
Information and Software Technology 55 (2013) 395–411
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Aspect-oriented model-driven code generation: A systematic mapping study

Abid Mehmood ⇑, Dayang N.A. Jawawi
Department of Software Engineering, Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
a r t i c l e i n f o

Article history:
Received 19 September 2011
Received in revised form 21 July 2012
Accepted 9 September 2012
Available online 17 September 2012

Keywords:
Aspect-oriented software development
Model-driven engineering
Code generation
Systematic map
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.09.003

⇑ Corresponding author. Tel.: +966 55 228 13 73.
E-mail addresses: mabid4@live.utm.my (A. M

(D.N.A. Jawawi).
a b s t r a c t

Context: Model-driven code generation is being increasingly applied to enhance software development
from perspectives of maintainability, extensibility and reusability. However, aspect-oriented code gener-
ation from models is an area that is currently underdeveloped.
Objective: In this study we provide a survey of existing research on aspect-oriented modeling and code
generation to discover current work and identify needs for future research.
Method: A systematic mapping study was performed to find relevant studies. Classification schemes have
been defined and the 65 selected primary studies have been classified on the basis of research focus, con-
tribution type and research type.
Results: The papers of solution proposal research type are in a majority. All together aspect-oriented
modeling appears being the most focused area divided into modeling notations and process (36%) and
model composition and interaction management (26%). The majority of contributions are methods.
Conclusion: Aspect-oriented modeling and composition mechanisms have been significantly discussed in
existing literature while more research is needed in the area of model-driven code generation. Further-
more, we have observed that previous research has frequently focused on proposing solutions and thus
there is need for research that validates and evaluates the existing proposals in order to provide firm
foundations for aspect-oriented model-driven code generation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Model-Driven Engineering (MDE) is an approach to software
development that stresses upon making models the primary devel-
opment artifact and subjecting them to a refinement process,
through automatic transformations, until a running system is ob-
tained. By doing so, MDE aims at providing higher level of abstrac-
tion in development of systems which further results in an
improved understanding of complex systems. Moreover, it ad-
dresses problems in software systems development that originate
from existence of heterogeneous platforms. It achieves this through
keeping different levels of model abstractions; and by transforming
models from Platform Independent Models (PIMs) to Platform Spe-
cific Models (PSMs). In this context, automatic generation of appli-
cation code (i.e. automatic model-driven code generation) offers
many advantages such as the rapid development of high quality
code, reduced number of accidental programming errors, enhanced
consistency between design and code, to name a few. In addition to
these, several other benefits have also been reported in [1,2].

Aspect-oriented software development is an approach to soft-
ware engineering which allows explicit identification, separation,
ll rights reserved.

ehmood), dayang@utm.my
and encapsulation of concerns that cut across the primary modu-
larization of a system. These crosscutting concerns cannot be clearly
decomposed from primary functionality (core concerns) of the sys-
tem, and thus cannot be effectively modularized, when using other
well-known development techniques such as object-oriented
development. Hence these concerns end up scattered throughout
the system and tangled with the core concerns of system. Even
though the crosscutting concerns usually originate from non-
functional requirements such as logging, security, persistence,
and optimization but the phenomenon encompasses the functional
ones also, which often have their behavioral logic spread out over
several modules. Using aspect-orientation, these concerns are
identified, modeled and implemented independent of each other
as well as separate from the main functional concerns of the
system. Once separated in this way into modules, these concerns
need some composition mechanism to control where and when
concern behavior is applied. This effectiveness of modularization
is achieved through applying aspect-orientation at analysis phase
using Early Aspects [3], during design using Aspect-oriented Mod-
eling [4], and using Aspect-oriented Programming [5] for imple-
mentation. The separation of crosscutting concerns from core
functionality of the system achieved through aspect-orientation
eventually results in improving several software quality factors
including maintainability, extensibility and reusability.

http://dx.doi.org/10.1016/j.infsof.2012.09.003
mailto:mabid4@live.utm.my
mailto:dayang@utm.my
http://dx.doi.org/10.1016/j.infsof.2012.09.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


396 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
In the context of MDE, Aspect-Oriented Modeling (AOM) uses
the aspect technology by modularizing and composing cross-cut-
ting concerns during the design phase of a software system. A
number of approaches to AOM (e.g. [6,7]) have been proposed in
the past. All these modeling languages are compliant with Mod-
el-Driven Architecture (MDA) vision [8], and thus provide tools
to integrate themselves with the MDE process. The main purpose
of these modeling languages is to support specification of PIMs
and subsequent automatic transformation to PSMs and code.

Aspect-oriented models developed using AOM approaches can
be integrated with model-driven development in at least two dif-
ferent ways; and this eventually results in forming two distinct
lines of research in this context. Along the first line are approaches
that propose using a model weaver to compose the base model
(one that models core concerns) and the aspect model (model
which represents crosscutting concerns) in such a way that a
non-aspect-oriented (object-oriented) model is obtained. Then
standard code generation approaches can be used to generate code
into one of the object-oriented programming languages. In con-
trast, the second line of research comprises of approaches that ex-
plore direct transformation of the source aspect-oriented model
into code of a target aspect-oriented language, and then rely on
weaver provided by the target language to deal with crosscutting
aspects.

This study has been conducted in the specific context of ap-
proaches that contribute to aspect-oriented modeling or use these
models for code generation. In order to get an overview of existing
research in this context, we actually performed a systematic map-
ping study of aspect-oriented modeling and aspect-oriented mod-
el-driven code generation approaches. Apart from getting an
overview, this study also aims at identifying and presenting results
from literature that are valuable from perspective of possible fu-
ture enhancements and use. Further, it aims at identifying needs
for future research in this particular area. Some earlier papers
and brief reviews have presented overview of aspect-oriented
modeling techniques and associated challenges. Similarly, there
are few studies that have elaborated challenges and prospects in
model-driven code generation. However, no existing reports have
conducted a systematic mapping study of the area.

A systematic mapping study is a way of identifying and classi-
fying research related to a topic, and has been adapted from other
disciplines to software engineering by Kitchenham and Charters
[9]. When used for a specific research area, it categorizes different
types of research reports in various dimensions, and often provides
a map of its results. Systematic mapping studies have been recom-
mended mostly if little relevant evidence is found during initial
study of the domain or if the topic to be investigated is very broad
[9]. In contrast to systematic literature reviews, systematic map-
ping studies are conducted at a coarse-grained level and they
aim only at finding and identifying evidence relating to a research
question, and at identifying research gaps in order to direct future
research. In this context, we believed it would be appropriate to
conduct a systematic mapping study since aspect-oriented model-
ing appeared to be a broader concept with multiple research focus
areas, while little work was found that addressed the specific area
of aspect-oriented code generation.

Following this introduction, this paper is structured as follows:
In Section 2, we present a short overview of the context in which
current study has been conducted and justify its need. Section 3
describes how the systematic mapping methodology has been ap-
plied. The classification schemes and their various dimensions are
discussed in Section 4. Section 5 is dedicated to present the results
of mapping the selected primary studies and discussion of research
questions. We discuss the overall results and identify the potential
limitations of our study in Section 6. Section 7 concludes our
presentation.
2. Background and motivation

In this section we provide a brief background to aspect-oriented
model-driven code generation presenting the core ideas and moti-
vation behind it, and some works related to it. We also justify the
need for a systematic mapping study in this section.
2.1. Aspect-oriented model-driven code generation

Software development projects are aimed at producing high-
quality software within allocated time. However, as the projects
grow in size and complexity, achieving the goals of quality and
on-time delivery become more challenging. For this reason, soft-
ware projects often end up running over schedule, as found in soft-
ware project management studies such as [10]. Moreover, these
off-schedule projects often relinquish quality in order to meet
the project deadlines, further leading to software products which
are less reliable, less maintainable, and less adaptable. Therefore,
there is need for techniques that can promise reduced delivery
time for high quality software products. At the design level, visual
modeling languages [11–14] help in given context by providing
modeling and model-checking capabilities. During the implemen-
tation and maintenance phases, the same can be achieved by
applying automatic code generation. Automatically generated
code, if correctly obtained, can enhance the benefits of high-level
modeling and analysis. Hence, in past, it has been deemed ideal
to develop approaches that generate or help to generate executable
code from high level design models. So far as the benefits of auto-
matic model-driven code generation are concerned, the most sig-
nificant advantages include reduction in development time, and
improvement in quality from different perspectives such as main-
tainability, extensibility, and reliability [15].

The majority of automatic code generation approaches have ad-
dressed automatic code generation for object-oriented analysis and
design models. Moreover, code generation has been presented
using formal notations. Examples of code generation using formal
notations include Petri Nets [16], Software Cost Reduction (SCR)
[17], and Cinderella SLIPPER [17]. These approaches have achieved
full code generation and they have proposed techniques for opti-
mized code generation. In some other works such as [18–21], mod-
els represented in UML have been used to generate fully executable
object-oriented code. Many of currently available commercial (e.g.
IBM Rational Software Architect [22], AjileJ StructureViews [23],
MagicDraw UML [24]) as well as open source (ArgoUML, Eclipse-
UML2 Tools) object-oriented CASE tools support the generation
of code stubs.

It has to be emphasized here that while we focus on code gen-
eration (since code seems to be the eventual outcome), the impor-
tance of studying the associated modeling approaches cannot be
overlooked. This is because a design model developed using one
of modeling approaches serves as input to code generation process.
Therefore, the comprehensiveness and quality of generated code is
directly linked with those of the modeling approach. For this rea-
son, this study includes both aspect-oriented modeling as well as
code generation topics. Aspect-oriented model-driven code gener-
ation can in fact be seen as a realization of the idea of direct trans-
formation from an aspect-oriented model into aspect-oriented
programming language code (described in Section 1). In particular,
it refers to an approach of generating code from base and aspect
models independently in the first step, and then weaving base
and aspect code in the second step. For this reason, the approach
may be called as one of the Generate-Then-Weave approaches
[25]. From the perspective of generated code, it is usually in con-
trast to Weave-Then-Generate approaches that generate code from
a woven view of base and aspect design models since they are



A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 397
often used to generate object-oriented code. While Weave-Then-
Generate approaches may be considered ideal for model analysis
and execution, they may result in problems if the generated code
is to be maintained manually [26,27]. It has to be emphasized here
that one would expect the need for manual code maintenance and
evolution until MDE becomes an extremely mature discipline. An-
other difficulty with these approaches is associated with separa-
tion of concerns that have once been composed during the
weaving process. Once a model is woven, clear separation of con-
cerns, the founding principle behind aspect-orientation, becomes
blurred. This dilemma of losing clear boundaries of concerns while
translating models into implementation may further lead to dimin-
ishing evolvability, traceability, reusability and maintainability of
the software system [28].

