
�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems for Introductory
Programming Education

JUHA SORVA, VILLE KARAVIRTA, and LAURI MALMI, Aalto University

This article is a survey of program visualization systems intended for teaching beginners about the run-
time behavior of computer programs. Our focus is on generic systems that are capable of illustrating many
kinds of programs and behaviors. We inclusively describe such systems from the last three decades and
review findings from their empirical evaluations. A comparable review on the topic does not previously ex-
ist; ours is intended to serve as a reference for the creators, evaluators, and users of educational program
visualization systems. Moreover, we revisit the issue of learner engagement which has been identified as
a potentially key factor in the success of educational software visualization and summarize what little is
known about engagement in the context of the generic program visualization systems for beginners that
we have reviewed; a proposed refinement of the frameworks previously used by computing education re-
searchers to rank types of learner engagement is a side product of this effort. Overall, our review illustrates
that program visualization systems for beginners are often short-lived research prototypes that support the
user-controlled viewing of program animations; a recent trend is to support more engaging modes of user
interaction. The results of evaluations largely support the use of program visualization in introductory pro-
gramming education, but research to date is insufficient for drawing more nuanced conclusions with respect
to learner engagement. On the basis of our review, we identify interesting questions to answer for future
research in relation to themes such as engagement, the authenticity of learning tasks, cognitive load, and
the integration of program visualization into introductory programming pedagogy.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education

General Terms: Human Factors

Additional Key Words and Phrases: Introductory programming education, CS1, software visualization,
program visualization, program dynamics, notional machine, engagement taxonomy, literature review

ACM Reference Format:
Sorva, J., Karavirta, V., and Malmi, L. 2013. A review of generic program visualization systems for intro-
ductory programming education. ACM Trans. Comput. Educ. 13, 4, Article 15 (November 2013), 64 pages.
DOI:http://dx.doi.org/10.1145/2490822

1. INTRODUCTION

Over the past three decades, dozens of software systems have been developed whose
purpose is to illustrate the runtime behavior of computer programs to beginner pro-
grammers. In this article, we review the computing education research (CER) liter-
ature in order to describe these systems and to survey what is known about them
through empirical evaluations. To our knowledge, a comparable review on this topic
does not previously exist; earlier reviews (e.g., Maletic et al. [2002]; Myers [1990];
Price et al. [1993]) have explored either algorithm visualization or software visualiza-
tion more generally, and have sought only to provide illustrative examples of different

Authors’ address: J. Sorva, V. Karavirta, and L. Malmi, Department of Computer Science and Engineering,
Aalto University, P.O. Box 15400, FI-00076 AALTO, Finland; email: juha.sorva@aalto.fi.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1946-6226/2013/11-ART15 $15.00
DOI:http://dx.doi.org/10.1145/2490822

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:2 J. Sorva et al.

kinds of systems rather than to present a more thorough exposition of a subfield as
we do. Our review is intended to serve as a reference for the creators, evaluators, and
users of educational program visualization systems.

We have structured the article as follows. Section 2 starts with some background on
the challenges faced by beginners taking an introductory programming course (CS1)
and on the use of visualization as a pedagogical tool in such courses. Section 3 posi-
tions our review within the field of software visualization and explicates the criteria
we have used to include systems in our review and to exclude others. To provide addi-
tional context and structure for what comes later, Section 4 surveys a current debate in
the CER community that concerns the importance of learners actively engaging with
visualizations; we also present a framework that we have used for classifying modes of
engagement. The lengthy Section 5 contains the review proper: descriptions of specific
visualization systems and their empirical evaluations. In Section 6, we discuss the sys-
tems and the evaluations in overall terms and point at opportunities for future work.
Section 7 briefly concludes the article.

This article has been adapted and extended from a chapter in the first author’s doc-
toral thesis [Sorva 2012].

2. MOTIVATION

The creators of many program visualization systems have been motivated by the dif-
ficulties that beginners have with program dynamics and fundamental programming
concepts. We will briefly outline some of these difficulties and then comment, in gen-
eral terms, on the use of visualization to address them.

2.1. The Learning Challenge

Static perceptions of programming. Novices sometimes see particular programming
concepts (e.g., objects, recursion) merely as pieces of code rather than as active com-
ponents of a dynamic process that occurs at runtime [e.g., Eckerdal and Thuné 2005].
More generally, the entire endeavor of learning to program is sometimes perceived pri-
marily as learning to write code in a particular language, and less, if at all, as learning
to design behaviors to be executed by computers [Booth 1992; Thuné and Eckerdal
2010]. Learning to relate program code to the dynamics of program execution trans-
forms the way novices reason about programs and consequently the way they practice
programming [Sorva 2010].

Difficulties understanding the computer. A major challenge for the programming be-
ginner is to come to grips with the so-called notional machine [du Boulay 1986], an
abstraction of the computer in the role of executor of programs of a particular kind.
Different programming languages and paradigms can be associated with different no-
tional machines; the execution of a particular program can also be expressed in terms
of different notional machines at different levels of abstraction.

Various authors have discussed the importance of the notional machine in terms
of mental model theory [e.g., Ben-Ari 2001; Bruce-Lockhart and Norvell 2007; Jones
1992; Sorva 2013]. Ideally, mental models of the machine would be internally consis-
tent and robustly reflect the principles that govern each machine component. How-
ever, as is typical of people’s mental models of systems, novice programmers’ intuitive
understandings of the notional machine tend to be incomplete, unscientific, deficient,
and lacking in firm boundaries. Often they are based on mere guesswork. Beginners
are unsure of the capabilities of the computer, sometimes attributing human-like rea-
soning capabilities to it [Pea 1986; Ragonis and Ben-Ari 2005]. The way the computer
needs each eventuality to be specified in detail (including, for instance, “obvious” else
branches) is something that does not come naturally to many people [Miller 1981;

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:3

Pane et al. 2001]; novice programmers need to learn about what the computer takes
care of and what the job of the programmer entails.

Misconceptions about fundamental programming constructs. The computing ed-
ucation research literature is rife with reports of the misconceptions that novice
programmers harbor about fundamental programming constructs and concepts [see,
e.g., Clancy 2004; Sorva 2012]. Many of these misconceptions concern the hidden
runtime world of the notional machine and concepts that are not clearly visible in pro-
gram code: references and pointers, object state, recursion, automatic updates to loop
control variables, and so forth. Many of these topics also top various polls of students
and teachers on difficult and/or important introductory programming topics [Goldman
et al. 2008; Lahtinen et al. 2005; Milne and Rowe 2002; Schulte and Bennedsen 2006].

Struggles with tracing and program state. The difficulties that novice programmers
have with tracing programs step by step have been reported in a much-cited multi-
national study [Lister et al. 2004] and elsewhere in the literature. Worryingly many
students fail to understand statement sequencing to the extent that they cannot grasp
a simple three-line swap of variable values [Simon 2011]. Tracing involves keeping
track of program state, which is challenging to novices, perhaps in part because state is
an everyday concept whose centrality to computer science is alien to non-programmers
[Shinners-Kennedy 2008]. Studies of program comprehension have suggested that un-
derstanding state is an area that is particularly challenging to novices [Corritore and
Wiedenbeck 1991].

In order to reason about changes in state—to “run” one’s mental model of a notional
machine—one needs to select the right “moving parts” to keep track of at an appro-
priate level of abstraction, but novices’ inexperience leads them to make poor choices
and to fail as a result of excessive cognitive load [Fitzgerald et al. 2008; Vainio and
Sajaniemi 2007]. Novices, like expert programmers, can benefit from the external sta-
tus representations provided by debuggers, but regular debuggers are not especially
beginner-friendly (see Section 5.3.1).

