
Information and Software Technology xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Identifying refactoring opportunities in object-oriented code:
A systematic literature review
http://dx.doi.org/10.1016/j.infsof.2014.08.002
0950-5849/� 2014 Elsevier B.V. All rights reserved.

E-mail address: j.aldallal@ku.edu.kw

Please cite this article in press as: J. Al Dallal, Identifying refactoring opportunities in object-oriented code: A systematic literature review, Inform
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
Jehad Al Dallal
Department of Information Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 April 2014
Received in revised form 13 July 2014
Accepted 6 August 2014
Available online xxxx

Keywords:
Refactoring activity
Refactoring opportunity
Systematic literature review
Context: Identifying refactoring opportunities in object-oriented code is an important stage that precedes
the actual refactoring process. Several techniques have been proposed in the literature to identify oppor-
tunities for various refactoring activities.
Objective: This paper provides a systematic literature review of existing studies identifying opportunities
for code refactoring activities.
Method: We performed an automatic search of the relevant digital libraries for potentially relevant stud-
ies published through the end of 2013, performed pilot and author-based searches, and selected 47 pri-
mary studies (PSs) based on inclusion and exclusion criteria. The PSs were analyzed based on a number of
criteria, including the refactoring activities, the approaches to refactoring opportunity identification, the
empirical evaluation approaches, and the data sets used.
Results: The results indicate that research in the area of identifying refactoring opportunities is highly
active. Most of the studies have been performed by academic researchers using nonindustrial data sets.
Extract Class and Move Method were found to be the most frequently considered refactoring activities.
The results show that researchers use six primary existing approaches to identify refactoring opportuni-
ties and six approaches to empirically evaluate the identification techniques. Most of the systems used in
the evaluation process were open-source, which helps to make the studies repeatable. However, a rela-
tively high percentage of the data sets used in the empirical evaluations were small, which limits the gen-
erality of the results.
Conclusions: It would be beneficial to perform further studies that consider more refactoring activities,
involve researchers from industry, and use large-scale and industrial-based systems.

� 2014 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 00
2. Related work. 00
3. Research method . 00
3.1. Research questions . 00
3.2. Search strategy . 00
3.3. Study selection . 00
3.4. Study classification . 00
3.5. Study quality assessment . 00
3.6. Data extraction and analysis . 00
3.6.1. Refactoring activities . 00
3.6.2. Data set details . 00
3.6.3. Study context . 00
3.7. Validity threats . 00

4. Results. 00
4.1. Overview of the PSs . 00
. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002
mailto:j.aldallal@ku.edu.kw
http://dx.doi.org/10.1016/j.infsof.2014.08.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2014.08.002

2 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx

Please
Techn
4.2. RQ1: What are the refactoring activities considered in the PSs? . 00
4.3. RQ2: What are the approaches followed by the PSs to identify the refactoring opportunities? . 00
4.3.1. Quality metrics-oriented approach . 00
4.3.2. Precondition-oriented approach . 00
4.3.3. Clustering-oriented approach . 00
4.3.4. Graph-oriented approach . 00
4.3.5. Code slicing-oriented approach . 00
4.3.6. Dynamic analysis-oriented approach . 00
4.4. RQ3: What are the approaches followed by the PSs to empirically evaluate the proposed or existing identification techniques for
refactoring opportunities? . 00
4.4.1. Intuition-based evaluation . 00
4.4.2. Quality-based evaluation . 00
4.4.3. Mutation-based evaluation . 00
4.4.4. Comparison-based evaluation . 00
4.4.5. Behavior-based evaluation . 00
4.4.6. Applicability-based evaluation. 00
4.5. RQ4: What data sets were used to evaluate the identification techniques proposed in the PSs? . 00

4.5.1. The variety of the data sets . 00
4.5.2. The sizes of the data sets . 00
4.5.3. The programming languages of the data sets . 00
4.5.4. The publicity of the data sets . 00
4.6. Study quality assessment . 00

5. Discussion and open issues . 00
5.1. Refactoring activities (Related to RQ1) . 00
5.2. Approaches to identifying refactoring opportunities (Related to RQ2) . 00
5.3. Empirical evaluation approaches (Related to RQ3) . 00
5.4. Data sets employed (Related to RQ4). 00
6. Conclusions and future work. 00
Acknowledgments . 00

Appendix A. Search strings . 00

A.1. Library: ACM . 00
A.2. Library: Springer . 00
A.3. Library: Scopus . 00
A.4. Library: IEEE . 00
A.5. Library: ISI . 00
A.6. Library: ScienceDirect . 00
A.7. Library: Compendex and Inspec (using Engineering Village web-based discovery platform) . 00
Appendix B:. PS primary extracted data . 00
References . 00
1. Introduction

Refactoring is the maintenance task of restructuring software
source code to enhance its quality without affecting its external
behavior [23]. Fowler et al. identified 22 code ‘‘bad smells’’ and
proposed 72 refactoring activities to improve the code design
and remove the bad smells. Identifying refactoring opportunities
is the first stage of the refactoring process [64,36,46]. Manually
inspecting and analyzing the source code of a system to identify
refactoring opportunities is a time-consuming and costly process.
Researchers in this area typically propose fully or semi-
automated techniques to identify refactoring opportunities.
These techniques may be applicable to code written in different
programming languages and should be evaluated empirically.

Although identifying refactoring opportunities is a highly
active area of research, there is a lack of systematic literature
reviews in this area to keep researchers and practitioners up
to date with the state of research in the area of identifying
refactoring opportunities. The goal of this paper is to report a
systematic literature review (SLR) that (1) identifies the state-
of-the-art in identifying refactoring opportunities and (2)
assesses and discusses the collected and reported findings.
Our SLR is intended both to help researchers identify related
topics that are not well explored and to guide practitioners to
existing techniques and approaches for identifying refactoring
opportunities.
cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
ol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
To focus our SLR and reduce overlap with related SLRs (e.g.,
[61,63], we limited our SLR to studies that identify opportunities
for refactoring object-oriented code to remove code bad smells.
Consequently, we excluded studies of refactoring design artifacts,
such as Unified Modeling Language (UML) models, and studies of
refactoring non-object-oriented code. In addition, we did not con-
sider studies on identifying opportunities for refactoring activities
unrelated to code bad smells, such as activities required to refactor
object-oriented code to service or aspect-oriented code. Finally, we
limited the SLR to studies that report empirical evaluations for the
proposed identification techniques because these studies provide
evidence for the practicality, effectiveness, or usefulness of the
proposed techniques. Studies on detecting the refactored pieces
of code (e.g., [17,55,39,53] are out of the scope of this SLR.

We extracted data for 2338 potentially relevant articles pub-
lished before the end of 2013 from seven scientific databases. After
a careful screening of these articles, performing a pilot search, and
contacting researchers in this area, we identified 47 relevant pri-
mary studies (PSs). We analyzed and classified these PSs based
on different perspectives, including the refactoring activities con-
sidered, the approaches followed for refactoring opportunity iden-
tification and for empirical evaluation, and the data sets used. In
addition, we assessed the quality of the PSs from several perspec-
tives, including the study design, conduct, analysis, and conclu-
sions. We identified several topics in need of further research
and challenges to be addressed in future related research.
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Table 1
Stages of the paper selection process.

Stages Number of distinct articles included (+) or removed (�) Total number of distinct articles

Stage 1: Identifying potentially relevant articles +1092 1092
Stage 2: Excluding articles based on titles and abstracts �965 127
Stage 3: Excluding articles based on full text �88 39
Stage 4: Including pilot search-based articles +2 41
Stage 5: Including articles after contacting PS authors +6 47

Table 2
Number of articles found in the selected digital libraries.

Stage ACM Springer Scopus IEEE ISI ScienceDirect Compendex and Inspec Total Distinct

Stage 1 542 413 384 281 256 56 406 2338 1092
Stage 2 98 9 75 42 58 11 83 375 126
Stage 3 27 2 32 11 25 7 34 137 38

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 3
This paper is organized as follows. Section 2 reviews the related
work. Section 3 describes our method of systematic review. Section 4
reports the results of the systematic review and answers the
research questions. The results are discussed in Section 5. Finally,
Section 6 presents our conclusions and outlines possible related
open research topics and areas.
2. Related work

Researchers have performed various surveys and literature
reviews related to software refactoring. Mens and Tourwé [36] per-
formed an extensive survey of research in the area of software
refactoring. They discussed and compared the existing research
in terms of the refactoring activities considered and their support-
ing techniques, the refactored software artifacts, tool support, and
the impact of refactoring on the software process. Identifying
refactoring opportunities is only one of the refactoring activities
considered. Therefore, in contrast to this SLR, which is more nar-
rowly focused, the previous survey does not provide a detailed
overview and discussion of the studies concentrating on identify-
ing refactoring opportunities. Because of its broader topic, and
because it was performed a decade ago, the previous survey con-
sidered only a few studies on identifying refactoring opportunities.
In addition, the study did not follow a systematic approach and is
more a literature survey than an SLR, as defined in this study.

Zhang et al. [63] performed an SLR of 39 studies published on
code bad smells. They overviewed the code smells, the goals of
studies on code bad smells, the approaches followed to investigate
code bad smells, and the evidence provided to support the claim
that code bad smells indicate problems in the code. Identifying
code bad smells and identifying refactoring opportunities are
related but different problems. Therefore, the research considered
in this current SLR is different from the work performed by Zhang
et al. Although studies that consider both code smells and refactor-
ing opportunities are considered in both SLRs, we discuss these
studies from a different perspective. Studies identifying code
smells without relating them to refactoring activities are excluded
from this SLR.

Wangberg’s literature review examined 46 papers (2010) that
considered both code smells and refactoring. Unlike this SLR,
which only considers papers that provide empirical evidence,
Wangberg’s review considered not only empirical studies (11
papers) but also design research, contribution summaries, and the-
oretical contributions (35 papers). Wangberg’s literature review is
broader than this SLR, considering studies not only on identifying
refactoring opportunities but also on other refactoring activities,
such as performing refactoring and analyzing its impact on code
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
quality. In addition, Wangberg’s review includes refactoring oppor-
tunity identification using design artifacts and non-object-oriented
systems. None of the considered studies provide empirical
evidence for a proposed refactoring opportunity identification
technique. This SLR is limited to studies that report empirical
evidence for techniques proposed to identify refactoring opportu-
nities from object-oriented code artifacts.

Misbhauddin and Alshayeb [38] conducted an SLR of existing
approaches to refactoring UML models. The review discussed and
analyzed 94 PSs based on several criteria, including the UML mod-
els, the formalisms used, and the impact of refactoring on model
quality. The SLR reported in this paper is limited to code-based
refactoring approaches and therefore does not overlap with the
Misbhauddin and Alshayeb review, which is limited to design-
based refactoring approaches.
3. Research method

This SLR summarizes the current state-of-the-art in the field of
identifying refactoring opportunities in object-oriented (OO) soft-
ware. Based on the Kitchenham and Charters [30] guidelines, this
SLR was performed in three main phases: planning, conducting,
and reporting the review. The first stage includes the recognition
of the need for a systematic review and the development of the
review protocol. For this purpose, we have identified the objectives
of this SLR in Section 1 and discussed the key differences between
this systematic review and existing related reviews in Section 2.
This section reports the protocol followed to perform the review
and reduce the chances of researcher bias. The protocol includes
identifying the research questions, defining the search strategy,
determining the study selection criteria, identifying the PS classifi-
cation dimensions and attributes, and performing the correspond-
ing data extraction and analysis.

3.1. Research questions

Based on the PSs determined by the study selection process, this
SLR seeks to answer the following research questions:

RQ1. What are the refactoring activities considered in the PSs?
RQ2. What are the approaches followed by the PSs to identify
the refactoring opportunities?
RQ3. What are the approaches followed by the PSs to empiri-
cally evaluate the proposed or existing identification techniques
for refactoring opportunities?
RQ4. What data sets were used to evaluate the identification
techniques proposed in the PSs?
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Table 3
Mapping between the identifiers and references of the PSs.

S1: Al Dallal [1]
S2: Al Dallal and Briand [2]
S3: Alkhalid et al. [3]
S4: Alkhalid et al. [4]
S5: Alkhalid et al. [5]
S6: Bavota et al. [6]
S7: Bavota et al. [7]
S8: Bavota et al. [8]
S9: Bavota et al. [9]
S10: Bavota et al. [10]
S11: Bavota et al. [11]
S12: Cassell et al. [13]
S13: Czibula and Czibula [15]
S14: Czibula and Serban [16]
S15: Du Bois et al. [18]
S16: Fokaefs et al. [19]
S17: Fokaefs et al. [20]
S18: Fokaefs et al. [21]

4 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
The research questions are based on the PICOC criteria [30]:

Population: object-oriented software, classes, methods, attri-
butes (related to RQ1 and RQ2).
Intervention: techniques for identifying refactoring opportuni-
ties (related to RQ1 and RQ2) and approaches for evaluating
the identification techniques (related to RQ3).
Comparison: not applicable
Outcomes: accuracy of the techniques in identifying refactoring
opportunities (related to RQ3).
Context: context of the empirical evaluation in terms of data set
size and venue (i.e., academia or industry) (related to RQ4).