The essential goal of research that proposes transformation of
an aspect-oriented model directly into aspect-oriented code is to
benefit from code level features of aspect-oriented programming
languages. The approaches in this category do not suffer from
problems mentioned above, as they tend to maintain the separa-
tion of concerns from model to code. Therefore, one may conclude
that they are mainly inspired by benefits resulting from existence
of a direct mapping between constructs of aspect-oriented design
model and the aspect-oriented programming language. In this re-
gard, Hovsepyan et al. [26] have reported that approaches that tar-
get aspect-oriented programming languages result in compact,
smaller, less complex and more modular implementations. They
have conducted a number of quantitative studies and experiments.
They found that maintaining the aspect-oriented paradigm
throughout the system development stages offers several benefits
compared to shift from aspect-oriented models to object-oriented
code. Similarly, some empirical studies such as [29–32] have also
reported potential benefits of using aspect-oriented techniques in
software development.

In past, few efforts have been made to achieve automatic as-
pect-oriented code generation and initial results have been re-
ported in the literature. All such approaches are naturally based
on model-driven architecture, meaning that they use a source
model developed in some notation extended from UML as input
and generate the target aspect-oriented code according to some
transformation definition. However, as we have shown in a previ-
ous study [33], each of these approaches formulates certain spe-
cific features of aspect-oriented model-driven code generation
while eliminating others. There is need for more research in this
particular area to raise maturity of such approaches and to serve
the long term goal of fully executable aspect-oriented code gener-
ation from models.

2.2. Related work

In an effort to evaluate and compare different approaches to as-
pect-orientation, some studies have been presented in recent
years. Such studies can broadly be distinguished into two catego-
ries with respect to their focus: studies focusing on aspect-oriented
modeling and ones particularly emphasizing on aspect-oriented
code generation approaches.

So far as first category is concerned, some previous work has
presented comparison of aspect-oriented modeling approaches
pursuing some distinguished goals. Wimmer et al. [7] have defined
a detailed evaluation framework to evaluate existing AOM
approaches with focus on comparability in general. The major dis-
tinction of their work from all other surveys on the topic is the
breadth and depth of evaluation. Chitchyan et al. [34] have pre-
sented an extensive work with the goal of ‘‘developing integrated
aspect-oriented requirements engineering, architectures, and de-
sign approaches’’. Therefore, they have provided review of all signif-
icant work on both aspect-oriented as well as non-aspect-oriented
approaches to software development. Similarly, Reina et al. [35]
have investigated some AOM approaches with specific goal of eval-
uating dependency of each approach on particular platform and on
specific concerns. Op de beeck et al. [6] have presented a compari-
son of AOM approaches within the context of product line engineer-
ing and with the goal to position AOM approaches within software
development life cycle for large-scale system.

With respect to studies on code generation approaches, in an
effort to evaluate existing approaches for aspect-oriented code
generation, we have compared six approaches on the basis of a
set of well-defined questions [33]. To the best of our knowledge,
it was the first work intended to evaluate specifically the aspect-
oriented code generation approaches. However its scope is limited
to highlighting the presence or absence of features in the surveyed
approaches.

2.3. Need for a systematic mapping study

Systematic mapping studies belong to Evidence-Based Software
Engineering (EBSE) paradigm [36]. They provide new, empirical and
systematic methods of research. Although several studies have
been reported in the broader context of aspect-orientation (e.g.
[6,7,34,35]), we are not aware of any systematic mapping study that
has been conducted in this field. Given the fact that various types of
research have appeared addressing varying focus areas at different
levels of granularity related to broader topic of aspect-oriented
model-driven code generation, there is need for a more systematic
investigation of the topic. Therefore, the current study is intended
to contribute to aspect-oriented model-driven code generation
through a systematic and evidence-based approach. This study
may help researchers in the field of aspect-oriented modeling and
its integration with MDE through providing an overview of the cur-
rent research in the area. Furthermore, it may serve as a first step
towards more thorough examination of the topics addressed in it
with the help of systematic literature reviews.
3. Research method

Petersen et al. [37] describe the process of carrying on a system-
atic study in software engineering. We conducted the current
study by considering their guidelines. However, in addition to
using the classification schemes proposed in their work for some
dimensions, we found it appropriate to define some schemes spe-
cific to our topic.

As shown in Fig. 1, our mapping study was performed in essen-
tial process steps of: (1) defining research questions, (2) defining
search strategy, (3) screening of primary studies, (4) defining clas-
sification schemes, and (5) mapping of studies.

3.1. Research questions

This study aims at obtaining an overview of current research in
the area of aspect-oriented modeling and subsequent code gener-
ation using these models. We defined three research questions to
elaborate this overall goal:

RQ1 What are the most examined aspect-oriented design and
aspect-oriented model-driven code generation topics, and to what
extent have these topics been investigated? Moreover, what types
of contributions have been presented so far? Aspect-oriented con-
structs can be supported in different ways and using different
modeling diagrams at the design level. Similarly, support for code
generation from aspect-oriented models can be implemented
based on different models and constructs. We defined this question
to see which modeling constructs and code generation methods
have been addressed already. Answer to this question is expected



Fig. 1. Systematic mapping process (adapted from Petersen et al. [37]).

398 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
to identify needs for complementary research. Furthermore, this
question is intended to see to what extent these approaches cur-
rently support the overall goals, specifically by what type of
contributions.

RQ2 Which forums are often used to publish research on aspect-
oriented modeling and aspect-oriented code generation? In our
initial investigation of the domain we found that aspect-oriented
software development was topic of some dedicated conferences
and workshops. By defining this question, we want to see what
other forums are used to publish research in this area.

RQ3 What different types of research are presented in literature
and what extent has been addressed? In order to increase the cred-
ibility of research, the use of empirical studies and better estab-
lished approaches is advised [38]. In this context, we want to
classify different research types in the specific area of aspect-ori-
ented modeling and code generation.

3.2. Search strategy

We developed a well-defined search strategy in order to iden-
tify the maximum number of relevant primary studies. We de-
scribe it from three perspectives: search scope, search method,
and search strings used.

As far as the search scope is concerned, we did not limit the
scope of our search to any specific research venues to find the max-
imum amount of related research work. However, the search re-
sults are limited to publication period between July 1997 and
May 2012. We chose this start date because the first paper intro-
ducing aspect-oriented programming (i.e. [5]) published in
ECOOP’97. The search results up to May 2012 have been consid-
ered in this study because we performed the search at this time.
However, the search scope for manual search (described below)
is limited to the periods specified for each venue in the following.

In terms of search method, both manual and automatic searches
were conducted. By manual search we mean the search conducted
by manually browsing journals or conference proceedings. While
the automatic search means searching major electronic data
sources using a combination of predefined search strings. We con-
ducted automatic search for a majority of venues since the manual
search for some journals and conference proceedings published on
those venues was expected to be extremely time-consuming.

For the manual search, we selected following venues because a
large number of studies related to aspect-oriented modeling and
code generation were found there during initial exploratory
searches.

� Journals:
s Transactions on Aspect-Oriented Software Development

(TAOSD). Volumes I–VIII (2006–2011).
� Conferences and workshops:

s International Conference on Aspect-Oriented Software
Development – AOSD (2002–2009).
s International Conference on Model Driven Engineering Lan-
guages and Systems – MODELS (2007–2011).

s International Workshop on Aspect-Oriented Modeling –
AOM (2007–2009).

For the automatic searches, we used the search string given in
Table 1, which is representative of four basic concepts related to
aspect-oriented modeling and code generation. The final string
was developed by performing a number of pilot searches on se-
lected electronic data sources. The main digital sources that were
used to conduct automatic search were IEEEXplore, Science Direct,
ACM Digital Library, and Springer Link.

Note that since the features provided by various sources as well
as the exact syntax of search strings to be applied vary from one
source to other, the string given in Table 1 was actually used to
construct a semantically equivalent string specific to each source.
The first part aims at finding studies related to aspect-oriented
modeling techniques, while the second part is related to model-
driven engineering domain in the context of aspect-oriented, and
the third part is related to code generation techniques based on as-
pect-oriented models. Identical set of metadata values (i.e. title, ab-
stract and keywords) from all sources was selected to apply the
search string in order to ensure consistency.

3.3. Selection of primary studies

As previously stated, we used a combination of manual and
automatic searches. Fig. 2 shows the process of selecting primary
studies. We started with performing a number of exploratory
searches on previously given digital libraries to determine an ini-
tial set of publications. In this step we also used some previously
known papers [39–44] as the starting point and followed the ref-
erences and citing publications. This step resulted in 18 publica-
tions. We used this initial set of publications to help us identify
some journals and conference proceedings relevant to our study.
Therefore, we decided to manually search Transactions on As-
pect-Oriented Software Development (TAOSD), proceedings of
the annual conference AOSD, proceedings of the MODELS confer-
ence and AOM workshop since they were identified to be well-
known among AOP researchers and publications related to our
study were likely to be found there. By screening titles in these
four venues, we obtained some more relevant studies and the to-
tal number of studies increased to 69. These publications were
screened to get an overview of the area and to define preliminary
classification schemes. At this stage, we realized that modeling of
aspect-oriented concepts has been topic of several studies, while
little work was available on the specific topic of aspect-oriented
code generation. Therefore, we decided to keep track of studies
on both topics independently (see Table 2). However, studies
which present a significant contribution to both aspect-oriented
modeling and aspect-oriented code generation were listed under
both categories.



Table 1
Search string used for automatic searches.

Concept Alternatives used

Aspect-
oriented

[(aspect AND oriented) OR (aspect-oriented) OR AO OR aspectual OR crosscutting OR cross-cutting] AND

Modeling [design OR modeling OR model OR AOM OR UML OR weaving OR (design AND notation)] OR
Model-driven [(model AND driven) OR model-driven OR automatic OR automated OR MD] AND
Code

generation
[Code OR (Code AND generation) OR (generating AND code) OR (code AND transformation) OR (code AND evolution) OR (mapping AND code)]

Fig. 2. Study selection process.

A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 399
In the next step we read Introduction and Related Work sec-
tions of the previously obtained set of publications and obtained
a few more papers which were related to our study. We included
publications with a strong focus on the aspect-oriented modeling
techniques and using these aspect-oriented models as input to
the automatic code generation process. This resulted in an addi-
tional 19 studies. Total number of studies up to this step was 88.

In the next phase we performed automatic searches using the
search engines of electronic data sources i.e. IEEEXplore, Science
Direct, ACM Digital Library, and Springer Link. We applied the
search string given in Table 1. An overview of results obtained from
manual and automatic searches is presented in Table 2. We also
applied the search string to Google Scholar and ISI Web of Science.
However, no unique contributions were found from ISI Web of Sci-
ence, thus it is not shown in Table 2.

After performing automatic search, we excluded the duplicate
publications by comparing results obtained in this step to those
obtained through manual search. In case, a study was found re-
Table 2
Overview of search results.

Source Studies retrieved Studies selected

Modeling Code gen. Modeling Code gen.

Manual searcho
TAOSD 12 1 11 1
AOSD 15 1 7 1
MODELS 12 1 8 1
AOM 32 2 8 2

Automatic search
IEEEXplore 33 18 6 3
ACM Digital Lib 35 13 3 2
SpringerLink 19 22 4 1
ScienceDirect 19 2 0 1
Google Scholar 12 6 5 2

Sum of studies 189 66 52 14
ported on more than once, we selected the most recent and de-
tailed version of the paper. At this stage, we also narrowed down
the categories of publications to some extent by excluding non-
peer reviewed publications, in order to ensure a level of quality
as well as to avoid redundancy in contributions. Consequently,
the automatic search resulted in 167 new unique contributions
(see Table 2) after exclusion of non-peer reviewed publications.
The sum of studies obtained by means of automatic search appears
greater than the number of unique contributions stated above
since some of the studies appear under both modeling and code
generation in Table 2.

