffix tree on tokens. The tool is
based on a pipelined approach for extensible token based clone
detection. ConQAT has been used to detect behaviorally similar code
[109]. A number of approaches [47,90] using ConQAT have been pro-
posed to detect duplications in Matlab/Simulink models. Acceptance
of tools like CCFinder, dup, ConQAT in academia and research showed
the usefulness of the fast speed with which suffix trees detect clones.

Yamashina et al. [230] proposed a novel clone detection/modi-
fication tool to support the software maintenance process. The
study reported a substantial difference between novice and expe-
rienced programmers regarding motivation and behavior in han-
dling clones. Using CCFinderX’s preprocessor, tokens are gathered
from the source code. Then they are input to a suffix array for fast
retrieval. Clone retrieval and ranking is performed by the SHINOBI
server. The evaluation shows SHINOBI to be fast and accurate. In
the pre-experiment, a large number of programmers were inter-
viewed to analyze their behavior. SHINOBI still needs improvement
in ranking algorithm. However, it can be extended to support other
useful information in addition to code clones.
Sasaki et al. [199] developed a new token based clone detection
tool FCFinder to detect file clones (files which are copied across
projects) using hashing. The study detected 68% of the FreeBSD
Ports collection as file clones. However, FCFinder took a long time
to detect file clones in the 10 GB collection.
4.1.2.3. Tree based clone detection techniques. Abstract syntax trees
and parse trees are frequently used representations when source
code is to be transformed into tree structures. However, tools
based on this approach suffer from large execution times when
analysing a large source code base. The output is purely syntactic
units of source code which are ready for refactoring. Tree based
clone detection is capable of detecting clones in which the code
is inserted or deleted (type 3 clones).

Yang [231] proposed one of the first approaches for finding the
syntactic differences between two versions of the same program.
The technique was based on grammar and builds a variant of a
parse tree for both the versions. Detection is applied synchronously
to both the trees and is based on the longest common subsequence
method of dynamic programming. A limitation of this approach is
that his differential comparator can only work for syntactically cor-
rect programs conforming to the grammar.

Semantic Designs’ CloneDR [22] is another tool which is able to
detect exact and near miss clones using hashing and dynamic pro-
gramming. The tool has different variants for different program-
ming languages. The study reported the use of clone detection in
finding commonalities in the form of domain concepts in source
code which will help analysts in understanding the design of the
system for better maintenance. SimScan [208] and ccdiml [19] are
variations of CloneDR. ccdiml transforms the source to intermediate
representation and SimScan applies subtree comparison on the
parsed source code. The source code is parsed with the help of
ANTLR parser generator. SimScan and ccdiml have been used to
classify the evolution of source code clone fragments in Java and
C source code files [223]. Falke et al. [59] and Tairas and Gray
[214] used suffix tree to detect clones in code transformed into
an AST. The technique has advantage of precision of syntax tree
and high speed of suffix tree.

Gitchell and Tran [67] developed Sim which converts source
programs to parse trees. Viewing parse trees as strings, the tool ap-
plied longest common subsequence and dynamic programming to
assess similarity. Deckard by Jiang et al. [100] is based on comput-
ing characteristic vectors from the AST and clustering vectors
which are close in Euclidean space by locality sensitive hashing.
Deckard has been used to identify refactoring on parts of a clone
in open source systems [220] and localizing the representation of
clone groups [221] and has been used to detect behaviorally simi-
lar code [109]. Another application of Deckard is to assess the im-
pact of code clone on defects in source code [184]. Asta [58] is an
AST based tool which works on the phenomenon of structural
abstraction of arbitrary sub trees of an AST. ClemanX [176,177] is
an incremental AST based framework. The tool constructs charac-
teristic vectors from AST subtrees and used locality sensitive hash-
ing. Saebjornsen et al. [196] also used the same set of techniques to
detect clones in assembly code.

Anti-unification is used in three studies [150,27,31] to calculate
the distance between two AST’s and grouping the similar classes in
one cluster. Anti-unification helps to discover common sub-
expressions in source code represented as a tree. CloneDigger [31]
is a language independent tool in which anti-unification is applied
to XML representation of source code. CloneDetection, a tree based
tool by Wahler et al. [226], is based on frequent itemset mining ap-
plied on XML representation of source code. Chilowicz et al. [36]
developed a new technique to detect exact clones based on syntax
tree fingerprinting.

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1175
Shifting our focus to code clone management, CSeR (Code Seg-
ment Reuse) was developed by Jacob et al. [95] to check copy
and paste induced clones in an integrated development environ-
ment. The tool was designed to compute clone differences interac-
tively by checking if some piece of code was copy-pasted as the
programmer was editing and typing the code. It works on the phe-
nomenon of converting the immediate clone to an AST and com-
puting the difference with the original in a bi-directional manner
using metrics like the Levenshtein distance.

Biegel and Diehl [23,24] introduced a novel way for fast and
configurable code clone detection using pipelines. They developed
JCCD, a flexible and customisable AST based clone detection tool in
which several cascaded processors perform various steps of clone
detection process. JCCD API parallelizes the detection process using
multiple cores.
4.1.2.4. Graph based clone detection techniques. A program depen-
dency graph (PDG) represents control and data flow dependencies
of a function of source code. Horwitz [85] used this method to
identify syntactic and semantic differences between two versions
of a program. Graph representation of source program is parti-
tioned depending upon the behavior of source code fragment.
The partitioning algorithm and substring comparison are used to
detect similarity. Duplix [138] works on the k-limiting approach
of finding maximal similar subgraphs. PDG-DUP [130] is also a
PDG-based tool which uses program slicing to find isomorphic sub-
graphs. It helps in detecting non-contiguous clones. Scorpio [84] by
Higo and Kusumoto applied two-way slicing to detect clones. The
tool currently works on for Java and is based on number of PDG
specializations for Java language and heuristics to speed up the
overall detection process. It was developed to address the problem
that the existing PDG based clone detection approach is slow in
detection of contiguous clones.
4.1.2.5. Metrics based clone detection techniques. In the data extrac-
tion form, we extracted the studies using metrics and characteris-
tic features in the same column. Both the match detection
techniques are applied after the source code is represented in some
suitable form such as an abstract syntax tree. In the systematic lit-
erate review, we found a large number of articles using this tech-
nique. Characteristic vectors are usually applied for the sub tree
matching in an abstract syntax tree or parse tree to detect type 3
clones. The metrics which are extracted from source code are com-
pared to assess similarity. Mayrand et al. [170] developed CLAN,
one of the first approaches to compare metrics obtained from an
AST of source code. Metrics are calculated from names, layout,
expressions and control flow of functions. CLAN has been widely
used in the last decade. Patenaude et al. [179] detected metrics
from source code organized in five themes, viz. classes, coupling,
methods, hierarchical structure and clones. Kontogiannis et al.
[132,133] report a technique to detect code clones using metrics
extracted from an AST representation of code. Match detection is
done by applying dynamic programming on source code lines
using minimum edit distance. Balazinska et al. [8] found metrics
and applied dynamic matching to an AST representation of source
code. Metrics were used by Lanubile and Mallardo [146] to detect
function clones in web applications. Perumal et al. [180] used met-
rics and fingerprinting technique to detect clones in source code.
Kodhai et al. [129] and Dagenais et al. [42] applied metrics on tex-
tual representations of source code. Li and Sun [154] explored a no-
vel approach by viewing source code clones in metric space with
coordinate values. The distance between members across same
metric space is measured and the distance reflects similarity be-
tween code fragments. This study was accurate and scalable but
the technique is yet to be verified for different subject systems.
Metrics have been used successfully in clone analysis [10,82], clone
evolution [3,4,51], clone visualization [101], etc.

Lavoie et al. [147] presented a novel technique based on graph-
ics processing unit (GPU) algorithms to compute many instances of
the longest common subsequence problem on a generic GPU archi-
tecture using classic DP-matching. Because the algorithm is parall-
elized on a GPU using dynamic pattern matching algorithm, it
leads to an opportunity of increased performance. The tool is useful
to address the problem of finding more false positives compared to
metrics-based clone detection methods. It also compared clone
identification problem on CPUs and GPUs hardware architectures.
The study recommends clone detection techniques using string-
matching with suffix trees could take advantage of the GPU
algorithm.

4.1.2.6. Hybrid clone detection techniques. Sutton et al. [210] applied
an evolutionary algorithm to search for clones in large code bases.
The source code is represented as variable size vector. Clustering of
similar code fragments is done with the longest common subse-
quence. Cordy and Grant [74] introduced a technique using an
existing information retrieval method, namely independent com-
ponent analysis (ICA) to analyze vector representations of software
methods. Firstly, singular value decomposition is applied on origi-
nal method token matrix. Then ICA is applied and points in new
vector space that correspond to the input data are recognized.
The distance between any two vectors is considered a measure of
their similarity.

Maeda [166] introduced a technique based on PALEX source
code representation. The PALEX source code includes lexical infor-
mation and parsing actions recorded from the compiler as it pro-
cesses the source program. The technique is language
independent and uses a suffix tree for comparison. The hybrid ap-
proach by Corazza et al. [40] uses a tree kernel which is a class of
functions for computing similarities among information arranged
in tree structure. It works in a recursive fashion on a tree, starting
from similarity measure of the nodes and aggregating the results.
The technique is language independent and works at method level
for Java programs. The results are compared with AST based tool
CloneDigger. A disadvantage of this approach is that it takes a sub-
stantial time to execute.

Chilowicz et al. [35] developed a technique to detect function
clones in source code represented as call graph using suffix array
and metrics. The technique starts with collecting tokens using lex-
ical analysis. Basit and Jarzabek [17] developed Clone Miner using
frequent itemset mining which works on the output of token based
clone detection tool, RTF [16].

Hummel et al. [89] developed a hybrid incremental index-based
clone detector which takes input in the form of token sequences.
The index is used to lookup for all clones in a single file and allows
updating on addition, deletion or modification. The tool in imple-
mented in ConQAT and runs in a pipeline fashion thereby highly
scalable, incremental and provides excellent run time perfor-
mances. In one case study, 100 machines performed clone detec-
tion in 73MLOC in 36 min. The authors proposed the use of
locality sensitive hashing in the current implementation to support
the detection of type 3 clones. The technique is used in code clone
detection as well as model based detection.

Fig. 2 shows different clone detection techniques. The tech-
niques are reported with corresponding source representation
and match detection technique. The figure shows the amount of re-
search that has been carried out in different clone detection tech-
niques. Table 3 lists thirteen different intermediate representation
or transformation techniques which are referred to in Fig. 2 as SX
(where X is a number from 1 to 13). Table 4 lists 24 different tech-
niques of match detection which are referred to in Fig. 2 as MX
(where X is a number from 1 to 24).

Fig. 2. Different clone detection techniques, match detection algorithms, source representations and citations.

1176 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
4.1.3. Comparison and evaluation of clone detection tools and
techniques

Comparison and evaluation of clone detection techniques is a
challenging task. Diverse subject systems and the absence of stan-
dard similarity measures complicate the comparison task. So stud-
ies covering comparison and evaluation are immensely important
to identify an efficient clone detector.

Table 7 shows the empirical studies for comparison and evalu-
ation of clone detection tools. In all the studies barring one by Burd
and Bailey [32], where we mentioned exact values, we wrote ordi-
nal scales (��, +, ++,+++) where �� reports lowest and +++ reports
highest depending upon the value of parameters in the paper. The
reader should refer to the relevant research paper to find the exact
values. Different studies evaluated the tools using different param-
eters. We have left some of the entries blank as the paper does not
report the relevant results. These studies are discussed below.

Burd and Bailey [32] conducted the first experiment to compare
three clone detection tools, CCFinder, CloneDR and Covet and two

Table 7
Empirical Comparison Studies.

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1177

1178 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
plagiarism detectors JPlag and Moss. They validated all the clone
candidates of the subject system obtained by all the tools and
made a human oracle. Then they used the human oracle for com-
paring the different techniques in terms of precision and recall.
The result of their experiment shows 100% precision for syntax-
based technique CloneDR indicating that no false positives in its de-
tected clones are reported by this tool, however, recall was very
low. The token-based tool CCFinder shows the highest recall
(72%) and reasonable precision (72%).The metric based tool Covet
showed the minimum precision (63%) compared to the other tools.
The limitation of the case study was in terms of system size. The
case study used source code of GraphTool written in Java which
was only 16 KLOC.

Rysselberghe and Demeyer [195] compared text-based duploc,
token-based dup and metric based clone detector CLAN. The goal
of this comparative study was to identify the most appropriate
clone detection tool for refactoring. They use five small to medium
(under 10KLOC) sized cases for evaluating the techniques. These
techniques were evaluated qualitatively rather than quantitatively
in terms of suitability, relevance, confidence and focus. The results
show that metric fingerprint techniques were best suited to work
with a refactoring tool. No significant difference was found be-
tween the approaches with respect to relevance and focus. Simple
line matching gives the highest confidence as it finds exact
matches whereas all the other techniques requires a manual
inspection to reject false positives. Their study also found that
parameterised matching techniques returns more clones.

Koschke et al. [134] evaluated their AST-suffix tree based tool
cpdetector in terms of precision, recall and runtime against existing
tools using Bellon’s experimental procedure and additional tools
are cpdetector, ccdiml, clones and cscope. Since their developed tool
is suitable for C systems only, therefore they worked only with 4 C
systems of Bellon’s experiment and provided detail results for only
one system. The results show that the AST-based tool ccdiml shows
a good recall (53%). However, the average recall for the token-
based tools is almost double (54%) than the AST-based tools
(30%). Their experiment result shows that clones found 71% more
clones than CCFinder. Metrics based tool CLAN is good and duplix
is worst in terms of runtime.

Bellon et al. [20] conducted a tool comparison experiment with
the same three clone detection tools that were used in Burd and
Bailey’s study and with three additional tools, viz. dup, duplix and
duploc. They also used software systems in Java and C (four Java
and four C systems) totalling almost 850KLOC. Their experiment
showed that precision and recall was complementary for each of
the tool except the PDG-based duplix where both as attributes
exhibited the lowest values. The AST based CloneDR and the met-
rics based CLAN had high precision but their recall was very low.
The token based tools (dup and CCFinder) and the text based tool
duploc had the highest recall but low precision. The experiment
shows that the PDG-based tool duplix performed very badly in
terms of execution time compared to the other clone detection
tools.

Falke et al. [59] empirically compared ccdiml, cpdetector, clast,
clast-ba, clones-uk, clones-ba and cscope using subject systems in
C and Java. The results show that token based tools yield large
number of clones. AST matching shows lower rejection rate, but
also has a lower recall. The result indicates that detection based
on suffix trees is faster than detection based on tree matching.
Parse tree based tools show lower rejection rate than AST-based
tools for C systems but a higher rate for Java systems. Also parse
tree based tools are faster than AST based tools for java systems.
In contrary to previous experiments, this study does not show high
recall for token based tools. According to this study the advantage
of token based techniques is that it is easier to implement lexer
than parser and requires less space than AST. On the other hand
AST based techniques are good to find syntactic clones and help
to filter those syntactic structures which are of little interest.

Roy and Cordy [190] propose a mutation/injection based frame-
work for evaluating clone detection techniques. In this method
mutant versions of code fragments are created. Then these mutant
versions are injected into original source code. Different variants of
tool NICAD (Basic NICAD, FlexP NICAD and Full NICAD) are run on
these mutant versions to compare tool on basis of precision and re-
call. The result of this study shows that Basic NICAD has poor recall
for clones generated by mutant operators of type-2 clones. FlexP
NICAD is also not good to find clones generated by mutant opera-
tors of type-2 clones. Full NICAD is best to find clones generated
by mutant operators of all type of clones. The advantage of this
framework is to evaluate and compare recall of different clone
detection tools without manual intervention and similarly preci-
sion can be evaluated either automatically or by using an interface
with minimal manual intervention.

The experiment [49] compared the techniques of Pham et al.
[182] and Deissenboeck et al. [47]. The study proposes reduction
in branching to avoid multiple occurrence of sub graph in the
search tree. This is done to prune the search space to make it rel-
evant and fast. The techniques to remove obvious clones and
branch reduction lead to lower recall.

Juergens et al. [109] demonstrated the applicability of state of
the art tools in detecting behaviorally similar code. The authors
stated that behaviorally similar code is highly unlikely to be syn-
tactically similar and such code results due to independent devel-
opment. Deckard and ConQAT cannot detect more than 1% of such
code. Selim et al. [203] proposed a hybrid technique in which
clone detection is performed simultaneously for source code
and intermediate code which are merged to detect near miss
clones in Java. Using Bellon benchmark [20], comparison with
other state of the art tools is done. The technique gives lower
precision and higher recall than CCFinder and Simian, when used
standalone. The technique detected some clones which are not
useful. Use of the technique on large code bases is still to be
done.

An assessment of Type 3 clones as detected by the clone detec-
tion tools namely ccdiml, clones, clast, duplix and CLAN is performed
by Tiarks et al. [222]. The study apparently points out that existing
type-3 clone detectors need to be improved as only 25% of detected
clones are accepted by human oracle. An empirical study [193] is
carried out regarding function clones in open source software.

Upon assessing each of studies, it is difficult to find out the best
tool for each study. After a complete review of all studies, we are
able to write following general remarks:

Token based clone detection tools like CCFinder detected large
number of clones. They have high recall and reasonable precision.
These tools do not help the developer in refactoring in a straight-
forward manner.

Tree based tools like CloneDR have high precision. Though these
tools detect very less number of clones with low recall, but the de-
tected candidates are ready for refactoring thus helping the devel-
oper in clone management.

Metrics based tools like CLAN has good precision but suffer from
low recall and less number of candidates detected. These tools run
fast and detect function clones ready for refactoring.

Tools which apply suffix tree in AST representation of code like
cpdetector works faster than other AST based tools.

One PDG based tool named duplix is able to recognize type 3
clones only but suffer from high time complexity.

We have not found any empirical study comparing various
semantic clone detection tools/techniques.

There are two papers comparing model based clone detection
approaches, i.e. ModelCD and CloneDetective and ConQAT.

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1179
Benchmark [20] has been used by [134,20,59,203] in their
empirical studies. It consists of clone pairs validated by humans
for eight software systems written in C and Java from different
application domains.

We have mentioned the empirical studies comparing different
clone detection tools in the above paragraphs. These studies are
undertaken by taking one or more subject systems to evaluate
the tools. Evaluation is done with parameters like precision, recall,
etc. as shown in Table 7. Other studies comparing clone detection
tools/techniques qualitatively are explored in the following para-
graphs. Studies devising clone oracle are also discussed in follow-
ing paragraphs.