In part because they have difficulty in doing so, and in part because they fail to
see the reason for it, novices are often little inclined to trace their programs [see, e.g.,
Perkins et al. 1986]. Instead, novices may simply try to compare programs to familiar
exemplars or simply guess—one article reports that students “often decided what the
program would do on the basis of a few key statements” [Sleeman et al. 1986]. Novices
also sometimes write template-based code that they cannot themselves trace [Thomas
et al. 2004].

The reader can find a more detailed review of the beginners’ difficulties with pro-
gram dynamics and the notional machine in a companion article [Sorva 2013].

2.2. Visualizing a Notional Machine

Using pictures as clarification is common in textbooks and classrooms around the
world, both within and outside computing education. According to one survey, most
attendees of a computing education conference use visualizations of some sort in their
teaching almost every day [Naps et al. 2003]. Various scholars within computing
education research have advocated the visualization of the machine to support
beginner programmers since the 1970s [see, e.g., Mayer 1975, 1976 and Figure 1]. A
visualization of a notional machine can make focal, explicit, and controllable runtime
processes that are hidden, implicit, and automatic when one’s focus is on the program
at the code level. Such visualizations can serve as a conceptual models that help
learners construct viable programming knowledge. Depending on the learning goals
(the target notional machine), program execution may be visualized at different levels
of abstraction; Gries and Gries, for instance, used a visual memory model “that rises

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:4 J. Sorva et al.

Fig. 1. A drawing of a notional machine presented to beginner programmers [Mayer 1976, 1981].

Fig. 2. A visualization of classes and objects [Gries 2008]. C is a class, represented as a file drawer. a0 is an
identifier for an object of type C, represented as a manila folder.

above the computer and that is based on an analogy to which students can relate”
[Gries 2008; Gries and Gries 2002, and see Figures 2 and 3].

The traditional way to use a visualization is for the teacher to complement their
lectures and textbooks with pictures. Visualizations of a notional machine may be
drawn on paper or blackboard or in presentation software. An alternative to rela-
tively passive chalk-and-talk approaches is to involve the students; various teachers
have experimented with having learners draw their own visualizations of program
execution within a notional machine [e.g., Gries 2008; Gries and Gries 2002; Hertz
and Jump 2013; Holliday and Luginbuhl 2004; Mselle 2011; Vagianou 2006]. Kines-
thetic activities such as role-playing notional machine components in class are also
sometimes used [e.g., Andrianoff and Levine 2002]. However, as some of the adopters
of pen-and-paper visualization and related pedagogies have observed, student-drawn
visualization of program dynamics has the weakness that drawing (and re-drawing)
tends to take a lot of time and is often perceived as tedious by students [Gries
et al. 2005; Vagianou 2006]. The time-consuming nature of drawing may also limit
the number of visual examples that a teacher can expound in a lecture. To assist,
computing educators have come up with a variety of software tools. These tools are the
topic of our review in this article; the next section makes some further delimitations
and positions our review within the broader field of software visualization.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:5

Fig. 3. A visual metaphor suggested by Jiménez-Peris et al. [1997] for object-oriented programming.

3. SCOPE OF THE REVIEW

Gračanin et al. [2005] define software visualization as follows.

“The field of software visualization (SV) investigates approaches and
techniques for static and dynamic graphical representations of algorithms,
programs (code), and processed data. SV is concerned primarily with the
analysis of programs and their development. The goal is to improve our
understanding of inherently invisible and intangible software . . . The main
challenge is to find effective mappings from different software aspects to
graphical representations using visual metaphors.”

As the field of software visualization is varied, many authors have tried to struc-
ture it by proposing classification systems and taxonomies of software visualization
tools [see, e.g., Hundhausen et al. 2002; Lahtinen and Ahoniemi 2005; Maletic et al.
2002; Myers 1990; Naps et al. 2003; Price et al. 1993; Roman and Cox 1993; Stasko
and Patterson 1992].1 From a different perspective, Kelleher and Pausch [2005] laid
out a classification of software environments for use in introductory programming ed-
ucation; the set of these systems overlaps with SV. In this section, we will use the
classification systems of Maletic et al. and Kelleher and Pausch to give an overall feel
for the field and to specify the scope of our review. Let us start, however, by considering
some broad areas within software visualization.

Program visualization vs. algorithm visualization vs. visual programming vs. visual
program simulation. Within software visualization, two broad subfields can be iden-
tified (Figure 4). Algorithm visualization (AV) systems visualize general algorithms
(e.g., quicksort, binary tree operations), at a high level of abstraction, while program
visualization (PV) systems visualize concrete programs, usually at a lower level.2

1Our use of the terms “taxonomy” and “classification” (or “classification system”), which are often used in-
terchangeably, is based on that of Bloom [1956]. According to Bloom (p. 17), a classification serves a purpose
if it is communicable and useful, while a taxonomy is intended to be validated through research. A taxonomy
can also be used as a classification.
2In some of the older literature especially, “program visualization” refers to what we have just called soft-
ware visualization, but at present, the terms are commonly used the way we use them here.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:6 J. Sorva et al.

Fig. 4. Forms of software visualization [loosely adapted from Price et al. 1993]. The size of each area is not
important. For the sake of simplicity, not all intersections are shown.

Within program visualization, some visualizations represent program code (e.g.,
dependencies or code evolution) while others illustrate the runtime dynamics of pro-
grams. Program animation refers to dynamic visualization of program dynamics—the
common variety of program visualization in which the computer determines what
happens during a program run, and visualizes this information to the user (e.g., as
in a typical visual debugger). Also within program visualization, research on visual
programming attempts to find new ways of specifying programs using graphics rather
than visualizing software that is otherwise in non-graphical format. In visual program
simulation (VPS) as defined by Sorva [2012], graphical elements serve a different
purpose: the user “takes the role of the computer” and uses a visualization to learn
and demonstrate what the computer does as it executes an existing program.3

Our review focuses on program visualization tools. Algorithm visualization tools
operate at a level of abstraction that is too high to be interesting for learning about
the fundamentals of program execution. We also do not cover visual programming.
Although many visual programming environments do feature a facility for animating
the execution of a visual program [see, e.g., Carlisle 2009; Scott et al. 2008], we have
here focused on mainstream programming paradigms. We will, however, include a
few selected systems with AV and visual programming functionality, which have
additional features intended for teaching novices about the program dynamics of
non-visual languages.

The classification of Maletic et al. Maletic et al. [2002] categorized software systems
by their task (i.e., purpose), audience, target (i.e., type of content), representation, and
medium. Even though Maletic et al. were themselves concerned with programming-
in-the-large and not with education, their framework is well suited to explaining what
part of the SV landscape we are interested in.

3Visual program simulation is a PV analogue of the visual algorithm simulation supported by the TRAKLA2
AV system [Korhonen et al. 2009a] in which learners simulate abstract algorithms by manipulating a
visualization.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:7

The task of the systems we review is to aid the learning and teaching of introductory
programming, with an intended audience of novice programmers and CS1 teachers.
This goal is different from the goal of many other SV systems, which seek to help
(expert) programmers to learn about complex software systems. As for the target di-
mension, our review focuses on systems that visualize the execution-time dynamics of
program runs using concrete values within a notional machine. This rules out, among
other things, systems that only generate abstract (symbolic) control flow or data flow
diagrams based on program code. Any form of representation will do as far as our re-
view is concerned, as long as the medium is an electronic one and the visualization can
be viewed onscreen. (We do include simple textual representations of variable values
as a visualization of what happens within a program run.)

The classification of Kelleher and Pausch. Of the various kinds of programming lan-
guages and environments categorized by Kelleher and Pausch [2005], our focus is on
what they called systems for helping learners track program execution and for provid-
ing models of program execution through metaphors or illustrations. This means that
in terms of Kelleher and Pausch’s scheme we rule the following to be out of scope.