The authors considered the Abstract, Keywords, Introduction
and Conclusion of each of these 255 studies identified to this point,
for a second time, to decide about its inclusion or exclusion. A total
of 190 studies were excluded either due to their limited relevance
or meeting one of the other exclusion criterions. We found that
according to our selection criteria, 51 publications were relevant
to aspect-oriented modeling, 13 studies were relevant to code gen-
eration, while only one study (i.e. [45]) was found relevant to both
sub-topics for this mapping study.

A listing of all criterions on basis of which studies were included
or excluded is given below.

Inclusion:

� Studies that explicitly present an aspect-oriented modeling
approach or technique, either by defining new constructs into
UML or by using its extension mechanisms.
� Papers that present a unique solution to some modeling or code

generation problem, although they do not contribute an
approach on their own.
� Papers that implement an existing aspect-oriented modeling

approach in practice and evaluate it.
� Studies that contribute to weaving mechanisms for aspect-ori-

ented models, either by proposing a weaver or by proposing a
unique extension to an existing weaver.



400 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
� Studies that report on approaches to aspect model transforma-
tions (model-to-model) or aspect-oriented code generation
(model-to-code).
� Studies that propose approaches to mapping aspect-oriented

models to aspect-oriented code.
� Papers that propose basic frameworks such as common case

studies for demonstration or validation of aspect-oriented mod-
eling or code generation approaches.

Exclusion:

� Papers which mentioned aspect-oriented modeling in the
abstract only. This was required because we found many stud-
ies that mentioned aspect-oriented modeling in their opening
sentences as a principal concept, however, the studies did not
really address it. The same criterion was used for other concepts
such as code generation and model-driven engineering as well.
� Papers that address weaving from aspect-oriented programming

languages perspective rather than from modeling perspective.
� Papers that present only recommendations, guidelines or prin-

ciples, instead of presenting a practical approach to modeling
or code generation.
� Introductory papers for books and workshops.
� Editorials, keynotes, tutorial summaries, tool demonstrations

and panel discussions, books, technical reports and other non-
peer-reviewed publications.
� Duplicate reports of the same study found in different sources.
� Papers from industrial conferences, posters, and non-English

publications.

Table 2 shows an overview of studies obtained through manual
and automatic searches. Note that the automatic search shows
only the number of unique contributions after removal of duplicate
results that were retrieved from manual search previously. It also
shows the number of studies that were selected based on the inclu-
sion criteria mentioned above. The one study [45] that made a sig-
nificant contribution to both modeling and code generation topics
was added to both columns.

3.4. Defining a classification scheme

We used the classification schemes proposed by Petersen et al.
[37] and classified the publications into categories from three per-
spectives: (1) focus area, (2) type of contribution and (3) research
type. However, these categories were adapted to specifics of our
mapping study. While categorizing and mapping the studies into
classification schemes, we used an iterative approach. The resul-
tant classification schemes are presented in Section 4.

3.5. Mapping of studies

The actual mapping was carried out by mapping each included
study to a particular intersection set in the classification schemes
defined in Section 4. The resulting mapping is presented in Section 5.
4. Classification schemes

As discussed previously in Section 3, publications are catego-
rized from three different perspectives: focus area, type of contri-
bution and research type.

4.1. Focus area

From a broader perspective, selected studies were divided into
five research focus areas based on unique research topics they ad-
dressed. The keywording method described in [37] was used to
identify these research focus areas. The five categories of research
focus areas are briefly described below.
4.1.1. Modeling notation and process
This category includes studies that present a notation on its

own, or in some way, contribute to the modeling process which
uses some existing notation. Moreover, studies that elaborate or
provide meta-models for definition of aspect-oriented modeling
notations e.g. [46], have also been mapped into this category. It
has to be emphasized here that since core modeling notations
are generally complemented with a weaving mechanism, they
are not categorized a second time into the model composition
and interaction management category (that follows).
4.1.2. Model composition and interaction management
Studies that present a novel method of weaving aspect-oriented

models, or present some solution related to management of model
weavers are categorized here. Studies that contribute to improving
methods of interaction between the base and aspect model con-
structs are also included in this category.
4.1.3. AO Code generation
This category reflects papers that present an explicit approach

to generating aspect-oriented code from models (model-to-code),
or contribute significantly to aspect-oriented code generation e.g.
by elaborating mapping mechanisms from aspect-oriented models
to code.
4.1.4. Code generation from specification of NFRs
Non-functional requirements (NFRs) just like aspects often

crosscut more than one components of a software system. There-
fore, we can say that specification of non-functional requirements
(NFRs) is an area of software engineering that is very relevant to
aspect-oriented design and programming. We identified some code
generation approaches that address transformation of systems
with specification of non-functional requirements. Keeping in view
their similarity to aspect-oriented code generation, we have
mapped them into this distinct category.
4.1.5. Applicability
This category includes papers that mainly focus on reporting

evidence related to applying a specific modeling technique in prac-
tice. For example, papers that present a system model using some
existing modeling approach, or proposals that develop a common
infrastructure to apply a specific modeling notation.
4.2. Contribution type

The contribution type is divided into five categories described
below:
4.2.1. Tool
It refers to contributions that focus on providing tool support

for aspect-oriented modeling or code generation, either in the form
of a prototype or a tool that can be integrated with existing
frameworks.
4.2.2. Method
It refers to contributions that specifically provide a modeling,

model composition or a code generation approach, e.g. a
presentation of how a specific aspect-oriented construct will be
modeled.



Fig. 3. Map of research focus on aspect-oriented modeling and code generation.

Fig. 4. Classification of the research related to aspect-oriented modeling and code generation.

A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 401
4.2.3. Process
Papers that elaborate the aspect-oriented modeling or code

generation approaches and provide description on their integra-
tion in overall software development process are categorized as
papers contributing a process. For example, a paper presenting a
way in which an abstraction can be used to represent behavioral
aspects. Additionally, contributions that solve some particular
problem related to aspect-oriented modeling or code generation,
e.g. a technique proposed to detect conflicts between aspects at
model level, are also mapped into this category.
4.2.4. Model
It refers to papers that conceptually discuss or make compari-

sons, explore relationships, identify challenges, or make classifica-
tions, etc.



Fig. 6. Distribution of research focus.

Fig. 7. Distribution of research type.

Fig. 5. Number of papers per research topic and references.

402 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
4.2.5. Metric
This is type of contributions that focus on proposing or applying

metrics to effectiveness of aspect-oriented modeling or code gen-
eration approaches.

4.3. Research type

The research type reflects the research approach used in the pri-
mary study. We have used a scheme proposed by Wieringa et al.
[47] for the classification of research types (RQ3). A brief descrip-
tion of research types follows:
4.3.1. Solution proposal
A solution proposal solves a problem by providing either a novel

solution or a significant extension of an existing technique. It also
highlights its benefits by either an example or thorough reasoning.
4.3.2. Validation research
The main purpose of validation research is to examine a solu-

tion proposal that has not yet been practically applied. Validation



Fig. 8. Distribution of contribution type.

A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 403
research is conducted in a systematic way and may present any of
these: experiments, prototypes, simulations, mathematical analy-
sis, etc.

4.3.3. Evaluation research
In contrast to validation research, evaluation research aims at

examining a solution that has already been practically applied. It
investigates the practical implementation of solution and usually
presents results using field studies or case studies, etc.
Table 3
Overview of publication forums for selected studies.

No. Forum

Journals
1 Transactions on Aspect-Oriented Software Development
2 Journal of Object Technology (JOT)
3 Software and Systems Modeling
4 Science of Computer Programming

Conference proceedings
5 International Conf. on Aspect-Oriented Software Development (AOSD
6 International Conf. on Model-Driven Engineering Languages and Syste
7 International Conference on the Unified Modeling Language
8 International Conf. on Software Engineering Research, Management a
9 International Conference on Composition-Based Software Systems (IC
10 International Conf. on Model Transformation (ICMT)
11 International Symposium on Object Oriented Real-Time Distributed C
12 International Symposium on Computers and Communications (ISCC)
13 Asia–Pacific Software Engineering Conference (APSEC)
14 International Symposium on Computer Science and Computational Te
15 International Conf. on Information and Communication Technologies
16 Brazilian Conference on Software Engineering
17 International symposium on Foundations of software engineering
18 World Congress on Intelligent Control and Automation (WCICA)

World Congress on Computer Science and Information Engineering
19 International Conference on Availability, Reliability and Security (ARE
20 International Embedded Systems Symposium 2009

Workshops
21 International Workshop on Aspect-Oriented Modeling (AOM)
22 International Workshop on Computer Science and Engineering
23 International Workshop on Education Technology and Computer Scie
24 International Workshop on Model-Based Methodologies for Pervasive

Table 4
Research and contribution types presented by 22 papers on modeling notation and proces

Contrib. type Research type

Tool Method

Evaluation research – [52]
Solution proposal [54,39,48,51] [54,61,39,40,53,45,57,63,4
Conceptual proposal – [46]
Validation research – –
Experience paper – [56]
Opinion paper – –
4.3.4. Conceptual proposal
A conceptual proposal presents an arrangement to see things

that already exist, in a novel way. However it does not precisely
solve a particular problem. Conceptual proposals may include
taxonomies, theoretical frameworks, etc.

4.3.5. Experience paper
An experience paper reports on personal experience of the

author from one or more real life projects. It usually elaborates
on what was accomplished in the project as well as how it was
actually done.

4.3.6. Opinion paper
Opinion papers report on personal opinion of the author on

suitability or unsuitability of a specific technique or tool. Similarly,
these are sometimes used to share personal opinion describing as
to how some technique or tool should have been developed, etc.

5. Mapping and discussion of research questions

In order to provide an overview of the field, the map over five
existing research focus areas in the context of aspect-oriented
modeling and code generation was developed with respect to re-
search and contribution types (see Fig. 3). The map provides both
Modeling Code gen.

11 1
3
1

1

) 7 1
ms (MoDELS) 8 1

2
nd Application (SERA) 1
CBSS) 1

1
omputing (ISORC) 1

1
1

chnology (ISCSCT) 1
(ICTTA) 1 1

1
1
1

1
S) 1

1

9 2
1

nce 1
and Embedded Software (MOMPES) 1 1

s.

Process Model Metric

[68] – –
8,50,55,62,58,51,49] [64,51] [65] –

– [66,67] –
– – –
– – –
– – –



Table 5
Research and contribution types presented by 18 papers on model composition and interaction management.

Contrib. type Research type

Tool Method Process Model Metric

Evaluation research [84] – [84] – –
Solution proposal [71,73,59,81,79,78,80,83] [69,81,77,80,75] [59,83,79,77,85] – –
Conceptual proposal – – [70] [86] –
Validation research [87] [87] [82,76] – –
Experience paper – – – – –
Opinion paper – – – – –

404 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
an outline of the emphasis of existing research as well as an indi-
cation of research gaps in the area.