This SLR seeks to identify techniques that have been empirically
evaluated and applied to identify refactoring opportunities related
to bad smells in object-oriented code. To achieve this goal, we
searched the literature for the corresponding PSs.
S19: Fokaefs et al. [22]
S20: Higo et al. [24]
S21: Higo et al. [25]
S22: Hotta et al. [26]
S23: Kanemitsu et al. [27]
S24: Kataoka et al. [28]
S25: Kimura et al. [29]
S26: Lee et al. [32]
S27: Liu et al. [33]
S28: Mahouachi et al. [34]
S29: Melton and Tempero [35]
S30: Ments et al. [37]
S31: Oliveto et al. [41]
S32: Pan et al. [42]
S33: Pan et al. [43]
S34: Pan et al. [44]
S35: Pan et al. [45]
S36: Rao and Reddy [48]
S37: Sales et al. [49]
S38: Sales et al. [50]
S39: Serban and Czibula [51]
S40: Tairas and Gray [54]
S41: Tourwé and Mens [56]
S42: Tsantalis and Chatzigeogiou [57]
S43: Tsantalis and Chatzigeogiou [58]
S44: Tsantalis and Chatzigeogiou [59]
S45: Tsantalis and Chatzigeogiou [60]
S46: Yang et al. [62]
S47: Zhao and Hayes [64]
3.2. Search strategy

To obtain a comprehensive list of PSs, we performed an auto-
matic search in the most popular and relevant digital libraries.
The search and PS selection process was performed in five stages,
as listed in Table 1; the list of selected libraries is given in Table 2.
Selecting all these libraries together can lead to overlapping
results, which requires the identification and removal of redundant
results; however, this selection of libraries increases confidence in
the completeness of the review. To increase the comprehensive-
ness of the review, our search considered all years through the
end of 2013 (we conducted the search on September 23, 2013
and modified the results on January 1, 2014).

We constructed the search string based on the following
factors:

1. The major terms extracted from the research questions.
2. Alternative spellings and synonyms of the major terms.
3. Research terms used in relevant papers.
4. The use of Boolean AND to connect the major research terms

and Boolean OR to connect alternative spellings and synonyms
of the major terms.

The resulting general search string is as follows: (object-ori-
ented OR object oriented OR class OR classes OR method OR meth-
ods OR attribute OR attributes) AND refactor* AND (estimat* OR
predict* OR determin* OR identif* OR indicat* OR detect* OR
track*).

The corresponding search string used for each the seven
libraries is given in Appendix A. We followed the conventional
practice of performing the automatic search within the titles and
abstracts of the articles included in the digital libraries. To ensure
that duplicates were ignored, we collected the search results in an
Excel spreadsheet. For each article, we recorded the title, authors,
journal/conference name, abstract, and year of publication of the
article and the list of libraries in which the article was found. For
each article found in each library, the spreadsheet was checked
for the presence of the article. If the article was already included
in the spreadsheet, the library name was added to the list of the
libraries in which the article was found. Otherwise, a new record
for the article was added to the spreadsheet. This process resulted
in data for 2338 articles, of which 1092 were distinct; these articles
were considered potentially relevant. The distribution of these arti-
cles among the digital libraries is given in Table 2.

To increase confidence in the completeness of the article list, we
performed a pilot search using relevant literature reviews and the
reference list of a recently published article [1] whose ‘‘related
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
work’’ section gives an overview of key research papers in the field.
This pilot search identified 17 relevant papers, of which only two
(S16 and S47) were not in the list obtained using the digital
libraries. The reasons the search did not find these articles are (1)
article S47 was not present in any of the libraries and (2) article
S16 did not include the ‘‘refactor*’’ key term in either its title or
its abstract.
3.3. Study selection

To select PSs from the potentially relevant studies, we applied
the following inclusion and exclusion criteria.

Inclusion criteria:
Articles published in peer-reviewed journals or conference pro-

ceedings found in the selected digital libraries on January 1, 2014
and including the following:

1. A technique or a method to identify opportunities for refactor-
ing activities to eliminate code bad smells in object-oriented
software.

2. An empirical evaluation for the technique/method using a
large- or small-scale data set.
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 5
Both criteria had to be satisfied to ensure that the selected PS
was within the targeted area of research and that the study was
empirically evaluated. Papers not fulfilling all inclusion criteria
were excluded, as follows:

1. Studies that do not explore the identification of refactoring
opportunities to eliminate code bad smells but instead address
other refactoring aspects, such as performing refactoring activ-
ities or estimating refactoring costs.

2. Research without an empirical evaluation of the refactoring
identification technique(s).

3. Studies that consider refactoring code other than object-ori-
ented software.

4. Studies that consider activities other than code refactoring,
including the refactoring of design artifacts such as UML
models.

5. Studies that consider the identification of refactoring opportu-
nities that are not related to code bad smells (e.g., refactoring
opportunities of object-oriented code to service or aspect-ori-
ented code).

We found some duplicate articles published in different venues,
having the same authors and reporting the same identification
technique with empirical evaluation using the same data sets. In
these cases, we considered only the superset version. Articles that
report the same identification technique but different empirical
studies are included in the study.

The author (Researcher 1) and his research assistant (Researcher
2) each individually screened each title and abstract in the Excel
spreadsheet to determine whether an article should be included or
excluded. From the relevant papers identified in the pilot search,
we noted that some papers report empirical studies within the arti-
cles’ text without indicating this fact in the abstract. Therefore, we
decided to screen the collected articles in two stages (Stage 2 and
Stage 3 reported in Tables 1 and 2). In Stage 2, we screened the titles
and abstracts of the papers to determine only whether the first inclu-
sion criterion was applicable. In Stage 3, we screened the full text of
the selected papers, considering all inclusion and exclusion criteria.
In Stage 2, both researchers agreed to include 71 articles and to
exclude 965 articles. They disagreed regarding the remaining 56
articles. To determine the degree of agreement, we applied Cohen’s
Kappa coefficient [14]. Based on the Landis and Koch [31] categories,
the agreement between the two researchers in the first phase was
found to be substantial (0.69). To ensure the comprehensiveness
of our study, we considered each paper found by either of the two
researchers as a potential PS for further inspection; this procedure
resulted in considering 127 articles (i.e., 71 + 56) as an input for
the second screening phase. When the full texts of the 127 articles
were screened in Stage 3, both researchers agreed to include 37 arti-
cles and to exclude 75 articles, and they disagreed regarding the
remaining 15 articles. The corresponding degree of agreement is
0.74 (substantial). The two researchers discussed the 15 cases of dis-
agreement and reached a consensus to include two articles and
exclude the rest. In Stage 4, we added the two papers found in the
pilot search (as detailed in Section 3.2). In Stage 5, we contacted
the corresponding authors (27 distinct authors) of the 41 articles
(i.e., 37 + 2 + 2) by email to explore whether they were aware of rel-
evant papers not included in our list. The authors’ replies resulted in
adding 6 articles, so that the final list of PSs included 47 articles
(Table 3). Two of the six suggested papers were not detected in the
earlier stages because they do not satisfy the search string, and the
other four papers had not yet been added to the digital libraries at
the time of the search (January 1, 2014) because they were either
published on-line, but not yet in a regular issue, or published at
the end of 2013.
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
3.4. Study classification

Based on the research questions identified in Section 3.1, we
categorized the PSs by four main dimensions: (1) refactoring activ-
ities (related to RQ1), (2) refactoring opportunity-identification
approaches (related to RQ2), (3) evaluation approaches (related
to RQ3), and (4) data sets used in the evaluation process (related
to RQ4). The author of this SLR screened all the PSs to identify
the attributes of each dimension. The attributes of the first dimen-
sion are first set to be the refactoring activities proposed by Fowler
[23]. However, after screening all the PSs, we added two more
activities that were not identified by Fowler [23]. This classification
process resulted in identifying 22 attributes for the refactoring
activities classification dimension, each attribute representing
one of the refactoring activities considered by at least one of the
PSs. The considered attributes (i.e., refactoring activities) are listed
in Section 4.2.

The identification of attributes for the second and third dimen-
sions was performed incrementally. That is, for the second dimen-
sion, we started with an empty set of attributes. The author of this
SLR screened and analyzed each PS for the approach followed by
the study to identify refactoring opportunities. Based on the inputs
and the identification process, a classification attribute was identi-
fied. If the attribute had not already been identified when a previ-
ously screened PS was considered, the attribute was added to the
set of classification attributes. The same approach was followed
to identify the attributes for the third classification dimension. This
classification process resulted in identifying six attributes for each
of the second and third dimensions, as listed in Sections 4.3 and
4.4.

We subdivided the fourth classification dimension into three
subdimensions, including the data set programming language,
venue, and size. The attributes of the programming language sub-
dimension were determined by screening the PSs for the data set
programming languages. This process resulted in identifying three
attributes, each representing a programming language (i.e., Java,
C++, and SmallTalk). To identify the attributes of the data set venue
subdimension, we started with the categorization of Sjoeberg et al.
[52], who identified five corresponding attributes including open
source, self-constructed project, academic project, commercial
project, and student project. The author of this SLR screened the
PSs to determine the suitability of this categorization and found
that four attributes (open source, academic project, commercial
project, and student project) were enough to classify the PSs based
on the data set venue subdimension. Finally, we followed the
guidelines suggested by Radjenović et al. [47] to categorize the
studies by the sizes of the data sets in terms of the number of clas-
ses and KLOC (thousands of lines of code, LOC). Small studies con-
sider systems of fewer than 50 KLOC or 200 classes, medium
studies consider systems ranging from 50 KLOC or 200 classes to
250 KLOC or 1000 classes, and large studies consider systems with
more than 250 KLOC or 1000 classes. If a study considered more
than one system, the sum of the sizes of the systems was catego-
rized. If both the LOC and the number of classes were reported,
the study was classified according to the larger category. For exam-
ple, if a study considered a system of 60 KLOC and 150 classes, it
would be classified as medium. As a result, three attributes (small,
medium, and large) were considered to classify the PSs based on
the data set size subdimension.

3.5. Study quality assessment

We followed the guidelines suggested by Kitchenham and Char-
ters [30] to construct the quality checklist given in Table 4. The
checklist considers several quality aspects, including the study
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Table 4
PS quality assessment questions and results.

ID Question Percentage of PSs

Yes (%) Partially (%) No (%) N.A.

Design
QA1 Are the applied identification techniques for refactoring opportunities clearly described? 93.6 6.4 0 0
QA2 Are the refactoring activities considered clearly stated and defined? 57.4 36.2 4.3 2.1
QA3 Are the aims of the study clearly stated? 97.9 2.1 0 0
QA4 Was the sample size justified? 31.9 23.4 44.7 0
QA5 Are the evaluation measures fully defined? 31.9 31.9 36.2 0

Conduct
QA6 Are the data collection methods adequately described? 61.7 31.9 6.4 0

Analysis
QA7 Are the results of applying the identification techniques evaluated? 85.1 2.1 12.8 0
QA8 Are the data sets adequately described? (size, programming languages, source) 78.7 19.2 2.1 0
QA9 Are the study participants or observational units adequately described? 29.8 55.3 14.9 0
QA10 Are the statistical methods described? 61.7 4.3 4.3 29.8
QA11 Are the statistical methods justified? 48.9 17 4.3 29.8
QA12 Is the purpose of the analysis clear? 78.7 14.9 6.4 0
QA13 Are the scoring systems (performance evaluation) described? 12.8 6.4 80.8 0

Conclusion
QA14 Are all study questions answered? 85.1 14.9 0 0
QA15 Are negative findings presented? 42.5 12.8 27.7 17
QA16 Are the results compared with previous reports? 29.8 0 70.2 0
QA17 Do the results add to the literature? 76.6 21.3 2.1 0
QA18 Are validity threats discussed? 31.9 23.4 44.7 0

6 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
design, conduct, analysis, and conclusion, and was applied to
assess the corresponding quality of each of the PSs considered.
Each question is evaluated as ‘‘Yes’’, ‘‘Partially’’, or ‘‘No’’ with a cor-
responding score of 1, 0.5, or 0, respectively. Some of the questions
were not applicable to some PSs; these PSs were not evaluated for
those questions. The PSs were assessed individually by the author
and his research assistant, and the results were compared. Dis-
agreements were discussed until agreement was reached. For each
question in Table 4, we reported the percentage of PSs with each of
the three possible answers. In addition, for each PS, we added the
scores for each question and found the percentage over the appli-
cable questions for that PS. The results reported in Table 4 are dis-
cussed in Section 4.6. The details of the study quality assessment
results are provided in an online appendix.1

3.6. Data extraction and analysis

The research assistant extracted and reported the data corre-
sponding to the research questions and study quality assessment.
For each PS, the extracted data included the full reference (i.e., title,
authors, journal/conference name, year, volume, and page num-
bers), abstract, refactoring activities considered, approach followed
to identify refactoring opportunities, context of the study, data
set(s) (i.e., name, version, programming language, size, and
availability of each data set considered), and validation method.
In addition, the paper text related to each quality assessment ques-
tion was highlighted, and the question was answered. The author
checked all this work. Disagreements were discussed until a con-
sensus was reached. The process of having one data extractor
and one data checker had been previously found useful in practice
[12].

3.6.1. Refactoring activities
The refactoring activities considered were categorized and ana-

lyzed following the proposal of Fowler [23]. The extracted data
were used to address RQ1. Collecting these data allowed the iden-
tification of the most and least studied refactoring activities. This
identification might suggest that future research should
1 http://www.cls.kuniv.edu/drjehad/research.htm

Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
concentrate more on those refactoring activities that have been
less well studied. In addition, categorizing the studies by the refac-
toring activities makes it possible to compare the results of the
identification techniques for the same refactoring activities.