— Empowering systems, which attempt to support the use of programming in pursuit
of another goal (e.g., end-user programming, edutainment).

— Learning support systems, which try to ease the process of learning to program
through means such as motivating contexts and social learning.

— Systems for expressing programs, which attempt to make it easier for beginners to
express instructions to the computer.

— Systems for structuring programs, which attempt to facilitate the organization
of instructions by changing the language or programming paradigm (e.g., Pascal,
Smalltalk) or by making existing programming languages or paradigms more acces-
sible (e.g., BlueJ).

— Actors-in-microworlds approaches, which make programming concrete by replac-
ing a general-purpose programming language by a mini-language whose commands
have a straightforward physical explanation in a virtual microworld.

Specialized vs. generic systems. We may also group systems that visualize program
execution into specialized and generic systems. Specialized systems visualize the pro-
gram dynamics related to a particular concept or construct (or very few). For in-
stance, there are systems for visualizing parameter passing [e.g., Naps and Stenglein
1996], pointers [e.g., the visualizations embedded into the tutoring system by Kumar
2009], expression evaluation [Brusilovsky and Loboda 2006; Kumar 2005], using ob-
jects [e.g., the BlueJ object bench: Kölling 2008], recursion [e.g., Eskola and Tarhio
2002; Velázquez-Iturbide et al. 2008], and assignment [e.g., Ma 2007]. Generic sys-
tems, on the other hand, feature a notional machine that can deal with many language
constructs and visualize various aspects of program execution.

Specialized systems have the advantage of being able to center on a topic. They
may abstract out all other aspects of the notional machine for less clutter and a clear
learning focus, and can also make use of visual tricks and metaphors that suit the
particular topic especially well. Generic systems provide better coverage of content;
a related benefit is that learners do not have to learn to use multiple different tools,
many of which come with a learning curve of their own. Moreover, generic systems
provide a big picture of a notional machine which a motley combination of specialized
tools will not provide; this may help learners integrate their conceptual knowledge
into a coherent whole. Generic systems also tend to admit students’ own programs to
be visualized, which is not so common in specialized systems.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:8 J. Sorva et al.

In this review, we focus exclusively on generic systems.

Scope of the review, summarized. This article contains a review of generic program
visualization systems in which the execution of programs that have been written in a
general-purpose language in a traditional non-visual way is visualized onscreen in a
manner suitable for novice programmers so that the system can be used to learn about
program execution.

Within this scope, we have been inclusive; we list all the systems we are aware of
rather than just providing examples.

Before turning to the actual systems, let us consider in some more detail the ways
in which learners may use a visualization.

4. ENGAGING LEARNERS WITH SOFTWARE VISUALIZATIONS

“They will look at it and learn” thought many an enthusiastic programming teacher
while putting together a visualization. But it might take more than that. Petre writes
the following.

“In considering representations for programming, the concern is formalisms,
not art—precision, not breadth of interpretation. The implicit model behind
at least some of the claims that graphical representations are superior to
textual ones is that the programmer takes in a program in the same way
that a viewer takes in a painting: by standing in front of it and soaking it
in, letting the eye wander from place to place, receiving a ‘gestalt’ impres-
sion of the whole. But one purpose of programs is to present information
clearly and unambiguously. Effective use requires purposeful perusal, not
the unfettered, wandering eye of the casual art viewer.” [Petre 1995]

The representational aspects of a visualization—its constituent parts and level of
abstraction—are doubtless relevant to learning. These aspects can play a decisive part
in defining what it is possible to learn from the visualization and what content the
visualization is suitable for learning about. Yet although the careful design of a visu-
alization is important, it is not the whole story. Even a visualization that has been
painstakingly crafted to be as lucid as possible may fail to aid learning in practice. In
the past decade, educators with an interest in SV have increasingly paid attention to
how learners engage with visualizations.

In this section, we discuss the research on learner engagement in software visual-
ization and the so-called engagement taxonomies that have been put forward in the
CER literature (Subsection 4.1), before describing the adapted taxonomy that we our-
selves use for structuring our review and describing how PV systems engage learners
(Subsection 4.2). Subsection 4.3 then elaborates on why we thought it was worthwhile
to suggest a new framework instead of using the existing ones.

4.1. Earlier Work on Learner Engagement

4.1.1. An Influential Meta-Study: Engage to Succeed. Naps comments on how attitudes to
software visualization in computing education have changed during the past couple of
decades.

“As often happens with eye-catching new technologies, we have gone
through what in retrospect were predictable phases: An initial, almost giddy,
awe at the remarkable graphic effects, followed by disenchantment that the
visualizations did not achieve their desired purpose in educational applica-
tions. Then we went through a period of empirical evaluation in which we
began to sort out what worked and what did not.” [Naps 2005]

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:9

The recent period of sobering reflection has been fueled by a meta-study of the ef-
fectiveness of algorithm visualizations by Hundhausen et al., who compared 24 earlier
experiments to nutshell.

“In sum, our meta-study suggests that AV technology is educationally effec-
tive, but not in the conventional way suggested by the old proverb ‘a pic-
ture is worth 1,000 words’. Rather, according to our findings, the form of
the learning exercise in which AV technology is used is actually more im-
portant than the quality of the visualizations produced by AV technology.”
[Hundhausen et al. 2002]

Hundhausen et al. observed that most of the successful AV experiments are pre-
dicted by the theory of personal constructivism (see, e.g., Larochelle et al. [1998];
Phillips [2000]), which emphasizes the need to actively engage with one’s environ-
ment to construct one’s subjective knowledge. Part of the benefit of active engagement
may also come simply from the fact that learners end up spending more time with the
visualization, increasing the time spent on studying.

Although the original work of Hundhausen et al. was done on the algorithm
visualization side of the SV world, it has been hypothesized that the conclusions
apply to program visualization as well. Compatible results have also been reported
by researchers of educational visualization outside SV: videos and animations can be
perceived as “easy” and their impact may be inferior to that of static images or even
to not viewing a visualization at all, whereas interactive multimedia that cognitively
engages the learner can lead to more elaborative processing (integration with prior
knowledge) and consequently to better learning [see, e.g., Najjar 1998; Scheiter et al.
2006, and references therein].

4.1.2. Engagement Taxonomies: The OET and the EET. Drawing on the work of
Hundhausen and his colleagues, a sizable working group of SV researchers put
their heads together to differentiate between the ways in which visualization tools
engage learners [Naps et al. 2003]. They presented a taxonomy whose levels describe
increasingly engaging ways of interacting with a visualization: no viewing, viewing,
responding, changing, constructing, and presenting. Naps et al. noted that the levels
after viewing in their taxonomy, which we call the OET for original engagement
taxonomy, do not form a strict hierarchy, but the authors did nevertheless hypothesize
that using a visualization on a higher level of the taxonomy is likely to have a greater
impact on learning than using it on one of the lower levels.

SV systems sometimes feature modes that engage students at different levels. Even
a single activity may engage students at multiple levels of the taxonomy. Indeed,
by definition, all activities at any but the no viewing level always involve viewing
the visualization in addition to whatever else the student does. Naps et al. hypoth-
esized that “more is better”: a mix of different engagement levels leads to better
learning.

Myller et al. [2009] presented a more fine-grained version of the engagement taxon-
omy. Their extended engagement taxonomy (EET) somewhat changes the definition of
some of the original categories, and introduces four additional levels, resulting in: no
viewing, viewing, controlled viewing, entering input, responding, changing, modifying,
constructing, presenting, and reviewing. The research focus of Myller et al. was on pro-
gram visualization and collaborative learning. They added to the hypotheses of Naps
et al. by proposing that as the level of engagement between collaborating visualization
users and the visualization increases, so does the communication and collaboration
between the users.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:10 J. Sorva et al.