Ducasse et al. [57] compared their string based clone detection
technique duploc with Baker’s token based tool, dup and Kamiya’s
token based tool, CCFinder and confirms that this inexpensive clone
detection technique can also yield high recall and acceptable pre-
cision. This study uses Weltab (9KLOC) and Cook (46 KLOC) as sub-
ject systems. The detailed results of the study are shown in Table 8.
For duploc – means no normalization; C means constants normal-
ized; I means identifiers normalized; F means functions normal-
ized; CI means constants and identifiers normalized; IF mean
identifiers and functions normalized; CIF means full normaliza-
tion; and 0, 1, 2 specifies the maximum gap size in the comparison
sequence. The results of the study show that for Weltab, normaliz-
ing identifiers and function names is important to achieve similar
results as that of dup and CCFinder. For Cook, normalizing identifi-
ers can lead to too many clones but normalizing constants only
with maximum gap size zero gives good precision. The study con-
firms that this inexpensive clone detection technique can also yield
high recall and acceptable precision, although the tool needed to be
extensively calibrated to each system. However, the results also
show clearly that the effectiveness of clone detection tools is
strongly influenced by the specific system to which the algorithms
are applied. This confirms that studies attempting to compare dif-
ferent types of clone detection tools must evaluate them on a vari-
ety of different systems.

Roy and Cordy [189] compared clone detection techniques on
the basis of several criteria like language support, comparison
granularity, clone similarity, and code representation. They also
propose a set of hypothetical editing scenarios for different clone
types and evaluate the clone detection techniques based on their
estimated potential to accurately detect clones that may be created
by those scenarios. Their studies results shows that hybrid tech-
nique based on tree-based techniques (e.g., cpdetector) and text
based techniques (e.g. duploc) can detect type-1 clones efficiently.
Hybrid approach of token based (dup and RTF) and AST based
(cpdetector and Asta) best suits to find type-2 clones. Type-3 clones
are best found by hybrid approach based on text based (DuDe and
SDD) and AST based (Deckard) techniques and graph based tech-
niques (duplix and GPLAG) are best suitable to find semantic clones.
The results of this study are predictive rather than empirical but
assist to understand and find interesting combinations of
techniques.

In another study, Roy et al. [192] conducted a large case study to
classify and compare clone detection approaches based on a num-
ber of facets, each of which has a set of attributes. They qualita-
Table 8
Comparison of three clone detection systems on two software products.

Study/tool WELTAB

Candidates Precision (%) Recall

Dup 2742 80 80
CCFinder 3888 99 93
Duploc 2378 (IF,1) 90 86

2609 (IF,1) 90 88
3761 (CIF,0) 91 92
tively evaluated the classified techniques and tools with respect
to taxonomy of editing scenarios designed to model the creation
of Type-1, Type-2, Type-3 and Type-4 clones. So this case study
compares the clone detection techniques and tools qualitatively
and helps to understand the potential of each technique and tool
to find clones generated by different scenarios.

Walenstein et al. [227] carried out a study to highlight the prob-
lems in devising universal oracle. The study involves researchers’
view in classifying the candidate clones into clones and non-clones
categories as detected by tools, viz. dup, CloneDR, CCFinder, duplix,
CLAN and duploc. Authors observed high level of disagreement. This
exploratory study is a step towards clone detector benchmarks.
The study pointed out that inter-rater reliability measures should
be calculated for human generated reference data. Lakhotia et al.
[145] stressed on the need to create a community supported open
benchmark suite to help researchers in evaluating and comparing
clone detectors and choosing standard subject systems for the
study. Lavoie et al. [148] presented a novel technique to construct
clone oracles automatically in large systems based on the Levensh-
tein metric. Compared to manual oracles, this oracle is of good
quality for type-3 clone detection assessment and is able to deal
with large code base in reasonable time. The oracle generates good
quality clones and aims for comparison and evaluation of clone
detection techniques in a reasonable time.

Barring one comprehensive study by Roy et al. [192], compara-
tive studies of clone detection techniques pertain to some subset of
tools. We found only eleven empirical studies as shown in Table 7
which shows apparent lack of work in comparison and evaluation
of clone detection techniques. We found two studies by Deis-
senboeck et al. [49] and Pham et al. [182] on comparison of exist-
ing model based clone detection techniques.

4.2. Status of research in semantic and model clone detection
techniques

Semantic clone detection and model based clone detection
techniques are challenging upcoming areas. We focused our review
to analyze the available techniques in detail.

4.2.1. Semantic clone detection
Two program fragments differing in their concrete syntax may

be semantically very close. Detecting semantic equivalence is very
difficult. It needs deep semantic analysis. There are some studies
which tried to detect semantic clones. They are mostly approxima-
tions to type 4 clones. In 1990, a key article [85] by Horwitz was
published to detect textual and semantic similarities. Table 9 com-
pares and details different semantic clone detection techniques.

PDG is a directed attributed graph representing the statement
and control flow and captures semantic information from source
code. It works as an abstraction of source program. The application
of a subgraph isomorphism technique to detect clones in the form
of isomorphic subgraphs is NP-complete. Krinke [138], Komondoor
and Horwitz [130], Gabel et al. [63] presented techniques to detect
semantic clones using PDG as source representation. Krinke [138]
used k-length patch matching to detect maximal induced subgraphs.
The technique worked well with reasonable precision and recall on
COOK

(%) Candidates Precision (%) Recall (%)

8593 29 70
2388 42 43
9043 (CIF,0) 26 71
7661 (�,2) 42 64
276 (C,0) 49 26

Table 9
Semantic clone detection and comparative analysis.

Normalizations/
transformations

Source code
representation

Clone matching
technique

Advantages Disadvantages Tools

Jens Krinke [138] PDG Fine grained
PDG

n-Length patch
matching (maximal
similar subgraphs)

High precision and recall Needs a PDG generator for
different language, works for
C language

Duplix

Komondoor & Horwitz
[130]

CodeSurfer to PDG PDG PDG Subgraph
matching using
program slicing

Mechanical refactoring can
lead to procedure
extraction

Needs a PDG generator, very
slow for large code bases

PDG-DUP

Choi et al. [37] Programs to partite
sets and functions to
vertices

Birthmarks Maximum weighted
bipartite matching

Efficient, highly resilient Needs deobfuscation
methods against attacks

Marcus and Maletic
[168]

Comment removal
and token
regularization

Text Vector representation
using LSI

Finds high level structural
clones

Highly dependent on
comments, low precision

Gabel et al. [63] CodeSurfer to PDG to
AST

PDG Characteristic vectors
in Euclidean Space

Highly scalable Needs a PDG generator, slow
for large code bases

Enhanced
Deckard

Jiang and Su [102] Program text to
intermediate
language

C
intermediate
language

Automated random
testing

Scalable Works for C programs only EqMiner

Kim et al. [125] Semantic based
static program
analysis tool

Abstract
memory
states

Abstract memory state
comparison

Precise, can be used to
identify bugs,
inconsistencies, plagiarism

More false positives, semantic
based static analyzer takes lot
of time

MeCC

Philipp Schugerl [202] AST to description
logic

Description
logic

Semantic web reasoner Scalable, can be parallelized Fails to detect smaller clones
and clones across methods

DL_Clone

1180 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
sample software systems. Komondoor and Horwitz [130] used pro-
gram slicing to detect isomorphic subgraphs in the PDG. The tech-
nique uses backward and forward slicing and able to detect good
clone candidates for procedure extraction. It can detect non-contig-
uous clones. Gabel et al. [63] presented a scalable technique to detect
semantic clones from the PDG representation of the source code. The
key element of the algorithm is to map the NP-complete graph iso-
morphism problem to tree similarity. The tree similarity is based
upon comparing characteristic vectors. Upon empirical evaluation,
the tool has good execution times on large code bases.

Marcus and Maletic [168] applied latent semantic indexing (LSI)
on the textual representation of source code to identify semantic
similarities across functions/files/programs. LSI is vector based sta-
tistical method to represent meanings of comments and identifiers
of source code. They tried to detect similar high level concept
clones, e.g. abstract data types.

Software birthmarks have been used successfully to detect cop-
ied programs and software theft. Choi et al. [37] used a set of API
calls to detect similar programs. The similarity technique de-
pended upon maximum weighted bipartite matching. In this
way, the method is useful in detecting semantic equivalences
duplications in case of software thefts. However, the technique is
vulnerable to deobfuscation attacks.

There is only one study by Jiang and Su [102] which identified
functionally equivalent code fragments of arbitrary size depending
on the input–output behavior of a piece of code. They detected two
pieces of code that always produce same output on random inputs
although they are syntactically different. They defined functional
equivalence as a special case of semantic equivalence. The results
were validated by applying random tests. The tool was scalable
and able to work on million lines of code finding that 58% of func-
tionally equivalent code was syntactically different. The technique
worked for C programs only.

Kim et al. [125] proposed MeCC, a semantic clone detector based
on a path-sensitive semantic-based static analyzer. The analyzer
was used to estimate the memory states at each procedure’s exit
point; then memory states were compared to determine clones.
The authors compared their findings with CCFinder and Deckard.
MeCC is able to detect larger number of procedural clones, to trace
inconsistencies, identify refactoring candidates and understand
software evolution related to semantic clones.
Schugerl [202] presented a novel technique to detect global
clones. An abstract syntax tree representation of the source code
is normalized in the form of description logic. Then a semantic
web reasoner is applied to trace similar source code based on con-
trol-blocks and used data types. The author compared the tech-
nique with state of the art clone detection tools but only on Java
source code. The technique is highly scalable with the use of
semantic web reasoner for match detection.

Several authors suggested areas for further research. Marcus
and Maletic [168] proposed the combination of multiple detection
algorithms in future. A number of hybrid clone detection algo-
rithms were developed as a result. PDG based approaches of
detecting semantic clones suffer from slow generation of clone
pairs and imprecise definition of semantic clones. Future work
[63] lies in developing the framework to help in fast generation
of PDG from source code. However, PDG does not consider state-
ment ordering, thus detecting non-contiguous clones which may
turn out to be false positives during manual verification. So,
approximate solutions of mapping PDG to trees as by Gabel et al.
[63] by applying tree similarity technique are more scalable. Choi
et al. [37] proposed both extending birthmarks with more informa-
tion and making technique robust against attacks. Schugerl [202]’s
technique can be parallelized using a cluster of computers. Empir-
ical evaluation across more subject systems would help identify fu-
ture extensions of the tool which currently does not detect small
clones and clones across method. Jiang and Su [102] proposed
exploring future research on functionality-equivalent code refac-
toring and reuse. A general method for different programming lan-
guages should be developed to detect functionally equivalent but
syntactically different code fragments. MeCC [125] can be extended
by adapting a static analyzer to collect memory states for any arbi-
trary code blocks to make clone detection possible at finer
granularity.
4.2.2. Model based clone detection
With the rise in abstraction, model driven development has

turned to be an emerging area. Large models are developed using
UML, Matlab/Simulink, domain specific modeling languages, etc.
The presence of duplicated sub structures in different types of
models cannot be ruled out. Model based clone detection tech-
niques are still in their infancy. Detecting clones in models is an

Table 10
Model based clone detection and findings.

Liu et al. [155] Pham et al. [182] Deissenboeck et al. [47] Herald Storrle
[209]

Hummel et al. [90]

Preprocessing/normalizations Two dimensional
sequence diagrams into
one dimensional array

Transformation of models
to graphs, assigning labels
to relevant blocks

Transformation of
models to graphs,
assigning labels to
relevant blocks

XMI files from
UML domain
models

Transformation of
models to graphs,
assigning labels to
relevant blocks

Source representation One dimensional array Sparse, labeled directed
graph

Labeled multigraph Prolog code Directed, labeled
multigraph

Clone matching technique Suffix tree Canonical matching,
vector based approach

Maximum weighted
bipartite matching

Model
matching

Canonical matching,
clone index based
hashing

Advantages High precision and
recall

Algorithm is able to detect
model fragments with
modifications,
incremental

Scalable Supports
refactoring

Incremental,
distributed, fast
detection time

Disadvantages Works only for
sequence diagrams

Lower precision Large number of false
positives

Complex java
implementation

Infeasible for large
subgraphs

Application area Sequence diagrams Matlab/Simulink models Matlab/Simulink/
Targetlink models

UML domain
models

Matlab/Simulink
models

Model clone granularity Extractable fragment of
a sequence diagram

Number of blocks Number of blocks Sub models Sub models

Tools DuplicationDetector ModelCD CloneDetective MQlone Integrated in ConQAT

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1181
emerging area. Many researchers tried to find the clones in models.
So this classification includes studies and tools related to detection
of duplication in different diagrams and models as summarized in
Table 10.

Liu et al. [155] detected duplications in sequence diagrams by
converting the 2-dimensional sequence diagram to a 1-dimen-
sional array. Then, the 1-dimensional array is used to build suffix
tree. Common prefixes are identified from the suffix tree in the
form of reusable sequence diagram as refactoring candidates. The
study confirmed the presence of 14% duplication in sequence dia-
grams of sample industrial projects.

The automatic detection of clones in models leads to identifica-
tion of potential domain specific library elements [47]. Deis-
senboeck et al. [47] used ConQAT as an integrated framework to
detect clones in Simulink/Matlab models especially in automotive
domain. The tool CloneDetective, which is part of the ConQAT
framework, works by representing the model as a normalized
multigraph where labels are assigned to relevant blocks. Similarity
between blocks is checked by a heuristic which performs a depth
first search based looking for matched pairs. After detection, clones
are clustered based on set of nodes using union function.

Pham et al. [182] presented two algorithms namely escan and
ascan to detect clones in models. These were incorporated in the
tool ModelCD. Firstly, the model was pre-processed to be repre-
sented as a parsed, labeled directed graph. escan was used to detect
exact matching using an advanced graph matching technique
called canonical labeling and ascan was used to detect approximate
matching by counting vector of sequence of nodes and edges’ la-
bels. The technique is incremental in the way it generates candi-
date cloned sub graphs. Their tool ModelCD was compared with
CloneDetective (which is included in the ConQAT framework) [47].
For the same clone granularity and subject systems, both the tools
were compared based on four parameters: Precision, complete-
ness, scalability, incrementality. ModelCD performed better. In a
subsequent paper, Deissenboeck et al. [49] discussed the presence
of a large number of false positives in Simulink/Matlab models,
pointing out that it is important to identify relevant clones. Model
clones suffer from the problem of scalability, clone inspection and
relevance. Their study provided useful insights in addressing these
problems in real time industrial context. The authors proposed
reducing the size of models to make clone detection speedier.
Firstly, removal of obvious cloned sub-systems is carried out. After
which, as proposed by Pham et al. [182], all nodes with high degree
are removed. After the detection process is complete, the algorithm
tries to connect smaller nodes that are connected to each other
over high degree nodes. Deissenboeck et al. [49] then compared
their enhanced version of ConQAT and escan showing ConQAT has
a faster execution times than escan.

Storrle [209] pioneered the detection of clones in all types of
UML domain models. The technique was based on model querying.
Using any of the UML case tools, XMI files are generated from UML
domain models. These files are transformed into Prolog files. A
small model is input in the query and using model matching, the
output is generated. The tool is capable of comparing models orig-
inating from diverse sources including a variety of UML versions.
We observed that the tool is naïve and still to be verified for differ-
ent subject systems. Hummel et al. [90] introduced an incremental
algorithm for model clone detection. A Simulink/Matlab model is
pre-processed by flattening the model into a directed multigraph.
Then, relevant edges and blocks are labeled. A clone index is cre-
ated for all subgraphs of same size. Canonical label of all subgraphs
in the clone index is calculated and similar labels are hashed. Clone
retrieval and index update are integrated for fast retrieval. It has
not been verified on large models.

It is still to be verified whether canonical matching and vector
based approach can be applied on other graph based models like
UML models. We observed one study by Deissenboeck et al. [49]
highlighting the practical issues to be resolved in model clone
detection. The study pointed out that ranking of clones may help
in improving scalability and relevance of model clones. A compre-
hensive model clone detection tool for UML models and other data
flow languages is missing. Different forms of models have individ-
ual features which need to be exploited for clone detection. A map-
ping of UML constructs from syntactical to semantic domain may
help in detecting clones having same behavior but different syntac-
tical structure. We noticed a vagueness in the definition of model
clones which hinders understanding of the topic area.

4.3. Key sub areas

We categorized the literature related to software clones in six
different yet allied areas. We realized that different identified cat-
egories are very important from the research perspective in the
field of software clones. Although many sub areas overlap each
other, we have tried to separate them into self contained topics.
Cross cutting studies in some of these key areas are included in a
clone management systematic map constructed to answer re-
search question 4 in Section 4.4.3 (see Fig. 4). Details of these

Fig. 3. A time based count for key areas.

1182 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
studies have been discussed in their respective key areas to make
the corresponding key area complete in itself. This is done to help
researchers to pursue further research in these sub areas.

4.3.1. Code clone evolution
Code clone evolution depicts the patterns in which the code is

developed throughout the history of the software. Other interest-
ing patterns of clones by evolution of software through different
versions are also covered in clone evolution.

As software evolves with time and introduction of newer ver-
sions, so clones present in the software evolve too. Laguë et al.
[144] pioneered clone evolution analysis using metrics based func-
tion clone detection technique for large telecommunication moni-
toring system of 1 million LOC. Two changes, viz. preventive
control (to keep the introduction of newer clones in system under
control) and problem mining (to cope with the existing code clones
in a system under continuous development and maintenance) are
studied to assess their impact on clone detection design. Both the
changes can effectively improve clone management. Antoniol
et al. [3,4] analyzed different versions of the Linux kernel to check
the changes in cloning patterns. In an earlier study [3], the author
modeled the time series by analyzing clones over several versions
of software. Shawky and Ali [206] modeled clone evolution using
chaos theory. The study predicted clones in new versions of open
source systems with high prediction accuracy. Di Penta et al. de-
vised a framework, i.e. Evolution Doctor [50,51] to control software
system evolution. It defines a set of methods and tools to deal with
removal of clones, restructuring and reorganizing the source code.

Code clone genealogies approximate how programmers create,
propagate and evolve code clones [124,126]. Saha et al. [197] car-
ried out an empirical study to evaluate and understand clone gene-
alogies in 17 open source software systems in four different
languages at release level. Their study isan extension to a study
by Kim et al. [124]. Unlike [124], this study analyzed the evolution
of clones at release level. It used CCFinderX, a token based clone
detection tool. A location independent approach was used to match
identifier names across releases. The clone genealogies were classi-
fied as alive genealogy, dead genealogy, syntactically similar gene-
alogy and consistently changed genealogy.