The results of mapping indicate that majority of research papers
are specifically dedicated to providing aspect-oriented modeling
languages and elaborating the associated process. Composition of
models and interactions between base and aspect models is an-
other area which has been explored to a greater extent. However,
integration of aspect-oriented models with model-driven engi-
neering process, i.e. automated transformation of aspect-oriented
models to code appears to be an underdeveloped area.

As far as the coverage of aspect-oriented design and code gen-
eration topics in existing research is concerned, we present our re-
sults in two different dimensions: (1) main topics in the area along
with extent of their coverage and contribution types (RQ1) and re-
search type (RQ3), and (2) forums used for publishing the related
research (RQ2).

The first dimension of our results i.e. major topics along with
specification of research types has been covered in the following
Sections 5.1–5.5. We have organized each subsection in a way that
it briefly describes the studies selected for each topic while high-
lighting the extent and nature of research. Furthermore, it identi-
fies the type of contribution made by each selected study. The
publications in this area can be divided into five major focus areas
(see Fig. 4): modeling notations and process, model composition
and interaction management, aspect-oriented code generation,
code generation from specification of non-functional requirements
and applicability of aspect-oriented modeling and code generation
approaches. Fig. 4 also shows the major topics addressed by the
existing research divided into related subtopics, where possible.
Fig. 5 shows a summary of groups of papers identified per research
subtopic.

An overview of the volume of research selected by major re-
search focus areas is shown in Fig. 6. It shows that aspect-oriented
modeling notations and associated composition mechanisms have
been covered collectively by over 60% of the current research. On
the other hand, code generation from aspect-oriented models has
been addressed by a comparatively very small number of publica-
tions (14%). As far as the research type is concerned, solution pro-
posals are in vast majority, covering over 65% of the aggregate, see
Fig. 7. A small percentage of publications have reported on real-life
experiences (6%), while validation and evaluation research has
been presented collectively by rather small percentage of 12%. In
Table 6
Research and contribution types presented by nine papers on aspect-oriented code genera

Contrib. type Research type

Tool Method

Evaluation research – –
Solution proposal [41,89,42,45,91] [41,89,90,42,9
Conceptual proposal – –
Validation research – –
Experience paper – –
Opinion paper – –
terms of contribution types, Fig. 8 shows that previous research
has turned much attention to presenting modeling notations and
weavers (i.e. Method 37%). Tool support has also been significantly
covered for both modeling and code generation sides.

Table 3 covers the second dimension of our results by summa-
rizing selected papers by publication forums. Even though research
has appeared on different forums, but we can see that the journal
TAOSD and the annual conference AOSD appear to be the most rel-
evant forums. The table also reveals that there are only two publi-
cations on aspect-oriented code generation that have appeared in a
journal so far.

5.1. Modeling notation and process

In this section, we briefly discuss different studies related to
modeling notations and the associated process. Table 4 lists the pa-
pers that focus on this topic. This is an area where most research
effort is spent. Most works address the aspect-oriented modeling
problem by providing a complete aspect-oriented extension to
UML, while some provide limited support for selected aspect-ori-
ented constructs. There are two different approaches to extend
UML for aspect orientation: (1) UML Profiles (also referred to as
lightweight extension mechanism) and (2) meta-model extension
(also referred to as heavyweight extension mechanism). Some papers
propose a common infrastructure for defining UML profiles to sup-
port aspect-oriented modeling. A summary of papers related to
each of the subtopics discussed in the following is shown in Fig. 5.

5.1.1. UML Profiles to support AOM
UML Profiles extend the UML by defining profiles which group

user-defined extensions to meta-model elements in terms of ste-
reotypes allowing only the extensions that do not change the
meta-model.

Zakaria et al. [48] present a UML profile and provide its integra-
tion with the Rational Rose CASE tool package. Aldawud et al. [49]
elaborate the requirements for a UML profile, present a profile to
support aspect orientation and describe its use for general-purpose
aspect modeling. In [50] a UML profile has been presented that
supports executable modeling at the specification level. This pro-
file uses Object Constraint Language (OCL) to specify behavior on
a higher level of abstraction than messaging between objects.
Specification models are constructed incrementally.
tion.

Process Model Metric

– – –
2,93,91] – – –

– – –
– – –
– – –
– – –



A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 405
The Motorola WEAVR approach to aspect modeling [51] has
been developed for the telecom infrastructure software industry.
It is based on UML 2.0 and provides a lightweight profile complet-
ing the UML specification towards both the Specification and
Description Language (SDL) and AOM concepts. Various diagrams
such as composite structure diagrams and state machines have
been adopted in UML 2.0 from the SDL. The modeling notation
has been complemented with a powerful static model weaver.
The weaver is integrated with the TAU G2 tool.

UML and its Action Semantics can be used to constructing exe-
cutable models for object-oriented software systems. Some papers
present support for aspect-oriented executable models by provid-
ing UML profiles. A UML profile that develops aspect-oriented exe-
cutable models by extending the UML and its action semantics has
been presented by Fuentes et al. [39]. They also provide a tool to
support weaving and execution of their models. Ref. [52] presents
a combination of aspect-oriented modeling approaches and a UML
profile. This profile also performs model weaving for behavior
models using UML 2 action semantics.

Wang et al. [53] present an approach to incorporate aspect-ori-
ented constructs in the architecture design phase. They extend
UML by standard extension mechanisms and propose notations
for each AO construct to be used at the architecture design level.
Mouheb et al. [54] present a profile for aspect-oriented modeling
that specifies and integrates security concerns into UML. These
concerns are defined in generic terms by security experts, instanti-
ated by application developers and later automatically woven into
UML model. They have also implemented their approach and pro-
vided the tool as a plug-into the IBM Rational Software Architect.

Some papers have presented profiles which are specific to
meta-model of AO programming languages. Refs. [45,55] propose
profiles to support meta-model of AspectJ language in UML. All
programming constructs of AspectJ have been defined at the
meta-level in each proposed profile. Pawlak et al. [56] have re-
ported on their experience with evolving an elementary high-level
graphical notation for aspect-oriented models. This notation is also
based on the concepts defined in AspectJ. Jingjun et al. [57] use
standard extension mechanism of UML to define new stereotypes
to support various constructs of AspectJ. They add three new con-
cepts to UML: groups, point-cut relations and aspect classes.

5.1.2. Meta-model extensions to support AOM
Meta-model extension mechanism to support aspect orienta-

tion refers to extending the UML meta-model through inheritance
and redefinition of meta-model elements.

An aspect-oriented modeling solution based on the notion of
Reusable Aspect Models (RAMs) has been proposed by Klein and
Kienzle [58]. RAM models can describe both the structure and
behavior of a concern since it integrates modeling techniques for
class diagram, sequence diagram and state diagram. Furthermore,
RAM also addresses the reuse of aspect models and supports the
creation of aspect dependency chains. For weaving, it combines
two distinct approaches to weaving of class diagrams [59] and se-
quence diagrams [60]. RAM has also been extended to support
multi-view modeling by Kienzle et al. [61]. Moreover, the RAM
models have also been extended to allow a modeler to expand
an aspect model of a concern that can crosscut the nodes of a dis-
tributed system with distribution role definitions [62].

Zhang et al. have proposed techniques to design aspect-oriented
class diagrams [63] and state machines [64] by introducing a new
language construct, an aspect, to the UML. Similarly, Ballal and
Hoffman [40] propose notations for major constructs and describe
the use of a new diagram, the weaving diagram, to represent
behavior.

A meta-model based on UML extension profile [49] for aspect-
oriented modeling is proposed in [65]. Moreover, this work builds
a framework of aspect-oriented modeling AOMF, and presents a
way to model the dynamic behaviors of aspect-oriented systems.

5.1.3. Infrastructures for the extension process
Some papers present a general core and infrastructure for defin-

ing extensions or profiles to support aspect-orientation at model-
ing level. In order to identify commonalities and promote reuse
in construction of meta-models, Fuentes et al. present a generic
MOF meta-model of aspect-oriented design languages [46]. Their
proposed generic meta-model contains a kernel package of meta-
modeling elements. They propose to extend this kernel package
for construction of new AO design languages. They have also out-
lined an all-purpose guidance on construction of UML profiles to
support aspect-orientation [66]. Similarly, a core for aspect-ori-
ented support in UML has been presented in [67]. This core has
been developed gathering different modeling elements from liter-
ature that focus supporting aspect-oriented constructs. Each of
these modeling elements and related notations has been associ-
ated to a discipline.

The common core and aspect-oriented modeling approach pro-
posed by Amalio et al. [68] is based on a visual language with for-
mal semantics VCL. The modeling language is used for abstract and
precise modeling and comprises a novel approach to visually mod-
eling behavior of the system. The definition of this common core
also contributes to the establishment of standards for modeling
notations.

5.2. Model composition and interaction management

Several papers have contributed to specific topic of base and as-
pect models composition their interactions. Table 5 summarizes
papers on this topic, whereas a summary of papers related to each
of the subtopics discussed in the following is shown in Fig. 5.

5.2.1. Model weavers
Most papers in this category focus on providing weaving mech-

anisms for aspect-oriented models. Sanchez et al. [69] present an
aspect-oriented model weaver that is capable of handling complex
pointcuts in a model specified using JPDDs [70]. The model is pro-
cessed through a number of transformations to add JPDD-specific
details to base model. The abstractions provided by JPDDs hide
the weaving complexity, thus making the input models more con-
cise and problem-oriented.

Barais et al. [71] have proposed model composition operators to
be used in conjunction with the KerTheme aspect separation and
composition techniques [72]. White et al. [73] have proposed con-
straint-based weaving, which maps the model weaving to a con-
straint satisfaction problem [74], and afterwards determines the
best weaving strategy with the help of a constraint solver. This
strategy eventually provides some built-in benefits of using a con-
straint solver.

Hanenberg et al. [75] address the so called problem of complete
weaving. They argue that run-time checks that determine positions
where an advice associated to a specific joinpoint be executed are
time-consuming and result in overhead. Therefore, they propose a
weaver that supports partly woven aspects, the morphing aspects,
and provides continuous weaving.

A proposal for an open framework to modeling and weaving of
applications with crosscutting features, UMLAUT, has been evalu-
ated by Ho et al. [76]. They show that the framework supports con-
struction of new weavers simply by changing the weaving rules
and automatically provides implementation of the new weaver.
They elaborate the weaving process in UMLAUT through model
transformation techniques. XWeave [77] is a model weaver pre-
sented by Groher and Volter. It weaves models and meta-models
based on the Eclipse Modeling Framework.



406 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
Some papers address weaving of aspects specifically into se-
quence diagrams. Klein et al. [78] and Gronmo et al. [79] propose
automated, semantics-based techniques to weaving behavioral as-
pects into sequence diagrams.

5.2.2. Model unweavers
Model unweaving is specifically relevant in the context of adap-

tive systems since without the unweaving support the adapted
model has to be re-generated as a whole, including the aspects that
were not modified. An approach to unweaving of aspects has been
proposed by Klein et al. [80].

Another approach to dynamically weaving and unweaving of
executable UML models is proposed by Fuentes et al. [81]. This ap-
proach also presents the essential infrastructure and tool support
required to make the aspect-oriented models fully executable.