3.6.2. Data set details
We considered several factors related to the data sets used in

the empirical studies reported, which allowed us to address RQ4.
The factors include the name and size of the data sets and the pro-
gramming languages in which the data sets were developed. Cate-
gorizing the studies by the names of the systems helps in
comparing results related to the same refactoring activities. As
illustrated in Section 3.4, we followed the guidelines suggested
by Radjenović et al. [47] to categorize the studies by the sizes of
the data sets in terms of the number of classes and KLOC (thou-
sands of lines of code, LOC) into small, medium, and large studies.
The size of the data sets gives the reader an idea of the external
validity of a study, where studies of larger data set size potentially
have higher external validity [47].

3.6.3. Study context
The study context included two factors, the researcher and the

data set. The authors of the PSs worked in either academia or
industry. Based on the authors’ affiliations, we categorized the arti-
cles as authored by researchers working in academia, industry, or
both. Extracting these data allows identification of the fraction of
people working in industry in research related to identifying
refactoring opportunities. In addition, it allows identification of
the context in which the techniques were evaluated.

The second context factor relates to the data sets considered in
the empirical validation and allows RQ4 to be addressed. Based on
the categorization of Sjoeberg et al. [52], the data set can be open
source or the result of a self-constructed project, academic project,
commercial project, or student project. Studies based on
open-source data sets are deemed to be repeatable.

3.7. Validity threats

This SLR has several limitations that may restrict the general-
ity and limit the interpretation of our results. The first is the
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://www.cls.kuniv.edu/drjehad/research.htm
http://dx.doi.org/10.1016/j.infsof.2014.08.002

0
1
2
3
4
5
6
7
8
9

10
of conference PSs

of journal PSs

of all PSs

N
o.

 o
f P

Ss

Fig. 1. Distribution of PSs over the years.

2 http://www.cls.kuniv.edu/drjehad/research.htm

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 7
possibility of paper selection bias. To ensure that the studies were
selected in an unbiased manner, we followed the standard
research protocol and guidelines reported by Kitchenham and
Charters [30]. We constructed the search string based on the
research questions and related search terms. To decrease the
possibility of missing a relevant study, we employed several strat-
egies. The first strategy was to perform the search using the most
commonly relevant digital libraries that include both relevant
journals and conferences. The second strategy was to construct
a wide search string, which resulted in scanning a relatively large
number of papers, including gray literature. The third and fourth
strategies were to perform pilot searching and to contact the cor-
responding authors of the identified PSs to inquire about any
missing relevant studies. The number of additional studies identi-
fied by the pilot search (only two studies) indicated that the
libraries considered were comprehensive enough and the search
string was strong enough to detect most of the relevant studies.
Contacting the corresponding authors led to adding six studies.
However, only two of these studies were not included initially
because they lacked some of the search string terms. The other
four were either published on-line, but not yet in a regular pub-
lication, or were published at the end of 2013 and had not yet
been added to the libraries as of the original search. The fifth
strategy we used to decrease the possibility of missing relevant
studies was a multi-stage selection process. After applying the
search string, the titles and abstracts of the identified articles
were screened for whether they indicated any relationship to
the problem of identifying refactoring opportunities. At this stage,
we did not consider whether the study reported an empirical
evaluation because some studies report empirical studies without
indicating this fact in their title or abstract. Checking whether the
study reports an empirical evaluation was delegated to the next
stage, in which the full texts of the studies were screened.

To increase confidence that no study was incorrectly excluded,
two researchers independently screened the titles and abstracts of
the studies. Studies were only removed when both researchers
agreed on the exclusion, and the full texts of the remaining studies
were screened by both researchers independently. The degree of
agreement was substantial at both stages, which increases the reli-
ability of the study selection results. Finally, to further ensure
unbiased study selection, the final decision on the articles with
selection disagreements was performed based on consensus
meetings.

Assessing the quality of a study is subjective. To limit this valid-
ity threat, instead of proposing nonstandard quality factors, we
adapted the well-defined study quality factors suggested by
Kitchenham and Charters [30]. In addition, we defined three
levels for each assessment question. The PSs were assessed by
one researcher and checked by the other, a technique applied in
similar studies (e.g., [47]. A consensus was reached to resolve
any disagreement.
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
4. Results

The findings of the SLR are reported in this section. First, we
provide an overview of the PSs included in the review; then, we
present the answers to the research questions and the results of
the research quality assessment.
4.1. Overview of the PSs

As discussed in Section 3, the search and selection processes
resulted in the 47 PSs listed in Table 3. The details of the extracted
data are provided in Appendix B and in an online appendix.2 Fig. 1
shows the distribution of the conference, journal, and total PSs over
the years. The figure shows that the first PS we considered appeared
in 2001, approximately two years after the publication of Fowler’s
book. From 2001 to 2010, approximately two PSs were published
per year on average. The problem of identifying refactoring opportu-
nities began to attract more research attention after 2011; 55.3% of
the PSs were published after 2011, with an average of more than
eight per year from 2011 to 2013. This observation indicates that this
area of research is currently highly active and is considered an
important software problem.

The PSs were published in 33 different sources. Over half of the
PSs (53.2%) were published in journals; the rest were published in
conference proceedings. The slight difference between these per-
centages shows the importance of considering both journals and
conferences in this literature review. That is, relying only on jour-
nals or only on conference proceedings results in an incomplete lit-
erature review. In addition, the slight difference in the percentages
indicates that researchers in this research area have not had a clear
overall preference for journals over conference proceedings, or vice
versa, when publishing their results. However, we note that the
first journal PS was published in 2006, after the first five confer-
ence PSs were published. However, in the three years since 2011,
only 8 (36.4%) conference papers were published, whereas 18
(72%) of the journal PSs were published during the same years. This
observation shows that researchers in this area have shifted their
publishing interests in recent years from conferences to journals.
This indication is positive, as journal papers, especially ones pub-
lished in more prestigious journals, are typically more complete
and report more extensive studies.

Table 5 lists publication sources with two or more publications.
The list includes five journals and three conferences, which
together published only 46.8% of the PSs. This result indicates that
limiting the search to certain related journals and conferences,
rather than performing an automatic search in the main science
libraries, would potentially cause the literature review to miss
approximately half of the relevant PSs. The results reported in
Table 5 show that Journal of Software and Systems attracted more
researchers in the area of identifying refactoring opportunities than
other journals in the field. In addition, the results show that
researchers presented findings in this area at the IEEE International
Conference on Software Maintenance more than at other conferences.

Except for S20, the authors of all PSs are from academia. PS S20
was performed by researchers from both academia and industry.
This observation indicates that that there is potentially a large
gap between academic research in this area and industry. There-
fore, based on the selected PSs, no strong evidence was found
regarding the importance of this research in industry or on
whether this area is of interest for industrial people. However, it
is unfair to conclude based only on the selected PSs that the soft-
ware industry is not interested in identifying refactoring opportu-
nities. Such a conclusion requires more investigation using other
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://www.cls.kuniv.edu/drjehad/research.htm
http://dx.doi.org/10.1016/j.infsof.2014.08.002

8 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
methods, such as surveys performed in industrial venues. Based on
the PSs we considered, we could draw no conclusions regarding the
refactoring activities that are of interest to industry practitioners.
Academic researchers in this area of research are advised to invite
experts from the industrial domain to participate and share their
experiences.

4.2. RQ1: What are the refactoring activities considered in the PSs?

The PSs considered 22 refactoring activities; 20 of these activi-
ties are among the 72 activities identified by Fowler [23], and two
have been proposed by others (i.e., Eliminate Return Value (in S24)
and Move Class (in S5, S7, S9, S32, and S33). Move Class refactoring
refers to moving a class from one package to a more appropriate
Table 5
Key publication sources.

Source No. of
PSs

Percentage of
PSs (%)

IEEE International Conference on Software
Maintenance (ICSM)

5 10.6

Journal of Systems and Software(JSS) 4 8.5
European Conference on Software Maintenance

and Reengineering (CSMR)
3 6.4

ACM Transactions on Software Engineering and
Methodologies (TOSEM)

2 4.3

IEEE Transactions on Software Engineering (TSE) 2 4.3
Empirical Software Engineering (EMSE) 2 4.3
Information and Software Technology (IST) 2 4.3
International Conference on Software Engineering

(ICSE)
2 4.3

Total 22 46.8

15
17

10

5
4

5
3 3 3 3

0
2
4
6
8

10
12
14
16
18

Ex
tr

ac
t C

la
ss

M
ov

e
M

et
ho

d

Ex
tr

ac
t M

et
ho

d

Pu
ll

U
p

M
et

ho
d

Ex
tr

ac
t S

up
er

C

la
ss

M
ov

e
C

la
ss

Fo
rm

 T
em

pl
at

e
M

et
ho

d

R
em

ov
e

Pa
ra

m
et

er

In
lin

e
C

la
ss

M
ov

e
Fi

el
d

N
o.

 o
f P

Ss

Fig. 2. Distribution of the refactoring activities.

15

11 11

7

2
1

0
2
4
6
8

10
12
14
16

Q
ua

lit
y-

m
et

ric
s-

or
ie

nt
ed

Pr
ec

on
di

tio
n-

or
ie

nt
ed

C
lu

st
er

in
g-

or
ie

nt
ed

G
ra

ph
-o

rie
nt

ed

C
od

e
Sl

ic
in

g-
or

ie
nt

ed

D
yn

am
ic

 a
na

ly
si

s-
or

ie
nt

ed

N
o.

 o
f P

Ss

Fig. 3. Distribution of the PSs over the approaches to identifying refactoring
opportunities.

Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
package. Fig. 2 shows the distribution of the ten refactoring activ-
ities that were considered by at least two PSs. The remaining activ-
ities that were each mentioned by a single PS are as follows: Pull Up
Constructor, Parameterize Method, Extract Subclass, Replace Method
with Method Object, Replace Data Value with Object, Separate Query
from Modifier, Encapsulate Downcast, Replace Temp with Query,
Replace Type Code with State/Strategy, Eliminate Return Value,
Replace Conditional with polymorphism, and Extract Interface. PS
S27 claims that their technique is applicable for generalization
refactoring activities without specifying specific ones. In addition,
PS S28 states that their identification technique can be applied to
predict the opportunities for any refactoring activity. These two
PSs are not included in Fig. 2 because they do not specify the
refactoring activities considered.

Fig. 2 shows that identifying the opportunities for each of the
Move Method, Extract Class, and Extract Method refactoring activi-
ties was considered by more than 20% of the PSs. Identifying the
Pull Up Method, Extract Superclass, Move Class, and Form Template
Method refactoring opportunities received less attention. The
remaining refactoring activities were either not considered or were
considered by three or fewer PSs.

4.3. RQ2: What are the approaches followed by the PSs to identify the
refactoring opportunities?

Based on the general approaches followed by the PSs, we classi-
fied the PSs into six main categories. The distribution of the PSs
over these approaches is shown in Fig. 3, and the approaches are
detailed below.

4.3.1. Quality metrics-oriented approach
Fifteen (31.9%) of the PSs (S1, S2, S6, S7, S9, S10, S11, S19, S20,

S21, S28, S31, S37, S46, and S47) propose techniques that depend
on quality metrics to identify or predict refactoring opportunities.
In S1, a statistical model based on size, cohesion, and coupling met-
rics was constructed to predict Extract Subclass refactoring oppor-
tunities. In S2, Al Dallal and Briand proposed a cohesion metric
and showed its usefulness in detecting Move Method and Extract
Class refactoring opportunities. In S6, a metric that measures the
structural and semantic similarities between methods in a class
(a class cohesion aspect) was used to predict Extract Class refactor-
ing opportunities. In S11, Bavota et al. proposed a metric that mea-
sures the structural and semantic similarity between one method
and other methods in the same class (a class cohesion aspect)
and between one method and other methods in other classes (a
class coupling aspect); they explained the use of an approach based
on game theory to find an optimal balance between cohesion and
coupling and suggested a corresponding Extract Class refactoring
opportunity. In S19 and S37, a metric that considers the distance
(similarity) between a method in a class and members of other
classes (a class coupling aspect) was used as a basis to suggest
Move Method refactoring opportunities. In S31 and S10, the struc-
tural and conceptual relationships among methods in the same
class (a class cohesion aspect) and between methods in the same
class and methods in other classes (a class coupling aspect) were
used to determine Move Method refactoring opportunities. Similar-
ities based on structural and semantic relationships between the
system’s classes were used in S7 and S9 to identify Move Class
refactoring opportunities. In S46, Yang proposed dividing the code
of a method into fragments, based on a code statement classifica-
tion schema, and then assessing the coupling between the frag-
ments to suggest Extract Method refactoring opportunities. In
S47, Zhao and Hayes proposed using a set of complexity metrics
to predict classes in need of Extract Class refactoring. In S20 and
S21, code clones were detected, and a set of quality metrics were
used to suggest opportunities for several refactoring activities,
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

23

14
12 13

3
6

0
3
6
9

12
15
18
21
24

In
tu

iti
on

-b
as

ed

Q
ua

lit
y-

ba
se

d

M
ut

at
io

n-
ba

se
d

C
om

pa
ris

on
-

ba
se

d

B
eh

av
io

r-
ba

se
d

A
pp

lic
ab

ili
ty

-
ba

se
d

N
o.

 o
f P

Ss

Fig. 4. Distribution of the PSs over the evaluation approaches.