Clone Evolution View [11] was developed to work with a metrics
based clone detection tool to study how developers copy across
different versions of a program. Livieri et al. [156] carried out evo-
lution analysis of 136 versions of Linux kernel using code clone
coverage metrics. They used D-CCFinder, a distributed extension
of code clone detection tool CCFinder. Aversano et al. [6] performed
an empirical study using SimScan, a syntax based clone detector, on
two open source Java systems. They defined three clone evolution
patterns to study the effect of maintenance activities on clones.
Bakota et al. [12] attempted to connect separate clone instances
across different versions of the software based on similarity mea-
sure. The clone detection is carried out by the clone detection tool,
clones [134]. The concept of dynamic code smells is introduced
which define the conditions under which a clone becomes suspi-
cious compared to its other occurrences.

Krinke [139] pioneered the argument that clones have a bad
impact on software maintenance. In five large open source sys-
tems, the author traced the changes across 10 weeks. The study
showed that clone groups are continually changed in 50% cases.
Lozano et al. [158] analyzed clones at method level. CloneTracker
was applied to measure the number and density of changes in
two cases, i.e. during the presence of cloned code in methods
and not. The study observed that cloned code methods need to
be changed more frequently than non-cloned code. Lozano
et al. [159] presented a way to perform origin analysis and assess
the effect of cloning on methods’ maintenance effort. The study
computed measures of likelihood and the impact of change as
they represent the work required for maintaining a method.
The study concluded that change effort increases when a method
has clones. In another study [160] a resilient approach to track
clone instances over time is presented. Extension, persistence
and stability in methods were the chosen metrics to assess the
cloning imprint and impact of clones on changeability of the
application. In sample subject systems, the study concluded that
cloning extension remains stable in 10–20% of the application.
Otherwise cloning presents low stability, high persistence and
low extension.

An ethnographic study of clones in object oriented program-
ming paradigm was carried out by Kim et al. [122]. Software devel-
opers’ copy and paste programming behavior was captured with
the help of a logger. The study observed that language limitations
and programmers intentions promote clones. The study pointed
out the use of copying and pasting in understanding and restruc-
turing source code. Detailed evolution analysis of type-1 clones
was carried out by Göde [69]. The study included 200 revisions
of nine open source systems. He found that the lifetime of clones
decreased on average. The minimum clone length and program-
ming language had little impact on the results but the lifetime of
fragments differed between the systems.

4.3.2. Code clone analysis
This topic covers studies related to refactoring of code clones

based on code clone classification or detection. Many software

Fig. 4. Clone management map.

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1183
renovation frameworks work on improving software by miniatur-
ization of code, i.e. clone removal. Some studies investigated clon-
ing patterns. These are also included in this domain.

Fanta and Rajlich [60] used CloneDR, dup, and CLAN to develop a
re-engineering process intended to eliminate clones from a pro-
prietary software of the Ford Motor Company, i.e. Powertrain Engi-
neering Tool sized at 120 KLOC. The study pointed out
disadvantages of clones. Balazinska et al. [9,10] developed a clone
re-engineering tool CloRT which works with any AST based clone
detector. Their analysis focused on two aspects of clones, i.e. the
meaning of their differences from programmers’ point of view
and context analysis which help in refactoring. The study con-
cluded that clones are good candidates for refactoring. The clone
analysis tool Gemini [225] takes the output of CCFinder and displays
the results in the form of scatter plot and metrics graph. The tool
provides users with useful functions for analysis, maintenance
and refactoring of code.

Higo et al. [78,79,82] suggested code clone analysis based on a
refactoring perspective. The tool ARIES gives indicators for certain
refactoring methods in the form of metrics from the output of

1184 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
CCFinder. It helps in merging code clones. In one study [80], a tool
Libra is developed for simultaneous modification based support
method. Libra helps in finding clone candidates for the input file se-
lected by the maintainer.

Kapser and Godfrey [117,118] observed that code clone detec-
tion tools produce large result sets hindering in-depth investiga-
tion of any subject system. They carried out the study on the
Apache web server to gain insight into cloning patterns and under-
stand cloning behavior. The study concluded that cloning usually
occurs in related subsystems. Kapser and Godfrey [120] used CLICS
to determine clone characteristic and location patters. Cloning pat-
terns are defined by what, why and how cloning takes place. In the
sample subject system, the study concluded that patterns have
good impact on a software system if used carefully. Quo et al.
[183] stressed the need to shift the onus of pattern mining of
clones from spatial space analysis to logic domain analysis. The
authors use a PDG as the source code representation and propose
a joint space-logic domain framework for pattern mining. The pro-
posed approach mines two lists of patterns: one ordered by reused
times and other by size of patterns. Former patterns provide good
inputs for code optimization. The tool helps in locating related de-
fects across identical pieces of code.

Tairas et al. [212,217,218] developed CeDAR (clone detection,
analysis and refactoring) which takes the output from CloneDR
and other clone detection tools. It helps in refactoring of detected
code clones. Tairas and Gray [219] applied latent semantic index-
ing to find relationships in clone classes, thereby helping in cluster-
ing and maintenance of clones. Clone detection was done with the
help of CCFinder on a sample subject systems viz. MS Windows NT
source code kernel. In one study, Tairas et al. [221] used CeDAR to
represent clone groups in a localized manner and information
about each clone in a group could be viewed in one location. Each
clone in the group is represented as an abstract syntax tree, after
then suffix tree is used to trace similarities and differences. The
technique is capable of finding near miss clones and uses Deckard
as a back end. Deckard was also used for sub-clone refactoring
[220] in open source software artifacts.

Jarzabek and Li [97] found out that 68% of code in Java Buffer li-
brary, JDK1.5 was contained in cloned classes or class methods.
Manual investigation of situations leading to clones revealed diffi-
culties in their elimination. The authors proposed a generative pro-
gramming technique of XML based variant configuration language
(XVCL) to analyze and represent clones. Tiarks et al. [222] found a
large number of false positives, i.e. as high as 75%. This has an ad-
verse impact of clone understandability. It also hinders the use of
clone detection for practical purposes. Respective studies were car-
ried out to detect and remove code clones from Erlang/OTP [153]
and Haskell [27] programs. Jacob et al. [95] used different mecha-
nisms to compute differences in clones. Their study used metrics
and the Levenshtein distance to display the changes interactively
in the code to the developer.

Juergens and Göde [107] successfully used clone coupling to de-
tect relevant clones from a large number of false positives. The
clone detector is re-run to improve accuracy by removing false
positives. Shawky and Ali [205] assessed a set of metrics for simi-
larity prediction for clone detection. Precision and recall were cal-
culated for every experiment. They concluded that the order in
which metrics are used for clone detection affects results.

Krinke et al. [140,141] analyzed the version control system to
distinguish the original from the copied code. Each clone pair is
classified as identical, copied or unclassifiable. The clones of a clone
pair are said to be classifiable with a tolerance based on the
Levenshtein distance. In a particular case study [141] for GNOME
projects, more than 60% of the clone pairs could be separated into
original and copy. Increasing the minimal clone size in the clone
detection tool, i.e. Simian, the number of clone pairs decreased
asymptotically. Choi et al. [38] used a combination of clone metrics
to extract code clones from the source code ready for refactoring.
The metric graph of Gemini was used to analyze the output of
CCFinder using metrics namely: average length of token sequence
in a clone set, ratio of non-repeated token sequences of code clones
in a clone set, number of code clones in a clone set. Basit et al. [15]
analysed patterns of clones in STL using CCFinder. The study reports
a high rate of cloning in container classes and significantly less in
algorithms of STL. The authors proposed an XML-based variant
configuration languages based clone free representation for STL’s
under study. In another work, Basit et al. [18] carried out a study
to analyze the presence of simple clones in structural clones. They
used the clone detection tool, Clone Miner. Across a comprehensive
set of 11 subject systems, structural clones are analyzed to identify
their location, similarities, etc. The analysis of structural clones, i.e.
high level similarities is intended to help in understanding, refac-
toring and maintenance of the software system. The study con-
cluded that over 50% simple clones were a part of structural clones.

4.3.3. Impact of software clones on software quality
Do clones have adverse effect on system quality, i.e. maintain-

ability, reliability, etc.? This has been a matter of extensive discus-
sion in research community. This section summarizes the related
studies on whether the clones are harmful or not in the form of a
table. In this section, we also include studies concerning detection
of bugs as side effect of cloning and inconsistent modification.

Monden et al. [172] used ARIES to discover the relation between
software clones and software quality attributes like reliability and
maintainability. The study concluded that modules (files) having
large code clones (more than 200 LOC) are less reliable and main-
tainable than non-clone modules. Imai et al. [91] estimated the
maintenance cost caused by clones. The study measured functional
redundancy which is a degree of propagation of clone potential
function. After clustering, a functional redundancy tree is con-
structed where the weight given to each node of the tree indicates
cost.

Krinke [142] carried out an important study to compare the sta-
bility of cloned code and non-cloned code. He studied changes par-
ticularly deletions, additions and changes of five open source
systems across 200 weeks in cloned code and non-cloned code.
This study was extended by Göde and Harder [71] using different
parameters and detailed measurements. They concluded that clone
detection parameters influence the results but do not change the
relation between stability and non-stability. They also concluded
that type-1 clones are less stable than type-2 and type-3 clones.
In another study [72], they analyzed patterns of consecutive
changes to clones and their impact on unwanted inconsistencies.
The study concluded that consecutive changes are not good choice
to detect unwanted inconsistencies. Moreover detected unwanted
inconsistencies had very low severity. In addition to [142,71],
Krinke [143] investigated the age of code as a parameter for clone
stability. He calculated the average age of cloned code and con-
cluded that cloned code in a file is usually older than non-cloned
code, thus more stable.

Table 11 lists the related studies on whether the clones are
harmful or not. In addition to the studies which analysed the rela-
tion between code clones and software quality to know the impact
of clones, we also listed some studies like Kapser and Godfrey [120]
which categorized the cloning patterns to be harmful or harmless.
Some of the studies mentioned in the table are discussed in other
sections of the paper.

It is always problematic to identify consistently changing clones
over time. Thus a clone tracking and awareness tool is essential to
assist software developers in efficient maintenance of software.
Jablonski and Hou [94] identified features of CnP which help in
cutting software maintenance costs. Clone information during

Table 11
Studies related to whether the clones are harmful or not.

Sr.
no.

Study Focus of the study Findings/results

1 Monden
et al. [172]

Relation between code clones and software reliability and
maintainability

Clone included modules are more reliable and less maintainable than non-cloned
modules

2 Kim et al.
[122]

Analysis of programmers’ copy and paste programming
practices

Cloning is not always harmful as many of the clones are intentionally introduced by
the programmer which helps in fast development and program understanding

3 Lozano et al.
[158]

Analysis of harmfulness of cloning based upon change
based experiment at method level granularity

Clones are harmful and have bad impact on maintenance

4 Kapser and
Godfrey
[120]

Categorization of cloning patterns in programs to know
whether they are useful or not

Cloning is not always harmful and some of the cloning patterns are beneficial to
software development and maintenance

5 Krinke [142] Analysis of stability in terms of changes to the system
from an analysis of 200 weeks of evolution

Cloned code is more stable than non-cloned code

6 Juergens
et al. [106]

Analysis of inconsistent changes to code clones and
whether these changes lead to defects

Inconsistent clones are a major source of faults thus increasing maintenance

7 Juergens
et al. [108]

Clone detection is done in requirement specification
documents by customizing code clone detection tool

Cloning is harmful in requirement specification documents

8 Rahman
et al. [184]

Analysis of relationship between cloning and defect
proneness

Cloning do not introduce more bugs thus not harmful

9 Selim et al.
[204]

Whether cloning is harmful? What features of cloned
code make it error prone?

Harmfulness of cloning is subject system dependent.

10 Bettenburg
et al. [21]

Analysis of effect of inconsistent changes to code clones
on software quality at release level

Cloning do not effect post release quality of the subject system

11 Göde and
Harder [71]

Analysis of stability of the software system in terms of
deletions to the cloned code and non- cloned code

Cloned code is more stable than non-cloned code

12 Krinke [143] Analysis of stability of the software system using average
age of cloned code in comparison to non-cloned code

Cloned code is more stable than non-cloned code

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1185
software development helps programmers in modification and
debugging tasks. Visualization and renaming features, i.e. CReN
and LexID of CnP were tested thoroughly. The study showed the ef-
fect of clone information on maintenance. Bettenburg et al. [21] ex-
plored the effects of inconsistent changes to code clones on
software quality at release level through an empirical study. Devel-
opers usually carry numerous changes in different parts of soft-
ware systems across releases. They are usually interested in
source code at release level.

Earlier studies investigated the impact of code clones at much
finer granularity level. Duala-Ekoko et al. used Clone Region
Descriptor [53] approach to track code clones across releases. All
clone genealogies found were manually inspected for inconsistent
change. Juergens et al. [108] carried out clone detection to find
copy and paste activities in requirements specifications docu-
ments. Large documents are used to detect any redundancy, there-
by assessing the quality of specifications. The comprehensive study
was carried out across 28 documents with 9000 pages, fixing clone
length to be 20 words. Rahman et al. [184] carried out an empirical
study to investigate the impact of code clones on defects in code.
The clones were not found to be particularly error-prone. Clone
detection tool, Deckard and data mining from version control and
bug repositories were used to carry out the study. Göde [70] found
that most of the clones detected by state of the art clone detectors
need not be removed. His study has significant implications from
point of view of software maintenance. With standard subject sys-
tems as input and an incremental clone detector tool, the study
identified procedure extraction as the most commonly used refac-
toring method. Kozlov et al. [137] explored internal quality attri-
butes and code clone detection metrics. For all 117 releases of
peer to peer open source software namely, eMule, a software pro-
ject fork, internal quality attributes were measured using SoftCalc
tool and code clone detection metrics were extracted using CCFind-
erX. Statistically significant correlations across groups were identi-
fied based on the Pearson product moment correlation. The study
was based on a number of hypotheses taken from prominent clone
detection studies using metrics. The study concluded that internal
quality attributes act as explanatory variables for code clone detec-
tion metrics. Selim et al. [204] used survival models to study the
impact of clones on software defects. The probability of occurrence
of a defect at any time was modeled using Cox’s proportional haz-
ard function. The study used a set of predictors to classify clones as
helpful or harmful. The study was the first of its kind to use Spear-
man correlation between actual and predicted occurrences of de-
fects. It explored a new set of predictors related to code siblings
at method revision level. They concluded that cloned code is not al-
ways more risky than non-cloned code.

Copied code leads to inconsistencies at multiple places when a
bug is introduced in the original code fragment. Automatic detec-
tion of these bugs has turned to be an allied area effecting the qual-
ity and maintainability of source code. Li et al. [152] pioneered
defect detection in clones using CP-Miner. The technique was able
to detect code duplications and related bugs using a frequent sub-
sequence mining technique. However, the tool reports many false
positives. Jiang et al. [99] stated that inconsistencies emerge when
code is copied to a new place and appropriate changes are not
made with reference to new context. They used Deckard to detect
context based clone related inconsistencies (bugs). The approach
was able to discover previously unknown bugs and the results
were compared with CP-Miner. Hayase et al. [76] introduced a fil-
tering technique to reduce the false positives generated by CP-
Miner. CCFinder was used to find identifier naming inconsistencies
and CP-Miner was used to filter code clone related bugs. Yoshida
et al. [233] used lexical analysis and identifier similarities to detect
duplicate code. The technique helps in detecting code fragments
with similar defects. In a similar study, Yoshida et al. [235] de-
tected similar defects in source code based on comparison of syn-
onymous identifiers using the Jensen–Shannon divergence
method. Clustering of identifiers was based on distance between
identifiers. They also compared their results with CCFinder on the
same subject systems. Juergens et al. [106] introduced the CloneDe-
tective framework to detect inconsistencies. The study pointed out
that inconsistent clones lead to faults. In the sample subject sys-
tem, 58% of the clones contain inconsistencies. Gabel et al. [64]
introduced DejaVu, a tool to detect inconsistent bugs. Firstly simi-
lar code fragments are found using a Deckard based clone detection
framework. Later on, buggy change analysis is done to classify be-
nign and buggy inconsistencies from the clone detection data set.

1186 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
The potential bugs are classified as: bugs, code smells, style smells,
unknown, false reports. Jalbert and Bradbury [96] used clone
detection and rule evaluation to identify bugs in concurrent soft-
ware. They tried to reduce the domain of testing by using clone
detection. An identified bug is input to find similar bug patterns
in concurrent software.

4.3.4. Clone detection in websites
Websites, i.e. web applications are usually multilingual and suf-

fer from short development life cycles. Changing requirements fre-
quently leads to introduction of clones. Many studies confirm the
presence of clones in websites. The extent of cloned code varies
from 30% [211] to as much as 63% [185].

Aversano et al. [5] proposed reuse of existing sites by means of
cloning and adaptations from a repository of conceptual views and
code components. Lucca et al. [161] presented an approach to de-
tect duplicate web pages using similarity metrics. They proposed
refining the results of similarity metrics using the Levenshtein dis-
tance between each pair of analyzed HTML strings. Lanubile and
Mallardo [146] conducted a study to detect script function clones
using metrics. The study was conducted on three sample subject
systems and found 39–50% of the total script functions to be
clones. Synytskyy et al. [211] and Cordy et al. [41] used island
grammar for simultaneous parsing of multilingual web applica-
tions. They used UNIX diff command to compare potential clones.
The method is able to detect near miss clones. Lucia et al.
[162,163] proposed a method to identify cloning patterns in a
web application. The method was based on clone detection using
similarity thresholds. The technique was helpful in clone analysis
and reducing the code size and navigational patterns of a web
application.

Rajapakse and Jarzabek [185] used CCFinder to detect patterns
of clones in websites. Authors extended the study further [186]
to unify most of the clones using server pages. This helped in
reducing code size and the possibility of update anomalies. Differ-
ent clustering algorithms and latent semantic indexing were used
by Lucia et al. [164] to detect clones in web applications. The tech-
niques were tested on different static web sites. Different cluster-
ing algorithms produced comparable results. Jung et al. [111]
explored three levels of views namely, relationships between
web applications, passed parameters and target applications for
detecting clone pairs in a web application. Clone pair candidates
were selected based on static and dynamic approaches. The com-
bined approach was successfully validated on two open source
projects. Martin and Cordy [169] introduced the concept of contex-
tual clones, i.e. clones that can only be found by augmenting code
fragments with related information referenced by the fragment to
give its context. They proposed a technique to leverage the idea of
contextual clones to detect similarities in web service description
language.

4.3.5. Cloning in related areas
Duplication is also prevalent among other software artifacts like

requirement specifications and binary executables. Such studies
are included in this category. Studies of different applications of
clone detection are included in this category too.