Fig. 5. The two dimensions of the 2DET engagement taxonomy.

There is limited empirical support for the engagement taxonomies. The authors of
the OET have discussed how the reseach that inspired the taxonomy maps onto it
[Naps et al. 2003]. Some studies since have been explicitly grounded in the OET or
the EET (e.g., Korhonen et al. [2009b]; Laakso et al. [2009]; Lauer [2006]; Myller et al.
[2007b, 2009]), and a meta-study was conducted by Urquiza-Fuentes and Velázquez-
Iturbide [2009], who surveyed successful evaluations of software visualizations and
related them to the OET. Overall, it can be said that although empirical work to
date does tentatively support a few of the hypotheses built into the engagement tax-
onomies (in the context of AV especially), a solid general validation of the OET or
the EET does not exist. (In Section 6, we will return to what can be said about
learner engagement in the specific context of the PV tools that are the focus of our
review.)

4.2. The 2DET

In order to structure our review and to help us produce a nuanced and yet succinct
and systematic description of the learning activities supported by different program
visualization systems, we have chosen to use an adaptation of the earlier engagement
taxonomies.

The engagement taxonomy of Figure 5—for lack of a better name, let us call it
2DET—has two dimensions. The first dimension, direct engagement, is concerned with
the engagement that the learner has with the visualization itself. The second dimen-
sion, content ownership, is concerned with an indirect form of engagement that results
from the learner’s relationship with the target software, that is, the content of the vi-
sualization. Both dimensions contribute to the learner’s overall engagement with the
visualization, as shown in Figure 5.

Most of the levels along the two dimensions are similar to those in the OET and the
EET, but we have modified some of the definitions and names. We have summarized
the categories of the 2DET in Table I and will describe them in some more detail in
the following sections.

4.2.1. The Direct Engagement Dimension. The direct engagement dimension consists of
seven categories, or levels.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:11

Table I. The Categories of the 2DET Engagement Taxonomy

The direct engagement dimension
Level Description
1 No viewing The learner does not view a visualization at all.
2 Viewing The learner views a visualization with little or no control over how he does it.
3 Controlled viewing The learner controls how he views a visualization, either before or during the

viewing, for example, by changing animation speed or choosing which images
or visual elements to examine.

4 Responding The learner responds to questions about the target software, either while or
after viewing a visualization of it.

5 Applying The learner makes use of or modifies given visual components to perform
some task, for example, direct manipulation of the visualization’s
components.

6 Presenting The learner uses the visualization in order to present to others a detailed
analysis or description of the visualization and/or the target software.

7 Creating The learner creates a novel way to visualize the target software, for example,
by drawing or programming or by combining given graphical primitives.

The content ownership dimension
Level Description
1 Given content The learner studies given software whose behavior is predefined.
2 Own cases The learner studies given software but defines its input or other parameters

either before or during execution.
3 Modified content The learner studies given software that they can modify or have already

modified.
4 Own content The learner studies software that they created themselves.

On the first level, no viewing, no visualization is used. Examples: studying source
code; reading a textual description of how an example program works.

When viewing, the learner has no control over how he views the visualization. Ex-
amples: watching a video or non-stop animation of a dynamic process without being
able to control its pacing; watching someone else use a visual debugger.

On the controlled viewing level, the learner plays a part in deciding what he or
she sees. He may change the pace of the visualization or choose which part of a vi-
sualization to explore. Examples: stepping through a program in a visual debugger;
viewing a sequence of program state diagrams printed on paper; choosing which vari-
ables to show in a visual program trace (either before or during execution); navigating
an avatar through a virtual 3D world.

When responding to a visualization, the learner uses the visualization to answer
questions presented to him either while or after he views it. Examples: What will the
value of that variable be after the next line is executed? What is the time complexity
of this program?

A learner applies a visualization when he makes use of or modifies given visual
components to perform some task related to the target software. The task may be to
carry out some procedure or algorithm, to illustrate a specific case, or to create a piece
of software, for instance. Examples are simulating the stages of an algorithm using a
given visualization of a data structure, using given elements to record a visualization
of how the evaluation of an expression proceeds, using given visual components to
produce a piece of code, and annotating a program’s source code so that a visualization
of key stages is produced when it is run.

When engaging on the presenting level, the learner makes use of a visualization
to present an analysis or description to others. What is presented can concern
either the visualization or the target software. The presentation task has to be
demanding enough to require significant reflection and a detailed consideration of

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:12 J. Sorva et al.

the visualization on the part of the presenter. Examples are an in-class presentation
of a visualization and the program it represents and a peer review of a visualization
created by another student.

Finally, creating a visualization means designing a novel way to visualize some
content. Examples are drawing a visualization of a given program or a self-written
program, producing a visualization by combining given graphical primitives pre-
viously void of meaning in the domain of the content, and writing a program that
visualizes software.

4.2.2. The Content Ownership Dimension. There are four categories on the content own-
ership dimension.

Given content means that the learner engages with a visualization of software that
they have not produced themselves and whose behavior they do not significantly affect.
Examples are a program that does not expect user input and has been provided by a
teacher or chosen from a selection of predefined examples in an SV tool’s library, and
a ready-made program to which the learner only provides some relatively arbitrary
input (e.g., a program that prompts the learner for their name and prints it out).

Own cases is defined as above, except that the learner can choose inputs or other
parameters that significantly affect what the target software does. Examples are
choosing a data set for an algorithm and entering inputs that affect loop termination
during a program visualization that illustrates control flow.

Modified content means that the learner engages with a visualization of given soft-
ware which they have already modified themselves or may modify while using the
visualization.

Own content means that the learner engages with a visualization of software that
they wrote themselves. An example is using a visualization tool to examine one’s pro-
gramming project. (N.B. This is distinct from creating on the direct engagement dimen-
sion, in which the learner creates a visualization.)

4.3. Why a New Taxonomy?

We feel that the 2DET allows a clearer and richer expression of modes of visualization
use than the OET and the EET. This has been our primary motivation in introducing
it, and in this article, we use the taxonomy mainly as a classification tool that makes it
more convenient to describe the systems we review. That said, we do expect that both
kinds of engagement highlighted by the two dimensions of the 2DET can help bring
about the “purposeful perusal” of program visualizations that Petre called for (Section
4), making the 2DET potentially useful in future research efforts. We will now provide
a brief rationale for preferring the 2DET.

4.3.1. Content Ownership as a Separate Dimension. We believe that content ownership—a
learner’s involvement with the content of a visualization—is an aspect of engagement
that merits greater explicit consideration in the context of educational visualization.

Increased content ownership can lead to better learning simply through a greater
time investment and higher cognitive effort. A learner who has not merely studied
a given example but has instead designed their own use cases or created the content
from scratch is likely to be more familiar with the content and more capable of mapping
the visualization to the content that it represents.

We also see a strong motivational aspect in the content ownership dimension of
the 2DET. Whereas the direct engagement dimension represents increasing activity
in task requirements, content ownership is related to the reasons why a learner cares
about what is being visualized and consequently to learners’ willingness to cognitively
engage with visualizations. For example, we would expect that a student is typically
more likely to care about (and learn from) a visualization of, say, a buggy program

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:13

they created themselves than about a visualization of a given example program that
they are supposed to debug. Various learning theories can be read as supporting this
hypothesis, including those constructivist ones which emphasize learners’ participa-
tion in shaping the learning process. For instance, the constructionist theory of Papert
[1993] sees learners as makers whose desire to build things (such as programs) can be
harnessed for better learning.