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 9
including Extract Class, Extract Superclass, Extract Method, Pull Up
Method, Form Template Method, Move Method, Parameterize Method,
and Pull Up Constructor. Finally, in S28, Mahouachi et al. proposed a
technique that considers quality metrics, refactoring operations,
and a set of examples to build a model to map a detected bad smell
to a certain refactoring activity. The technique was claimed to be
applicable to predicting the opportunities for any of the refactoring
activities.

4.3.2. Precondition-oriented approach
Different sets of preconditions were defined by eleven (23.4%)

of the PSs (S15, S22, S24, S26, S27, S30, S38, S40, S41, S43, and
S44) and applied to identify refactoring opportunities. Du Bois
et al. (S15) and Kataoka et al. (S24) considered several refactoring
activities. For each activity, they suggested inspecting the code for
its compliance to a set of conditions. For example, a method was
suggested to be moved if it did not use local resources, was rarely
invoked, and was mostly referenced by another class. In S38, Seng
et al. suggested a set of preconditions to apply Move Method refac-
toring and suggested using a set of quality metrics to choose the
best refactoring solution. In S22, S26, S27, and S40, a set of condi-
tions were applied to detected code clones to suggest which refac-
toring activity could be applied to improve the code. In S30, S41,
and S44, a set of conditions were applied to detected bad smells
to decide which refactoring activities were applicable. In S43, Tsan-
talis and Chatzigeorgiou proposed detecting the Feature Envy bad
smell and checking the compliance of a set of preconditions to
identify Move Method refactoring opportunities.

4.3.3. Clustering-oriented approach
Clustering techniques were applied in eleven (23.4%) PSs (S3,

S4, S5, S12, S13, S14, S16, S17, S18, S36, and S39) to identify refac-
toring opportunities. In S3, a clustering algorithm based on a pro-
posed similarity measure for the lines of code in a method was
introduced to identify Extract Method refactoring opportunities.
In S4, Alkhalid et al. suggested using the similarities between one
method and other methods, both in the same class and in other
classes, as a basis for clustering the methods and proposing Move
Method refactoring opportunities. At a higher level, in S5, Alkhalid
et al. suggested using the similarities between the classes of a sys-
tem as a basis for clustering the classes into packages and propos-
ing Move Class refactoring opportunities. In S13 and S39, clustering
techniques that consider the distances between the methods and
attributes within a class and in different classes were used to iden-
tify Move Method, Move Field, Inline Class, and Extract Class refactor-
ing opportunities. A similar clustering technique was considered in
S14 to identify Move Method, Move Field, and Inline Class refactoring
opportunities. Fokaefs et al. (in S16, S17, and S18) and Rao and
Reddy (in S36) proposed applying different clustering algorithms
that account for the distances between the methods and attributes
of a class to identify Extract Class refactoring opportunities. Finally,
in S12, a clustering technique that considers the structural and
semantic distances between the elements of a class was used to
identify Extract Class refactoring opportunities.

4.3.4. Graph-oriented approach
The refactoring opportunity identification methods proposed in

seven (14.9%) PSs (S8, S23, S29, S32, S33, S34, and S35) are graph
theory-based techniques. In S29, a graph that represents the depen-
dencies among classes of a system was proposed, and the reachabil-
ity of each node (which represents a class) was analyzed to identify
Extract Interface refactoring opportunities. In S34 and S35, a graph
that represents the relations between methods and attributes was
proposed. In S35, an evolutionary algorithm was applied, and in
S34, a community detection algorithm was used to analyze the
graph and construct an optimized class structure. In both
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
techniques, the original and optimized graphs were compared to
identify Move Method refactoring opportunities. Pan et al. (in S32
and S33) suggested representing classes and their dependencies
by a graph, applying community detection algorithms to obtain
an optimized graph, and comparing the original and optimized
graphs to identify Move Class refactoring opportunities. In S8, the
relationships between the methods in a class were represented by
a graph, and the graph was partitioned using an existing graph-
based algorithm to suggest Extract Class refactoring opportunities.
Finally, in S23, Kanemitsu et al. proposed measuring the distances
between the nodes of a program dependency graph of a method
to help identify Extract Method refactoring opportunities.

4.3.5. Code slicing-oriented approach
Tsantalis and Chatzigeorgiou (in S42 and S45) suggested slicing

the program dependence graph of a method to identify Extract
Method refactoring opportunities.

4.3.6. Dynamic analysis-oriented approach
In S25, Kimura et al. suggested analyzing method traces

(invocations of methods during program execution), detecting cor-
responding relationships between methods, and identifying Move
Method refactoring opportunities.

4.4. RQ3: What are the approaches followed by the PSs to empirically
evaluate the proposed or existing identification techniques for
refactoring opportunities?

We have identified six different approaches followed by the SPs
to empirically evaluate the identification techniques. Each PS
applied one or more of these approaches. The distribution of the
PSs over the evaluation approaches is shown in Fig. 4, and the
evaluation approaches are detailed below.

4.4.1. Intuition-based evaluation
We identified two levels of intuition-based evaluation. On the

first level, the systems considered in the empirical study were
shown to one or more experts to intuitively identify refactoring
opportunities. The proposed identification technique was applied
to the same systems, and the results were compared with the
experts’ intuitions. This level of intuition-based evaluation detects
both the counterintuitive refactoring cases that are identified by
the technique and the intuitive refactoring cases that are undiscov-
ered by the technique. This type of evaluation was applied in seven
PSs (S18, S19, S27, S44, S45, S46, and S47). On the second level of
intuition-based evaluation, the proposed identification technique
was applied to the systems that were involved in the empirical
study. The refactoring cases identified by the technique were then
provided to one or more experts to assess whether they match
intuition. This level of intuition-based evaluation is weaker than
the first because it detects only the counterintuitive refactoring
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

10 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
cases that are identified by the technique and does not detect the
cases that are undiscovered by the technique. The second level of
intuition-based evaluation was applied in 18 PSs (S6, S7, S9, S10,
S16, S17, S18, S24, S25, S30, S32, S33, S34, S35, S38, S42, S43,
and S45). The total number of PSs that applied intuition-based
evaluation (i.e., the union set of PSs that applied one or both of
the intuition-based evaluation levels) is 23 (48.9%).
4.4.2. Quality-based evaluation
In 14 PSs (29.8%), including S4, S5, S9, S10, S12, S15, S29, S32,

S33, S35, S36, S43, S45, and S46, the techniques were applied to
one or more software systems to identify the refactoring candi-
dates; the suggested refactoring activities were performed; and
the quality of the code before and after applying the refactoring
activities was assessed and compared. Cohesion and coupling are
the two factors primarily considered in this evaluation. The
improvement in the code quality was considered an indication
for the correctness of the refactoring suggestions.
4.4.3. Mutation-based evaluation
Twelve PSs (25.5%) (S1, S2, S6, S7, S8, S11, S13, S14, S31, S37,

S38, and S39) evaluated the proposed refactoring identification
techniques by mutating the selected system so that the mutated
systems needed refactoring. The identification technique was
18

11

4
3

5
3

2
1

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
o.

 o
f P

Ss

No. of data sets

Fig. 5. Distribution of the data sets used in the PSs.

Table 6
Descriptions of the commonly used data sets.

System Programming language Venue No. of st

JHotDraw Java Open-source 16
Apache Ant Java Open-source 6
ArgoUML Java Open-source 6
GanttProject Java Open-source 5
JFreeChart Java Open-source 5
Jedit Java Open-source 4
Trama Java Open-source 3
Front End Java Open-source 3
SelfPlanner Java and C++ Academic project 3
GESA Not specified Student project 3
SMOS Not specified Student project 3
CSGestionnaire Java Open-source 2
Eclipse Java Open-source 2
LAN-simulation Java Academic project 2
Xerces Java Open-source 2
Azureus Java Open-source 2
eTour Not specified Student project 2
SESA Not specified Student project 2
eXVantage Not specified Industrial 2
FreeCol Not specified Open-source 2
Weka Java Open-source 2
FreeMind Java Open-source 2
Jruby Java Open-source 2
Soul SmallTalk Academic project 2

Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
applied to the mutated system, and the technique was evaluated
by checking whether the expected refactoring candidates were
identified.

4.4.4. Comparison-based evaluation
Thirteen PSs (27.6%) considered comparison-based evaluation

for their proposed techniques. In S13, S14, S22, S23, S27, S28,
S32, S33, S39, and S40, the proposed techniques were applied to
one or more systems, and the suggested refactoring candidates
were compared to the ones obtained by applying other existing
techniques. In addition, in S6, the proposed technique and an exist-
ing technique were applied to systems, and the code quality of the
refactored systems was compared to explore which technique pro-
duced a greater improvement. In S11 and S37, the proposed tech-
nique and an existing technique were applied to systems; the
results were evaluated; and the evaluation results were compared.

4.4.5. Behavior-based evaluation
In S22, S23, and S28, the proposed techniques were applied, and

the suggested refactoring candidates were performed. The behav-
ior of the system before and after applying the suggested refactor-
ing activities was compared to ensure that the applied refactoring
did not change the system’s behavior.

4.4.6. Applicability-based evaluation
In S3, S20, S21, S26, S40, and S41, the proposed techniques were

evaluated only by showing their applicability to one or more sys-
tems. However, the suggested refactoring candidates were not
evaluated.

4.5. RQ4: What data sets were used to evaluate the identification
techniques proposed in the PSs?

The PSs considered different data sets that had different sizes
and programming languages, as described below.

4.5.1. The variety of the data sets
The total number of data sets used in the PSs was 138 (with an

average of approximately three data sets per PS), including 79
distinct data sets. Fig. 5 shows the distribution of the number of
udies Studies

S1, S2, S6, S7, S9, S8, S11, S13, S14, S17, S18, S26, S34, S37, S38, S39
S20, S21, S22, S23, S37, S40
S6, S8, S11, S26, S31, S37
S1, S6, S8, S9, S28
S10, S26, S40, S43, S45
S9, S10, S40, S43
S5, S32, S33
S5, S32, S33
S33, S43, S45
S7, S9, S10
S7, S9, S10
S3, S4
S8, S11
S19, S35
S6, S26
S26, S27
S7, S9
S7, S9
S9, S10
S12, S37
S12, S37
S1, S37
S37, S40
S30, S41

ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Fig. 6. Number of PSs using data sets by refactoring activities.

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 11
data sets considered in the PSs. The maximum number of data sets
used in a PS was 14 (S37). Most of the PSs (61.7%) considered two
or more data sets, and the remaining 18 PSs (38.3%) each consid-
ered a single data set.

Of the 79 data sets, 24 (30.4%) were used in more than one PS,
and 55 were each used in a single PS. Table 6 provides details for
the 24 multiply used data sets. The table shows that JHotDraw
was used in 16 PSs (34%). The other data sets included in Table 6
were used in two to six PSs. Fig. 6 shows the mapping between
the systems and the refactoring activities considered. The figure
includes only the systems that were used at least in two PSs that
consider the same refactoring activity, and therefore the figure
depicts the number of PSs with comparable results. The figure
shows that there are 27 instances (represented by the bubbles)
of comparable studies. In addition, the figure shows that there
are ten refactoring activities whose identification results can be
compared across certain PSs because these PSs considered the
same systems and the same refactoring activities. The largest
matching (9 occurrences) was found for the identification of
Extract Class refactoring opportunities in the JHotDraw system.
Other comparisons can be performed across a number of PSs
ranging from 2 to 8.
4.5.2. The sizes of the data sets
The PSs considered data sets of a variety of sizes. Based on the

total number of classes and LOC in the systems considered by each
PS, we found that 21 (44.7%) of the PSs either used a small data set
or failed to report the size. Medium and large data sets were used
by 11 (23.4%) and 15 (31.9%) of the PSs, respectively. At a finer
grain level, we classified the individual data sets based on their
sizes. Among the 138 systems, 58 (42%), 55 (39.9%), and 21
(15.2%) were small, medium, and large, respectively. The sizes of
4 systems (2.9%) were not specified.
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
4.5.3. The programming languages of the data sets
The most frequently used programming language for imple-

menting the systems considered was Java (81.9% of the systems).
Smalltalk and C++ were used in 2.2% and 1.4% of the systems,
respectively; the programming languages for the remaining 20 sys-
tems (14.5%) were not specified.

4.5.4. The publicity of the data sets
Among the 79 distinct data sets, 55 (69.6%) data sets were open

source; 9 (11.4%) were the results of academic projects; 12 (15.2%)
were the results of student projects; and 3 (3.8%) were commer-
cial/industrial. All the data sets in 29 (61.7%) PSs were open source,
which potentially allows the studies to be repeatable. In addition,
some of the data sets used in ten (21.3%) PSs were open source,
so these studies are at least partially repeatable. The other systems
used in these ten studies were results of academic projects (in 3
PSs), the results of student projects (in 6 PSs), or commercial/
industrial (in 3 PSs). The rest of the PSs (17%) used systems that
were the results of academic projects (in 5 PSs), student projects
(in 2 PSs), or both (in one PS).