Software archives contain large amount of similar software.
Kawaguchi et al. [121] applied a code clone based similarity metric,
a decision tree based approach and latent semantic analysis based
approach to categorize similar software in an archive. The tech-
nique helps to identify relationships among software systems.
Gallagher and Layman [65] found similar decomposition slices,
i.e. slice clones. A decomposition slice is a program slice which cap-
tures all relevant computations from a given variable. The study
presented the negative and positive points to identify slice clones
as software clones.
Domain analysis is usually carried out in device drivers to
search for similar implementations. Ma and Woo [165] used
CCFinder to detect clones within the file and across files in device
driver source files. Mao et al. [167] used table recognition technol-
ogy and clone detection to convert conventional table-based web-
sites to modern cascading style sheet websites. Software clone
detection was used to detect common layout styles in pages. Ger-
man et al. [66] studied technical and legal implications of cloning
in code siblings when there is license compatibility between copy-
right owner and destination. Monden et al. [173] chose metrics
with a lower bound on code clone measurement threshold to
determine violations in open source licensing. Fifty open source
subject systems were chosen from free software directory to trace
violations. Brixtel et al. [26] used clone detection tool for checking
plagiarism in student projects and assignments. They tested their
technique on projects using different languages. Davis and Godfrey
[45] used assembly instructions to detect source code clones.

Software product lines have a core part around which its differ-
ent components are built. Dalgarno [43] applied clone detection in
a product line context. Mende et al. [171] applied token based
clone detection and the Levenshtein distance to identify similar
functions which make the core part in software product lines.
Schulze et al. [201] identified clones in feature oriented software
product lines. Using CCFinder, a significant number of clones were
detected in 10 subject systems. They discussed reasons for cloning
in feature oriented software product lines and the way most of the
clones can be refactored. Domann et al. [52] used the CloneDetec-
tive [105] framework to find instances of clones in 11 software
requirement specification documents of 2500 pages. Clones in bin-
ary executables were detected by Saebjornsen et al. [196]. This tree
based approach worked by clustering of characteristic vectors on
labeled trees. Ciancarini and Favini [39] carried out a study to de-
tect clones in game playing software. They found a criterion to
judge similarities in game playing software with chess as an exam-
ple. Juergens et al. [108] investigated the amount and nature of
duplicated text in software requirement specifications using Clon-
eDetective tool. After detecting duplications in 28 software require-
ment specification (SRS) documents of 8667 pages,
recommendations were given for working with SRS in practice.
Whaley and Lam [229] applied cloning in pointer alias analysis
by creating clones of methods. They used binary decision diagrams
to achieve context sensitive results.

4.3.6. Software clone detection in aspect oriented programming/cross-
cutting concerns

Aspect-oriented programming (AOP) was a response to the
problem of cloned code relating to cross-cutting concerns (e.g.
logging, and error-handling) in object-oriented systems. The
detection of code that should be refactored into an aspect is an
important part of AOP.

Yokomori et al. [232] analyzed the relationships between as-
pects to understand how the behavior of existing code clones in
original classes spread to aspects. The study used CCFinder to de-
tect code clones. The study concluded that number of clone rela-
tions between class and aspect increases if only one part of clone
group is extracted. Bruntink [28] used clone metrics to filter clone
detection results to detect aspect candidates. A grade was associ-
ated with each clone class to rank its suitability in improving main-
tenance. Bruntink et al. [29] conducted a study where the token-
based CCFinder, AST-based ccdiml and PDG-based PDG-DUP were
evaluated in terms of finding cross-cutting concerns in C programs
with homogeneous implementations. Some well known cross-cut-
ting concerns such as error handling, tracing, range checking, null-
value checking and memory error handling were found. Their
study showed that both ccdiml and CCFinder are best suited for
null-value checking and error handling concerns while ccdiml is

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1187
also suitable for the range checking concern. PDG-DUP can find
tracing and memory handling concerns. The study confirmed that
code clones contribute 25% of the code size in aspects. Schulze
et al. [200] used code clone classification to decide whether to
use object-oriented refactoring or aspect-oriented refactoring.
Code clone classification was done by adding semantic information
to clone detection tool.

Fig. 3 shows the number of publications in different key areas in
the years 1997–2011. Different trends can be seen for different key
areas. Research in the area of impact of clones on software quality
rose most dramatically in 2010 from a single study in 2009 to ten
studies in 2010. The number of publications in area of code clone
analysis grew sharply, almost doubling from about one study in
2007, two studies in 2008, five studies in 2009 and eight studies
in 2010. The research in the key areas of code clone analysis
peaked in 2010. It shows the improvement in recognition and need
of research in these areas recently. On the contrary, research in
area of clone detection in AOP comprised the smallest numbers.
On the other hand, number of publications in the key areas of clone
detection in websites, cloning in related areas and code clone evo-
lution remained stable throughout the years.

4.4. Current status of clone management

Clone management is a set of activities like clone classification,
refactoring, visualization, tracking and evolution. It plays a pivotal
role in development and maintenance process. Some of the bene-
fits of clone management are discussed in Section 4.4.1. However,
it also overlaps with clone analysis, clone evolution, and impact of
clones on software quality which are discussed in Section 4.3.

4.4.1. Benefits of clone management
In literature, we came across many studies which discussed

benefits of clone management. Some of the findings are:

� Laguë et al. [144] identified that an effective clone management
strategy improves customer satisfaction and software system
quality.
� Kim et al. [122] pointed out that many clones are intentionally

introduced in code due to language restrictions. Thus refactor-
ing after clone detection may not improve the software. So it
is more important to manage the clones to see how they evolve
over time. Moreover, clone management in an Integrated Devel-
opment (IDE) makes developers concerned about duplication.
The developer should be informed in the IDE about all the
clones which are introduced deliberately due to hard time con-
straints, etc.
� Kapser and Godfrey [120] identified cloning patterns which are

helpful in improving the quality of the system. They found that
as many as 71% clones had a positive impact on the maintain-
ability of the software. They stressed the importance of manag-
ing code clones using synchronous maintenance of code clones.
� Duala-Ekoko and Robillard [53] proposed managing code clones

by notifying developers of modifications to clone regions. They
developed a clone tracking system which works as the system
evolves.
� Jablonski and Hou [94] concluded that clone awareness with

visualization and consistent identifier renaming support help
developers during debugging and modifications. The study
highlights the importance of clone management.

We highlight the importance of clone management by showing
the percentage of cloned code from selected studies. Studies are se-
lected to show different clone detection techniques and subject
systems. It reflects the percentage by which the code can be shrunk
in software (see Table 12).
4.4.2. Clone management – a cross cutting and an umbrella activity
Code clone management is an umbrella activity covering all as-

pects regarding clones. It is a superset including clone analysis,
clone evolution, code clone taxonomies, code clone classification,
etc. It also covers code clone visualization. We discussed here those
studies which focused on clone management and clone visualiza-
tion. Moreover, the relevant information is spread across many
themes addressing research question 3 in Section 4.3.

Balazinska et al. [8] focused on restructuring and reengineering
software after successful clone detection. Using six open source
subject systems written in Java, method clones were manually ana-
lyzed for reengineering opportunities. Higo et al. [77] provided a
technique to identify meaningful blocks in code clones that are
easy to merge. They used CCFinder to detect code clones. The tech-
nique is helpful in reducing number of clone pairs detected in two
open source Java systems. Kapser and Godfrey [116] investigated
two large subject systems to classify code clones, viz. function
clones and partial function clones. The authors suggested manage-
ment of code clones by classification and filtering false positives.
CReN [93] developed by Jablonski and Hou provides programmers
with identifier renaming support and tracking of clones in an inte-
grated development environment. The authors extended their
work in the form of CnP [92]. CnP [86,87] is intended to support
and manage clones proactively as they are created and evolved.
The tool was developed as Eclipse plug-in.

Tairas [216] proposed a technique to unify clone detection,
analysis and refactoring. The study presented a method to improve
clone maintenance by eliminating redundant code by identifying
refactoring opportunities. Nguyen et al. proposed Cleman [174], a
framework for comprehensive code clone group management in
evolving software. They developed Clever [175], a clone aware soft-
ware configuration management system which works with any
AST based clone detection tool. It performs umbrella activities like
clone detection, clone change management, clone consistency val-
idating, and clone merging. Duala-Ekoko and Robillard developed
CloneTracker [54] to track clones during the evolution of source
code. It uses SimScan as clone detection tool. The authors used
CloneTracker to produce clone region descriptors (CRDs) [55] which
are an abstract combination of lexical, syntactical and structural
information. Clones are tracked using CRD which represents a
clone region for different clone groups which are of interest to a
developer. This approach goes beyond code based clone descriptors
in integrated development environments like CReN. CloneBoard
[46] is a clone management tool which infers clone relations
dynamically by monitoring clipboard activity. The tool is inte-
grated in Eclipse to support copy pasted clones. Lee et al. [151]
introduced a scalable and instant code clone search technique for
use during software development. The technique works by extract-
ing characteristic vectors from the source code. Then a multidi-
mensional indexing tree structure R⁄tree is used. In the index,
filtering and ranking is used to evaluate code clone detection que-
ries in order. The authors also devised an approximate clone detec-
tion technique which is fast but less accurate. Both the algorithms
gave sub second response time for processing a million lines of
source code.

4.4.2.1. Clone visualization. Code clone visualization is one of the
most important areas of code clone management after successful
code clone detection. With the increase in duplication in various
software artifacts, e.g. source code, proper representation of soft-
ware clones has become a challenge. This domain covers presenta-
tion of duplicated code which helps in fast analysis of clone
detection results.

Several clone detection tools report the presence of clones in
form of starting and ending line number, file name, etc. One of
the widely accepted formats for representation of clones is scatter

Table 12
Percentage of cloned code across different systems.

Sr. no. Percentage of cloned code (%) Subject system Size (LOC) Clone detection technique Citation

1 13–20 SS subsystem 1.1 M Token based [7]
2 5–20 Telecommunication monitoring systems 1 M Metrics based [170]
3 12.7 Process control system 400 K Tree based [22]
4 50 GCC and other application projects. 6.5–460 K Text based [56]
5 8.3–14.8 E-business website and resource management system 15–35 Sequence diagrams Model based [155]
6 20–50 Java source code, C# source code 425 K, 16 K Tree based [58]
7 14.9 SRS 2500 pages Text based [52]
8 12.1–32.1 Open source python systems 9–272 KLOC Hybrid [194]

1188 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
plot. Tairas et al. [213,215] extended the AspectJ Development Tool
visualizer to display the results of CloneDR in Eclipse framework.
The main application of the tool is to display the cross cutting con-
cerns in aspect oriented programs. Adar and Kim [1] developed
SoftGUESS which supports exploration and visualization of code
clones. Their system supported different views of analysis of clones
over single and multiple versions, through analysis of graphs. Jiang
and Hassan [101] developed a Clone System Hierarchical Graph, an
interactive graph used to select nodes to highlight how the clones
are scattered in a particular directory. They used clone mining to
highlight clones at different levels of abstraction.

Most of the clone visualization tools like Gemini [81] read the
output of CCFinder. These tools filter uninteresting code clones
and navigate to clones having features the users are interested
in. Zhang et al. [236] developed a standardized graphical represen-
tation as an Eclipse plug-in called Clone Visualizer to filter and visu-
alize the output of Clone Miner. Fukushima et al. [62] used a code
clone graph to visualize the output of CCFinder. Nodes of a code
clone graph correspond to code clone sets and edges represent
clone sets in the same file. The technique helps in representing dif-
fused clones in which clone set clusters are located in files having
different functionality. Tairas [217] presented a technique in which
one clone instance displays the properties of all the clones in the
clone group. The technique was integrated as an Eclipse plug-in
called CeDAR (Clone Detection, Analysis and Refactoring). This rep-
resentation help in refactoring as clone group representation dis-
plays the difference among clone instances.

4.4.3. Clone management: a systematic map
Clone detection tools are applied to detect clones after the soft-

ware development is completed in a postmortem approach of
clone management. But even the leading clone detection tools re-
port a large number of false positives. So recently, researchers and
practitioners have tried to make clone detection an integrated part
of development environment to increase the effectiveness of clone
management. Developers need to be informed online as and when
clones proliferate.

Clone management is a cross cutting topic touching different
domains of software clones. We identified four key areas in this
systematic literature review, i.e. clone analysis, clone evolution,
impact of clones on software quality and clone visualization which
touch clone management. The first of these three key areas has
been discussed in detail in the context of research question 3.
The papers from these key areas were studied to identify relevant
sub topics of clone management facet below:

1. Code clone classification.
2. Code clone refactoring.
3. Code clone visualization.
4. Code clone tracking.
5. Code clone evolution.

We used the systematic mapping method of Petersen et al.
[181] to map clone management papers with clone detection
method papers and clone detection tool papers. From the set of pri-
mary studies, we identified 49 relevant papers. Papers were classi-
fied based on these three different facets and the results are
presented in the form of bubble plot as shown in Fig. 4.

The bubbles show the number of publications identified for
each clone management facet with clone detection method facet
and clone detection tool facet. Total number of papers on either
side of the map is not equal as many clone detection tools use
more than one method for clone detection. Our bubble plot shows
that the majority of research is in clone refactoring using the suf-
fix tree and dynamic programming methods of clone detection.
The metrics/characteristic vectors method of clone detection is
frequently used in different sub topics of clone management.
We observed the use of clip board operations as clone detection
method in clone tracking and visualization. This is due to the fact
that clip board activity captures in the initial creation of a clone
in an IDE. CCFinder (X) is the most frequently cited tool. It has
been used for clone classification, clone refactoring and clone
visualization as it is able to detect large number of clone candi-
dates with high recall. The map suggests a lack of research in
clone classification. Barring CCFinder(X), SimScan, CloneDR, Dec-
kard, Simian, and CLAN, the rest of the tools are only used in
one or two papers.

4.5. Subject systems

We have observed that different subject systems are being used
in clone detection research. We are hopeful that the above table
may help researchers in choosing most commonly used subject
system as benchmark for evaluation and empirical studies. We list
28 open source subject systems that were subjects of different
studies. Table 13 lists all open source software systems and Ta-
ble 14 lists commercial systems. We also list approximate size in
LOC, programming language of the system and usage count. The
usage of the subject system according to our classification of liter-
ature and citations is also mentioned in the table.

Recently clones in Matlab/Simulink models are detected by
[47,49,88,182]. Studies [48,49,88] have used common models
(SIM,MUL,SEM,ECW) available from Matlab central. The size of
the model in blocks varied from 440–18,000 blocks. Domann
et al. [52] and Juergens et al. [108] applied clone detection to 11
and 28 requirement specifications respectively from a total of
2500–8667 pages.

We have omitted those open source subject systems from Ta-
ble 13 which are only used in one study. Different versions of the
same program are mentioned in one place and the size of latest
version used in any study is included. For instance, different ver-
sions of Linux have been used by [16,113,152,193], etc. These are
written in the one place and the largest size among them is
reported.

JDK has been used many times for clone detection and clone
analysis. The Apache web server and Linux kernel and its different
versions have been used extensively as subject systems to carry
out the clone detection and analysis study. Similarly, the software

Table 13
Open source subject systems.

Sr. no. Subject system Size (LOC) Language # Classification Citations

1 JDK 3200 K Java 10 Clone detection [36,113,151,176,179,202,226]
Clone analysis [8,97]
Comparison and evaluation [202]

2 Apache-httpd 343 K C 9 Clone detection [68,125,150,152,193,194]
Clone analysis [120,140,184]

3 Apache-Ant 1.41 M Java 4 Clone analysis [18,82,221]
Impact of software clones [204]

4 ArgoUML 1.76 M Java 10 Clone evolution [6]
Clone analysis [140,221]
Impact of software clones [21,70,71,142,143,204]
Clone detection [68]

5 Linux 6.2 M C 10 Clone detection [16,34,74,89,113,152,193,194]
Clone analysis [101]
Impact of software clones [233]

6 Weltab 11 K C 7 Clone detection [57,129,180,193,194,214]
Clone analysis [205]

7 Netbeans-javadoc 19 K Java 7 Clone detection [13,59,84,193,194,203]
Comparison and evaluation [58]

8 jEdit 157 K Java 5 Clone detection [24]
Clone analysis [18,221]
Impact of software clones [21,143]

9 Bison 16 K C 5 Clone detection [59,130,134,138,193]

10 PostgreSQL 937 K C 6 Clone detection [59,125,134,152,193,194]

11 Snns 105 K C 5 Clone detection [59,134,180,193,194]

12 FreeBSD 403 M C 3 Clone detection [113,152]
Clone analysis [157]

13 ANTLR 61 K Java 3 Clone detection [179]
Clone analysis [8,18]

14 Eclipse-Ant 35 K Java 7 Comparison and evaluation [58,193,194]
Clone detection [13,59,68,84]

15 Wget 17 K C 3 Clone detection [59,193,134]

16 Cook 70 K C 3 Clone detection [57,180,193]

17 Abyss 1500 K C 3 Clone detection [193,214]
Clone analysis [205]

18 Tomcat 130 k Java 3 Comparison and analysis [148]
167 K Clone detection [24,147]

19 SQuirreL 218 K Java 3 Clone analysis [221]
Impact of software clones [71,142]

20 GCC 1.2 M C 3 Clone detection [56,68,104]

21 FileZilla 90 K C++ 3 Impact of software clones [142]
Clone evolution [206]
Impact of software clones [108]

22 Tcsh 45 K C 2 Clone detection [132]
Clone analysis [133]

23 Bash 40 K C 2 Clone detection [132]
Clone analysis [133]

24 CLIPS 34 K C 2 Clone detection [132]
Clone analysis [133]

25 Jabref 114 K Java 2 Clone detection [89,109]

26 DNSJava 25 K Java 2 Clone evolution [6]
Clone analysis [18]

27 Eclipse-jdtcore 148 K Java 8 Comparison and evaluation [58]
Clone detection [13,59,84,95,193,194]
Impact of software clones [142]

28 j2sdk1.4.0-javaxswing 204 K Java 7 Comparison and evaluation [58]
Clone detection [13,59,84,193,194]
Clone analysis [18]

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1189
system ArgoUML has been used in recent studies to investigate the
impact of software clones.

Subject systems in C (weltab, snns, postgresql) and in Java (net-
beans-javadoc, eclipse ant, eclipse-jdtcore and j2sdk1.4.0-javax-
swing) used by Bellon’s experiment [20] are frequently used by
researchers. Most of the research is carried out using subject sys-
tems written in C and Java. This may be due to a lack of suitability
of tool for other languages. The efficiency of existing tools should

Table 14
Commercial subject systems.