5.2.3. Base-aspect interaction enhancement techniques
Since aspects capture potentially crosscutting concerns, the

interactions among different entities containing these crosscutting
aspects tend to become extremely complex. Therefore, some pa-
pers are dedicated to discussing the issue of detection of inconsis-
tencies in interactions. Mehner et al. [82] investigate interactions
among different entities with crosscutting concerns and detecting
potential inconsistencies at modeling level. For this purpose, they
actually examine the use of an existing model analysis technique,
which is based on graph transformations and inherently supports
analysis and detection of possible inconsistencies. Similarly in
[83], a graph-based technique along with tool support has been
presented that uses a model checker to automatically detect aspect
inconsistencies for models defined in a UML extension.

Join Point Designation Diagrams (JPDDs) [70] are proposed to
support complex join point selections. These JPDDs are capable of
expressing join point selections in compliance with three different
conceptual models that are frequently used in aspect-oriented
development.

MATA is a significant approach to handling communication be-
tween aspect models proposed by Whittel et al. [84]. It is different
from other approaches in that aspect models defined in MATA have
no explicit join points. MATA uses graph transformations to specify
and compose models; therefore, any model element can become a
joinpoint. This makes the model composition a special case of
model transformation. The MATA approach has also been exam-
ined by applying it to a number of industrial case studies.

An approach based on mutually exclusive use of a merging algo-
rithm and some composition directives has been presented in [59].
The composition directives provide an enhanced way of composi-
tion besides supporting model modification and allowing the de-
fault composition rules to be overridden, resulting in increased
flexibility.

Some papers have generally highlighted the problems in han-
dling interactions between aspects. In [86], some issues related
to composability have been identified to be taken into account
while specifying and matching joinpoints. Oldevik et al. [87] have
systematically examined model composition contracts with the
help of a non-trivial example from literature [88]. These contracts
actually dictate how aspect compositions may or may not access
and change the base models. To validate the use of contracts, they
have also implemented a prototype. In a similar context, other
work has focused on managing complexity of variability in aspect
oriented models [85].

5.3. Aspect-oriented code generation

We identified a small number of papers that address the aspect-
oriented code generation from models, see Table 6. The code gen-
eration approaches presented by these papers can be categorized
into two major types: transformation-based and direct mapping
approaches. A summary of papers related to each of the subtopics
discussed in the following is shown in Fig. 5.
5.3.1. Transformation-based approaches to AO code generation
All approaches in this category use one of the existing transfor-

mation techniques and explicitly define the details of transforma-
tion from the visual model to code.

Victora et al. [89] propose a pattern-based approach to generate
AspectJ code from Theme/UML [44] models. They develop XML
representation of Theme/UML models and use the Theme approach
to mapping from model to code. The code generator uses XMI to
exchange model between UML and XML and has itself been imple-
mented using XSLT. Similarly, in [90], an approach to generating
AspectJ code from visual models of multi-modal scenario-based
system specifications, defined in Live Sequence Charts (LSCs), has
been presented. A pattern-based technique transforms the LSCs
into AspectJ.

Evermann has proposed a template-based approach that gener-
ates code from UML-based specification of AspectJ meta-model
[45]. UML XMI model interchange facilities are used to implement
the actual code generation.

An aspect-oriented code generation based on graph transforma-
tions has been proposed by Bennett et al. [41]. Currently, this ap-
proach can be considered the most significant approach. This is
because it has benefitted from some obvious advantages of using
graph-based transformation; it has explicitly addressed the perfor-
mance and correctness of transformation algorithms; and it is
complemented with an open and extensive validation mechanism.
In order to generate code, this approach first transforms the visual
design model (developed in FDAF [94]) into a text-based notation
(XML), then it transforms this XML model into AspectJ code. Both
transformations are fully automated.
5.3.2. Direct mapping approaches to AO code generation
The approaches in this category do not provide much detail on

the transformation process, but rather directly manipulate the
source model to map it onto constructs in the target programming
language.

Groher et al. [42] use extended UML model as input to code
generation and generate AspectJ code stubs. Code is generated fol-
lowing concrete rules of mapping between extend UML model and
AspectJ concepts. The CASE tool Together from Borland has been
selected to automatically generate object-oriented base elements.
The aspect-oriented code generation is implemented using exten-
sion mechanism of the tool.

Haitao et al. [92] have presented an approach that interprets as-
pect-oriented domain-specific models to aspect-oriented code in
AspectC++. First the crosscutting concerns are modeled as separate
aspects. Then the aspect-oriented model interpreter generates
code by traversing these aspects. Weaver of AspectC++ is then used
to weave these aspects into a real time system. Similarly, Hanen-
berg et al. [93] describe a tool-supported concrete mapping of Join
Point Designation Diagrams (JPDDs) [70] to AspectJ.

An approach to mapping of aspect-oriented models developed
using Reusable Aspect Models (RAM) into Java and AspectJ code
has been proposed in [91]. Apart from addressing the aspect-ori-
ented code generation, this paper contributes greatly to identifying
and solving the common problems involved in the mapping pro-
cess. This is contrary to other works e.g. [41,42] in that they men-
tion the generation of aspect-oriented code without explicitly
defining the correlation between elements at model and code
levels.



Table 8
Research and contribution types presented by 11 papers on applicability (both
modeling and code generation).

Contrib. type Research type

Tool Method Process Model Metric

Evaluation research – – [100] – –
Solution proposal [102,109] – –
Conceptual proposal – – – [101,103] [108]
Validation research – – – – –
Experience paper – [104] [105,110] –
Opinion paper – – – [106,107] –

A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 407
5.4. Code generation from specification of non-functional requirements

Table 7 lists papers on code generation from specifications of
non-functional requirements (NFRs).

Alhalabi et al. [95] provide modeling and a template-based C++
code generation framework for systems having non-functional
(QoS) requirements. Further to systems with QoS properties, the
approach presented in [96] generates automated, template-based
code for safety–critical real-time systems, which also have numer-
ous non-functional requirements. The PervML Generative Tool
(PervGT) [97] presents support for modeling of such systems using
a UML-like domain specific language (PervML) and model transfor-
mation into Java source code.

Wehrmeister et al. [98] propose a framework named GenERTi-
CA for modeling of distributed embedded real-time aspects that
also supports code generation. They also report on results of their
experience regarding the use of GenERTiCA to generate code and
implement aspects in a research project.

Model-driven Theme/UML [99] proposes a transformation tool
in compliance with model-driven architecture (MDA) standards,
which specifies platform-independent models using Theme/UML
and transforms them into platform-specific models as well as
J2ME and .NET CF code.

5.5. Applicability

Table 8 lists papers on applicability of aspect-oriented modeling
and code generation approaches.

In [100], the applicability of an aspect-oriented modeling ap-
proach during the software design phase has been demonstrated
by presenting an aspect-oriented design of a common case study
for aspect-oriented research community, the Crisis Management
System (CMS) [101]. In [102], the HiLA approach has been pre-
sented to improve the modularity of UML state machines by
extending them with aspect-oriented features. The paper focuses
on highlighting the usefulness of HiLA by applying it to an exten-
sion of the CMS, a Car Crisis Management System.

Wehrmeister et al. [103] elaborate the development of an infra-
structure for UML-based code generation tools by discussing one
such infrastructure created to build GenERTiCA [98]. Gray et al. re-
port on development of a programming-language-specific weaver
which was built based on constructs of a specific transformation
engine [104]. They make several observations to establish the fea-
sibility of using a transformation system to develop a generic
weaver.

Clarke et al. [105] take a step towards developing a standard
design language for aspect-oriented software development ap-
proaches. They report on their experience regarding the investiga-
tion of the traceability between Theme/UML and AspectJ. They
have assessed both languages in general and their incompatibilities
in particular. Krechetov et al. [106] compare three existing aspect-
oriented architecture design approaches and share their opinion
regarding the suitability of a unified general-purpose aspect-ori-
Table 7
Research and contribution types presented by 5 papers on code generation from
specification of NFRs.

Contrib. type Research type

Tool Method Process Model Metric

Evaluation research – – – – –
Solution proposal [99,97] [95,96] – – –
Conceptual proposal – – – – –
Validation research – – – – –
Experience paper [98] – – – –
Opinion paper – – – – –
ented architecture modeling approach. Albunni et al. [107] define
a criterion to evaluate ability of various UML diagrams to support
aspect-oriented design. They select UML activity diagrams based
on their evaluation and propose an approach based on these
diagrams.

Some metrics for aspect-oriented design have been proposed
[108] for designs developed using an extension of UML. Object
Constraint Language (OCL) which is a part of UML has been used
for definition of metrics.

In [109], the merging of model driven and aspect oriented tech-
niques has been shown to work for better managing complexity of
adaptive systems construction and execution.

Fabry et al. [110] have shared the results of their experience
regarding the application of Theme/UML [44] and Motorola
WEAVR [51] in an industrial setting. They found that both ap-
proaches failed to support half of the required interaction types
whereas other half needed to be expressed using a workaround.

6. Discussion

Overall goal of this systematic mapping study was to identify
approaches that can contribute to applying aspect-oriented con-
cepts in an MDE perspective; one way to do this is to generate as-
pect-oriented code from aspect-oriented models through an
automated process. In order to achieve the goal of aspect-oriented
model-driven code generation as a whole, we have found that fur-
ther research is necessary in various dimensions. In this section we
provide a summary of key findings of this systematic mapping
study and discuss some effects of these findings on future research.
We also highlight the limitations of this mapping study that may
represent threats to its validity.

6.1. Principle findings

Recent proposals in domain of aspect-oriented modeling have
focused mainly on providing design notations resulting in appear-
ance of several proposals [34]. However, if we look at overall prob-
lem of the integration of aspect-oriented models into an MDE
context, there is still a significant work to be done. In an MDE envi-
ronment, models are the main focus for visualizing an executable
view of the system and actually obtaining a working software sys-
tem in an automated way. Therefore in order to integrate aspects
into this larger context, the area of modeling accurate and com-
plete behavior of aspects needs more attention along with solu-
tions to verification of models. Very few works have been
reported on in the literature (e.g. [39]) so far that have addressed
model verification, but even these verification approaches provide
limited infrastructure to verifying models, by means of execution
only. Apart from the fact that verification done in this way cannot
substitute a systematic verification process, it can lead to other
problems, for instance it requires designers to know the precise de-
tails of advice transformations, thus resulting in usability prob-
lems. Therefore, there is need for systematic processes such as



408 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
those defined by Xu and Xu [111] that can be applied to design test
cases for verification of these models.

As far as model composition and aspect interaction are con-
cerned, there are few approaches that view weaving as a special case
of model-to-model transformation, thus combining the MDD and
aspect-oriented modeling. Examples of such approaches are MATA
[84] and XWeave [77]. These approaches can exploit some obvious
advantages of the transformation approach they use, graph-based
transformation in this case. However, Sanchez et al. [69] have re-
ported that such approaches hardly ever consider the advanced
mechanisms for specification of pointcuts (i.e. conditions under
which aspects are composed to base). As a result of this limitation,
these approaches are not appropriate to modeling situations that re-
quire weaving beyond simple model composition and transforma-
tion e.g. situations where complex join-points are required.
Furthermore, the weavers are mostly static in a sense that they
are unable to weave or unweave aspects during model execution.
Fuentes and Sanchez [81] have identified several situations where
static weaving is insufficient. They have presented an approach that
dynamically weaves and unweaves aspects during the model execu-
tion time. This is a significant contribution in a sense that it sets the
foundations for more sophisticated enhancements towards model
simulation and model testing of adaptive applications. However,
like many others discussed previously, this approach also lacks sup-
port for complex join-point specifications. Hence further research is
required to enhance the composition techniques.