4.6. Study quality assessment

The results of the quality assessment study show that the scores
of the PSs range widely from 33.3% to 94.4% with an average of
69.2%. More specifically, the scores of conference PSs range
between 44.4% and 88.9% with an average of 64.2%, and the scores
of journal PSs range from 33.3% to 94.4% with an average of 73.5%,
considerably better than the conference PSs. We found that 14
journal PSs (52.4%) scored above 77.8% (higher than the second
best conference PS score). These results were expected and confirm
the results found in other literature reviews (e.g., [47] that, with
some exceptions, journal papers are typically more complete and
of better quality than conference papers for several reasons,
including space limitations, number of pages, and the depth
required of the reported empirical evaluation. For interested read-
ers, we recommend the six PSs (S8, S10, S37, S6, S1, and S27, in
order from the highest) that scored higher than 85%.

The results in Table 4 show that all of the PSs either partially or
adequately described the techniques applied for identifying refac-
toring opportunities (QA1), stated the aims of the study (QA3), and
answered all study questions (QA14). Most of the PSs adequately
described the data sets (QA8), clearly stated the purpose of the
analysis (QA12), and reported analysis results that sufficiently
add to the literature (QA17). Regarding QA2, it was found that a
considerable percentage of the PSs (36.2% + 4.3% = 40.5%) did not
provide definitions of the refactoring activities considered, and
two PSs (S27 and S47) did not specify the refactoring activities.
In PS S27, the authors stated that their technique is applicable to
generalization refactoring activities without stating or defining
these activities. In addition, the technique proposed in S47 is appli-
cable for Extract Class refactoring, although the authors never used
this refactoring activity name. Question QA2 is not applicable to
S28 because the proposed technique was claimed to be applicable
to all refactoring activities.

For QA4, we considered the total sizes of the data sets used in a PS,
as defined in Section 3.6.2, where large, medium, and small data sets
were given values of 1, 0.5, and 0, respectively. Therefore, the results
of QA4 match the results reported and discussed in Section 4.5.2.
Regarding QA5, it was found that only 31.9% of the PSs fully defined
the measures applied to evaluate the refactoring results. The rest of
the PSs either did not define the evaluation measures (36.2%) or
defined only some of them (31.9%). These PSs either assumed that
the readers were familiar with the evaluation measures used or
omitted the definitions because of space limitations. Most of the
PSs (80.8%) failed to describe the scoring systems for the evaluation
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

12 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
measures and thus left the conclusions subjective. We believe that
the reason for the lack of scoring system descriptions was that the
authors relied on existing evaluation measures, such as precision
and recall, that do not have common standard score descriptions.
For example, a score of 65 does not have a common interpretation
(i.e., whether it is good, satisfactory, or poor). Describing the scoring
systems (QA13) makes the conclusions objective and facilitates
comparing the results with the results obtained in other studies. In
addition, defining the evaluation measures is important to eliminate
any ambiguity regarding the interpretation of the results.

More than half of the PSs adequately described the data collec-
tion methods (QA6), which helps to make the reported studies
repeatable. The results of QA7 are related to RQ2, where the six
PSs that considered applicability-based evaluation, the weakest
evaluation approach, were given a value of zero. Regarding QA9,
most of the PSs (70.2%) failed to provide sufficient information
regarding the expertise of the study participants, and the evalua-
tion results greatly depend on such experience. The absence of
such information makes the evaluation results questionable. PSs
that adequately described the applied tools but reported insuffi-
cient information about the study participants were given a value
of 0.5 and made up 55.3% of the PSs. Among the PSs that applied
statistical methods, a high percentage clearly described the statis-
tical methods and at least partially provided justifications for
applying them (related to QA10 and QA11). Regarding QA15, we
observed that more than half of the PSs with negative findings rep-
resented and interpreted the negative findings. The rest of the PSs
either listed the negative findings but failed to interpret them or
did not present the negative findings at all. Presenting and inter-
preting negative findings is important to understand the limita-
tions of the proposed technique and thus help to find ways to
improve the technique. The results of QA16 are related to the
results reported in Section 4.4.4 and show that most of the PSs lack
comparison studies. Finally, most of the PSs did not sufficiently dis-
cuss validity threats, which makes the causal inference and gener-
alization of the results questionable. We noted that only 13.6% of
the conference studies sufficiently discussed validity threats,
whereas 48% of the journal studies did. This difference may be
due to the conference papers’ space limitations.

Generally, the quality assessment study shows that most of the
PSs scored well for questions QA1, QA3, QA7, QA8, QA10, QA11,
QA12, QA14, and QA17. Researchers are advised to focus more on
issues regarding questions QA2, QA5, QA9, QA13, QA16, and
QA18, where we found that most of the PSs have weaknesses.
5. Discussion and open issues

This section discusses and interprets the results reported in Sec-
tion 4 and discusses related open issues.
5.1. Refactoring activities (Related to RQ1)

The results presented in Section 4.2 show that researchers are
more interested in Move Method, Extract Class, and Extract Method
than in other refactoring activities. These refactoring activities
have major impacts on software design and require careful consid-
eration. The high interest in these activities may indicate their
importance in the software industry and suggests that these activ-
ities are potentially more frequently applied in practice than other
activities. However, this indication is not supported by the results
of studies that investigated the frequency of applying refactoring
activities in practice (e.g., [39,53]. These studies found that Move
Method and Extract Method are among the activities that are fre-
quently applied in practice. However, some refactoring activities
that are frequently addressed by the PSs, such as Extract Class
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
and Extract Superclass, are rarely applied in practice. In addition,
we have noticed that most of the refactoring activities proposed
by Fowler [23] (52 out of 72 refactoring activities) were not consid-
ered in any of the PSs. We are not aware of any reported discussion
regarding why these activities might be ignored. Some of these
activities such as Rename Field, Rename Method, Inline Temp, and
Add Parameter, are among the activities that were found as the
most activities applied in practice [39,53]. These observations give
an indication that there is a gap between the refactoring practice
and the research in the area of identifying refactoring opportuni-
ties. To reduce this gap, researchers are encouraged to make use
of the studies that explore the refactoring practice and focus their
research more on the refactoring activities that are frequently
applied in practice. Researchers are encouraged to improve the
results of refactoring activities that are more commonly used in
practice. Instead of performing more studies on identifying oppor-
tunities of refactoring activities that have already been considered
and are rarely applied in practice, researchers are advised to pro-
pose techniques to identify the opportunities of refactoring activi-
ties that are frequently applied in practice, especially those that
have not been considered yet, such as Rename Field, Rename
Method, Inline Temp, and Add Parameter. Murphy-Hill et al. [39]
found that the Rename refactoring activities, which are among
the most frequently applied refactoring activities, are mostly per-
formed automatically. Automating the refactoring process includes
automating the main two steps: (1) identifying the refactoring
opportunities and (2) performing the refactoring activities. There-
fore, to help automate the refactoring of Rename activities,
researchers are advised to propose and automate effective
techniques to identify opportunities for these and similar activities.

5.2. Approaches to identifying refactoring opportunities (Related to
RQ2)

The results reported in Section 4.3 show that the most fre-
quently applied refactoring identification approaches are quality
metrics-oriented, precondition-oriented, and clustering-oriented.
Code slicing has been shown to be an effective approach in several
software engineering areas, such as code testing and quality mea-
surement. However, we believe it has rarely been applied to iden-
tify refactoring opportunities because of scalability. Code slicing is
suitable for relatively small pieces of code; therefore, it is used to
identify opportunities for Extract Method refactoring, which
requires analyzing the code within a method. All of the PSs except
S21 used static identification approaches, which cause the analyses
to ignore the effects of certain important OO features, such as
dynamic binding, on the identification findings. The concentration
on static analysis might be because most refactoring activities are
related to design issues that can be statically determined.

Table 7 shows the mapping between the identification
approaches followed by the PSs and the corresponding refactoring
activities considered by these PSs. The table shows that Extract
Method, Move Method, and Extract Class refactoring opportunities
were identified in the literature using most of the approaches con-
sidered. The opportunities for certain refactoring activities, such as
Extract Interface and Inline Class, are identified by only a single
approach. Due to their usefulness, flexibility, and strong relation-
ship to software design, we found the quality metrics-oriented
and precondition-oriented approaches to be applicable to identify-
ing opportunities for a wide variety of refactoring activities.

One of the key open issues in this area is comparing the results
of applying different approaches for identifying refactoring oppor-
tunities of a certain activity to determine the best approach. We
have noticed that none of the PSs compared the refactoring identi-
fication results of the same refactoring activities across the use of
different approaches. Researchers are directed to compare different
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Table 7
Mapping between the identification approaches and the refactoring activities considered.

Identification approach Refactoring activities

Quality metrics-oriented Extract Method, Move Method, Pull Up Method, Pull Up Constructor, Form Template Method, Parameterize Method,
Extract Class, Extract Subclass, Extract Superclass, Move Class

Precondition-oriented Extract Method, Move Method, Replace Method with Method Object, Replace Data Value with Object, Extract Class,
Remove Parameter, Eliminate Return Value, Separate Query from Modifier, Encapsulate Downcast, Replace Temp with
Query, Form Template Method, Pull Up Method, Extract Class, Extract Superclass, Replace Type Code with State/
Strategy, Replace Conditional with polymorphism

Clustering-oriented Extract Method, Move Method, Move Field, Inline Class, Extract Class, Move Class
Graph-oriented Extract Method, Move Method, Extract Interface, Extract Class, Move Class
Code-slicing-oriented Extract Method
Dynamic analysis-oriented Move Method

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 13
approaches to identify the opportunities of each of the considered
refactoring activities. Several factors have to be considered in such
comparison studies, such as the simplicity of approach automation,
the scalability of the approach, and the accuracy of the approach in
detecting refactoring opportunities. Approach automation is one of
the key difficulties in performing such comparison studies. Most of
the researchers reported that they automated their proposed tech-
niques. However, we note that only a few researchers made their
tools publicly available. Consequently, researchers interested in
comparing results across techniques of different approaches will
need to exert extra effort for tool development. Researchers are
strongly advised to make the refactoring opportunity identification
tools they’ve developed publicly available and to support these
tools with well-documented user manuals.

Another key issue in this area is exploring the applicability of
the key approaches to each of the refactoring activities. For exam-
ple, as shown in Table 7, the opportunities of Pull Up Method refac-
toring activity were only identified using the quality metrics-
oriented approach. Studies are required to explore whether other
approaches are applicable to identify opportunities for Pull Up
Method refactoring and whether such application leads to better
identification results. Otherwise, justifications are required to
explain why the other identification approaches are unsuitable
for identifying these refactoring activities.

Finally, one of the key challenges related to the proposed
approaches and techniques is reducing the corresponding gap
between the industrial and research domains. Most of the authors
of the considered PSs are from the academic field. We are not
aware of any evidence for the use of these techniques in practice.
Several studies explored the application of the automated tech-
niques used to perform certain refactoring activities in practice
(e.g., [39,40]. It is recommended that researchers in the field per-
form similar studies to investigate the use of the proposed tech-
niques for refactoring opportunity identification in practice. Such
studies are important to determine the key limitations of the pro-
posed techniques and to guide researchers to related areas that
require more attention and careful addressing.

5.3. Empirical evaluation approaches (Related to RQ3)

The results reported in Section 4.4 show that a high percent-
age of PSs (87.2%) evaluated their proposed techniques based on
intuition, quality factors, a mutation-based approach, or a com-
parison-based evaluation approach. These evaluation approaches
are frequently applied because they are potentially more reliable
than other approaches; therefore, researchers are encouraged to
apply one or more of these approaches to evaluate their
techniques. Four PSs (S6, S32, S33, and S45) considered three
evaluation approaches; 18 PSs (S7, S9, S10, S11, S13, S14, S18,
S22, S23, S27, S28, S35, S38, S39, S40, S43, S46, and S37) applied
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
two approaches; and the remaining 25 PSs evaluated their tech-
niques using only one approach. Evaluating the techniques using
multiple evaluation approaches increases confidence in the reli-
ability of the results. Each of the approaches has its own validity
threats. The intuition-based approach is subjective and depends
strongly on the experience of the evaluators. The quality-based
approach relies on the debatable expectation that refactoring
improves code quality and on the assumption that the quality
measures accurately indicate code quality. The mutation-based
approach depends on the variety of mutations applied and on
the assumption that the original code is well structured and
not in need of refactoring. The comparison-based approach pro-
vides no information regarding refactoring candidates that go
undetected by both the proposed and the compared technique.
The behavior-based approach is a weak evaluation technique
because it does not indicate whether the suggested candidates
really need refactoring or whether applying the suggested
refactoring improves the code quality. That is, the suggested
refactoring may cause the code to be messier or poorer quality,
even though the code has the same behavior before and after
refactoring. The applicability-based evaluation is the weakest
approach because it provides no evidence regarding the candi-
date results. Consequently, the last two evaluation approaches
are not recommended.

The techniques for identifying opportunities for several refac-
toring activities, including the Parameterized Method and the Pull
Up Constructor were only evaluated using the applicability-based
approach. In addition, the techniques for identifying opportuni-
ties for Extract Superclass and Remove Parameter activities are
evaluated using either only applicability-based approach or small
data sets. Therefore, the evaluation results of these techniques
are questionable. Researchers are recommended to perform
empirical studies to evaluate these techniques using more
reliable evaluation approaches such as initiation and mutation-
based approaches. In addition, researchers should apply the reli-
able evaluation approaches when proposing new identification
techniques.