Sr. no. Subject System Size (LOC) Language # Classification Citation

1 Government system 1 M COBOL and PL/1 1 Clone detection [113]
2 HagerROM (Würzburg University) 87 K Java 1 Clone detection [226]
3 DISLOG development Kit (DDK) 95 K PROLOG 1 Clone detection [226]
4 SPARS-J 47 K C 1 Clone analysis [157]
5 Commercial 460 K ABAP 1 Clone detection [89]
6 Commercial CAD 1.6 M C 1 Clone detection [230]
7 Graph-layout program (IBM) 11 K C 1 Clone detection [130]

1190 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
be measured using other languages which the tools support. Re-
search up to the end of 2011 have predominantly been done on
open source systems. Few commercial systems have been used.
Clearly the use of open source systems is preferable from the view-
point of repeatability of experiments and also allows tool compar-
isons to be easily extended to cover new or amended tools.
5. Discussion

We surveyed 213 articles out of a collection of 2039 and pro-
vided categorization and quantitative overview. Unlike previous
surveys, we put an emphasis on clone management, model clones
and semantic clones and classified the literature from different key
areas. Existing surveys/technical reports by Roy and Cordy [187]
and Koschke [135] consider research findings till 2007. These sur-
veys filled the initial void for useful text for budding researchers in
this domain. The work by Roy et al. [192] focused on clone detec-
tion tools and techniques up to 2009. Pate et al. [178] presented
systematic review of existing literature on clone evolution. The
authors framed three research questions to investigate what meth-
ods have been used to study clone evolution, to study cloning pat-
ters and to discover the presence of consistent/inconsistent
changes to clones during evolution. The authors identified 30 pri-
mary studies regarding clone evolution. Our focus is broader than
the earlier surveys and includes the latest research work related to
software clones up to mid 2011 using the systematic literature re-
view guidelines of Kitchenham and Charters [127]. In addition to
clone detection tools and methods, we have addressed other issues
related to software clone research such as clone analysis, clone
evolution, and impact of clones on software quality. We used a sys-
tematic method to develop a clone management map which iden-
tifies how clone management papers overlap with clone detection
method papers and clone detection tool papers. We explored the
model based and semantic clones in detail and compared the state
of the art techniques. Moreover, major breakthroughs in model
clone detection happened after 2007. We presented all the studies
in different sections in chronological order which makes it easy to
identify the latest research carried out after 2007 as done in earlier
surveys.

This section discusses the principal findings of our systematic
review, strengths and weaknesses of the evidence. We begin with
the discussion of key sub areas followed by clone management.
Implications for researchers and practitioners are summarized
after that, followed by limitations of the review.
5.1. Key sub areas

We divided the literature into six different key areas realizing
the importance from research perspective. We noticed that some
of the areas are inter-related.

It is not an easy task to model clone evolution under a number
of versions. The prediction accuracy of the approach depends upon
parameters and their variation. Future research should consider
using sound mathematical modeling approaches. Many clone
genealogies are alive and long lived and clones are easy to manage
in smaller systems as compared to large systems. The area is still
open for research to study clone genealogies using state-of-the-
art clone detection tools in different sample subject systems.

A large numbers of studies confirm the harmfulness of cloning
in software systems. Less research was found in tracing useful pat-
terns of cloning which help the programmer. We observed limited
number of studies investigating cloning patters in different pro-
gramming paradigms. More studies should be carried out to inves-
tigate the types of clones and their characteristics like persistence
over time in different programming methodologies. In the initial
years, we found few studies attempting to calculate the impact
of code clones on maintenance cost. We noticed increase in the
number of studies undertaken to compare the behavior of cloned
and non-cloned code and their impact on system quality during
last 2 years. Most of these studies use version control information.
However, these systems detect minor changes like white spaces
too, which should be ignored from the clones point of view. We
found contradictions among the papers and the area is still open,
since the number of subject systems is too low to arrive at any gen-
eral conclusion. Future research lies in carrying out the same study
with large number of comparison parameters, clone detection tools
and subject systems. Recently, many studies presented findings
that clones in general do not have adverse effect on quality. At
the same time, we observed some contradicting studies. Such stud-
ies need to be extended using external quality attributes and a
large subject base. The nature of the subject system and program-
mers’ behavior has a profound effect on these studies. In one study,
varied results were noted for the ArgoUML and Ant subject sys-
tems. We need more studies to accurately calculate the increase
in maintenance cost of software due to presence of different types
of clones.

We found two studies that checked the presence of clones in
software requirement specifications. There is a need to conduct
clone detection studies to investigate redundancy throughout all
documents of software development life cycle. Such repetitions
when removed will lower the maintenance cost of the software
in earlier phases of software development life cycle. We found only
one study which applied clone detection to trace open source
licensing violations. Such studies will be helpful to distinguish be-
tween reuse based and accidently produced clones.

5.2. Clone management – a cross cutting topic

Different clone management tools should be evaluated depend-
ing upon use cases and future tools can be developed catering to
respective use cases.

The systematic map in Fig. 3 helps in identifying which sub top-
ics of clone management have been emphasized, which areas re-
quire further research, which clone detection tools and methods
have high usage in clone management. In the map, we did not find
any papers involving more than one tool in any aspect of clone
management. This may indicate a lack of interoperability between
different tools for clone management. We find a lack of work in
clone classification. To assist the software maintainer, it is impor-

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1191
tant to classify clones as ‘‘clones to be retained’’ and ‘‘clones to be
removed’’. We found large number of studies regarding mainte-
nance of code clones by identifying refactoring opportunities.
There is dearth of studies validating the analytical results of clone
detection, clone analysis, clone management, etc. with developers
intent and behavior.

5.3. Implications for research and practice

The systematic review has implications for researchers who are
looking for new concepts in the field of software clones, and for
practitioners working in software companies who want to apply
clone detection for software development.

As the research community is still arguing on the exact defini-
tion of the term clone, it is imperative to devise automatic oracles
for all types of clones. Studies confirm that there is disagreement
between human experts as to whether the candidate code is or is
not a clone. It is a difficult and time-consuming task to manually
classify the candidates as clones or not. Thus, we believe that ex-
perts from industry and academia related to diverse domains of
clone detection should come together to create a verified reference
corpus of clone candidates in standard subject systems. The study
should be carried out differently for each type of clone and depend-
ing upon use case. Such benchmark suites would make the results
of empirical comparison consistent and reliable for use in research
and industry.

For researcher and practitioners, a number of avenues are open.
Clone management has emerged as a challenging area. Software
developers in industry deal with large amounts of data. So clone
management tools should be scalable and integrated in into devel-
opment environments, to help programmers understand the
behavior of cloning patterns. A comprehensive industrial strength
clone management tool having integrated detection and developer
friendly visualization of clones would help the developers observe
clones as and when they proliferate during development.

The application of clone detection tool depends upon situations
and objectives. There are different circumstances where clone
detection is essential. Some of the areas are: aspect mining [28],
to find cross cutting code [29], plagiarism detection [26], software
product lines [171,201], clones in web sites [146,185], origin anal-
ysis [159], quality assessment [172], detecting licensing violations
[66]. Though these areas are independent research fields, yet these
areas and clone detection can get benefited from each other. Usu-
ally cross cutting code is scattered in different implementations of
the program. These implementations tend to be functionally simi-
lar, so semantic clone detection technique is helpful in finding
cross cutting code. In plagiarism detection, the code is copied
and disguised intentionally. By representing the code in an abstract
representation like PDG, existing code clone detection tools may be
customized to detect hidden changes in the code. Clone detection
helps in detecting shared and common set of features in software
product lines. Existing systems can be reengineered to obtain reus-
able assets with the help of clone detection. Origin analysis is the
study of detecting the location of changes to the system from
one version to the next. Clone detection may help in origin analysis
with detection of similar function/class/file across versions. Code
clone across systems may directly lead to licensing violations and
copyright infringements. So clone detection technique can be ap-
plied to detect these violations.

5.4. Limitations of this review

The main limitation of this study is multitude of meanings asso-
ciated with the keyword ‘clone’. We tried to be extremely cautious
in data extraction. Strings like code duplication, redundancy were
manually searched in databases to increase the number of research
articles in our study. However, manual searches may miss relevant
articles.

Data extraction was carried independently by the researchers.
But only one author reviewed the discarded articles. As far as the
classification of studies is concerned, there were disagreements
among researchers. Each researcher classified all papers individu-
ally before comparing the results. In cases where there was dis-
agreement, the issue was discussed until consensus was reached.
Thus the papers were classified in several different categories.

6. Conclusions and future work

In this review paper we identified 213 studies from literature, of
which 100 were found to be research studies of software clone
detection. We have presented the results in different dimensions
like classification of clone research, code clone management as
cross cutting domain, types of clones, clone detection tools, clone
detection approaches, internal representations, subject systems,
semantic clones and model clones.

We noticed a great variation in the definition of the term
‘‘clones’’. We realized the series of the International Workshops
on Detection of Software Clones have made a significant contribu-
tion towards promotion of research in the field of software clones.
There are recent studies that show that clones can be often used as
principled reengineering techniques, and can be beneficial in many
ways. Also, it is not easy to refactor all the clones due to cost/risk
associated with refactoring. So it is suggested that instead of
removing clones, we should have proper clone management facil-
ities. In order to advance the state of the art in clone management,
one needs to know the advances in clone research itself. We have
attempted to do this by finding the relevant literature and summa-
rizing it in the form of systematic map. This survey is helpful in
finding the research gaps in area of software cloning in general
and clone detection in particular.

It is still arguable whether clones are harmful or not. Undoubt-
edly in large case studies some of the clones are intentionally intro-
duced. More studies need to be undertaken to know how harmful
actually clones are. Saha et al. [198] stated that it is important to
understand code clone evolution to know whether clones are
harmful or not and to know the impact of code clones on mainte-
nance. Automatic tools for investigation and visualization of clone
genealogies across different versions of the software are helpful for
developers.

Is cloned code really defect-prone than non-cloned code? There
are too many contradicting studies. The area is still open for a gen-
eral statement. Different attributes of software quality coexist with
software clones. The behavior and impact due to code clones is still
not known. The study of changeability of cloned vs non-cloned sys-
tem depends on the choice of application as some applications are
continuously restructured. Such studies should be empirically car-
ried out using different types of clone detectors on large subject
system base to conclude general remarks. Kamiya [115] found
out that code fragments do not appear consistently in all revisions
of the software. The code fragment skips one version and again
reappears in the next revision. This non-continuous code appearing
across revisions of the software need to be validated with develop-
ers’’ intent as to why code has been copied from the old revisions.

Godfrey et al. [73] stressed the need to track the history after
code clones have been detected. It will help in analyzing the rea-
sons as why cloning occurred in first place. Knowing the reasons
as to why clones appear have implications on clone detection pro-
cess in particular and clone detection research in general.

There is dearth of research in cloning beyond source code. Juer-
gens [110] identified different software artifacts where cloning
may occur. He emphasized that phenomenon of clone detection,
reasons for its occurrence, effects of cloning has been studied

1192 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
thoroughly in source code. Clones do occur in requirement specifi-
cations, models and test cases too. There is an urgent need to ex-
plore the reasons for clones and efficient clone detection
techniques in these software artifacts. Different artifacts have
inherent characteristics which have to be exploited to apply the
clone detection algorithm for that artifact. Empirical studies need
to be carried out to understand the patterns in clone evolution
for these artifacts. Artifact repositories will help in benchmark
and comparative studies for different artifacts. Studies regarding
clone management and their economic trade off’s need to be car-
ried out for each software artifact. We realize that if clones are re-
moved in earlier phases of software development life cycle,
maintenance costs will be cut in the delivered software. We realize
the research direction in use of frequent itemset mining to detect
clones in textual representation of other software artifacts. Latest
programming paradigms and mobile based software need to be
tested for clones.

Carver et al. [33] emphasized the need to complement the ana-
lytical results of the tool with empirical behavioral studies of the
developer. Human based studies can be used to validate the results
of the analytical study. Various studies take static code as source
code. But the behavior changes at run time. Dynamic code behavior
at run time is not captured yet as part of software clone detection.
The use of self learning technique and history based log techniques
can be applied in the field of software clone detection.

Dang et al. [44] discussed seamless integration of clone detec-
tion tool in the IDE. The tool should be flexible, scalable and effi-
cient in detecting real clones (clones which are really interesting
and useful to the developer) and should not report non-useful
and uninteresting clones. Research can be carried out to develop
automatic tools to check the consistency and compatibility of li-
censes in code siblings. There are many language specific issues
which hinder code clone classification. Subjective studies carried
out by several human experts vary a lot on creating reference data
for creating different benchmark suits.

The reliable and scalable detection of behaviorally similar code
is an open research area. In software reuse we need to identify the
most relevant component for given context. From existing soft-
ware repository, developer may find many candidate components
for given context, the components that are semantically same
but may differ in one or other criteria such as cyclomatic complex-
ity, algorithmic complexity, time/space trade-off, and known bugs.
With the help of semantic clone detection, developer will be able
to find out most suitable and efficient component out of available
candidate components.

We examine that there is clear need to address the lack of empir-
ical studies to examine the effects of cloning in real world models.
Comparison and evaluation of clone detection technique in model
driven development can help in choosing the right technique based
on application. There is apparent need to classify the comparative
and empirical studies differently for Matlab/Simulink models,
UML models and data flow models as the application area is differ-
ent. Storrle [209] proposed optimal alternative algorithms for mod-
el matching for efficient clone detection of UML models. We
propose to collect comprehensive real world UML models and Mat-
lab/Simulink models and designing model clone oracle to effec-
tively evaluate model clone detection approaches. To enhance the
slow speed of model clone detection and PDG based clone detection
is an open research issue. Higo et al. [80] proposed the use of inter
procedural PDG in detecting identical functionalities. We foresee
the use of multiple threads or parallel machines to speed up and
distribute the task of retrieval and detection in future.

We hope that our study will be useful for any researcher who
wants to carry forward the research in any domain pertaining to
software clones such as clone management, clone detection, clone
analysis, and impact of software clones on software quality. Fur-
ther our study is extended to model and semantic clone detection
techniques.
Acknowledgements

We thank editor and anonymous reviewers for worthy com-
ments. The comments and suggestions are extremely helpful in
improving the research paper draft. We are also grateful to All In-
dia Council for Technical Education (AICTE), Govt. of India for fund-
ing project titled ‘‘UML based Automated Test Case Generation’’ for
second author.
Appendix A. A quality assessment forms

A.1. Screening question

Section – 1
Does the research paper refer to software clones?

Consider:
 h

Yes

The paper includes the study of software clones. All

types of studies, i.e. case study, experimental study
or research paper is included. The word ‘clone’ has
got different meanings, so inclusion is highly
cautious
h

No
Section – 1 is evaluated first. If the reply is positive, we proceeded to section -2.
A.2. Screening question

Section – 2
Key sub-area categorization

Is the research paper focus on software clone

detection?

h

Yes

Consider:
 h

No

– Is the study’s focus or main focus on software clone
detection or not?

– Did the study fit in any one of sub-areas
categorized? (Apparently the study motivated
different categories.)
If the study’s primary focus is on software clone detection, pro-
ceed to section – 3, else proceed to section – 4.

A.3. Detailed questions

Section – 3
Findings

Is there clear statement of the findings?
 h

Yes

Consider:
 h

No

Did the study mention the approach/clone detection

technique?

Has the match detection technique reported?

What is the corresponding transformation technique,

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1193
Appendix A.3 (continued)Appendix A.3 (continued)
Findings

i.e. source representation?
Comparison

Was the data reported sufficient for comparative

analysis?

h

Yes

Consider:
 h

No

Are the necessary parameters for comparison

discussed?

Is the study referring to semantic clones explicitly?
Sampling and subject system

What was the subject system?
 h

Yes

– Was the subject system size considerable?
 h

No

– Has the researcher mentioned how the subject
system was identified and selected?
A.4. Detailed questions

Section – 4
Findings

Did the study mention the type of clone?
 h

Yes

Consider:
 h

No

How well the clones are categorized?

Did the study explicitly mentions the type of clone, or

is to be inferred from the study?
Level of usage

Was the tool reported?
 h

Yes

Consider:
 h

No

Was the study referring to development of a new tool

or usage of the tool for analysis of a different subject
system?
Appendix B. Data items extracted from all papers
Data item
 Description

Study identifier
 Unique ID for the study

Date of data

extraction

Bibliographic data
 Author, year, title, source

Type of article
 Journal article, conference article,

workshop paper

Study aims/context/

application domain

What are the aims of the study, i.e.
search focus, i.e. the research areas
the paper focus on
Study design
 Classification of study – clone
analysis, clone visualization, survey,
comparative analysis, etc.
What is the clone
detection technique
It explicitly refers to the clone
detection technique and type of clone
How was comparison
 Values of important parameters for
Appendix A.3 (continued)Appendix B.
Data item
 Description

carried out?
 software clone detection, i.e. recall,

precision, application area,
scalability, portability, etc.
Subject system
 How the data was collected: it refers
to the subject system and its size
Data analysis
 Data analysis, i.e. corresponding
source representation and match
detection technique are extracted
Developer of the tool
and usage
It refers to the clone detection tool,
developer and usage of the tool
Study findings
 Major findings or conclusions from
the primary study like percentage of
cloned code
Other
 Does the study explicitly refer to
semantic clone detection or model
based clone detection, any other
important point
Appendix C. Journals/conferences reporting most clone related
research
Publication channel
 J/C/
W

#
 N
International Conference on Software
Maintenance
C
 20
 8
International Conference of Software
Engineering
C
 18
 10
International Workshop on Software Clones
 W
 18
 6

Working Conference on Reverse Engineering
 C
 15
 10

International Conference on Program

Comprehension

C
 12
 5
International Workshop on Source Code
Analysis and Manipulation
W
 11
 2
European Conference on Software
Maintenance and Reengineering
C
 9
 4
Object-Oriented Programming, Systems,
Languages & Applications
C
 8
 2
Asia Pacific Software Engineering Conference
 C
 7
 4

Journal of Systems and Software
 J
 7
 2

IEEE Transactions on Software Engineering
 J
 6
 3

Journal of Software Maintenance and

Evolution: Research and Practice

J
 6
 3
European Software Engineering Conference
and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering
C
 5
 3
Conference of the Center for Advanced Studies
on Collaborative Research
C
 5
 3
International Conference on Automated
Software Engineering
C
 5
 1
Empirical Software Engineering Journal
 J
 4
 1

International Symposium on Software Metrics
 C
 4
 1

IEEE International Workshop on Website

Evolution

W
 3
 2
Mining Software Repositories
 C
 3
 1

International Workshop On Partial Evaluation

And Program Manipulation

W
 2
 2
(continued on next page)

1194 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
Appendix A.3 (continued)Appendix C.
Publication channel
 J/C/
W

#
 N
Electronic Notes in Theoretical Computer
Science
J
 2
 1
International Symposium on Empirical
Software Engineering
C
 2
 1
International Workshop on Defects in Large
Software Systems
W
 2
 1
J – Journal, C – Conference, W – Workshop, N – Number of studies reporting soft-
ware clone detection as prime study, # – Total number of articles investigated.
Appendix D. Acronyms
ADT
 Abstract Data Type

AOP
 Aspect Oriented Programming

API
 Application Programming Interface

AST
 Abstract Syntax Tree

CeDAR
 Clone Detection, Analysis and Refactoring

ConQAT
 Continuous Quality Assessment Toolkit

CPU
 Central Processing Unit

CRD
 Centre for Reviews and Dissemination

DP
 Dynamic Programming

FIM
 Frequent Itemset Mining

GPU
 Graphics Processing Unit

HTML
 Hyper Text Markup Language

ICA
 Independent Component Analysis

IDE
 Integrated Development Environment

IEEE
 The Institute of Electrical and Electronics Engineers

LCS
 Longest Common Subsequence

LOC
 Lines of Code

LSI
 Latent Semantic Indexing

LSH
 Locality Sensitive Hashing

PDG
 Program Dependence Graph

RTF
 Repeated Tokens Finder

STL
 Standard Template Library

UML
 Unified Modeling Language

XML
 Extensible Markup Language

XVCL
 XML Variant Configuration Language

XMI
 XML Metadata Interchange
References

[1] E. Adar, M. Kim, SoftGUESS: visualization and exploration of code clones in
context, in: Proceedings of 29th International Conference on Software
Engineering (ICSE’07), Minneapolis, MN, USA, 2007, pp. 762–766.