For the most part, the earlier work on the engagement taxonomies ignores or fi-
nesses the issue of content ownership. The EET does introduce two categories—
entering input and modifying—that are defined in terms of the learner’s relationship
with the target software. This, we feel, is helpful and has inspired our present work.
However, the EET conflates two dimensions that we think are best analyzed sepa-
rately. Our two dimensions represent two different aspects of engagement that are
intuitive and that are always present simultaneously in any mode of engagement with
a visualization. We also find that it is difficult to come up with convincing justifications
for placing the categories involving content ownership within a single-dimensional
framework; for instance, it is challenging to find strong analytical arguments for the
locations of entering input and modifying in the EET.

4.3.2. Other Issues with the Taxonomies. Creating a visualization from scratch or from
primitive components is a cognitively demanding task, which requires a kind of re-
flection on the properties of the visualization that is distinct in nature from what is
required to manipulate a given visualization or to add annotations (of given kinds)
to source code. However, all these activities would belong on the rather crowded con-
structing level of the OET. The 2DET separates these two forms of engagement as
creating and applying [cf. Lauer 2006].

While the EET is more nuanced in this respect than the OET, some specific details
of the category system seem dubious. For instance, are there reasons to believe that
providing input while viewing a program run (which counts as entering input) is gen-
erally and substantially a less engaging activity than providing an input set before
viewing (which counts as modifying)? We have tried to word the category definitions of
the 2DET to address some issues of this kind.

The EET features separate categories for presenting work to others and reviewing
the work of others. To us, both appear to be tasks of analysis and communication
that are more or less equally engaging, so we have used a single category for both
activities.4

The ordering of categories above controlled viewing along the direct engagement di-
mension of the 2DET can be seen as loosely analogous to the revised Bloom’s taxonomy
by Anderson et al. [2001], and indeed our choice of terms has been influenced by this
well-established framework. One criticism of the engagement taxonomies is also anal-
ogous to a criticism of Bloom’s taxonomy (made, e.g., by Hattie and Purdie [1998]):
a particular kind of task does not necessarily lead to a certain kind of (cognitive) re-
sponse. For instance, a student may provide only a surface-level answer to a profound
question. Another problem concerns the responding category especially: there are many
different kinds of questions, some of which call for considerably more cognitive effort
than others. The 2DET as presented does not fix this issue.

5. THE SYSTEMS

This section describes a number of program visualization tools for introductory pro-
gramming education, as delimited in Section 3 above. A summary of the tools appears

4Oechsle and Morth, whose work inspired the addition of reviewing at the top of the EET, in fact put reviewing
in place of, rather than on top of, presenting in their adaptation of the OET [Oechsle and Morth 2007].

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:14 J. Sorva et al.

Table II. A Summary of Selected Program Visualization Systems (Part 1/2)

System name
(or author)

Page At least
since

Status Overall purpose Paradigm Language Eval.

LOPLE /
DynaMOD /
DynaLab

19 1983 inactive examples imp Pascal, [Ada], [C] S

EROSI 20 1996 inactive examples imp Pascal Q, S

(Fernández et al.) 20 1998 inactive examples OO Smalltalk none

PlanAni 21 2002 active? examples imp Pascal, Java, C,
Python

E, Q

Metaphor-based
OO visualizer

22 2007 active? examples OO Java E

(Miyadera et al.) 22 2006 inactive examples imp Css ?

CSmart 22 2011 active assignments imp C S

regular visual
debuggers

25 varies varies debug/tr varies varies varies

Basic
Programming

26 1979 inactive develop imp BASIC ?

Amethyst 26 1988 inactive debug/tr imp Pascal none

DISCOVER 26 1992 inactive develop imp pseudocode E

VisMod 28 1996 inactive develop,
debug/tr, [AV]

imp Modula-2 A

Bradman 28 1991 inactive debug/tr imp C E

(Korsh et al.) 29 1997 inactive debug/tr, AV imp C++ss none

VINCE 29 1998 inactive debug/tr imp C E, S

OGRE 30 2004 inactive? debug/tr imp, OO C++ E, S

VIP 30 2005 active debug/tr imp C++ss E, S, Q

JAVAVIS 33 2002 inactive debug/tr imp, OO Java A

(Seppälä) 33 2003 inactive debug/tr imp, OO Java none

OOP-Anim 33 2003 inactive debug/tr imp, OO Java none

JavaMod 33 2004 inactive debug/tr imp, OO Java none

JIVE 34 2002 active debug/tr imp, OO Java A

Memview 34 2004 inactive? debug/tr imp, OO Java A

CoffeeDregs 34 2009 active examples imp, OO Java A

in Tables II and IV, which give an overview of each system, and Tables III and V,
which go into more detail about the systems’ functionality and empirical evaluations.
The rest of this long section is structured primarily in terms of the support that the
systems have for the direct engagement dimension of the 2DET. More specifically, this
section consists of the following sections.

5.1 A legend for Tables II through V.
5.2 Systems that support at most the controlled viewing level of the direct

engagement dimension and which do not support own content. That is,
systems that are meant for automatically visualizing the execution of
teacher-given example programs (with possible user modifications).

5.3 Systems that support the controlled viewing level of the direct engagement
dimension, and possibly responding, but no higher, and that do support
own content. That is, systems that provide automatic, controllable
visualizations for learners’ own programs (and maybe also embedded
questions). More than half of the systems reviewed fall in this category.

5.4 Systems that support some form of applying a visualization. (Some of
these systems also feature other forms of engagement that are ranked
lower in the 2DET, such as responding or controlled viewing.)

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:15

Table III. A Summary of How Selected PV Systems Present Notional Machines and Engage Learners (Part 1/2)

System name
(or author)

Notional machine
elements

Representation Step
grain

Direct
engagement

Content
ownership

LOPLE /
DynaMOD /
DynaLab

Control, Vars, Calls symbols S ctrl’d viewing own cases,
[own content]

EROSI Control, Vars, Calls abstract 2D, [audio] S ctrl’d viewing given content

PlanAni Control, Vars, ExprEv,
Structs

visual metaphors,
smooth animation,
explanations

E ctrl’d viewing own cases

(Fernández et al.) Refs, Objs, Classes, Calls abstract 2D, visual
metaphors

MP ctrl’d viewing modified content

Metaphor-based
OO visualizer

Control, Vars, ExprEv,
Refs, Objs, Classes, Calls,
Structs

visual metaphors,
smooth animation,
explanations

E ctrl’d viewing own cases

(Miyadera et al.) Control, Vars, ExprEv,
Calls

abstract 2D S? ctrl’d viewing given content

CSmart Control, Vars, ExprEv explanations, visual
metaphors, audio

S ctrl’d viewing given content

regular visual
debuggers

Control, Vars, Calls,
Objs, Refs, Structs (e.g.)

standard widgets S ctrl’d viewing own content

Basic
Programming

Control, Vars, ExprEv symbols E ctrl’d viewing own content

Amethyst Control, Vars, Calls,
Structs, [Refs]

abstract 2D S? ctrl’d viewing own content

DISCOVER Control, Vars abstract 2D S ctrl’d viewing own content

VisMod Control, Vars, Refs,
Calls, Structs

standard widgets,
abstract 2D

S ctrl’d viewing own content

Bradman Control, Vars, ExprEv,
Refs

symbols,
explanations,
[abstract 2D],
[smooth animation]

S ctrl’d viewing own content

(Korsh et al.) Control, Vars, Refs,
Calls, ExprEv, Structs

abstract 2D E ctrl’d viewing own content

VINCE Control, Vars, Refs,
Calls, Addrs, Structs

abstract 2D,
explanations

S ctrl’d viewing own content

OGRE Control, Vars, Refs, Objs,
Classes, Calls, Structs

abstract 3D, smooth
animation,
explanations

S ctrl’d viewing own content

VIP Control, Vars, ExprEv,
Calls, Refs, Structs

standard widgets,
explanations,
[abstract 2D]

S ctrl’d viewing own content

JAVAVIS Vars, Refs, Objs, Calls,
Structs

abstract 2D, UML S ctrl’d viewing own content

(Seppälä) Control, Vars, Refs, Objs,
Calls

abstract 2D S ctrl’d viewing own content

OOP-Anim Control, Vars, Refs, Objs,
Classes

abstract 2D, smooth
animation,
explanations

S ctrl’d viewing own content

JavaMod Control, Vars, ExprEv,
Refs, Objs, Calls, Structs

standard widgets,
UML

E ctrl’d viewing own content

JIVE Control, Vars, Refs, Objs,
Classes, Calls, Structs

standard widgets,
abstract 2D

S ctrl’d viewing own content

Memview Control, Vars, Refs, Objs,
Classes, Calls, Structs

standard widgets S ctrl’d viewing own content

CoffeeDregs Control, Vars, Refs, Objs,
Classes, Calls, Structs

abstract 2D S ctrl’d viewing own content

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:16 J. Sorva et al.