Researchers in some related areas, such as software quality
measurement, used to make their obtained data and analysis
results available in on-line repositories. We are not aware of sim-
ilar repositories for refactoring opportunity identification data.
Researchers are advised to make all analysis data available in
public repositories, including the intuitions of the developers, the
quality measurement results, the mutated versions of the code,
and the refactoring opportunity identification results. Standards
can be set to agree on corresponding ‘‘gold sets’’ of refactoring
opportunity data for each refactoring activity. Instead of starting
from scratch, researchers can make use of available gold sets of
data in corresponding repositories and consider them as bench-
marks for comparison with their own obtained results.
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

14 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
5.4. Data sets employed (Related to RQ4)

The findings presented in Section 4.5 show that the literature in
the area of refactoring identification is relatively rich in terms of
the number of systems considered. This wide range of systems pro-
vides researchers with a wider selection of previously considered
systems to which they can apply the newly proposed refactoring
identification techniques and compare results with existing ones.
The PSs differ widely in terms of the number of systems considered
(from one to 14) and their sizes. The conclusions drawn by the PSs
with more and larger data sets are more trustworthy than the con-
clusions obtained by the PSs with less and smaller data sets. In
terms of the total size of considered systems, the results indicate
that there is a danger in generalizing the results of almost half of
the PSs because their data sets are either small or not reported.
However, in the last three years (2011–2013) we have noted a
decrease in the percentage of PSs that rely on small data sets
(i.e., 34.6%, compared to 57% for the older PSs). The reliance on
large data sets has greatly increased, from 9.5% for the PSs pub-
lished before 2011 to 50%, for the PSs published since 2011. In gen-
eral, these observations indicate that more recent research has
used larger data sets, making the conclusions of recent PSs more
trustworthy.

Another factor that has affected the size of the considered sys-
tems is the granularity of the required analysis. That is, identifying
opportunity of performing some refactoring activities, such as the
Extract Method, require extracting data from each code statement
and analyzing the relationships among the extracted data. Other
refactoring activities, such as Move Class, require extracting and
analyzing data at the class level. The amount of data per class to
be extracted and analyzed in the former case is much higher than
in the latter case. We identified three main analysis granularity
levels, ordered from the finest to the most coarse: (1) analyzing
relationships between the statements within each method (e.g.,
to identify Extract Method refactoring opportunities), (2) analyzing
relationships between the elements within a class (e.g., to identify
Extract Class refactoring opportunities), and (3) analyzing relation-
ships between classes (e.g., to identify Move Class refactoring
opportunities). We classified the PSs into these categories,
although some PSs fall within more than one category because
they consider several refactoring activities. Based on this classifica-
tion, we found that 11, 16, and 30 PSs fall within the three catego-
ries, respectively. We found that 9.1%, 18.7%, and 36.7% of the PSs
that use large data sets are in the first, second, and third categories,
respectively, and 63.6%, 50%, and 36.7% of the PSs that use small
data sets are in the first, second, and third categories, respectively.
These observations show that to reduce the amount of data to be
extracted and analyzed, researchers tend to use smaller data sets
for refactoring activities that require fine-grained code analysis
than for refactoring activities that require coarse-grained analysis.

We have noticed that the studies of opportunity for six of the
considered refactoring activities, including Replace Method with
Method Object, Replace Data Value with Object, Separate Query
from Modifier, Encapsulate Downcast, Replace Temp with Query,
and Eliminate Return Value, were evaluated using small size data
sets. Replicated studies are required to prove or disprove the
obtained results. In addition, when considering other refactoring
activities, researchers are directed to use numerous and relatively
large data sets.

Java was found to be the dominant programming language for
the data sets considered, whereas other object-oriented program-
ming languages, such as C++ and Smalltalk, were rarely used. This
popularity of Java systems may be because the problem of refactor-
ing is relatively new (the oldest PS was published in 2001), and
Java has been the most popular programming language since the
problem began to be studied. In addition, all the examples in
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
Fowler’s refactoring book are in Java. We have noted that most of
the refactoring tools reported in the PSs support Java refactoring
systems, although older systems written in older programming
languages, such as C++ and Smalltalk, are potentially in greater
need of maintenance and refactoring. We encourage future
research in OO programming languages other than Java.

JHotDraw was found to be the most frequently used data set
(34% of the PSs). This high usage is because it was built using
design patterns and is well known for its good design. Certain other
data sets, such as Apache Ant, ArgoUML, and GanttProject, were
also considered in more than one study; some of the these studies
are by the same authors, so the related data were already available
to them for their more recent studies.

Although a considerable number of PSs evaluated their tech-
niques using common data sets and considered the identification
of common refactoring activities, only two (S14 and S39) reported
a comparison between their results and the results of other studies.
This lack of comparison results can be due to the unsuitability of
including detailed refactoring results within the paper. For exam-
ple, due to space limitations, some researchers tend to report only
the numbers of refactoring opportunities identified instead of list-
ing the details of each. This shortage of details does not allow
researchers to directly compare results across studies. Instead,
some researchers apply their own techniques and previously exist-
ing ones, obtain the refactoring results, and compare them. This
approach was followed by 11 (23.4%) PSs.

To enable others to perform comparison studies, researchers are
encouraged to evaluate their techniques using open-source sys-
tems, publicize the details of their results, and make the refactor-
ing identification tools they develop publicly available. As
indicated in Section 5.3, special repositories can be established
for this purpose, and corresponding gold sets can be maintained.
Whenever they propose a new technique to identify opportunities
for refactoring activities that are already considered in the litera-
ture, researchers can apply their new technique to the data sets
available in the corresponding repositories and compare their
results with the corresponding gold sets.

The results show that 74.6% of the data sets used were open
source and that 83% of the PSs used partially or fully public data sets.
These high percentages allow the studies to be repeatable. However,
the unbalanced percentages of data set sources (i.e., the high per-
centage of open source data sets and the low percentage of indus-
trial-based data sets [4.3%]) raises questions of generality for the
results and conclusions. Researchers are encouraged to use more
industrial-based data sets to validate or invalidate their results.
6. Conclusions and future work

This paper reports a SLR that identifies and analyzes proposed
and empirically evaluated techniques to identify opportunities
for refactoring object-oriented code. A total of 2883 potential arti-
cles were identified using automatic searching in seven scientific
digital libraries. After screening the articles, performing a pilot
search, and contacting the corresponding authors, we selected
and analyzed 47 PSs.

The results of the systematic review indicate that the identifica-
tion of refactoring opportunities is a highly active area of research.
Although most researchers in this area are from academia, some of
the participants in the reported empirical studies are from indus-
try, indicating that researchers are somewhat in contact with peo-
ple in industry. The results of the SLR show that the Move Method,
Extract Class, and Extract Method refactoring activities are of greater
interest to researchers than other refactoring activities, giving the
impression that these activities are more frequently applied in
practice during the refactoring process than other refactoring
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 15
activities. We have identified six main approaches followed by
researchers to identify refactoring opportunities and found that
the quality metrics-oriented, precondition-oriented, and cluster-
ing-oriented approaches are the most frequently followed. Most
of the researchers (87.2%) applied well known and commonly
applied software engineering-related empirical evaluation
approaches, including intuition, using quality factors, applying a
mutation-based approach, or using a comparison-based evaluation
approach, which increases confidence in the findings of the studies.
Frequently, the use of these approaches indicates that they are
more reliable than other approaches. In the reported empirical
studies, a relatively large number of data sets were considered,
providing researchers with a rich pool of data sets to select and
use in future related studies. The present results can be then com-
pared to the new results. Some data sets were used in several stud-
ies; therefore, the related results can be compared to each other.
We have noted that most of the recent PSs (published since
2011) used relatively large data sets, making the results and con-
clusions of these PSs more trustworthy than the results and con-
clusions of older studies. Finally, we observed that most of the
data sets used are open source, which helps to make the studies
repeatable.

We have identified several points that should receive more
attention in researchers’ future studies, and we have noted several
related areas that require more research and investigation.
Researchers are advised to invite experts from industry to partici-
pate and share their expertise. We found that 72.2% of the refactor-
ing activities proposed by Fowler were not considered by any
study. Therefore, researchers are encouraged to expand the cover-
age of their work to include more refactoring activities. Research-
ers typically compare the results of their techniques with the
results of other techniques that follow the same identification
approach. Comparing results across techniques that follow differ-
ent approaches is open for future investigation.

To increase confidence in empirical evaluation results, research-
ers are advised to use relatively large data sets implemented with
different programming languages and to consider a mixture of
open source and industrial systems. Based on the quality assess-
ment study, researchers are advised to pay greater attention to
(1) clearly stating and defining the refactoring activities consid-
ered, (2) fully defining the evaluation measures, (3) adequately
describing the study participants, (4) clearly describing the scoring
systems used, (4) comparing the results with previous findings,
and (5) discussing validity threats. Most of the existing studies suf-
fered from weaknesses related to at least one of these research
points.
Acknowledgments

The author would like to acknowledge the support of this work
by Kuwait University Research Grant QI03/13. In addition, the
author would like to thank Anas Abdin for assisting in collecting
and analyzing the required data.
Appendix A. Search strings

A.1. Library: ACM

Search String: (((((((Title:’’object-oriented’’ or Title:’’object ori-
ented’’ or Title:class or Title:classes or Title:method or Title:meth-
ods or Title:software or Title:code or Abstract:’’object-oriented’’ or
Abstract:’’object oriented’’ or Abstract:class or Abstract:classes or
Abstract:method or Abstract:methods or Abstract:software or
Abstract:code))) and (Title:refactor* or Abstract:refactor*))) and
(Title:predict* or Title:determin* or Title:identif* or Title:indicat*
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
or Title:detect* or Title:track* or Abstract:predict* or
Abstract:determin* or Abstract:identif* or Abstract:indicat* or
Abstract:detect* or Abstract:track*))) and (PublishedAs:journal
OR PublishedAs:proceeding OR PublishedAs:transaction).

A.2. Library: Springer

Search String: (‘‘object-oriented’’ OR ‘‘object oriented’’ OR class
OR classes OR method OR methods OR attribute OR attributes)
AND refactor* AND (estimat* OR predict* OR determin* OR identif*
OR indicat* OR detect* OR track*).

A.3. Library: Scopus

Search String: (ABS(object-oriented OR ‘‘object oriented’’ OR
class OR classes OR method OR methods OR attribute OR attri-
butes) OR TITLE(object-oriented OR ‘‘object oriented’’ OR class OR
classes OR method OR methods OR attribute OR attributes)) AND
(ABS(refactor*) OR TITLE(refactor*))AND (ABS(estimat* OR predict*
OR determin* OR identif* OR indicat* OR detect* OR track*) OR
TITLE(estimat* OR predict* OR determin* OR identif* OR indicat*
OR detect* OR track*)) AND (LIMIT-TO(LANGUAGE,’’English’’))
AND (LIMIT-TO(SRCTYPE,’’p’’) OR LIMIT-TO(SRCTYPE,’’j’’)).

A.4. Library: IEEE

Search String: (((‘‘Publication Title’’:’’object-oriented’’ OR ‘‘Publi-
cation Title’’:’’object oriented’’ OR ‘‘Publication Title’’:class OR
‘‘Publication Title’’:classes OR ‘‘Publication Title’’:method OR ‘‘Pub-
lication Title’’:methods OR ‘‘Publication Title’’:code OR ‘‘Publication
Title’’:software OR ‘‘Abstract’’:’’object-oriented’’ OR ‘‘Abstract’’:
’’object oriented’’ OR ‘‘Abstract’’:class OR ‘‘Abstract’’:classes OR
‘‘Abstract’’:method OR ‘‘Abstract’’:methods OR ‘‘Abstract’’:software
OR ‘‘Abstract’’:code) AND (p_Publication_Title:refactor OR
‘‘Publication Title’’:refactoring OR ‘‘Abstract’’:refactor OR
‘‘Abstract’’:refactoring) AND (‘‘Publicatio Title’’:estimate OR
‘‘Publication Title’’:estimating OR ‘‘Publication Title’’:estimation
OR ‘‘Publication Title’’:predict OR ‘‘Publication Title’’:predicting
OR ‘‘Publication Title’’:prediction OR ‘‘Publication Title’’:determine
OR ‘‘Publication Title’’:determining OR ‘‘Publication Title’’:identify
OR ‘‘Publication Title’’:identifying OR ‘‘Publication Title’’:identifica-
tion OR ‘‘Publication Title’’:indicat* OR ‘‘Publication Title’’:detect*
OR ‘‘Publication Title’’:track OR ‘‘Publication Title’’:tracking OR
‘‘Abstract’’:estimate OR ‘‘Abstract’’:estimating OR ‘‘Abstract’’:esti-
mation OR ‘‘Abstract’’:predict OR ‘‘Abstract’’:predicting OR ‘‘A
bstract’’:prediction OR ‘‘Abstract’’:determine OR ‘‘Abstract’’:deter-
mining OR ‘‘Abstract’’:identify OR ‘‘Abstract’’:identifying OR
‘‘Abstract’’:identification OR ‘‘Abstract’’:indicat* OR ‘‘Abstract’’:
detect* OR ‘‘Abstract’’:track OR ‘‘Abstract’’:tracking))).

A.5. Library: ISI

Search String: (TS=((object-oriented OR ‘‘object oriented’’ OR
class OR classes OR method OR methods OR attribute OR attri-
butes) AND refactor* AND (estimat* OR predict* OR determin* OR
identif* OR indicat* OR detect* OR track*))) AND
Language=(English).