[2] R. Al-Ekram, C. Kapser, R. Holt, M. Godfrey, Cloning by accident: An empirical
study of source code cloning across software systems, in: Proceedings of
International Symposium on Empirical Software Engineering (ISESE’05),
Noosa Heads, Australia, 2005, pp. 376–385.

[3] G. Antoniol, G. Cassaza, M. Di Penta, E. Merlo, Modeling clones evolution
through time series, in: Proceedings of the 17th International Conference on
Software Maintenance (ICSM ’01), 2001, pp. 273–280.

[4] G. Antoniol, U. Villano, E. Merlo, M. Di Penta, Analyzing cloning evolution in
the Linux kernel, Information and Software Technology 44 (13) (2002) 755–
765.

[5] L. Aversano, G. Canfora, A. De Lucia, P. Gallucci, Web site reuse: cloning and
adapting, in: Proceedings of the 3rd International Workshop on Web Site
Evolution (WSE’01), Florence, Italy, 2001, pp. 107–111.

[6] L. Aversano, L. Cerulo, M. Di Penta, How clones are maintained: an empirical
study, in: Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, Amsterdam, The Netherlands, 2007, pp.
81–90.
[7] B. Baker, On finding duplication and near-duplication in large software
systems, in: Proceedings of the 2nd Working Conference on Reverse
Engineering (WCRE’95), Toronto, Ontario, Canada, 1995, pp. 86–95.

[8] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, K. Kontogiannis, Measuring
clone based reengineering opportunities, in: Proceedings of the 6th
International Software Metrics Symposium (METRICS’99), Boca Raton,
Florida, USA, 1999, pp. 292–303.

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, K. Kontogiannis, Partial
redesign of Java software systems based on clone analysis, in: Proceedings of
the 6th Working Conference on Reverse Engineering (WCRE’99), Atlanta, GA,
USA, 1999, pp. 326–336.

[10] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, K. Kontogiannis, Advanced
clone-analysis to support object-oriented system refactoring, in: Proceedings
of the 7th Working Conference on Reverse Engineering (WCRE’00), Brisbane,
Queensland, Australia, 2000, pp. 98–107.

[11] M. Balint, T. Gîrba, R. Marinescu, How developers copy, in: Proceedings of the
14th IEEE International Conference on Program Comprehension (ICPC ’06),
Athens, Greece, 2006, pp. 56–68.

[12] T. Bakota, R. Ferenc, T. Gyimóthy, Clone smells in software evolution, in:
Proceedings of the 23rd IEEE International Conference on Software
Maintenance (ICSM’07), Paris, France, 2007, pp. 24–33.

[13] L. Barbour, H. Yuan, Y. Zou, A technique for just-in time clone detection, in:
Proceedings of the 18th IEEE International Conference on Program
Comprehension (ICPC’10), Washington DC, USA, 2010, pp. 76–79.

[14] H. Basit, S. Jarzabek, Detecting higher-level similarity patterns in programs,
in: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/SIGSOFT FSE’05), Lisbon, Portugal, 2005, pp. 156–
165.

[15] H. Basit, D. Rajapakse, S. Jarzabek, Beyond templates: a study of clones in the
STL and some general implications, in: Proceedings of the 27th International
Conference on Software Engineering (ICSE’05), St. Louis, Missouri, USA, 2005,
pp. 15–21.

[16] H. Basit, S. Puglisi, W. Smyth, A. Turpin, S. Jarzabek, Efficient token based
clone detection with flexible tokenization, in: Proceedings of the Joint
Meeting of the European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’07), Dubrovnik,
Croatia, 2007, pp. 513–515.

[17] H. Basit, S. Jarzabek, A data mining approach for detecting higher-level clones
in software, IEEE Transactions on Software Engineering 35 (4) (2009) 497–
514.

[18] H. Basit, U. Ali, S. Jarzabek, Viewing simple clones from a structural clones’
perspective, in: Proceedings of 5th International Workshop on Software
Clones, Honolulu, USA, 2011, pp. 1–8.

[19] Project Bauhaus, <http://www.bauhaus-stuggart.de> (accessed April 2012).
[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and

evaluation of clone detection tools, IEEE Transactions on Software
Engineering 33 (9) (2007) 577–591.

[21] N. Bettenburg, W. Shang, W.M. Ibrahim, B. Adams, Y. Zou, A.E. Hassan, An
empirical study on inconsistent changes to code clones at the release level,
Science of Computer Programming 74 (7) (2010) 1–17.

[22] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone detection using
abstract syntax trees, in: Proceedings of the 14th International Conference on
Software Maintenance (ICSM ’98), Bethesda, Maryland, USA, 1998, pp. 368–
378.

[23] B. Biegel, S. Diehl, JCCD: a flexible and extensible API for implementing
custom code clone detectors, in: Proceedings of 25th International
Conference on Automated Software Engineering, (ASE’10), Antwerp,
Belgium, 2010, pp. 167–168.

[24] B. Biegel, S. Diehl, Highly configurable and extensible code clone detection, in:
Proceedings of the 17th Working Conference on Reverse Engineering
(WCRE’10), Beverly, MA, USA, 2010, pp. 237–241.

[25] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, The Journal of Systems and Software 80 (4) (2007)
571–583.

[26] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, R. Robbes, Language independent
clone detection applied to plagiarism detection, in: Proceedings of the 10th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM’10), Timisoara, Romania, 2010, pp. 77–86.

[27] C. Brown, S. Thompson, Clone detection and elimination for Haskell, in:
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (PEPM’10), Madrid, Spain, 2010, pp. 111–120.

[28] M. Bruntink, Aspect mining using clone class metrics, in: Proceedings of the
1st Workshop on Aspect Reverse-Engineering Held in Conjunction with 11th
Working Conference on Reverse Engineering (WCRE’04), Delft, The
Netherlands, 2004, p. 5.

[29] M. Bruntink, A. van Deursen, R. van Engelen, T. Tourwe, On the use of clone
detection for identifying crosscutting concern code, IEEE Transactions on
Software Engineering 31 (10) (2005) 804–818.

[30] D. Budgen, P. Brereton, Performing systematic literature reviews in software
engineering, in: Proceedings of the 28th International Conference on
Software Engineering (ICSE’06), Shanghai, China, 2006, pp. 1051–1052.

[31] P. Bulychev, M. Minea, Duplicate code detection using anti-unification, in:
Proceedings of Spring/Summer Young Researchers’ Colloquium on Software
Engineering, St. Petersburg, Russia, 2008, pp. 51–54.

http://www.bauhaus-stuggart.de

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1195
[32] E. Burd, J. Bailey, Evaluating clone detection tools for use during preventative
maintenance, in: Proceedings of the 2nd IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’02), Montreal, Canada, 2002,
pp. 36–43.

[33] J. Carver, D. Chatterji, N. A. Craft, On the need for human-based empirical
validation of techniques and tools for code clone analysis, in: Proceedings of
5th International Workshop on Software Clones, Honolulu, USA, 2011, pp.
61–62.

[34] G. Cassaza, G. Antoniol, U. Villano, E. Merlo, M. Di Penta, Identifying clones in
the Linux kernel, in: Proceedings of the 1st IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’01), Florence, Italy, 2001, pp.
90–97.

[35] M. Chilowicz, É. Duris, G. Roussel, Finding similarities in source code through
factorization, Electronic Notes in Theoretical Computer Science 238 (5)
(2009) 47–62.

[36] M. Chilowicz, É. Duris, G. Roussel, Syntax tree fingerprinting for source code
similarity detection, in: Proceedings of the 17th IEEE International
Conference on Program Comprehension (ICPC’09), Vancouver, British
Columbia, Canada, 2009, pp. 243–247.

[37] S. Choi, H. Park, H. Lim, T. Han, A static API birthmark for windows binary
executables, The Journal of Systems and software 82 (5) (2009) 862–873.

[38] E. Choi, N. Yoshida, T. Ishio, K. Inoue, T. Sano, Extracting code clones for
refactoring using combinations of clone metrics, in: Proceedings of 5th
International Workshop on Software Clones, Honolulu, USA, 2011, pp. 7–13.

[39] P. Ciancarini, G.P. Favini, Detecting clones in game playing software,
Entertainment Computing 1 (2009) 9–15.

[40] A. Corazza, S. D. Martino, V. Maggio, G. Scanniello, A tree kernel based
approach for clone detection, in: Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM’10), Timisoara, Romania, 2010,
pp. 1–5.

[41] J.R. Cordy, T.R. Dean, N. Synytskyy, Practical language-independent detection
of near-miss clones, in: Proceedings of the 14th IBM Centre for Advanced
Studies Conference (CASCON’04), Toronto, Ontario, Canada, 2004, pp. 1–12.

[42] M. Dagenais, E. Merlo, B. Laguë, D. Proulx, Clones occurrence in large object
oriented software packages, in: Proceedings of the 8th IBM Centre for
Advanced Studies Conference (CASCON’98), Toronto, Ontario, Canada, 1998,
pp. 192–200.

[43] A.M. Dalgarno, Jump starting software product lines with clone detection, in:
Proceedings of 12th International Software Product Line Conference,
Limerick, Ireland, 2008, pp. 351.

[44] Y. Dang, S. Ge, R. Huang, D. Zhang, Code clone detection experience at
Microsoft, in: Proceedings of 5th International Workshop on Software Clones,
Honolulu, USA, 2011, pp. 63–64.

[45] I.J. Davis, M.W. Godfrey, From whence it came: detecting source code clones
by analyzing assembler, in: Proceedings of the 17th Working Conference on
Reverse Engineering (WCRE’10), Beverly, MA, USA, 2010, pp. 242–246.

[46] M. D. Wit, A. Zaidman, A. van Deursen, Managing code clones using dynamic
change tracking and resolution, in: Proceedings of the 25th IEEE International
Conference on Software Maintenance (ICSM’09), Edmonton, AB, 2009, pp.
169–178.

[47] F. Deissenboeck, B. Hummel, E. Juergens, B. Schätz, S. Wagner, J. Girard, S.
Teuchert, Clone detection in automotive model-based development, in:
Proceedings of 30th International Conference on Software Engineering
(ICSE’08), Leipzig, Germany, 2008, pp. 603–612.

[48] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, P. Mas, M. Pizka, Tool
support for continuous quality control, IEEE Software 25 (5) (2008) 60–67.

[49] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, B. Schaetz, Model clone
detection in practice, in: Proceedings of 4th International Workshop on
Software Clones, Cape Town, SA, 2010, pp. 37–44.

[50] M. Di Penta, Evolution doctor: a framework to control software system
evolution, in: Proceedings of the 9th European Conference on Software
Maintenance and Reengineering (CSMR’05), 2005, pp. 280–283.

[51] M. Di Penta, M. Neteler, G. Antoniol, E. Merlo, A language independent
software renovation framework, The Journal of Systems and Software 77 (3)
(2005) 225–240.

[52] C. Domann, E. Juergens, J. Streit, The curse of copy & paste-cloning in
requirements specifications, in: Proceedings of the 3rd International
Symposium on Empirical Software Engineering and Measurement, Lake
Buena Vista, Florida, USA, 2009, pp. 443–446.

[53] E. Duala-Ekoko, M. Robillard, Tracking code clones in evolving software, in:
Proceedings of 29th International Conference on Software Engineering
(ICSE’07), Minneapolis, MN, USA, 2007, pp. 158–167.

[54] E. Duala-Ekoko, M. Robillard, CloneTracker: tool support for code clone
management, in: Proceedings of 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany, 2008, pp. 843–846.

[55] E. Duala-Ekoko, M. Robillard, Clone region descriptors: representing and
tracking duplication in source code, ACM Transactions on Software
Engineering and Methodology 20 (1) (2010) 1–31.

[56] S. Ducasse, M. Rieger, S. Demeyer, A language independent approach for
detecting duplicated code, in: Proceedings of the 15th International
Conference on Software Maintenance (ICSM’99), Oxford, England, UK, 1999,
pp. 109–119.

[57] S. Ducasse, O. Nierstrasz, M. Rieger, On the effectiveness of clone detection by
string matching, Journal on Software Maintenance and Evolution: Research
and Practice 18 (1) (2006) 37–58.
[58] W.S. Evans, C.W. Fraser, F. Ma, Clone detection via structural abstraction,
Software Quality Journal 17 (4) (2009) 309–330.

[59] R. Falke, P. Frenzel, R. Koschke, Empirical evaluation of clone detection using
syntax suffix trees, Empirical Software Engineering 13 (6) (2008) 601–643.

[60] R. Fanta, V. Rajlich, Removing clones from the code, Journal of Software
Maintenance, Research and Practice 11 (4) (1999) 223–243.

[61] M. Fowler, K. Beck, T. Brant, W. Opdyke, D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley Longman, 1999.

[62] Y. Fukushima, R. Kula, S. Kawaguchi, K. Fushida, M. Nagura, H. Iida, Code clone
graph metrics for detecting diffused code clones, in: Proceedings of the 16th
Asia Pacific Software Engineering Conference (APSEC’09), Penang, Malaysia,
2009, pp. 373–380.

[63] M. Gabel, L. Jiang, Z. Su, Scalable detection of semantic clones, in: Proceedings
of 30th International Conference on Software Engineering (ICSE’08), Leipzig,
Germany, 2008, pp. 321–330.

[64] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, Z. Su, Scalable and systematic
detection of buggy inconsistencies in source code, in: Proceedings of the
International Conference on Object Oriented Programming Systems
Languages and Applications, Nevada, USA, 2010, pp. 175–190.

[65] K. Gallagher, L. Layman, Are decomposition slices clones? In: Proceedings of
the 11th IEEE International Workshop on Program Comprehension (IWPC’03),
Portland, Oregon, USA, 2003, pp. 251–256.

[66] D.M. German, M. Di Penta, Y.-G Gueheneuc, G. Antoniol, Code siblings:
technical and legal implications of copying code between applications, in:
Proceedings of the 6th IEEE International Working Conference on Mining
Software Repositories (MSR’09), Vancouver, BC, Canada, 2009, pp. 81–90.

[67] D. Gitchell, N. Tran, Sim: a utility for detecting similarity in computer
programs, ACM SIGCSE Bulletin 31 (1) (1999) 266–270.

[68] N. Göde, R. Koschke, Incremental clone detection, in: Proceedings of the 13th
European Conference on Software Maintenance and Reengineering,
Kaiserslautern, Germany, 2009, pp. 219–228.

[69] N. Göde, Evolution of Type-1 clones, in: Proceedings of the 9th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM’09), Edmonton, Canada, 2009, pp. 77–86.

[70] N. Göde, Clone Removal: Fact or Fiction, in: Proceedings of 4th International
Workshop on Software Clones, Cape Town, SA, 2010, pp. 22–40.

[71] N. Göde, J. Harder, Clone stability, in: Proceedings of 15th European
Conference on Software Maintenance and Reengineering, Oldenburg,
Germany, 2011, pp. 65–74.

[72] N. Göde, J. Harder, Oops!. . . I changed it again, in: Proceedings of 5th
International Workshop on Software Clones, Honolulu, USA, 2011, pp. 14–20.

[73] M. W. Godfrey, D. M. German, J. Davies, A. Hindle, Determining the
provenance of software artifacts, in: Proceedings of 5th International
Workshop on Software Clones, Honolulu, USA, 2011, pp. 65–66.

[74] S. Grant, J. R. Cordy, Vector space analysis of software clones, in: Proceedings
of the 17th IEEE International Conference on Program Comprehension (ICPC
’09), Vancouver, BC, Canada, 2009, pp. 233–237.

[75] J. Guo Y. Zou, Detecting clones in business applications, in: Proceedings of the
15th Working Conference on Reverse Engineering (WCRE’08), Antwerp,
Belgium, 2008, pp. 91–100.

[76] Y. Hayase, Y. L. Lee, K. Inoue, A criterion for filtering code clone related bugs,
in: Proceedings of the workshop on Defects in large software systems in
companion to International Symposium on Software Testing and Analysis
(DEFECTS ’08), Seattle, Washington, 2008, pp. 37–38.

[77] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, On software maintenance
process improvement based on code clone analysis, in: Proceedings of the 4th
International Conference on Product Focused Software Process Improvement
(PROFES ’02), Rovaniemi, Finland, 2002, pp. 185–197.

[78] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, ARIES: refactoring support
environment based on code clone analysis, in: Proceedings of the 8th
IASTED International Conference on Software Engineering and Applications,
MA, USA, 2004, pp. 222–229.

[79] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, ARIES: Refactoring support tool for
code clone, in: Proceedings of 3rd Workshop on Software Quality in
companion to International Conference on Software Engineering (ICSE’05),
St. Louis, Missouri, USA, 2005, pp. 1–4.

[80] Y. Higo, Y. Ueda, S. Kusumoto, K. Inoue, Simultaneous modification support
based on code clone analysis, in: Proceedings of the 14th Asia Pacific Software
Engineering Conference (APSEC’07), Nagoya, Japan, 2007, pp. 262–269.

[81] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Method and implementation for
investigating code clones in a software system, Information and Software
Technology 49 (9–10) (2007) 985–998.

[82] Y. Higo, S. Kusumoto, K. Inoue, A metric based approach to identifying
refactoring opportunities for merging code clones in a Java software system,
Journal of Software Maintenance and Evolution: Research and Practice 20 (6)
(2008) 435–461.