Table IV. A Summary of Selected Program Visualization Systems (Part 2/2)

System name
(or author)

Page At least
since

Status Overall purpose Paradigm Language Eval.

JavaTool 34 2008 active develop,
assignments

imp Javass none

EVizor 35 2009 active develop,
assignments

imp, OO Java E, S

Eliot / Jeliot I 35 1996 inactive debug/tr, AV imp, [func] C, Javass,
[Scheme]

S, Q

Jeliot 2000 /
Jeliot 3

36 2003 active debug/tr, [develop],
[assignments]

imp, OO Java, [C],
[Python]

E, S, Q

GRASP / jGRASP 39 1996 active develop, debug/tr, AV imp, OO Java, C, C++,
Objective-C,
Ada, VHDL

E (on
AV), A

The Teaching
Machine

39 2000 active debug/tr, AV,
[assignments]

imp, OO C++, Java S

ETV 40 2000 inactive debug/tr imp C, Java, Perl,
Lisp

A

HDPV 40 2008 inactive debug/tr, AV imp, OO C, C++, Java none

Jype 40 2009 inactive? develop,
assignments, AV

imp, OO Python A

Online Python
Tutor

41 2010 active debug/tr,
assignments

imp, OO Python none

typical functional
debuggers

41 varies varies debug/tr func varies varies

ZStep95 41 1994 inactive debug/tr func Lispss none

(Kasmarik and
Thurbon)

42 2000 inactive debug/tr? imp, OO Java E

CMeRun 42 2004 inactive debug/tr imp C++ss A

Backstop 43 2007 inactive debug/tr imp Javass S

(Gilligan) 43 1998 inactive develop imp, [OO] Pascal, [Java] none

ViRPlay3D2 44 2008 unknown SW design, examples OO CRC cards none

(Dönmez and
İnceoğlu)

45 2008 unknown examples,
assignments

imp C#ss none

Online Tutoring
System

45 2010 inactive assignments imp VBAss E, S

UUhistle 46 2009 active assignments,
debug/tr

imp, OO Python, [Java] E, S, Q

ViLLE 48 2005 active examples,
assignments

imp variousss,
pseudocode

E, S

WinHIPE 49 1998 active debug/tr, develop func Hope E, S

5.5 As an addendum, a brief commentary on low-level (e.g., machine code)
approaches to program visualization (whichever their engagement
level). The systems mentioned here do not appear in the tables.

As a result of the prevalence of controlled viewing and, to a lesser extent, applying in
existing tools, these subsections cover all the tools within scope that we are aware of.

5.1. Legend for Tables II through V

In several columns of those tables, square brackets mark features that are peripheral,
untried, or at an early stage of implementation.

System name (or author). The name of the system. Closely related systems are
grouped together as one item. Systems without a published name have the authors’
names in parentheses instead.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:17

Table V. A Summary of How Selected PV Systems Present Notional Machines and Engage Learners (Part 2/2)

System name
(or author)

Notional machine
elements

Representation Step
grain

Direct
engagement

Content
ownership

JavaTool Control, Vars, Structs abstract 2D S ctrl’d viewing own content

EVizor Control, Vars, Calls, Refs,
Objs, Classes, Structs

abstract 2D, smooth
animation,
explanations

S ctrl’d viewing,
responding

own content /
given content

Eliot / Jeliot I Control, Vars, [ExprEv],
Structs

abstract 2D, smooth
animation

event-
based

ctrl’d viewing own content

Jeliot 2000 /
Jeliot 3

Control, Vars, ExprEv,
Calls, Refs, Objs, Classes,
Structs

abstract 2D, smooth
animation

E ctrl’d viewing,
[responding]

own content

GRASP / jGRASP Control, Vars, Calls,
Refs, Objs, Structs

standard widgets,
abstract 2D, smooth
animation

S ctrl’d viewing own content

The Teaching
Machine

Control, Vars, ExprEv,
Calls, Addrs, Refs, Objs,
Structs

standard widgets,
abstract 2D

E ctrl’d viewing own content

ETV Control, Vars, Calls standard widgets S ctrl’d viewing own content

HDPV Control, Vars, Calls,
Refs, Objs, Structs

abstract 2D E ctrl’d viewing own content

Jype Control, Vars, Objs, Refs,
Calls, Structs

standard widgets,
abstract 2D

S ctrl’d viewing own content

Online Python
Tutor

Control, Vars, Objs,
Classes, Refs, Calls,
Structs

abstract 2D S ctrl’d viewing own content

typical functional
debuggers

Control, Vars, ExpEv
(e.g.)

standard widgets,
abstract 2D

E ctrl’d viewing own content

ZStep95 Control, Vars, ExprEv standard widgets,
abstract 2D

E ctrl’d viewing own content

(Kasmarik and
Thurbon)

Control, Vars, Refs,
Calls, Objs, Structs

abstract 2D S ctrl’d viewing own content?

CMeRun Control, Vars, ExprEv text S ctrl’d viewing own content

Backstop Control, Vars, ExprEv text S ctrl’d viewing own content

(Gilligan) Control, Vars, ExprEv,
Calls, Structs, [Objs],
[Classes], [Refs]

visual metaphors,
standard widgets

E applying own content

ViRPlay3D2 Vars, Objs, Classes, Refs,
Calls

virtual 3D world MP ctrl’d viewing,
applying

own content /
given content

(Dönmez and
İnceoğlu)

Control, Vars, ExprEv standard widgets E applying own code

Online Tutoring
System

Control, Vars, ExprEv standard widgets,
explanations

E applying given content

UUhistle Control, Vars, ExprEv,
Calls, Refs, Objs, Classes,
Structs

abstract 2D, smooth
animation,
explanations

E ctrl’d viewing,
responding,
applying

own content /
given content

ViLLE Control, Vars, Calls,
Structs

standard widgets,
explanations

S ctrl’d viewing,
responding,
applying

given content,
[modified content]

WinHIPE Control, Vars, ExprEv,
Refs, Calls, Structs

abstract 2D E ctrl’d viewing,
applying

own content /
given content

Page. The page within this article where the description of the system begins. The
entries in Tables II to V are sorted by this number.

At least since. The year when the system was first used, its first version was released,
or the first article on the system was published. May not be accurate, but gives an idea
of when the system came into being. The years listed in this column are the basis of
the timeline in Figure 6.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:18 J. Sorva et al.

Fig. 6. A timeline of the program visualization systems reviewed. The years are approximations based on
the first publications and system versions that we are aware of. The names in bold face indicate currently
active systems, that is, projects whose recent activity we have found evidence of. The colors correspond to
modes of engagement supported by the systems: orange means the controlled viewing of examples (Section 5.2)
and blue of own content (Section 5.3); green is used for systems that support some form of applying a visualiza-
tion (Section 5.4).