A.6. Library: ScienceDirect

Search String: (abs(object-oriented OR object oriented OR class
OR classes OR method OR methods OR software OR code) OR
ttl(object-oriented OR object oriented OR class OR classes OR
method OR methods OR software OR code)) AND (abs(refactor*)
OR ttl(refactor*))AND (abs(estimat* OR predict* OR determin* OR
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://dx.doi.org/10.1016/j.infsof.2014.08.002

Table B.1
PS primary extracted data.

PS reference Refactoring activities Refactoring
opportunity
identification
approach

Evaluation approaches Names of data sets No. of
small
data sets

No. of
medium
data sets

No. of
large
datasets

Programming
languages of the
data sets

Venues of the
data sets

S1: Al Dallal [1] Extract Subclass Quality metrics-
oriented

Mutation-based Art of Illusion, FreeMind,
GanttProject, JabRef, Openbravo,
JHotDraw

1 5 0 Java Open source

S2: Al Dallal and Briand
[2]

Move Method, Extract Class Quality metrics-
oriented

Mutation-based JHotDraw 0 1 0 Java open source

S3: Alkhalid et al. [3] Extract Method Clustering-oriented Applicability-based PDF Split and Merge, JLOC,
CSGestionnaire

3 0 0 Java open source

S4: Alkhalid et al. [4] Move Method Clustering-oriented Quality-based CSGestionnaire 1 0 0 Java Open source
S5: Alkhalid et al. [5] Move Class Clustering-oriented Quality-based Trama, Front End for MySQL

Domain
2 0 0 Java Open source

S6: Bavota et al. [6] Extract Class Quality metrics-
oriented

Intuition-based,
mutation-based,
comparison-based

ArgoUML, Eclipse, GanttProject,
JHotDraw, Xerces

0 3 2 Java Open source

S7: Bavota et al. [7] Move Class Quality metrics-
oriented

Intuition-based,
mutation-based

JHotDraw, eTour, GESA, SESA,
SMOS

3 2 0 Java Open source, student
project

S8: Bavota et al. [8] Extract Class Graph-oriented Mutation-based ArgoUML, JHotDraw, Eclipse,
GanttProject

0 2 2 Java Open source

S9: Bavota et al. [9] Move Class Quality metrics-
oriented

Intuition-based,
quality-based

GanttProject, jEdit, JHotDraw,
jVLT, eXVantage, GESA, eTour,
SESA, SMOS

3 3 3 Java Open source, student
project, commercial
project

S10: Bavota et al. [10] Move Method Quality metrics-
oriented

Intuition-based,
quality-based

jEdit, JFreeChart, AgilePlanner,
eXVantage, GESA, SMOS

1 0 5 Java Open source, student
project, commercial
project

S11: Bavota et al. [11] Extract Class Quality metrics-
oriented

Mutation-based,
comparison-based

ArgoUML, JHotDraw 0 1 1 Java Open source

S12: Cassell et al. [13] Extract Class Clustering-oriented Quality-based FreeCol, Heritrix, Jena, Weka 4 0 0 Java Open source
S13: Czibula and

Czibula [15]
Move Method, Move Attribute, Inline
Class, Extract Class

Clustering-oriented Mutation-based,
comparison-based

JHotDraw, ‘A’ 1 1 0 Java Open source,
commercial project

S14: Czibula and
Serban [16]

Move Method, Move Attribute, Inline Class Clustering-oriented Mutation-based,
comparison-based

JHotDraw 1 0 0 Java Open source

S15: Du Bois et al. [18] Extract Method, Move Method, Replace
Method with Method Object, Replace Data
Value with Object, Extract Class

Precondition-
oriented

Quality-based Apache Tomcat 1 0 0 Java Open source

S16: Fokaefs et al. [19] Extract Class Clustering-oriented Intuition-based eRisk, SelfPlanner 0 0 0 C++ Academic project,
student project

S17: Fokaefs et al. [20] Extract Class Clustering-oriented Intuition-based JHotDraw 1 0 0 Java Open source
S18: Fokaefs et al. [21] Extract Class Clustering-oriented Intuition-based JHotDraw, CLRServerPack,

TPMSim, CoverFlow
4 0 0 Java Open source, student

project
S19: Fokaefs et al. [22] Move Method Quality metrics-

oriented
Intuition-based Video Store, LAN-simulation 2 0 0 Java Academic project

S20: Higo et al. [24] Extract Method, Pull Up Method Quality metrics-
oriented

Applicability-based Ant 0 1 0 Java Open source

S21: Higo et al. [25] Extract Class, Extract Superclass, Extract
Method, Pull Up Method, Form Template
Method, Move Method, Parameterize
Method, Pull Up Constructor

Quality metrics-
oriented

Applicability-based Ant 0 1 0 Java Open source

S22: Hotta et al. [26] Form Template Method Precondition-
oriented

Comparison-based,
behavior-based

Apache-Ant, Apache-Synapse 0 2 0 Java Open source

S23: Kanemitsu et al.
[27]

Extract Method Graph-oriented Comparison-based,
behavior-based

Students Old Code, Ant 2 Java Open source, student
project

S24: Kataoka et al. [28] Remove Parameter, Eliminate Return
Value, Separate Query from Modifier,
Encapsulate Downcast, Replace Temp
with Query

Precondition-
oriented

Intuition-based Nebulous 1 0 0 Java Open source

16
J.A

l
D

allal/Inform
ation

and
Softw

are
Technology

xxx
(2014)

xxx–
xxx

Please
cite

this
article

in
press

as:
J.A

lD
allal,Identifying

refactoring
opportunities

in
object-oriented

code:
A

system
atic

literature
review

,Inform
.Softw

.
Tech

nol.(2014),http://dx.doi.org/10.1016/j.infsof.2014.08.002

http://dx.doi.org/10.1016/j.infsof.2014.08.002

S25: Kimura et al. [29] Move Method Dynamic analysis-
oriented

Intuition-based FRISC, MASU 1 0 1 Java Open source,
academic project

S26: Lee et al. [32] Pull Up Method, Form Template Method,
Move Method, Extract Class, Extract
Superclass

Precondition-
oriented

Applicability-based JFreeChart, ANTLR, JHotDraw,
BCEL

2 2 0 Java Open source

S27: Liu et al. [33] Generalization refactorings Precondition-
oriented

Intuition-based,
comparison-based

GEF, JSM, Jface, Thout Reader,
AutoMed

2 3 0 Java Open source, student
project

S28: Mahouachi et al.
[34]

open, any refactoring activity quality metrics-
oriented

comparison-based,
behavior-based

GanttProject, Xerces-J, ArgoUML,
Quick UML, LOG4 J, AZUREUS

2 2 2 Java Open source

S29: Melton and
Tempero [35]

Extract Interface Graph-oriented Quality-based Azureus 0 0 1 Java Open source

S30: Ments et al. [37] Remove Parameter, Extract Superclass,
Pull Up Method

Precondition-
oriented

Intuition-based Soul, Smalltalk Collection
hierarchy, HotDraw

3 0 0 Smalltalk Academic project

S31: Oliveto et al. [41] Move Method Quality metrics-
oriented

Mutation-based ArgoUML 0 0 1 Java Open source

S32: Pan et al. [42] Move Class Graph-oriented Intuition-based,
quality-based,
comparison-based

Trama, Front End 2 0 0 Java Open source

S33: Pan et al. [43] Move Class Graph-oriented Intuition-based,
quality-based,
comparison-based

Trama, Front End 2 0 0 Java Open source

S34: Pan et al. [44] Move Method Graph-oriented Intuition-based JHotDraw 1 0 0 Java Open source
S35: Pan et al. [45] Move Method Graph-oriented Intuition-based,

quality-based
LAN-Simulation 1 0 0 Java Academic project

S36: Rao and Reddy
[48]

Extract Class Clustering-oriented Quality-based Bank Application 1 0 0 Java Student project

S37: Sales et al. [49] Move Method Quality metrics-
oriented

Mutation-based,
comparison-based

Ant, ArgoUML, Cayenne, DrJava,
FreeCol, FreeMind, Jmeter, Jruby,
JTOpen, Maven, Megamek, WCT,
Weka, JHotDraw

1 10 3 Java Open source

S38: Seng et al. [50] Move Method Precondition-
oriented

Intuition-based,
mutation-based

JHotDraw, InnerClasses 1 1 0 Java Open source

S39: Serban and
Czibula [51]

Move Method, Move Attribute, Inline
Class, Extract Class

Clustering-oriented Mutation-based,
comparison-based

JHotDraw 1 0 0 Java Open source

S40: Tairas and Gray
[54]

Extract Method, Pull Up Method (not
discussed in the evaluation)

Precondition-
oriented

Comparison-based,
applicability-based

Apache Ant, Columba, EMF,
Hibernate, Jakarta-Jmeter, Jedit,
JFreeChart, Jruby, Squirrel-SQL

0 9 0 Java Open source

S41: Tourwé and Mens
[56]

Remove Parameter, Extract super class,
extract method

Precondition-
oriented

Applicability-based SOUL 1 0 0 SmallTalk Academic project

S42: Tsantalis and
Chatzigeogiou [57]

Extract Method Code slicing-oriented Intuition-based Telephone Exchange Emulator 1 0 0 Java Academic project

S43: Tsantalis and
Chatzigeogiou [58]

Move Method Precondition-
oriented

Intuition-based,
quality-based

JFreeChart, Jedit, Jmol, Diagram,
SelfPlanner

1 4 0 Java, C++ Open source,
academic project

S44: Tsantalis and
Chatzigeogiou [59]

Replace Type Code with State/Strategy,
Replace Conditional with polymorphism

Precondition-
oriented

Intuition-based Violet, IHM, Nutch 2 1 0 Java Open source

S45: Tsantalis and
Chatzigeogiou [60]

Extract Method Code slicing-oriented Intuition-based,
quality-based

JFreeChart, WikiDev, SelfPlanner 1 0 0 Java Open source,
academic project

S46: Yang et al. [62] Extract Method Quality metrics-
oriented

Intuition-based,
quality-based

ThroutReader 0 1 0 Java Open source

S47: Zhao and Hayes
[64]

Extract Class Quality metrics-
oriented

Intuition-based Student Project 1 0 0 Java Student project

J.A
l

D
allal/Inform

ation
and

Softw
are

Technology
xxx

(2014)
xxx–

xxx
17

Please
cite

this
article

in
press

as:
J.A

lD
allal,Identifying

refactorin
g

opportun
ities

in
object-oriented

code:
A

system
atic

literature
review

,Inform
.Softw

.
Tech

nol.(2014),http://dx.doi.org/10.1016/j.infsof.2014.08.002

http://dx.doi.org/10.1016/j.infsof.2014.08.002

18 J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx
identif* OR indicat* OR detect* OR track*) OR ttl(estimat* OR pre-
dict* OR determin* OR identif* OR indicat* OR detect* OR track*)).

A.7. Library: Compendex and Inspec (using Engineering Village web-
based discovery platform)

Search String: ((object-oriented OR ‘‘object oriented’’ OR class
OR classes OR method OR methods OR attribute OR attributes)
wn TI OR (object- oriented OR ‘‘object oriented’’ OR class OR classes
OR method OR methods OR attribute OR attributes) wn AB) AND
((refactor*) wn TI or (refactor*) wn AB) AND ((estimat* OR predict*
OR determin* OR identif* OR indicat* OR detect* OR track*) wn TI
OR (estimat* OR predict* OR determin* OR identif* OR indicat*
OR detect* OR track*) wn AB).

Appendix B:. PS primary extracted data

See Table B.1.

References

[1] J. Al Dallal, Constructing models for predicting extract subclass refactoring
opportunities using object-oriented quality metrics, J. Inform. Softw. Technol.
Arch. 54 (10) (2012) 1125–1141.

[2] J. Al Dallal, L.C. Briand, A Precise Method-Method Interaction-Based Cohesion
Metric for Object-Oriented Classes, ACM Transact. Softw. Eng. Methodol.
(TOSEM) TOSEM 21 (2) (2012). Article No. 8.

[3] A. Alkhalid, M. Alshayeb, S. Mahmoud, Software refactoring at the function
level using new Adaptive K-Nearest Neighbor algorithm, Adv. Eng. Softw. 41
(10–11) (2010) 1160–1178.

[4] A. Alkhalid, M. Alshayeb, S.A. Mahmoud, Software refactoring at the class level
using clustering techniques, J. Res. Practice Inform. Technol. 43 (4) (2011) 285–
306.

[5] A. Alkhalid, M. Alshayeb, S.A. Mahmoud, Software refactoring at the package
level using clustering techniques, Software IET 5 (3) (2011) 276–284.

[6] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Automating extract class
refactoring: an improved method and its evaluation, Empir. Softw. Eng.
(2013) 1–48.

[7] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Using structural and semantic
measures to improve software modularization, Empir. Softw. Eng. 18 (5)
(2013) 901–932.

[8] G. Bavota, A. De Lucia, R. Oliveto, Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures, J. Syst.
Softw. 84 (3) (2011) 397–414.

[9] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, A. De Lucia, Improving
software modularization via automated analysis of latent topics and
dependencies, ACM Transact. Softw. Eng. Methodol. 23 (1) (2014). Article No.
4.

[10] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia, Methodbook:
recommending move method refactorings via relational topic models, IEEE
Trans. Software Eng. (2013), http://dx.doi.org/10.1109/TSE.2013.60.