The next challenge that comes after developing an appropriate
model of the system in an aspect-oriented way is the problem of
code generation from this model. The modeling and composition
approaches discussed above may ideally be customized and used
as input to an automated code generation process. Some proposals
have appeared in literature (e.g. [39,81]) that suggest generating
object-oriented code rather that aspect-oriented, once the model
has been transformed into a UML executable model. These ap-
proaches mainly rely on existing object-oriented code generation
tools such as Rhapsody, TAU G2, Rational RT, and ArgoUML. How-
ever, some empirical studies have been conducted such as [29–
32] that explore and report the benefits of using aspect-oriented
techniques in software development. Hovsepyan et al. [26] have
discovered on basis of a number of quantitative studies and exper-
iments that preserving the aspect-oriented paradigm throughout
the system development stages offers several benefits compared
to shift from aspect-oriented models to object-oriented code. Thus
we can say that the ultimate integration of an aspect-oriented mod-
eling language with model-driven engineering would be to take a
model developed using that language and automatically generate
code from it into an aspect-oriented programming language. As re-
vealed by results of this mapping study, however, very few propos-
als in existing literature address the specific problem of aspect-
oriented code generation. All of these solution proposals are limited
to generating only partial code. Moreover, none of the approaches
has reported code generation from diagrams that present behav-
ioral perspective of the system such as UML sequence and state-
chart diagrams. Therefore, this is another area that needs to be
investigated further in order to get fruitful results from integration
of aspect-oriented models and the code generation techniques.

6.2. Limitations and threats to validity of the study

In general, the most significant threats to validity of a mapping
study are related to the selection bias, inaccuracy in data extraction
process [112], and misclassification of studies [37]. Selection bias
refers to the possibility of a publication being incorrectly included
or excluded from the mapping process. To address this threat, we
explicitly defined the inclusion and exclusion criteria. On the one
hand, it helped us obtain the largest possible number of publica-
tions, and on the other hand it reduced the impact of grey litera-
ture and unpublished results on the mapping. Selection bias is
sometimes result of the lack of standard language and terminology
in the software engineering domain [112]. For this reason, an iter-
ative process was used to identify the keywords for search process.
Synonyms were carefully applied to determine the equivalent
alternatives to be included in the list of keywords.

Inaccuracy in data extraction refers to the problem that infor-
mation from a paper may be extracted in different ways by differ-
ent reviewers. This could result in risk of authors introducing bias
during the data extraction process. In order to alleviate this risk,
data extraction was based only on the information found in each
publication, that is, we did not consider other possibilities assumed
in publications. Thus, for example, if a paper actually presented a
prototypical examination of a specific method and claimed that
the same could simply be adapted to examine it in an industrial
setting, we have not classified it as ‘‘Evaluation research’’. Mis-
classification is a problem that is actually linked with inaccuracy
in data extraction. In order to minimize this threat, classification
of each paper was conducted by both authors individually and dif-
ferences noticed in few cases were resolved through consensus.

Apart from significant threats discussed above, there is another
one that is specific to the code generation perspective addressed in
this mapping study. In particular, this work presents aspect-ori-
ented code generation approaches that were obtained through re-
search sources and peer reviewed publications only. This search
process may have excluded other (possibly commercial) code gen-
eration tools, as not all such tools are represented in research liter-
ature. However, it is hoped that this possible exclusion will not
have significant effect on validity of results. This is because such
tools usually take the process of code generation as a software
development activity and contribute little to research.
7. Conclusion

Research in the area of aspect-oriented modeling and model-
driven code generation can result in significant advancement in
development of software systems that are more maintainable,
extensible and reusable. To get an overall view of the current re-
search in this area, we defined a few research questions and
launched a systematic mapping study. We found 65 publications
that possess maximum relevance to fulfill objectives of our study.
The selected papers have appeared between 2002 and 2011.

The results of this study indicate that aspect-oriented modeling
and code generation is a rather underdeveloped area. The initial
significant contributions to this area were presented in 2002 (i.e.
[55,56]), most papers have appeared in workshops and confer-
ences, while a few were reported in journals.

Aspect-oriented modeling has acquired reasonably established
understanding about the modeling notations, composition mecha-
nisms and management of complex interactions among models.
However, if we examine the systematic map, we mostly find solu-
tion proposals. There are only a few research efforts that have actu-
ally used and evaluated these proposals.

Aspect-oriented model-driven code generation, on the other
hand, is indicated being relatively more immature area. There are
very few publications that address specifically this area; and only
two achieved the maturity of a journal publication. The mapping
shows that no work has been reported in literature that uses or
evaluates any of the solution proposals.

As far as the answer to our first research question is concerned,
main research topics identified are: (1) modeling notations and
process, (2) model composition and interaction management, (3)
aspect-oriented code generation, (4) code generation from specifi-
cation of non-functional requirements, and (5) applicability of as-



A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 409
pect-oriented modeling and code generation approaches. To re-
spond to our second research question, we have determined that
most research has appeared in conferences (52%) and workshops
(21%). Relatively fewer publications (27%) have appeared in jour-
nals so far. As far as answer to our third question is concerned, re-
search is mostly of solution proposal type (66%), some conceptual
proposals have been presented (13%), while evaluation and valida-
tion appear being minor groups as a whole (12%).
References

[1] B. Karakostas, Y. Zorgios, Engineering Service Oriented Systems: A Model
Driven Approach, IGI Global, 2008.

[2] M. Afonso, R. Vogel, J. Teixeira, From code centric to model centric software
engineering: practical case study of MDD infusion in a systems integration
company, in: Fourth and Third International Workshop on Model-Based
Development of Computer-Based Systems and Model-Based Methodologies
for Pervasive and Embedded Software, 2006, MBD/MOMPES 2006, 2006, p. 10,
p. 134.

[3] A. Rashid, A. Moreira, J. Araujo, P. Clements, E. Baniassad, B. Tekinerdogan,
Early aspects: aspect-oriented requirements engineering and architecture
design, in: Electronic Document, 2006 <http://www.early-aspects.net/>.

[4] T. Elrad, O. Aldawud, A. Bader, in: D. Batory, C. Consel, W. Taha (Eds.), Aspect-
Oriented Modeling: Bridging the Gap between Implementation and Design
Generative Programming and Component Engineering, Springer, Berlin/
Heidelberg, 2002, pp. 189–201.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (Eds.),
ECOOP’97 – Object-Oriented Programming, Springer, Berlin/Heidelberg,
1997, pp. 220–242.

[6] S. Op de beeck, E. Truyen, N. Bouck’e, F. Sanen, M. Bynens, W. Joosen, A Study
of Aspect-Oriented Design Approaches, Department of Computer Science K.U.
Leuven, 2006.

[7] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger, W. Schwinger, E.
Kapsammer, A survey on UML-based aspect-oriented design modeling, ACM
Computing and Survey 43 (2011) 1–33.

[8] J. Mukerji, J. Miller, MDA Guide Version 1.0.1, Object Management Group,
2003 <http://www.omg.org>.

[9] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Keele University, University of Durham:
EBSE Technical, Report EBSE-2007-01, 2007.

[10] F. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley Pub. Co, 1995.

[11] O. Group, OMG Unified Modeling Language (OMG UML), Infrastructure,
V2.1.2, 2007.

[12] G. Booch, Object-Oriented Analysis and Design with Applications, second ed.,
Addison-Wesley Professional, 1993.

[13] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson, Object-Oriented
Modeling and Design, Prentice Hall Inc., 1991.

[14] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley Professional, 1992.

[15] A. Hovsepyan, S. Van Baelen, B. Vanhooff, W. Joosen, Y. Berbers, in: S.
Vassiliadis, S. Wong, T. Hämäläinen (Eds.), Key Research Challenges for
Successfully Applying MDD Within Real-Time Embedded Software
Development Embedded Computer Systems: Architectures, Modeling, and
Simulation, Springer, Berlin/Heidelberg, 2006, pp. 49–58.

[16] S. Philippi, Automatic code generation from high-level Petri-Nets for model
driven systems engineering, Journal of Systems and Software 79 (2006)
1444–1455.

[17] Y. Rauchwerger, F. Kristoffersen, Y. Lahav, Cinderella SLIPPER: An SDL to C-
Code Generator, in: A. Prinz, R. Reed, J. Reed (Eds.), SDL 2005: Model Driven,
Springer, Berlin/Heidelberg, 2005, pp. 1159–1165.

[18] A. Stavrou, G.A. Papadopoulos, Automatic generation of executable code from
software architecture models, in: Information Systems Development,
Springer, US, 2009, pp. 447–458.

[19] R. Pilitowski, A. Dereziñska, Code generation and execution framework for
UML 2.0 classes and state machines, in: T. Sobh (Ed.), Innovations and
Advanced Techniques in Computer and Information Sciences and
Engineering, Springer, Netherlands, 2007, pp. 421–427.

[20] F. Chauvel, J.-M. Jézéquel, Code generation from UML models with semantic
variation points, in: L. Briand, C. Williams (Eds.), Model Driven Engineering
Languages and Systems, Springer, Berlin/Heidelberg, 2005, pp. 54–68.

[21] I.A. Niaz, J. Tanaka, An object-oriented approach to generate java code from
UML statecharts, International Journal of Computer & Information Science 6
(2005).

[22] D. Leroux, M. Nally, K. Hussey, Rational software architect: a tool for domain-
specific modeling, IBM Systems Journal 45 (2006) 555–568.

[23] AjileJ, AjileJ StructureViews, 2011 <www.ajilej.com>.
[24] NoMagic, MagicDraw UML, 2011 <www.magicdraw.com/>.
[25] D.M. Simmonds, Aspect-oriented approaches to model driven engineering, in:

International Conference on Software Engineering Research and Practice, Las
Vegas, Nevada, USA, 2008.
[26] A. Hovsepyan, R. Scandariato, S.V. Baelen, Y. Berbers, W. Joosen, From
aspect-oriented models to aspect-oriented code? the maintenance
perspective, in: Proceedings of the 9th International Conference on
Aspect-Oriented Software Development, ACM, Rennes and Saint-Malo,
France, 2010, pp. 85–96.

[27] D.M. Simmonds, Y.R. Reddy, A comparison of aspect-oriented approaches to
model driven engineering, in: Conference on Software Engineering Research,
and Practice, 2009, pp. 327–333.

[28] W. Harrison, H. Ossher, P. Tarr, Asymmetrically vs. symmetrically organized
paradigms for software composition, 2002.

[29] J. Hannemann, G. Kiczales, Design pattern implementation in Java and
aspectJ, SIGPLAN Notices 37 (2002) 161–173.