Status. Our understanding—or best guess—based on web searches and/or personal
communication, of whether the system is still being used in teaching, maintained,
and/or developed. May be inaccurate.

Overall purpose. The overall purpose of the system: what students can do with it.
Examples is listed when the system is intended for studying given examples only. De-
bug/tr refers to any stepwise tracing of user code (possibly for the purpose of finding
bugs); it subsumes examples. Develop subsumes debugging, and means that the system
is intended to be used as a software development environment. Assignments means
that the tool facilitates an assignment type—for example, multiple-choice questions
or visual program simulation—that is not a part of a programmer’s usual routine of
read/test/debug/modify/write/design code. Although this review does not include pure
algorithm visualization systems, we mention AV as a goal of AV/PV hybrid systems.

Paradigm. The programming paradigms that the software can primarily help learn
about. Imp is used for imperative and procedural programming, which may include the
occasional or implicit use of objects such as arrays. OO stands for richer object-oriented
programming, and func for functional programming.

Language. The programming language(s) in which the programs being visualized
(the target software) are written. For systems which visualize user-written programs,
we have used the subscript SS to mean that only a significantly limited subset of a
language is available for use (e.g., functions or object-orientation are missing). Lesser
limitations are common and not marked.

Evaluation. The types of empirical evaluations of the system in the context of in-
troductory programming, to the best of our knowledge. Anecdotal (A) means that only
anecdotal evidence has been reported about student and/or teacher experiences with
the system (but this still implies that the system has been used in actual practice).
Experimental (E) refers to quantitative, controlled experiments or quasi-experiments.
Survey (S) refers to producing descriptive statistics and/or quotes from systematically

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:19

collected user feedback or other data. Qualitative (Q) refers to rigorous qualitative re-
search (e.g., grounded theory, phenomenography).

Notional machine elements. What the visualization covers: a non-exhaustive list
of key elements of the notional machine visualized by the system. Control refers to
control flow: the system makes explicit which part of program code is active at which
stage. Vars stands for variables. ExprEv means expression evaluation. Calls refers
to the sequencing of function/procedure/method calls and returns (which may or may
not be expressed in terms of call stacks). Refs stands for references and/or pointers,
Addrs for memory addresses. Objs is short for objects. Classes means that the system
visualizes classes not only as source code or a static class diagram, but as a part of
the program runtime. Structs refers generally to any composite data—arrays, records,
lists, trees, and the like—that has a bespoke representation within the system. All
these categories are our own abstractions. They are realized in different ways in
different systems. It has not been possible to try out all the systems; the descriptions
given are an interpretation of the descriptions and images in the literature.

Representation. What the visualization primarily consists of, on the surface: the
kinds of visual elements used.

Step grain. The size of the smallest step with which the user can step through
the program. Statement (S) means that an entire statement, definition, or declara-
tion (usually a single line) is executed at once, although stepping into and out of
functions/methods may be a separate step. Expression (E) means that the user steps
through stages of expression evaluation in more detail. Message passing (MP) refers to
stepping through the program one object interaction at a time.

Direct engagement. The levels of direct engagement between learner and visualiza-
tion which the system explicitly supports, in terms of the 2DET (Section 4.2). The
presenting and creating levels of the 2DET do not feature in the table, as none of
the systems explicitly support them, which of course does not imply that the visual-
izations shown by the systems cannot be presented to others. The basic engagement
level of merely viewing a visualization is not listed separately unless it is the only one
present (which is not the case in any of the tools reviewed). We consider each system as
a generic PV system: modes of interaction that are particular to a specific subsystem
or programming concept (e.g., an object inspection tool) are not listed.

Content ownership. The degree of learners’ ownership of the software whose behav-
ior is visualized by the system. Again, the levels are taken from the 2DET taxonomy.
In this column, we have generally only listed the highest degree of ownership that the
system allows, as systems that support learner-defined content also support teacher-
defined content. However, given content is separately listed along with own content in
cases where the system has a distinct mode of use specifically meant for ready-made
example programs.

5.2. Controlled Viewing of Given Examples

The following systems are primarily meant for controlled viewing of built-in or teacher-
defined examples (i.e., given content). Some of them also feature some support for own
cases or modified content.

5.2.1. Early Libraries of Examples: LOPLE/DYNAMOD/DynaLab, EROSI, and Fernández et al.’s
Tool. Although many software visualization systems were developed in the 1980s, few
that we are aware of fall within the scope of this review, as education-oriented systems
tended to deal with algorithm visualization [e.g., BALSA; see Brown 1988] whereas the
program visualization systems were intended for expert use [e.g., VIPS; Isoda et al.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:20 J. Sorva et al.

Fig. 7. DynaLab executing an example program [Birch et al. 1995].

1987]. An exception to this trend was LOPLE, a dynamic Library of Programming
Language Examples [Ross 1983]. LOPLE was designed to allow novices to step through
the execution of given example programs. The manner of execution in LOPLE was
similar to that of a modern visual debugger. LOPLE evolved first into DYNAMOD
[Ross 1991] and then into DynaLab [Birch et al. 1995; Boroni et al. 1996]. DynaLab
(Figure 7) allowed execution to be stepped backwards, a feature that novices prized,
according to student feedback. The earliest work was done with Pascal; the platform
later supported various other programming languages as well. The authors provide
anecdotal evidence of the usefulness of the tool in their teaching [Boroni et al. 1996;
Ross 1991]. Their students liked the system, too [Ross 1991].

George [2000a, 2000b, 2000c, 2002] evaluated a system called EROSI, which was
built primarily for illustrating procedure calls and recursion. EROSI featured a selec-
tion of program examples, whose execution it displayed. Subprogram calls were shown
in separate windows with arrows illustrating the flow of control between them. George
demonstrated through analyses of student assignments and interviews that the tool
was capable of fostering a viable “copies” model of recursion which students could then
apply to program construction tasks. He reports that students liked EROSI.

Fernández et al. [1998] created a tool for illustrating the inner behavior of object-
oriented Smalltalk programs to students on a high level of abstraction. This unnamed
system was built on top of a more generic learning platform called LearningWorks,
which used a visual book metaphor to present information. The system visualized
the dynamic object relationships within teacher-defined example systems of classes
by drawing object diagrams in which interobject references and messages passed were
shown as arrows of different kinds.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:21

Fig. 8. PlanAni executing a Pascal program. Variables are visualized in role-specific ways. A “fixed value”
is represented by carving a value in stone. A “most-recent holder” is represented by a box with previous
values crossed out. A “stepper” is represented by footprints leading along a sequence of values. The lamp
representing a “one-way flag” is being switched on, as explained by the popup dialog.

5.2.2. Roles and Metaphors: PlanAni and the Metaphor-Based OO Visualizer. Roles of vari-
ables [Sajaniemi n.d.] are stereotypical variable usage patterns. For instance, a vari-
able with the role “stepper” is assigned values according to some predefined sequence
(for example, 0, 1, 2, etc.) while a “fixed value” is a variable whose value is never
changed once it is initially assigned to. Sajaniemi and his colleagues built a system
called PlanAni for the visualization of short, imperative CS1 program examples in
terms of the variables involved and in particular their roles [Sajaniemi and Kuittinen
2003]. Each variable is displayed using a role-specific visual metaphor (see Figure 8).
For instance, “a fixed value is depicted by a stone giving the impression of a value that
is not easy to change, and . . . A stepper is depicted by footprints and shows the current
value and some of the values the variable has had or may have in the future, together
with an arrow giving the current direction of stepping”. PlanAni visualizes operations
on these variables (e.g., assignment) as animations which, again, are role-specific.