[11] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, Y. Gueheneuc, Playing with
refactoring: identifying extract class opportunities through game theory, in:
IEEE International Conference on Software Maintenance (ICSM), 2010, pp. 1–5.

[12] P. Brereton, B. Kitchenhama, D. Budgenb, M. Turnera, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, J. Syst. Softw. 80 (4) (2007) 571–583.

[13] K. Cassell, P. Andreae, L. Groves, A Dual clustering approach to the extract class
refactoring, in: Proceedings on the 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE’11) Miami, FL, USA, 2011.

[14] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Measur.
20 (1960) 37–46.

[15] I.G. Czibula, G. Czibula, Hierarchical clustering based automatic refactorings
detection, WSEAS Transact. Electron. 5 (7) (2008) 291–302.

[16] I.G. Czibula, G. Serban, Improving systems design using a clustering approach,
IJCSNS Int. J. Comput. Sci. Network Security 6 (12) (2006) 40–49.

[17] D. Dig, R.E. Johnson, The role of refactorings in API evolution, in: Proceedings of
the 21st IEEE International Conference on Software Maintenance, 2005, pp.
389–398.

[18] B. Du Bois, S. Demeyer, J. Verelst, Refactoring – improving coupling and
cohesion of existing code, in: Proceedings of the 11th Working Conference on
Reverse Engineering, 2004, pp. 144–151.

[19] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, J. Sander, Decomposing object-
oriented class modules using an agglomerative clustering technique, in: IEEE
International Conference on Software Maintenance, Canada, 2009, pp. 93–101.

[20] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, JDeodorant: identification
and application of extract class refactorings, in: Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 1037–1039.
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
[21] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Identification and
application of Extract Class refactorings in object-oriented systems, J. Syst.
Softw. 85 (10) (2012) 2241–2260.

[22] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, JDeodorant:
Identification and removal of Feature Envy bad smells, in: Proceedings of
IEEE International Conference on Software Maintenance, 2007, pp. 467–468.

[23] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley Longman Publishing Co. Inc., Boston, MA, 1999.

[24] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Aries: Refactoring support
environment based on code clone analysis, in: Proceedings of the 8th
IASTED International Conference on Software Engineering and Applications,
Article No. 436–084, 2004, pp. 222–229.

[25] Y. Higo, S. Kusumoto, K. Inoue, A metric-based approach to identifying
refactoring opportunities for merging code clones in a Java software system, J.
Softw. Maintenance Evolut.: Res. Practice 20 (6) (2008) 435–461.

[26] K. Hotta, Y. Higo, S. Kusumoto, Identifying, Tailoring, and Suggesting Form
Template Method Refactoring Opportunities with Program Dependence Graph,
in: Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, 2012, pp. 53–62.

[27] T. Kanemitsu, Y. Higo, S. Kusumoto, A visualization method of program
dependency graph for identifying extract method opportunity, in: Proceedings
of the 4th Workshop on Refactoring Tools, 2011, pp. 8–14.

[28] Y. Kataoka, D. Notkin, M. D. Ernst, W.G. Griswold, automated support for
program refactoring using invariants, in: Proceedings of the IEEE International
Conference on Software Maintenance, 2001, pp. 736.

[29] S. Kimura, Y. Higo, H. Igaki, S. Kusumoto, Move code refactoring with dynamic
analysis, in: Proceedings of the IEEE International Conference on Software
Maintenance (ICSM), 2012, pp. 575–578.

[30] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007, Keele
University, UK, 2007.

[31] J. Landis, G. Koch, Measurement of observer agreement for categorical data,
Biometrics 33 (1977) 159–174.

[32] S. Lee, G. Bae, H.S. Chae, D. Bae, Y.R. Kwon, Automated scheduling for clone-
based refactoring using a competent GA, Software—Practice Exper. 41 (5)
(2011) 521–550.

[33] H. Liu, Z. Niu, Z. Ma, W. Shao, Identification of generalization refactoring
opportunities, Autom. Softw. Eng. 20 (1) (2013) 81–110.

[34] R. Mahouachi, M. Kessentini, K. Ghedira, A new design defects classification:
marrying detection and correction, in: Proceedings of the 15th International
Conference on Fundamental Approaches to Software Engineering, 2012, pp.
455–470.

[35] H. Melton, E. Tempero, The CRSS metric for package design quality, in:
Proceedings of the 30th Australasian Conference on Computer Science, vol. 62,
2007, pp. 201–210.

[36] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Software Eng.
30 (2) (2004) 126–139.

[37] T. Mens, T. Tourwé, F. Muñoz, Beyond the Refactoring Browser: Advanced Tool
Support for Software Refactoring, in: Proceedings of the 6th International
Workshop on Principles of Software Evolution, 2003, pp. 39.

[38] M. Misbhauddin, M. Alshayeb, UML model refactoring: a systematic literature
review, Empir. Softw. Eng. (2013) 1–46.

[39] E.R. Murphy-Hill, C. Parnin, A.P. Black, How we refactor, and how we know it,
IEEE Trans. Software Eng. 38 (1) (2012) 5–18.

[40] S. Negara, N. Chen, M. Vakilian, R.E. Johnson, D. Dig, A comparative study of
manual and automated refactorings, in: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), 2013, pp. 552–576.

[41] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, A. De Lucia, Identifying
method friendships to remove the feature envy bad smell (NIER track), In:
Proceedings of the 33rd International Conference on Software Engineering,
2011, pp. 820–823.

[42] W.F. Pan, B. Jiang, B. Li, Refactoring software packages via community
detection in complex software networks, Int. J. Autom. Comput. 10 (2)
(2013) 157–166.

[43] W. Pan, WB. Jiang, Y. Xu, Refactoring packages of object-oriented software
using genetic algorithm based community detection technique, Int. J. Comput.
Appl. Technol. 48 (3) (2013) 185–194.

[44] W. Pan, B. Li, Y. Ma, J. Liu, Y. Qin, Class structure refactoring of object-oriented
softwares using community detection in dependency networks, Frontiers
Comput. Sci. China 3 (3) (2009) 396–404.

[45] W.F. Pan, J. Wang, M.C. Wang, Identifying the move method refactoring
opportunities based on evolutionary algorithm, Int. J. Model. Ident. Control 18
(2) (2013) 182–189.

[46] E. Piveta, Improving the search for refactoring opportunities on object-
oriented and aspect-oriented software, Ph.D. thesis, Univeridade Federal Do
Rio Grande Do Sul, Porto Alegre, 2009.

[47] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault prediction
metrics: a systematic literature review, Inf. Softw. Technol. 55 (8) (2013)
1397–1418.

[48] AA. Rao, Kn. Reddy, Identifying clusters of concepts in a low cohesive class for
extract class refactoring using metrics supplemented agglomerative clustering
technique, Int. J. Comput. Sci. Issues 8 (5-2) (2011) 185–194.

[49] V. Sales, R. Terra, L.F. Miranda, M.T. Valente, Recommending move method
refactorings using dependency sets, in: IEEE 20th Working Conference on
Reverse Engineering (WCRE), 2013, pp. 232–241.
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://refhub.elsevier.com/S0950-5849(14)00191-8/h0005
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0005
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0005
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0010
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0010
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0010
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0015
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0015
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0015
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0020
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0020
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0020
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0025
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0025
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0030
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0030
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0030
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0035
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0035
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0035
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0040
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0040
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0040
http://dx.doi.org/10.1109/TSE.2013.60
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0060
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0060
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0060
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0070
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0070
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0075
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0075
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0080
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0080
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0105
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0105
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0105
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0115
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0115
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0115
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0125
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0125
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0125
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0155
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0155
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0160
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0160
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0160
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0165
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0165
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0180
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0180
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0190
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0190
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0195
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0195
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0215
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0215
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0215
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0220
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0220
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0220
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0225
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0225
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0225
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0235
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0235
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0235
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0240
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0240
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0240
http://dx.doi.org/10.1016/j.infsof.2014.08.002

J. Al Dallal / Information and Software Technology xxx (2014) xxx–xxx 19
[50] O. Seng, J. Stammel, D. Burkhart, Search-based determination of refactorings
for improving the class structure of object-oriented systems, in: Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation, 2006,
pp. 1909–1916.

[51] G. Serban, I.G. Czibula, Restructuring software systems using clustering, in:
22nd International Symposium on Computer and Information Sciences, 2007,
pp. 1–6.

[52] D. Sjoeberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic, N. Liborg, A.
Rekdal, A survey of controlled experiments in software engineering, IEEE
Trans. Software Eng. 31 (9) (2005) 733–753.

[53] G. Soares, R. Gheyi, E.R. Murphy-Hill, B. Johnson, Comparing approaches to
analyze refactoring activity on software repositories, J. Syst. Softw. 86 (4)
(2013) 1006–1022.

[54] R. Tairas, J. Gray, Increasing clone maintenance support by unifying clone detection
and refactoring activities, Inf. Softw. Technol. 54 (12) (2012) 1297–1307.

[55] K. Taneja, D. Dig, T. Xie, Automated detection of API refactorings in libraries, in:
Proceedings of the 22 IEEE/ACM International Conference on Automated
Software Engineering, 2007, pp. 377–380.

[56] T. Tourwé, T. Mens, Identifying refactoring opportunities using logic meta
programming, in: Proceedings of the 7th European Conference on Software
Maintenance and Reengineering, 2003, pp. 91–100.
Please cite this article in press as: J. Al Dallal, Identifying refactoring opportuni
Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.08.002
[57] N. Tsantalis, A. Chatzigeorgiou, Identification of extract method refactoring
opportunities, in: Proceedings of the 13th European Conference on Software
Maintenance and Reengineering, 2009, pp. 119–128.

[58] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Trans. Software Eng. 35 (3) (2009) 347–367.

[59] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities
introducing polymorphism, J. Syst. Softw. 83 (3) (2010) 391–404.

[60] N. Tsantalis, A. Chatzigeorgiou, Identification of extract method refactoring
opportunities for the decomposition of methods, J. Syst. Softw. 84 (10) (2011)
1757–1782.

[61] R.D. Wangberg, A literature review on code smells and refactoring, Master
Thesis, Department of Informatics, University of Oslo, 2010.

[62] L. Yang, H. Liu, Z. Niu, Identifying Fragments to be Extracted from Long
Methods, in: Proceedings of the 16th Asia-Pacific Software Engineering
Conference, 2009, pp. 43–49.

[63] M. Zhang, T. Hall, N. Baddoo, Code Bad Smells: a review of current knowledge,
J. Software Maintenance Evolut.: Res. Practice 23 (3) (2011) 179–202.

[64] L. Zhao, J. Hayes, Predicting classes in need of refactoring: an application of
static metrics, in: Proceedings of the 2nd International PROMISE Workshop,
Philadelphia, Pennsylvania USA, 2006.
ties in object-oriented code: A systematic literature review, Inform. Softw.

http://refhub.elsevier.com/S0950-5849(14)00191-8/h0260
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0260
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0260
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0265
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0265
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0265
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0270
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0270
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0290
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0290
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0295
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0295
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0300
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0300
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0300
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0315
http://refhub.elsevier.com/S0950-5849(14)00191-8/h0315
http://dx.doi.org/10.1016/j.infsof.2014.08.002

	Identifying refactoring opportunities in object-oriented code: A systematic literature review
	1 Introduction
	2 Related work
	3 Research method
	3.1 Research questions
	3.2 Search strategy
	3.3 Study selection
	3.4 Study classification
	3.5 Study quality assessment
	3.6 Data extraction and analysis
	3.6.1 Refactoring activities
	3.6.2 Data set details
	3.6.3 Study context

	3.7 Validity threats

	4 Results
	4.1 Overview of the PSs
	4.2 RQ1: What are the refactoring activities considered in the PSs?
	4.3 RQ2: What are the approaches followed by the PSs to identify the refactoring opportunities?
	4.3.1 Quality metrics-oriented approach
	4.3.2 Precondition-oriented approach
	4.3.3 Clustering-oriented approach
	4.3.4 Graph-oriented approach
	4.3.5 Code slicing-oriented approach
	4.3.6 Dynamic analysis-oriented approach

	4.4 RQ3: What are the approaches followed by the PSs to empirically evaluate the proposed or existing identification techniques for refactoring opportunities?
	4.4.1 Intuition-based evaluation
	4.4.2 Quality-based evaluation
	4.4.3 Mutation-based evaluation
	4.4.4 Comparison-based evaluation
	4.4.5 Behavior-based evaluation
	4.4.6 Applicability-based evaluation

	4.5 RQ4: What data sets were used to evaluate the identification techniques proposed in the PSs?
	4.5.1 The variety of the data sets
	4.5.2 The sizes of the data sets
	4.5.3 The programming languages of the data sets
	4.5.4 The publicity of the data sets

	4.6 Study quality assessment

	5 Discussion and open issues
	5.1 Refactoring activities (Related to RQ1)
	5.2 Approaches to identifying refactoring opportunities (Related to RQ2)
	5.3 Empirical evaluation approaches (Related to RQ3)
	5.4 Data sets employed (Related to RQ4)

	6 Conclusions and future work
	Acknowledgments
	Appendix A Search strings
	A.1 Library: ACM
	A.2 Library: Springer
	A.3 Library: Scopus
	A.4 Library: IEEE
	A.5 Library: ISI
	A.6 Library: ScienceDirect
	A.7 Library: Compendex and Inspec (using Engineering Village web-based discovery platform)

	Appendix B: PS primary extracted data
	References