[83] Y. Higo, K. Sawa, S. Kusumoto, Problematic code clones identification using
multiple detection results, in: Proceedings of the 16th Asia Pacific Software
Engineering Conference (APSEC’09), Penang, Malaysia, 2009, pp. 365–372.

[84] Y. Higo, S. Kusumoto, Code clone detection on specialized PDG’s with
heuristics, in: Proceedings of the 15th European Conference on Software
Maintenance and Reengineering (CSMR’11), Oldenburg, Germany, 2011, pp.
75–84.

[85] S. Horwitz, Identifying the semantic and textual differences between two
versions of a program, in: Proceedings of the ACM SIGPLAN’90 Conference on

1196 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
Programming Language Design and Implementation (PLDI’90), White Plains,
New York, 1990, pp. 234–245.

[86] D. Hou, F. Jacob, P. Jablonski, Exploring the design space of proactive tool
support for copy-and-paste programming, in: Proceedings of the Conference
of the Center for Advanced Studies on Collaborative Research (CASCON ’09),
Ontario, Canada, 2009, pp. 188–202.

[87] D. Hou, P. Jablonski, F. Jacob, CnP: Towards an environment for the proactive
management of copy-and-paste programming, in: Proceedings of the 17th
IEEE International Conference on Program Comprehension (ICPC’09),
Vancouver, BC, Canada, 2009, pp. 238–242.

[88] D. Hou, F. Jacob, P. Jablonski, Proactively managing copy-and-paste induced
code clones, in: Proceedings of the 25th IEEE International Conference on
Software Maintenance (ICSM’09), Edmonton, AB, 2009, pp. 391–392.

[89] B. Hummel, E. Juergens, L. Heinemann, M. Conradt, Index-based code clone
detection: Incremental, distributed, scalable, in: Proceedings of the 26th IEEE
International Conference on Software Maintenance (ICSM’10), Timisoara,
Romania, 2010, pp. 1–9.

[90] B. Hummel, E. Juergens, D. Steidl, Index-based model clone detection, in:
Proceedings of 5th International Workshop on Software Clones, Honolulu,
USA, 2011, pp. 21–27.

[91] T. Imai, Y. Kataoka, T. Fukaya, Evaluating software maintenance cost using
functional redundancy metrics, in: Proceedings of 26th Annual International
Computer Software and Applications (COMPSAC’02), Oxford, England, 2002,
pp. 299–306.

[92] P. Jablonski, Managing the copy-and-paste programming practice in modern
IDE’s, in: Proceedings of the Conference on Object Oriented Programming
Systems Languages and Applications Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion, Montreal, Quebec, Canada, 2007, pp. 933–934.

[93] P. Jablonski, D. Hou, CReN: A tool for tracking copy-and-paste code clones and
renaming identifiers consistently in the IDE, in: Proceedings of Eclipse
Technology Exchange Workshop at OOPSLA 2007 (ETX’07), Montreal, Quebec,
Canada, 2007, p. 5.

[94] P. Jablonski, D. Hou, Aiding software maintenance with copy and paste clone
awareness, in: Proceedings of the 18th IEEE International Conference on
Program Comprehension (ICPC’10), Washington DC, USA, 2010, pp. 170–179.

[95] F. Jacob, D. Hou, P. Jablonski, Actively comparing clones inside the code editor,
in: Proceedings of 4th International Workshop on Software Clones, Cape
Town, SA, 2010, pp. 1–8.

[96] K. Jalbert, J. S. Bradbury, Using clone detection to identify bugs in concurrent
software, in: Proceedings of the 26th IEEE International Conference on
Software Maintenance (ICSM’10), Timisoara, Romania, 2010, pp. 1–5.

[97] S. Jarzabek, S. Li, Unifying clones with a generative programming technique: a
case study, Journal of Software Maintenance and Evolution: Research and
Practice, John Wiley & Sons 18 (4) (2006) 267–292.

[98] Z. M. Jiang, A. E. Hassan, R. C. Holt, Visualizing clone cohesion and coupling,
in: Proceedings of the 13th Asia Pacific Software Engineering Conference
(APSEC’06), Bangalore, India, 2006, pp. 467–476.

[99] L. Jiang, Z. Su, E. Chiu, Context-based detection of clone-related bugs, in:
Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’07), Dubrovnik, Croatia, 2007, pp. 55–64.

[100] L. Jiang, G. Misherghi, Z. Su, S. Glondu, DECKARD: Scalable and accurate tree-
based detection of code clones, in: Proceedings of 29th International
Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 2007,
pp. 96–105.

[101] Z.M. Jiang, A.E. Hassan, A framework for studying clones in large software
systems, in: Proceedings of the 7th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’07), Paris, France, 2007, pp.
203–212.

[102] L. Jiang, Z. Su, Automatic mining of functionally equivalent code fragments
via random testing, in: Proceedings of 18th International Symposium on
Software Testing and Analysis (ISSTA’09), Chicago, Illinois, USA, 2009, pp. 81–
92.

[103] Jian-lin Huang, Fei-peng Li, Quick similarity measurement of source code
based on suffix array, in: Proceedings of International Conference on
Computational Intelligence and Security, Beijing, China, 2009, pp. 308–311.

[104] J.H. Johnson, Substring matching for clone detection and change tracking, in:
Proceedings of the 10th International Conference on Software Maintenance,
Victoria, British Columbia, Canada, 1994, pp. 120–126.

[105] E. Juergens, F. Deissenboeck, B. Hummel, CloneDetective – a workbench for
clone detection research, in: Proceedings of 31st International Conference on
Software Engineering (ICSE’09), Vancouver, Canada, 2009, pp. 603–606.

[106] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones matter?
In: Proceedings of 31st International Conference on Software Engineering
(ICSE’09), Vancouver, Canada, 2009, pp. 485–495.

[107] E. Juergens, N. Göde, Achieving accurate clone detection results, in:
Proceedings of 4th International Workshop on Software Clones, Cape Town,
SA, 2010, pp. 1–8.

[108] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C.
Domann, J, Streit, Can clone detection support quality assessments of
requirement specifications? in: Proceedings of 32nd International
Conference on Software Engineering (ICSE’10), Cape Town, South, Africa,
2010, pp. 79–88.
[109] E. Juergens, F. Deissenboeck, B. Hummel, Code similarities beyond copy &
paste, in: Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (CSMR’10), Madrid, Spain, 2010, pp. 78–87.

[110] E. Juergens, Research in cloning beyond code: a first roadmap, in: Proceedings
of 5th International Workshop on Software Clones, Honolulu, USA, 2011, pp.
67–68.

[111] W. Jung, C. Wu, E. Lee, WSIM: detecting clone pages based on 3-levels of
similarity clues, in: Proceedings of 9th IEEE/ACIS International Conference on
Computer and Information Sciences, Yamagata, Japan, 2010, pp. 702–707.

[112] T. Kamiya, F. Ohata, K. Kundou, S. Kusumoto, K. Inoue, Maintenance support
tools for JAVA Programs: CCFinder and JAAT, in: Proceedings of 23rd
International Conference on Software Engineering (ICSE’01), Toronto,
Ontario, Canada, 2001, pp. 837–838.

[113] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: a multi-linguistic token-based
code clone detection system for large scale source code, IEEE Transactions on
Software Engineering 28 (7) (2002) 654–670.

[114] T. Kamiya, The Official CCFinderX website <http://www.ccfinder.net>
(accessed April 2012).

[115] T. Kamiya, C. Ghezzi, How code skips over revisions, in: Proceedings of 5th
International Workshop on Software Clones, Honolulu, USA, 2011, pp. 69–70.

[116] C.J. Kapser, M.W. Godfrey, Aiding comprehension of cloning through
categorization, in: Proceedings of the 7th International Workshop on
Principles of Software Evolution (IWPSE’04), Kyoto, Japan, 2004, pp. 85–94.

[117] C.J. Kapser, M.W. Godfrey, Improved tool support for the investigation of
duplication in software, in: Proceedings of the 21st International Conference
on Software Maintenance (ICSM’05), Budapest, Hungary, 2005, pp. 305–314.

[118] C.J. Kapser, M.W. Godfrey, Supporting the analysis of clones in software
systems: a case study, Journal of Software Maintenance and Evolution:
Research and Practice 18 (2) (2006) 61–82.

[119] C.J. Kapser, P. Anderson, M. Godfrey, R. Koschke, M. Rieger, F. van
Rysselberghe, P. Weisgerber, Subjectivity in clone judgment: can we ever
agree? in: Duplication, Redundancy, and Similarity in Software, Dagstuhl
Seminar Proceedings, 2007.

[120] C.J. Kapser, M.W. Godfrey, ‘‘Cloning considered harmful’’ considered harmful:
patterns of cloning in software, Empirical Software Engineering 13 (6) (2008)
645–692.

[121] S. Kawaguchi, P.K. Garg, M. Matsushita, K. Inoue, Automatic categorization
algorithm for evolvable software archive, in: Proceedings of the 6th
International Workshop on Principles of Software Evolution (IWPSE’03),
Helsinki, Finland, 2003, pp. 195–200.

[122] M. Kim, L. Bergman, T. Lau, D. Notkin, An Ethnographic study of copy and
paste programming practices in OOPL, in: Proceedings of 3rd International
ACM-IEEE Symposium on Empirical Software Engineering (ISESE’04),
Redondo Beach, CA, USA, 2004, pp. 83–92.

[123] M. Kim, D. Notkin, Using a clone genealogy extractor for understanding and
supporting evolution of code clones, in: Proceedings of the 2nd International
Workshop on Mining Software Repositories (MSR’05), Saint Louis, Missouri,
USA, 2005, pp. 1–5.

[124] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, An Empirical study of code clone
genealogies, in: Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/SIGSOFT FSE 2005’05), Lisbon,
Portugal, 2005, pp. 187–196.

[125] H. Kim, Y. Jung, S. Kim, and K. Yi, MeCC: Memory comparison-based clone
detector, in: Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11), Honolulu, Hawaii, 2011, pp. 301–310.

[126] M. Kim, Understanding and aiding code evolution by inferring change
patterns, in: Proceedings of 29th International Conference on Software
Engineering (ICSE’07), Minneapolis, MN, USA, 2007, pp. 101–102.

[127] B. A. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01, School of
Computer Science and Mathematics, Keele University, Keele and Department
of Computer Science, University of Durham, Durham, UK, 2007, p. 65.

[128] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering – a systematic
literature review, Information and Software Technology 51 (1) (2009) 7–15.

[129] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, B.V. Saranya, Detection of
Type-1 and Type-2 code clones using textual analysis and metrics, in:
Proceedings of 2010 International Conference on Recent Trends in
Information, Telecommunication and Computing, Kochi, Kerala, India, 2010,
pp. 241–243.

[130] R. Komondoor, S. Horwitz, Using slicing to identify duplication in source
code, in: Proceedings of the 8th International Symposium on Static Analysis
(SAS’01), vol. LNCS 2126, Paris, France, 2001, pp. 40–56.

[131] K. Kontogiannis, Partial design recovery using dynamic programming, in:
Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative research (CASCON’94), Toronto, Ontario, Canada, 2004, p. 34.

[132] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, M. Bernstein, Pattern
matching for clone and concept detection, Automated Software Engineering
3 (1–2) (1996) 77–108.

[133] K. Kontogiannis, Evaluation experiments on the detection of programming
patterns using software metrics, in: Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE’97), Amsterdam, The
Netherlands, 1997, pp. 44–54.

http://www.ccfinder.net

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1197
[134] R. Koschke, R. Falke, P. Frenzel, Clone detection using abstract syntax suffix
trees, in: Proceedings of the 13th Working Conference on Reverse
Engineering (WCRE’06), Benevento, Italy, 2006, pp. 253–262.

[135] R. Koschke, Survey of research on software clones, in: Duplication,
Redundancy, and Similarity in Software, Dagstuhl Seminar Proceedings,
2007, p. 24.

[136] R. Koschke, Frontiers of software clone management, in: Proceedings of
Frontiers of Software Maintenance (FoSM’08), Beijing, China, 2008, pp. 119–
128.

[137] D. Kozlov, J. Koskinen, M. Sakkinen, J. Markkula, Exploratory analysis of the
relations between code cloning and open source software quality, in:
Proceedings of 7th International Conference on the Quality of Information
and Communications Technology, Porto, Portugal, 2010, pp. 358–363.

[138] J. Krinke, Identifying similar code with program dependence graphs, in:
Proceedings of the 8th Working Conference on Reverse Engineering
(WCRE’01), Stuttgart, Germany, 2001, pp. 301–309.

[139] J. Krinke, A study of consistent and inconsistent changes to code clones, in:
Proceedings of the 14th Working Conference on Reverse Engineering
(WCRE’07), Vancouver, BC, Canada, 2007, pp. 170–178.

[140] J. Krinke, N. Gold, Y. Jia, D. Binkley, Distinguishing copies from originals in
software clones, in: Proceedings of 4th International Workshop on Software
Clones, Cape Town, SA, 2010, pp. 41–48.

[141] J. Krinke, N. Gold, Y. Jia, D. Binkley, Cloning and Copying between GNOME
projects, in: Proceedings of 7th IEEE International Conference on Mining
Software Repositories, Cape Town, SA, 2010, pp. 98–101.

[142] J. Krinke, Is cloned code more stable than non-cloned code, in: Proceedings of
the 8th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM’08), Beijing, China, 2008, pp. 57–66.

[143] J. Krinke, Is cloned code older than non-cloned code? in: Proceedings of 5th
International Workshop on Software Clones, Honolulu, USA, 2011, pp. 28–33.

[144] B. Laguë, D. Proulx, J. Mayrand, E. Merlo, J. Hudepohl, Assessing the benefits of
incorporating function clone detection in a development process, in:
Proceedings of the 13th International Conference on Software Maintenance
(ICSM’97), Bari, Italy, 1997, pp. 314–321.

[145] A. Lakhotia, J. Li, A. Walenstein, Y. Yang, Towards a clone detection
benchmark suite and results archive, in: Proceedings of the 11th IEEE
International Workshop on Program Comprehension (IWPC’03), Portland,
Oregon, USA, 2003, pp. 285–286.

[146] F. Lanubile, T. Mallardo, Finding function clones in web applications, in:
Proceedings of the 7th European Conference on Software Maintenance and
Reengineering (CSMR’03), Benevento, Italy, 2003, pp. 379–386.

[147] T. Lavoie, M. Eilers-Smith, E. Merlo, Challenging cloning related problems
with GPU-based algorithms, in: Proceedings of 4th International Workshop
on Software Clones, Cape Town, SA, 2010, pp. 25–32.

[148] T. Lavoie, E. Merlo, Automated type-3 clone oracle using Levenshtein metric,
in: Proceedings of 5th International Workshop on Software Clones, Honolulu,
USA, 2011, pp. 34–40.

[149] S. Lee, I. Jeong, SDD: High performance code clone detection system for large
scale source code, in: Proceedings of the Object Oriented Programming
Systems Languages and Applications Companion to the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA Companion ’05), San Diego, CA, USA, 2005, pp.
140–141.

[150] H. Lee, K. Doh, Tree-pattern-based duplicate code detection, in: Proceedings
of International Workshop on Data-intensive Software Management and
Mining, Philadelphia, PA, USA, 2009, pp. 7–12.

[151] Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, S. Kim, Instant code clone
search, in: Proceedings of 18th International Symposium on Foundations of
Software Engineering, NY, USA, 2010, 167–176.

[152] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-Miner: finding copy–paste and related
bugs in large-scale software code, IEEE Transactions on Software Engineering
32 (3) (2006) 176–192.

[153] H. Li, S. Thompson, Clone detection and removal for Erlang/OPT within a
refactoring environment, in: Proceedings of ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (PEPM’09), Savannah, GA, USA,
2009, pp. 169–178.

[154] Z. O. Li, J. Sun, A metric space based software clone detection approach, in:
Proceedings of 2nd International Conference on Software Engineering and
Data Mining, Chengdu, China, 2010, pp. 111–116.

[155] H. Liu, Z. Ma, L. Zhang, W. Shao, Detecting duplications in sequence diagrams
based on suffix trees, in: Proceedings 13th Asia-Pacific Software Engineering
Conference (APSEC’06), Bangalore, India, 2006, pp. 269–276.

[156] S. Livieri, Y. Higo, M. Matsushita, K. Inoue, Analysis of the Linux kernel
evolution using code clone coverage, in: Proceedings of the 4th International
Workshop on Mining Software Repositories (MSR’07), Minneapolis, MN, USA,
2007, pp. 22.

[157] S. Livieri, Y. Higo, M. Matsushita, K. Inoue, Very-large scale code clone
analysis and visualization of open source programs using distributed
CCFinder: D-CCFinder, in: Proceedings of the 29th International Conference
on Software Engineering (ICSE’07), Minneapolis, MN, USA, 2007, pp. 106–
115.

[158] A. Lozano, M. Wermelinger, B. Nuseibeh, Evaluating the harmfulness of
cloning: A change based experiment, in: Proceedings of the 4th International
Workshop on Mining Software Repositories (MSR’07), Minneapolis, MN, USA,
2007, p. 4.
[159] A. Lozano, M. Wermelinger, Assessing the effects of clones on changeability,
in: Proceedings of the 24th IEEE International Conference on Software
Maintenance (ICSM’08), Beijing, China, 2008, pp. 227–236.

[160] A. Lozano, M. Wermelinger, Tracking clones’ imprint, in: Proceedings of 4th
International Workshop on Software Clones, Cape Town, SA, 2010, pp. 65–72.

[161] G.A. Lucca, M. Di Penta, A.R. Fasolino, An approach to identify duplicated web
pages, in: Proceedings of the 26th International Computer Software and
Applications Conference (COMPSAC’02), Oxford, England, 2002, pp. 481–486.

[162] A. Lucia, R. Francese, G. Scanniello, G. Tortora, Reengineering web
applications based on cloned pattern analysis, in: Proceedings of 12th
International Workshop on Program Comprehension (IWPC’04), Bari, Italy,
2004, pp. 132–141.

[163] A. Lucia, R. Francese, G. Scanniello, G. Tortora, Understanding cloned patterns
in web applications, in: Proceedings of the 13th International Workshop on
Program Comprehension (IWPC’05), St. Louis, MO, USA, 2005, pp. 333–336.

[164] A. Lucia, M. Risi, G. Tortora, G. Scanniello, Clustering Algorithms and latent
semantic indexing to indentify similar pages in web applications, in:
Proceedings of the 9th International Workshop on Web Site Evolution
(WSE’07), Paris, France, 2007, pp. 65–72.