[30] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A.v. Staa,
Modularizing design patterns with aspects: a quantitative study, in:
Proceedings of the 4th International Conference on Aspect-Oriented
Software Development, ACM, Chicago, Illinois, 2005, pp. 3–14.

[31] L. Fuentes, P. Sánchez, Execution of aspect oriented UML models, in: D.
Akehurst, R. Vogel, R. Paige (Eds.), Model Driven Architecture-Foundations
and Applications, Springer, Berlin/Heidelberg, 2007, pp. 83–98.

[32] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista, C. Lucena,
Composing design patterns: a scalability study of aspect-oriented
programming, in: Proceedings of the 5th International Conference on
Aspect-Oriented Software Development, ACM, Bonn, Germany, 2006, pp.
109–121.

[33] A. Mehmood, D.N.A. Jawawi, A comparative survey of aspect-oriented code
generation approaches, in: 5th Malaysian Conference in Software Engineering
(MySEC), 2011, 2011, pp. 147–152.

[34] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M.P. Alarcon, J. Bakker, B.
Tekinerdogan, S. Clarke, A. Jackson, Survey of Aspect-Oriented Analysis and
Design Approaches, Technical Report AOSD, Europe Deliverable D11, AOSD-
Europe-ULANC-9, Lancaster University, May 2005.

[35] A.M. Reina, J. Torres, M. Toro, Separating concerns by means of UML-profiles
and metamodels in PIMs, in: O. Aldawud, G. Booch, J. Gray, J.o. Kienzle, D.
Stein, Mohamed, F. Akkawi, T. Elrad (Eds.), The 5th Aspect-Oriented Modeling
Workshop in Conjunction with UML 2004, 2004.

[36] T. Dybå, B.A. Kitchenham, M. Jørgensen, Evidence-based software engineering
for practitioners, IEEE Software 22 (2005) 58–65.

[37] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: 12th International Conference on Evalulation and
Assessment in Software Engineering (EASE), University of Bari, Italy, 2008.
June.

[38] M. Shaw, What makes good research in software engineering?, International
Journal of Software Tools for Technology Transfer (STTT) 4 (2002) 1–10

[39] L. Fuentes, P. Sanchez, Designing and weaving aspect-oriented executable
UML models, Journal of Object Technology 6 (2007) 109–136.

[40] R. Ballal, M.A. Hoffman, Extending UML for aspect oriented software
modeling, in: WRI World Congress on Computer Science and Information
Engineering, 2009, 2009, pp. 488–492.

[41] J. Bennett, K. Cooper, L. Dai, Aspect-oriented model-driven skeleton code
generation: a graph-based transformation approach, Science of Computer
Programming 75 (2010) 689–725.

[42] I. Groher, S. Schulze, Generating aspect code from UML models, in: The Third
International Workshop on Aspect-Oriented Modeling, 2003.

[43] J. Whittle, P. Jayaraman, MATA: a tool for aspect-oriented modeling based on
graph transformation, in: H. Giese (Ed.), Models in Software Engineering,
Springer, Berlin/Heidelberg, 2008, pp. 16–27.

[44] S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme
Approach, Addison Wesley Object Technology, 2005.

[45] J. Evermann, A meta-level specification and profile for AspectJ in UML, in:
Proceedings of the 10th International Workshop on Aspect-Oriented
Modeling, ACM, Vancouver, Canada, 2007, pp. 21–27.

[46] L. Fuentes, P. Sanchez, A generic MOF metamodel for aspect-oriented
modelling, in: Fourth and Third International Workshop on Model-Based
Development of Computer-Based Systems and Model-Based Methodologies
for Pervasive and Embedded Software, 2006, MBD/MOMPES 2006, 2006, p.
10, 124.

[47] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion,
Requirements Engineering 11 (2005) 102–107.

[48] A.A. Zakaria, H. Hosny, A. Zeid, A UML extension for modeling aspect-oriented
systems, in: Fifth International Conference on the Unified Modeling Language
– The Language and its Applications, 2002.

[49] T. Aldawud, A. Bader, Tzilla Elrad, UML profile for aspect-oriented software
development, in: The Third International Workshop on Aspect Oriented
Modeling, 2003.

[50] R. Pitkänen, P. Selonen, A UML profile for executable and incremental
specification-level modeling, in: T. Baar, A. Strohmeier, A. Moreira, S.J. Mellor
(Eds.), UML 2004 –- The Unified Modelling Language, Springer, Berlin/
Heidelberg, 2004, pp. 158–172.

[51] T. Cottenier, A.v.d. Berg, T. Elrad, Motorola WEAVR: aspect orientation
and model-driven engineering, Journal of Object Technology 6 (2007) 51–
88.

[52] M. Mosconi, A. Charfi, J. Svacina, J. Wloka, Applying and evaluating AOM for
platform independent behavioral UML models, in: Proceedings of the 12th
Workshop on Aspect-Oriented Modeling, ACM, Brussels, Belgium, 2008, pp.
19–24.

http://www.early-aspects.net/
http://www.omg.org
http://www.ajilej.com
http://www.magicdraw.com/


410 A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411
[53] R. Wang, X.-G. Mao, Z.-Y. Dai, Y.-N. Wang, Extending UML for aspect-oriented
architecture modeling, in: Second International Workshop on Computer
Science and Engineering, 2009, WCSE ’09, 2009, pp. 362–366.

[54] D. Mouheb, C. Talhi, M. Nouh, V. Lima, M. Debbabi, L. Wang, M. Pourzandi,
Aspect-oriented modeling for representing and integrating security concerns
in UML, in: R. Lee, O. Ormandjieva, A. Abran, C. Constantinides (Eds.),
Software Engineering Research, Management and Applications 2010,
Springer, Berlin/Heidelberg, 2010, pp. 197–213.

[55] D. Stein, S. Hanenberg, R. Unland, An UML-based aspect-oriented design
notation for AspectJ, in: Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, ACM, Enschede, The Netherlands,
2002, pp. 106–112.

[56] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier, L. Martelli, A
UML notation for aspect-oriented software design, in: AO Modeling with UML
Workshop at the AOSD’02, 2002.

[57] Z. Jingjun, C. Yuejuan, L. Guangyuan, Modeling aspect-oriented programming
with UML profile, in: First International Workshop on Education Technology
and Computer Science, 2009, ETCS ‘09, 2009, pp. 242–245.

[58] J. Klein, J. Kienzle, Reusable aspect models, in: 11th Workshop on Aspect-
Oriented Modeling, Nashville, TN, USA, 2007.

[59] Y. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman, N. McEachen, E. Song, G.
Georg, Directives for composing aspect-oriented design class models, in: A.
Rashid, M. Aksit (Eds.), Transactions on Aspect-Oriented Software
Development I, Springer, Berlin/Heidelberg, 2006, pp. 75–105.

[60] J. Klein, L. Helouet, J.-M. Jezequel, Semantic-based weaving of scenarios, in:
Proceedings of the 5th International Conference on Aspect-Oriented Software
Development, ACM, Bonn, Germany, 2006, pp. 27–38.

[61] J. Kienzle, W.A. Abed, J. Klein, Aspect-oriented multi-view modeling, in:
Proceedings of the 8th ACM International Conference on Aspect-Oriented
Software Development, ACM, Charlottesville, Virginia, USA, 2009, pp. 87–98.

[62] W. Al Abed, J. Kienzle, Aspect-oriented modelling for distributed systems, in:
J. Whittle, T. Clark, T. Kühne (Eds.), Model Driven Engineering Languages and
Systems, Springer, Berlin/Heidelberg, 2011, pp. 123–137.

[63] G. Zhang, Towards aspect-oriented class diagrams, in: 12th Asia–Pacific, 2005
Software Engineering Conference, 2005, APSEC ‘05, p. 6.

[64] G. Zhang, M. Hölzl, A. Knapp, Enhancing UML state machines with aspects, in:
G. Engels, B. Opdyke, D. Schmidt, F. Weil (Eds.), Model Driven Engineering
Languages and Systems, Springer, Berlin/Heidelberg, 2007, pp. 529–543.

[65] Z. Xiao-Cong, L. Chang, N. Yan-Tao, L. Tai-Zong, Towards a Framework of
Aspect-Oriented Modeling with UML, in: International Symposium on
Computer Science and Computational Technology, 2008, ISCSCT ‘08, 2008,
pp. 738–741.

[66] P.S.a. Lidia Fuentes, Elaborating UML 2.0 profiles for AO design, in: 8th
Workshop on AOM, 5th International Conference on AOSD, Germany, 2006.

[67] A.M. Francisca Losavio, Patricia Morantes, UML extensions for aspect oriented
software development, Journal of Object Technology 8 (2009) 105–132.

[68] N. Amálio, P. Kelsen, Q. Ma, C. Glodt, Using VCL as an aspect-oriented
approach to requirements modelling, in: S. Katz, M. Mezini, J. Kienzle (Eds.),
Transactions on Aspect-Oriented Software Development VII, Springer, Berlin/
Heidelberg, 2010, pp. 151–199.

[69] P. Sánchez, L. Fuentes, D. Stein, S. Hanenberg, R. Unland, Aspect-oriented
model weaving beyond model composition and model transformation, in: K.
Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, M. Völter (Eds.), Model Driven
Engineering Languages and Systems, Springer, Berlin/Heidelberg, 2008, pp.
766–781.

[70] D. Stein, S. Hanenberg, R. Unland, Expressing different conceptual models of
join point selections in aspect-oriented design, in: Proceedings of the 5th
International Conference on Aspect-Oriented Software Development, ACM,
Bonn, Germany, 2006, pp. 15–26.

[71] O. Barais, J. Klein, B. Baudry, A. Jackson, S. Clarke, Composing Multi-view
Aspect Models, in: Proceedings of the Seventh International Conference on
Composition-Based Software Systems (ICCBSS 2008), IEEE Computer Society,
2008, pp. 43-52.

[72] J.K. Andrew Jackson, Benoit Baudry, Siobhán Clarke, KerTheme: Testing aspect
oriented models, in: Workshop on Integration of Model Driven Development
and Model Driven Testing (ECMDA’06), Bilbao, Spain, 2006.

[73] J. White, J. Gray, D. Schmidt, Constraint-based model weaving, in: S. Katz, H.
Ossher, R. France, J.-M. Jézéquel (Eds.), Transactions on Aspect-Oriented
Software Development VI, Springer, Berlin/Heidelberg, 2009, pp. 153–190.

[74] J. Cohen, Constraint logic programming languages, Communications of the
ACM 33 (1990) 52–68.

[75] S. Hanenberg, R. Hirschfeld, R. Unland, Morphing aspects: incompletely
woven aspects and continuous weaving, in: Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development, ACM,
Lancaster, UK, 2004, pp. 46–55.

[76] W.-M. Ho, J.-M. Jezequel, F. Pennaneac’h, N. Plouzeau, A toolkit for weaving
aspect oriented UML designs, in: Proceedings of the 1st International
Conference on Aspect-Oriented Software Development, ACM, Enschede, The
Netherlands, 2002, pp. 99–105.

[77] I. Groher, M. Voelter, XWeave: models and aspects in concert, in: Proceedings
of the 10th International Workshop on Aspect-Oriented Modeling, ACM,
Vancouver, Canada, 2007, pp. 35–40.