[165] Y. Ma, D. Woo, Applying a code clone detection method to domain analysis of
device drivers, in: Proceedings of the 14th Asia Pacific Software Engineering
Conference (APSEC’07), Nagoya, Japan, 2007, pp. 254–261.

[166] K. Maeda, Syntax sensitive and language independent detection of code
clones, World Academy of Science, Engineering and Technology 60 (2009)
350–354.

[167] A. Y. Mao, J. R. Cordy, T. R. Dean, Automated conversion of table-based
websites to structured stylesheets using table recognition and clone
detection, in: Proceedings of the 2007 Conference of the Center for
Advanced Studies on Collaborative Research (CASCON’07), Richmond Hill,
Ontario, Canada, 2007, pp. 12–26.

[168] A. Marcus, J. I. Maletic, Identification of high-level concept clones in source
code, in: Proceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE’01), San Diego, CA, USA, 2001, pp. 107–114.

[169] D. Martin, J. R. Cordy, Analyzing web service similarities using contextual
clones, in: Proceedings of 5th International Workshop on Software Clones,
Honolulu, USA, 2011, pp. 41–46.

[170] J. Mayrand, C. Leblanc, E.M. Merlo, Experiment on the automatic detection of
function clones in a software system using metrics, in: Proceedings of the
12th International Conference on Software Maintenance (ICSM’96),
Monterey, CA, USA, 1996, pp. 244–253.

[171] T. Mende, F. Beckwermert, R. Koschke, G. Meier, Supporting the Grow-and-
Prune model in software product lines evolution using clone detection, in:
Proceedings of the 12th European Conference on Software Maintenance and
Reengineering, Szeged, Hungary, 2008, pp. 163–172.

[172] A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto, Software quality
analysis by code clones in industrial legacy software, in: Proceedings of 8th
IEEE International Symposium on Software Metrics (METRICS’02), Ottawa,
Canada, 2002, pp. 87–94.

[173] A. Monden, S. Okahara, Y. Manabe, K. Matsumoto, Guilty or not guilty: using
clone metrics to determine open source licensing violations, IEEE Software 28
(2) (2011) 42–47.

[174] T.T. Nguyen, H.A. Nguyen, N.H. Pham, J.M. Al-Kofahi, T.N. Nguyen, Cleman:
comprehensive clone group evolution management, in: Proceedings of the
23rd IEEE/ACM International Conference on Automated Software
Engineering, L’Aquila, Italy, 2008, pp. 451–454.

[175] T.T. Nguyen, H.A. Nguyen, N.H. Pham, J.M. Al-Kofahi, T.N. Nguyen, Clone-
aware configuration management, in: Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering, Auckland,
New Zealand, 2009, pp. 123–134.

[176] T.T. Nguyen, H.A. Nguyen, N.H. Pham, J.M. Al-Kofahi, T.N. Nguyen, ClemanX:
Incremental clone detection tool for evolving software, in: Proceedings of
31st International Conference on Software Engineering (ICSE’09), Vancouver,
Canada, 2009, pp. 437–438.

[177] T.T. Nguyen, H.A. Nguyen, J.M. Al-Kofahi, N.H. Pham, T.N. Nguyen, Scalable
and incremental clone detection for evolving software, in: Proceedings of the
25th IEEE International Conference on Software Maintenance (ICSM ’09),
Edmonton, AB, 2009, pp. 491–494.

[178] J.R. Pate, R. Tairas, N.A. Craft, Clone Evolution: A Systematic Review, Technical
Report SERG-2010-01, University of Alabama, Alabama, USA, 2010, p. 20.

[179] J.-F. Patenaude, E. Merlo, M. Dagenais, B. Laguë, Extending software quality
assessment techniques to Java systems, in: Proceedings of the 7th
International Workshop on Program Comprehension (IWPC’99), Pittsburgh,
PA, 1999, pp. 49–56.

[180] A. Perumal, S. Kanmani, E. Kodhai, Extracting the similarity in detected
software clones using metrics, in: Proceedings of International Conference on
Computer and Communication Technology, 2010, Allahabad, Uttar Pradesh,
India, pp. 575–579.

[181] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: Proceedings of 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE’08), 2008, Bari,
Italy, pp. 71–80.

[182] N.H. Pham, H.A. Nguyen, T.T. Nguyen, J.M. Al-Kofahi, T.N. Nguyen, Complete
and accurate clone detection in graph based models, in: Proceedings of 31st
International Conference on Software Engineering (ICSE’09), Vancouver,
Canada, 2009, pp. 276–286.

1198 D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199
[183] W. Qu, Y. Jia, M. Jiang, Pattern mining of cloned codes in software systems,
Information Sciences 180 (2010) 1–11.

[184] F. Rahman, C. Bird, P. Devanbu, Clones: what is that smell, in: Proceedings of
the 7th IEEE Working Conference on Mining Software Repositories, Cape
Town, South, Africa, 2010, pp. 72–81.

[185] D. Rajapakse, S. Jarzabek, An investigation of cloning in web applications, in:
Proceedings of the Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web (WWW’05), Chiba, Japan,
2005, pp. 924–925.

[186] D. Rajapakse, S. Jarzabek, Using server pages to unify clones in web
applications: A trade-off analysis, in: Proceedings of the 29th International
Conference of Software Engineering (ICSE’07), Minneapolis, USA, 2007, pp.
116–126.

[187] C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection Research, Technical
Report 2007-541, Queen’s University at Kingston Ontario, Canada, 2007, p.
115.

[188] C.K. Roy, J.R. Cordy, NICAD: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization, in: Proceedings
of the 16th IEEE International Conference on Program Comprehension
(ICPC’08), Amsterdam, The Netherlands, 2008, pp. 172–181.

[189] C.K. Roy, J.R. Cordy, Scenario-based comparison of clone detection
techniques, in: Proceedings of the 16th IEEE International Conference on
Program Comprehension (ICPC’08), Amsterdam, The Netherlands, 2008, pp.
153–162.

[190] C.K. Roy, J.R. Cordy, A mutation/injection-based automatic framework for
evaluating code clone detection tools, in: Proceedings of the IEEE
International Conference on Software Testing Verification and Validation
Workshops, Denver, Colorado, USA, 2009, pp. 157–166.

[191] C.K. Roy, Detection and analysis of near miss software clones, in: Proceedings
of the 25th IEEE International Conference on Software Maintenance
(ICSM’09), Edmonton, AB, 2009, pp. 447–450.

[192] C.K. Roy, J.R. Cordy, R. Koschke, Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach, Science of Computer
Programming 74 (7) (2009) 470–495.

[193] C.K. Roy, J.R. Cordy, Near miss function clones in open source software: an
empirical study, Journal of Software Maintenance and Evolution: Research
and Practice 22 (3) (2010) 165–189.

[194] C.K. Roy, J.R. Cordy, Are scripting languages really different, in: Proceedings of
4th International Workshop on Software Clones, Cape Town, SA, 2010, pp.
17–24.

[195] F. V. Rysselberghe, S. Demeyer, Evaluating clone detection techniques from a
refactoring perspective, in: Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE’04), Linz, Austria,
2004, pp. 336–339.

[196] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan, Z. Su, Detecting code clones
in binary executable, in: Proceedings of International Symposium on
Software Testing and Analysis, Chicago, Illinois, USA, 2009, pp. 117–127.

[197] R.K. Saha, M. Asaduzzaman, M.F. Zibran, C.K. Roy, K.A. Schneider, Evaluating
code clone genealogies at release level: An empirical study, in: Proceedings of
the 10th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM’10), Timisoara, Romania, 2010, pp. 87–96.

[198] R.K. Saha, C.K. Roy, K.A. Schneider, Visualizing the evolution of code clones,
in: Proceedings of 5th International Workshop on Software Clones, Honolulu,
USA, 2011, pp. 71–72.

[199] Y. Sasaki, T. Yamamoto, Y. Hayase, K. Inoue, Finding file clones in FreeBSD
ports collection, in: Proceedings of the 7th IEEE Working Conference on
Mining Software Repositories, Cape Town, South, Africa, 2010, pp. 102–105.

[200] S. Schulze, M. Kuhlemann, M. Rosenmüller, Towards a refactoring guideline
using code clone classification, in: Proceedings of 2nd Workshop on
Refactoring Tools with companion to Conference on Object Oriented
Programming Systems Languages and Applications, Nashville, Tennessee,
2008, p. 4.

[201] S. Schulze, S. Apel, C. Kastner, Code clones in feature oriented software
product lines, in: Proceedings of Generative Programming and Component
Engineering (GPCE’10), Eindhoven, The Netherlands, 2010, pp. 103–112.

[202] P. Schugerl, Scalable clone detection using description logic, in: Proceedings
of 5th International Workshop on Software Clones, Honolulu, USA, 2011, pp.
47–53.

[203] Gehan M.K. Selim, K.C. Foo, Y. Zou, Enhancing source based clone detection
using intermediate representation, in: Proceedings of the 17th Working
Conference on Reverse Engineering (WCRE’10), Beverly, MA, USA, 2010, pp.
227–236.

[204] Gehan M.K. Selim, L. Barbour, W. Shang, B. Adams, A.E. Hassan, Y. Zou,
Studying the impact of clones on software defects, in: Proceedings of the 17th
Working Conference on Reverse Engineering (WCRE’10), Beverly, MA, USA,
2010, pp. 13–21.

[205] D.M. Shawky, A.F. Ali, An approach for assessing similarity metrics used in
metric based clone detection techniques, in: Proceedings on 3rd IEEE
International Conference on Computer Science and Information Technology,
Chengdu, China, 2010, pp. 580–584.

[206] D.M. Shawky, A.F. Ali, Modeling clones evolution in open source systems
through chaos theory, in: Proceedings on 2nd International Conference on
Software Technology and Engineering, San Juan, Puerto Rico, 2010, pp. VI-
159–VI-164.

[207] Tool Simian <http://www.harukizaemon.com/simian/index.html> (accessed
April 2012).
[208] Tool SimScan <http://www.blue-edge.bg/download.html> (accessed April
2012).

[209] H. Storrle, Towards clone detection in UML domain models, in: Proceedings
of European Conference on Software Architecture (ECSA’10), Copenhagen,
Denmark, 2010, pp. 285–293.

[210] A. Sutton, H. Kagdi, J.I. Maletic, G. Volkert, Hybridizing evolutionary
algorithms and clustering algorithms to find source-code clones, in:
Proceedings of Genetic and Evolutionary Computation Conference
(GECCO’05), Washington DC, USA, 2005, pp. 1079–1080.

[211] N. Synytskyy, J.R. Cordy, T. Dean, Resolution of static clones in dynamic web
pages, in: Proceedings of 5th IEEE International Workshop on Web Site
Evolution (WSE’03), Amsterdam, The Netherlands, 2003, pp. 49–56.

[212] R. Tairas, Clone detection and refactoring, in: Proceedings of the Conference
on Object Oriented Programming Systems Languages and Applications
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications, Portland, Oregon, USA,
2006, pp. 780–781.

[213] R. Tairas, J. Gray, I. D. Baxter, Visualization of clone detection results, in:
Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eXchange,
Portland, Oregon, USA, 2006, pp. 50–54.

[214] R. Tairas, J. Gray, Phoenix-based clone detection using suffix trees, in:
Proceedings of the 44th Annual Southeast Regional Conference (ACM-SE’06),
Melbourne, Florida, USA, 2006, pp. 679–684.

[215] R. Tairas, J. Gray, I.D. Baxter, Visualizing clone detection results, in:
Proceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE’07), Atlanta, Georgia, USA, 2007, pp. 549–550.

[216] R. Tairas, Clone maintenance through analysis and refactoring, in:
Proceedings of the 2008 Foundations of Software Engineering Doctoral
Symposium, Atlanta, GA, USA, 2008, pp. 29–32.

[217] R. Tairas, Centralizing clone group representation and maintenance, in:
Proceedings of the Conference on Object Oriented Programming Systems
Languages and Applications Companion to the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and
Applications, Orlando, Florida, USA, 2009, pp. 781–782.

[218] R. Tairas, J. Gray, Get to know your clones with CeDAR, in: Proceedings of
Conference on Object Oriented Programming Systems Languages and
Applications Companion to 24th ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications, 2009, Orlando,
Florida, USA, pp. 817–818.

[219] R. Tairas, J. Gray, An information retrieval process to aid in the analysis of
code clones, Empirical Software Engineering 14 (1) (2009) 33–56.

[220] R. Tairas, J. Gray, Sub-clone refactoring in open source software artifacts, in:
Proceedings of ACM Symposium on Applied Computing (SAC’10), Sierre,
Switzerland, 2010, pp. 2373–2374.

[221] R. Tairas, F. Jacob, J. Gray, Representing clones in a localized manner, in:
Proceedings of 5th International Workshop on Software Clones, Honolulu,
USA, 2011, pp. 54–60.

[222] R. Tiarks, R. Koschke, R. Falke, An assessment of type-3 clones as detected by
state-of-the-art tools, in: Proceedings of the 9th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’09), Edmonton,
Canada, 2009, pp. 67–76.

[223] S. Thummalapenta, L. Cerulo, L. Aversano, M. Di Penta, An empirical study on
the maintenance of source code clones, Empirical Software Engineering 15
(1) (2010) 1–34.

[224] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, On detection of gapped code clones
using gap locations, in: Proceedings 9th Asia–Pacific Software Engineering
Conference (APSEC’02), Gold Coast, Queensland, Australia, 2002, pp. 327–
336.

[225] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: Maintenance support
environment based on code clone analysis, in: Proceedings of the 8th IEEE
Symposium on Software Metrics (METRICS’02), Ottawa, Canada, 2002, pp.
67–76.

[226] V. Wahler, D. Seipel, J.W. Gudenberg, G. Fischer, Clone detection in source
code by frequent itemset techniques, in: Proceedings of the 4th IEEE
International Workshop Source Code Analysis and Manipulation (SCAM’04),
Chicago, IL, USA, 2004, pp. 128–135.

[227] A. Walenstein, N. Jyoti, J. Li, Y. Yang, A Lakhotia, Problems creating task-
relevant clone detection reference data, in: Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE’03), Victoria, BC, Canada, 2003,
pp. 285–295.

[228] R. Wettel, R. Marinescu, Archeology of code duplication: Recovering
duplication chains from small duplication fragments, in: Proceedings of the
7th International Symposium on Symbolic and Numeric Algorithms for
Scientific, Computing, 2005, p. 8.

[229] J. Whaley, M.S. Lam, Cloning- based context- sensitive pointer alias analysis
using binary decision diagrams, in: Proceedings of the International
Conference on Programming Language Design and Implementation
(PLDI’04), Washington DC, USA, 2004, pp. 131–144.

[230] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S. Kawaguchi, H.
Iida, SHINOBI: a tool for automatic code clone detection in the IDE, in:
Proceedings of the 16th Working Conference on Reverse Engineering
(WCRE’09), Lille, France, 2009, pp. 313–314.

[231] W. Yang, Identifying syntactic differences between two programs, Software
Practice and Experience 21 (7) (1991) 739–755.

[232] R. Yokomori, H. Siy, N. Yoshida, M. Noro, K. Inoue, Measuring the effects of
aspect-oriented refactoring on component relationships: two case studies, in:

http://www.harukizaemon.com/simian/index.html
http://www.blue-edge.bg/download.html

D. Rattan et al. / Information and Software Technology 55 (2013) 1165–1199 1199
Proceedings of 10th Aspect-Oriented Software Development Conference
(AOSD’11), Pernambuco, Brazil, 2011, pp. 215–226.

[233] N. Yoshida, T. Ishio, M. Matsushita, K. Inoue, Retrieving similar code
fragments based on identifier similarity for defect detection, in:
Proceedings of the 2008 workshop on Defects in large software systems in
companion to International Symposium on Software Testing and Analysis
(DEFECTS’08), Seattle, Washington, 2008, pp. 41–42.

[234] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, On refactoring support
based on code clone dependency relation, in: Proceedings of the 11th IEEE
International Software Metrics Symposium (METRICS’05), Como, Italy, 2005,
pp. 16–25.

[235] N. Yoshida, T. Hattori, K. Inoue, Finding similar defects using synonymous
identifier retrieval, in: Proceedings of 4th International Workshop on
Software Clones, Cape Town, SA, 2010, pp. 49–56.

[236] Y. Zhang, H. A. Basit, S. Jarzabek, D. Anh, M. Low, Query-based filtering and
graphical view generation for clone analysis, in: Proceedings of the 24th IEEE
International Conference on Software Maintenance (ICSM’08), Beijing, China,
2008, pp. 376–385.

	Software clone detection: A systematic review
	1 Introduction & motivation
	1.1 Motivation for work

	2 Background
	2.1 Software clones
	2.2 Types of clones
	2.3 Why clones
	2.4 Advantages of clones
	2.5 Disadvantages of clones

	3 Review method
	3.1 Planning the review
	3.2 Research questions
	3.3 Sources of information
	3.3.1 Additional sources

	3.4 Search criteria
	3.5 Inclusion and exclusion criteria
	3.6 Quality assessment
	3.7 Data extraction

	4 Results
	4.1 Current status of clone detection
	4.1.1 Intermediate source representations and match detection techniques
	4.1.2 Clone detection tools
	4.1.2.1 Text based clone detection techniques
	4.1.2.2 Token based clone detection techniques
	4.1.2.3 Tree based clone detection techniques
	4.1.2.4 Graph based clone detection techniques
	4.1.2.5 Metrics based clone detection techniques
	4.1.2.6 Hybrid clone detection techniques

	4.1.3 Comparison and evaluation of clone detection tools and techniques

	4.2 Status of research in semantic and model clone detection techniques
	4.2.1 Semantic clone detection
	4.2.2 Model based clone detection

	4.3 Key sub areas
	4.3.1 Code clone evolution
	4.3.2 Code clone analysis
	4.3.3 Impact of software clones on software quality
	4.3.4 Clone detection in websites
	4.3.5 Cloning in related areas
	4.3.6 Software clone detection in aspect oriented programming/cross-cutting concerns

	4.4 Current status of clone management
	4.4.1 Benefits of clone management
	4.4.2 Clone management – a cross cutting and an umbrella activity
	4.4.2.1 Clone visualization

	4.4.3 Clone management: a systematic map

	4.5 Subject systems

	5 Discussion
	5.1 Key sub areas
	5.2 Clone management – a cross cutting topic
	5.3 Implications for research and practice
	5.4 Limitations of this review

	6 Conclusions and future work
	Acknowledgements
	Appendix A A quality assessment forms
	A.1 Screening question
	A.2 Screening question
	A.3 Detailed questions
	A.4 Detailed questions

	Appendix B Data items extracted from all papers
	Appendix C Journals/conferences reporting most clone related research
	Appendix D Acronyms
	References