[78] J. Klein, F. Fleurey, J.-M. Jézéquel, Weaving multiple aspects in sequence
diagrams, in: A. Rashid, M. Aksit (Eds.), Transactions on Aspect-Oriented
Software Development III, Springer, Berlin/Heidelberg, 2007, pp. 167–199.
[79] R. Grønmo, F. Sørensen, B. Møller-Pedersen, S. Krogdahl, Semantics-based
weaving of UML sequence diagrams, in: A. Vallecillo, J. Gray, A. Pierantonio
(Eds.), Theory and Practice of Model Transformations, Springer, Berlin/
Heidelberg, 2008, pp. 122–136.

[80] J. Klein, J. Kienzle, B. Morin, J.-M. Jézéquel, Aspect model unweaving, in: A.
Schürr, B. Selic (Eds.), Model Driven Engineering Languages and Systems,
Springer, Berlin/Heidelberg, 2009, pp. 514–530.

[81] L. Fuentes, P. Sánchez, Dynamic weaving of aspect-oriented executable UML
models, in: S. Katz, H. Ossher, R. France, J.-M. Jézéquel (Eds.), Transactions on
Aspect-Oriented Software Development VI, Springer, Berlin/Heidelberg, 2009,
pp. 1–38.

[82] K. Mehner, M. Monga, G. Taentzer, Analysis of aspect-oriented model
weaving, in: A. Rashid, H. Ossher (Eds.), Transactions on Aspect-Oriented
Software Development V, Springer, Berlin/Heidelberg, 2009, pp. 235–263.

[83] S. Ciraci, W. Havinga, M. Aksit, C. Bockisch, P. van den Broek, A graph-based
aspect interference detection approach for UML-based aspect-oriented
models, in: S. Katz, M. Mezini, J. Kienzle (Eds.), Transactions on Aspect-
Oriented Software Development VII, Springer, Berlin/Heidelberg, 2010, pp.
321–374.

[84] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, J. Araújo, MATA: a unified
approach for composing UML aspect models based on graph transformation,
in: S. Katz, H. Ossher, R. France, J.-M. Jézéquel (Eds.), Transactions on Aspect-
Oriented Software Development VI, Springer, Berlin/Heidelberg, 2009, pp.
191–237.

[85] B. Morin, G. Vanwormhoudt, P. Lahire, A. Gaignard, O. Barais, J.-M. Jézéquel,
Managing variability complexity in aspect-oriented modeling, in: K.
Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, M. Völter (Eds.), Model Driven
Engineering Languages and Systems, Springer, Berlin/Heidelberg, 2008, pp.
797–812.

[86] J.-M. Jézéquel, Model driven design and aspect weaving, Software and
Systems Modeling 7 (2008) 209–218.

[87] J. Oldevik, M. Menarini, I. Krüger, Model composition contracts, in: A. Schürr,
B. Selic (Eds.), Model Driven Engineering Languages and Systems, Springer,
Berlin/Heidelberg, 2009, pp. 531–545.

[88] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I.H. Kruger, M. Menarini, A rich
services approach to CoCoME, in: R. Andreas, R. Ralf, M. Raffaela, Franti, P.
ek, il (Eds.), The Common Component Modeling Example, Springer-Verlag,
2008, pp. 85–115.

[89] M.V. Hecht, E.K. Piveta, M.S. Pimenta, R.T. Price, Aspect-oriented Code
Generation, in: XX Brazilian Conference on, Software Engineering, 2005.

[90] S. Maoz, D. Harel, From multi-modal scenarios to code: compiling LSCs into
aspectJ, in: Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ACM, Portland, Oregon, USA, 2006,
pp. 219–230.

[91] M. Kramer, J. Kienzle, Mapping aspect-oriented models to aspect-oriented
code, in: J. Dingel, A. Solberg (Eds.), Models in Software Engineering, Springer,
Berlin/Heidelberg, 2011, pp. 125–139.

[92] S. Haitao, S. Zhumei, Z. Shixiong, Mapping aspect-oriented domain-specific
model to code for real time system, in: The Sixth World Congress on
Intelligent Control and Automation, 2006. WCICA 2006, 2006, pp. 6426–6431.

[93] S. Hanenberg, D. Stein, R. Unland, From aspect-oriented design to aspect-
oriented programs: tool-supported translation of JPDDs into code, in:
Proceedings of the 6th International Conference on Aspect-Oriented
Software Development, ACM, Vancouver, British Columbia, Canada, 2007,
pp. 49–62.

[94] L. Dai, (Defense) Formal Design Analysis Framework: An Aspect-Oriented
Architectural Framework, University of Texas at Dallas, Ph.D. Dissertation,
2005.

[95] F. Alhalabi, P. Vienne, M. Maranzana, J.L. Sourrouille, Code Generation from
the Description of QoS-Aware Applications, in: 2nd Information and
Communication Technologies, 2006. ICTTA ’06, 2006, pp. 3216–3221.

[96] C. Buckl, M. Regensburger, A. Knoll, i.G. Schrott, Models for automatic
generation of safety-critical real-time systems, in: Second International
Conference on Availability, Reliability and Security ‘07, Vienna, Austria, 2007,
pp. 580–587.

[97] C. Cetina, E. Serral, J. Muñoz, V. Pelechano, Tool support for model driven
development of pervasive systems, in: Fourth International Workshop on
Model-Based Methodologies for Pervasive and Embedded Software (MOMPES
‘07), Portugal, 2007, pp. 33–44.

[98] M.A. Wehrmeister, E.P. Freitas, C.E. Pereira, F. Rammig, GenERTiCA: A tool for
code generation and aspects weaving, in: 11th IEEE International Symposium
on Object Oriented Real-Time Distributed Computing (ISORC), 2008, 2008,
pp. 234–238.

[99] A. Carton, C. Driver, A. Jackson, S. Clarke, Model-driven theme/UML, in: S.
Katz, H. Ossher, R. France, J.-M. Jézéquel (Eds.), Transactions on Aspect-
Oriented Software Development VI, Springer, Berlin/Heidelberg, 2009, pp.
238–266.

[100] J. Kienzle, W. Al Abed, F. Fleurey, J.-M. Jézéquel, J. Klein, Aspect-oriented
design with reusable aspect models, in: S. Katz, M. Mezini, J. Kienzle (Eds.),
Transactions on Aspect-Oriented Software Development VII, Springer, Berlin/
Heidelberg, 2010, pp. 272–320.

[101] J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for
aspect-oriented modeling, in: S. Katz, M. Mezini, J. Kienzle (Eds.),
Transactions on Aspect-Oriented Software Development VII, Springer,
Berlin/Heidelberg, 2010, pp. 1–22.



A. Mehmood, D.N.A. Jawawi / Information and Software Technology 55 (2013) 395–411 411
[102] M. Hölzl, A. Knapp, G. Zhang, Modeling the car crash crisis management
system using HiLA, in: S. Katz, M. Mezini, J. Kienzle (Eds.), Transactions on
Aspect-Oriented Software Development VII, Springer, Berlin/Heidelberg,
2010, pp. 234–271.

[103] M. Wehrmeister, E. Freitas, C. Pereira, An infrastructure for UML-based code
generation tools, in: A. Rettberg, M. Zanella, M. Amann, M. Keckeisen, F.
Rammig (Eds.), Analysis, Architectures and Modelling of Embedded Systems,
Springer, Boston, 2009, pp. 32–43.

[104] J. Gray, S. Roychoudhury, A technique for constructing aspect weavers using a
program transformation engine, in: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development, ACM, Lancaster, UK,
2004, pp. 36–45.

[105] S. Clarke, R.J. Walker, Towards a standard design language for AOSD, in:
Proceedings of the 1st International Conference on Aspect-Oriented Software
Development, ACM, Enschede, The Netherlands, 2002, pp. 113–119.

[106] I. Krechetov, B. Tekinerdogan, A. Garcia, C. Chavez, U. Kulesza, Towards an
integrated aspect-oriented modeling approach for software architecture
design, in: 8th Workshop on Aspect-Oriented Modelling (AOM06), AOSD06,
Germany, 2006.

[107] N. Albunni, M. Petridis, Using UML for Modelling Cross-cutting concerns in
aspect oriented software engineering, in: 3rd International Conference on
Information and Communication Technologies: From Theory to Applications,
2008, ICTTA 2008, 2008, pp. 1–6.

[108] N. Debnath, L. Baigorria, D. Riesco, G. Montejano, Metrics applied to Aspect
Oriented Design using UML profiles, in: IEEE Symposium on Computers and
Communications, 2008. ISCC 2008, 2008, pp. 654–657.

[109] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen, G. Blair,
An aspect-oriented and model-driven approach for managing dynamic
variability, in: K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, M. Völter (Eds.),
Model Driven Engineering Languages and Systems, Springer, Berlin/
Heidelberg, 2008, pp. 782–796.

[110] J. Fabry, A. Zambrano, S. Gordillo, Expressing aspectual interactions in design:
experiences in the slot machine domain, in: J. Whittle, T. Clark, T. Kühne
(Eds.), Model Driven Engineering Languages and Systems, Springer, Berlin/
Heidelberg, 2011, pp. 93–107.

[111] D. Xu, W. Xu, State-based incremental testing of aspect-oriented programs,
in: Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, ACM, Bonn, Germany, 2006, pp. 180–189.

[112] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Information and Software Technology 50 (2008) 833–
859.


	Aspect-oriented model-driven code generation: A systematic mapping study
	1 Introduction
	2 Background and motivation
	2.1 Aspect-oriented model-driven code generation
	2.2 Related work
	2.3 Need for a systematic mapping study

	3 Research method
	3.1 Research questions
	3.2 Search strategy
	3.3 Selection of primary studies
	3.4 Defining a classification scheme
	3.5 Mapping of studies

	4 Classification schemes
	4.1 Focus area
	4.1.1 Modeling notation and process
	4.1.2 Model composition and interaction management
	4.1.3 AO Code generation
	4.1.4 Code generation from specification of NFRs
	4.1.5 Applicability

	4.2 Contribution type
	4.2.1 Tool
	4.2.2 Method
	4.2.3 Process
	4.2.4 Model
	4.2.5 Metric

	4.3 Research type
	4.3.1 Solution proposal
	4.3.2 Validation research
	4.3.3 Evaluation research
	4.3.4 Conceptual proposal
	4.3.5 Experience paper
	4.3.6 Opinion paper


	5 Mapping and discussion of research questions
	5.1 Modeling notation and process
	5.1.1 UML Profiles to support AOM
	5.1.2 Meta-model extensions to support AOM
	5.1.3 Infrastructures for the extension process

	5.2 Model composition and interaction management
	5.2.1 Model weavers
	5.2.2 Model unweavers
	5.2.3 Base-aspect interaction enhancement techniques

	5.3 Aspect-oriented code generation
	5.3.1 Transformation-based approaches to AO code generation
	5.3.2 Direct mapping approaches to AO code generation

	5.4 Code generation from specification of non-functional requirements
	5.5 Applicability

	6 Discussion
	6.1 Principle findings
	6.2 Limitations and threats to validity of the study

	7 Conclusion
	References