PlanAni cannot visualize arbitrary programs, only examples that a teacher has con-
figured in advance (in Pascal, C, Python, or Java). The teacher can include explana-
tions to be shown at specific points during the execution sequence. Through roles, the
system aims to develop students’ repertoire of variable-related solution patterns for
typical problems.

Sajaniemi and Kuittinen [2003] report that PlanAni had a positive impact on in-
class discussions compared to a control group that used a regular visual debugger.
The students liked the system and worked for longer with it, whereas the debugger

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:22 J. Sorva et al.

group tended to surf the web more during labs. Sajaniemi and Kuittinen further ar-
gue, on the basis of an experiment [Sajaniemi and Kuittinen 2005], that using PlanAni
helped foster the adoption of role knowledge and PlanAni users understood programs
more deeply than non-users did, although the deeper understanding of the PlanAni
users was not significantly reflected in the correctness of their answers. Expanding
upon these results, Byckling and Sajaniemi [2005] report that students using PlanAni
outperformed other students in code-writing tasks and exhibited significantly more
forward-developing behavior while coding, which is suggestive of increased program-
ming knowledge.

Nevalainen and Sajaniemi [2005] used eye-tracking technology to compare the tar-
geting of visual attention of PlanAni users on the one hand and visual debugger users
on the other. As might be expected, PlanAni users focused a great deal more on vari-
ables. Nevalainen and Sajaniemi also studied program summaries written by the two
groups immediately after using the tool, and conclude that PlanAni increased the
use of higher-level information at the expense of low-level, code-related information.
Nevalainen and Sajaniemi further report that students found PlanAni to be clearer
but relatively unpleasant to use (because too slow) compared to a visual debugger. In
another publication, the same authors similarly compared how novice programmers
used a regular PlanAni and a variant with no animations [Nevalainen and Sajaniemi
2006]. They found that irrespective of the version of the tool, the users mainly relied on
textual cues (popup windows and program code). Nevalainen and Sajaniemi conclude
that the location and size of visualizations is more important than animation, and that
using the role images is more significant than animating them. In yet another experi-
ment, however, Nevalainen and Sajaniemi [2008] did not find the presence of role im-
ages to be crucial to the formation of role knowledge compared to a version of PlanAni
in which only textual explanations of roles were present. Stützle and Sajaniemi [2005]
found that the role metaphors used in PlanAni worked better than a neutral set of
control metaphors.

A “sequel” to PlanAni is the metaphor-based animator for object-oriented programs
envisioned by Sajaniemi and his colleagues, who recommend that their system be used
by students who have first grasped some fundamental programming concepts using
PlanAni and are now learning about object-oriented concepts [Sajaniemi et al. 2007].
Their OO animator (Figure 9) also uses visual metaphors for variable roles but fur-
ther adds support for classes (blueprints), objects (filled-in pages), references (flags),
method calls and activations (envelopes and workshops), and garbage collection (by
a garbage truck). The system is otherwise fairly similar to PlanAni. It does not work
with arbitrary programs but only with predefined examples; the existing incarnation
of the system is a web page on which a number of examples can be accessed as Flash
animations.

5.2.3. Examples in C and Related Languages: Miyadera et al.’s System and CSmart. A system
for animating C programs was presented by Miyadera et al. [2007]. Their innominate
system resembled a regular visual debugger, but allowed the user to step backwards
in execution and was capable of graphically visualizing and animating the creation of
variables, for instance. At least the primary goal of the system appears to have been the
generation of animations of teacher-provided programs. The authors’ main research
focus was learners’ use of animation controls and the assessment of the difficulty of
different lines of code; the system collected such data and presented it for the teacher
to study.

The CSmart [Gajraj et al. 2011] takes an approach to visualization that is quite
different from all the other tools that we reviewed, and features an unusual form of
controlled viewing. Instead of visualizing the execution of an existing program, CSmart

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:23

F
ig

.
9.

T
h

e
m

et
ap

h
or

-b
as

ed
O

O
an

im
at

or
of

S
aj

an
ie

m
i

et
al

.
ru

n
n

in
g

a
Ja

va
pr

og
ra

m
.

O
bj

ec
ts

ar
e

sh
ow

n
as

fi
ll

ed
-i

n
pa

ge
s

of
a

bl
u

ep
ri

n
t

bo
ok

.
M

et
h

od
in

vo
ca

ti
on

s
(h

er
e,

of
m
a
i
n

an
d
t
r
a
n
s
f
e
r
T
o
)a

re
sh

ow
n

as
w

or
ks

h
op

s
w

h
ic

h
co

n
ta

in
lo

ca
lv

ar
ia

bl
es

.R
ef

er
en

ce
s

ar
e

re
pr

es
en

te
d

by
fl

ag
s

w
h

os
e

co
lo

r
m

at
ch

es
a

fl
ag

on
th

e
ta

rg
et

ob
je

ct
.T

h
e

ga
rb

ag
e

tr
u

ck
oc

ca
si

on
al

ly
ga

th
er

s
u

n
re

fe
re

n
ce

d
ob

je
ct

s.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:24 J. Sorva et al.

Fig. 10. The user has just finished typing in a line of code within the CSmart IDE. The system’s instructions
to the user are still visible below line 10. In this case, they consist of the code that the student must duplicate,
a short teacher-authored comment, and a graphical metaphor of the statement to be written.

already visualizes each statement of a C program to the student before the student
types it in.

CSmart provides example-based tutorials in which the system assists the student in
duplicating teacher-defined example programs and thereby practicing programming
fundamentals. The system knows exactly what program it requires the student to
write in each programming assignment. It instructs the student at each step using
text, graphics, and audio. Some of the guidance is teacher-annotated into the model
solutions, some generated automatically. Various visual metaphors have been built
into the system to illustrate the runtime semantics of the programming language; an
example is shown in Figure 10. Gajraj et al. report that their students liked CSmart.

5.3. Controlled Viewing of User Content

In terms of the 2DET taxonomy, the tools listed in this subsection represent the main-
stream of program visualization for introductory programming education: controlled
viewing of own content. (In addition, one of the systems, EVizor, supports responding.)
Most of these systems can be described as educationally motivated variants of the
visual debuggers that professional programmers use, or as IDEs that contain such de-
buggers. Since there are a lot of systems of this kind, we present them grouped into a
few (non-taxonomical) themes, as follows.

5.3.1 “Regular” visual debuggers for imperative programming.
5.3.2 Early work: program animation systems for the formerly popular

CS1 languages BASIC and Pascal, their immediate relatives, and
pseudocode.

5.3.3 Program animation systems for C/C++.
5.3.4 Program animation systems for Java.
5.3.5 The various versions of the much-studied Eliot/Jeliot program anima-

tion system.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:25

Fig. 11. The PyDev debugger for Python programs within the Eclipse IDE. A Python program is being
executed, with line 3 up next. Threads and call stacks are listed in the top left-hand corner. Global and local
variables are shown on the right. The yellow highlight signifies a change in the value of a variable.

5.3.6 Other multi-language program animation systems (which support both
C/C++ and Java, and sometimes other languages).

5.3.7 Program animation systems for Python.
5.3.8 Visualization tools for functional programming.
5.3.9 Tools that do not support stepping through programs in vivo but instead

produce snapshots of programs that can be studied post mortem.

5.3.1. Regular Visual Debuggers.

“Tools that reflect code-level aspects of program behavior, showing execution
proceeding statement by statement and visualizing the stack frame and the
contents of variables . . . are sometimes called visual debuggers, since they
are directed more toward program development rather than understanding
program behavior.” [Pears et al. 2007, p. 209]

Programming experts—and novices, though not as often as many programming
teachers would like—use debugging software such as that shown in Figure 11 to find
defects in programs and to become familiar with the behavior of complex software.
These tools are not particularly education-oriented or beginner-friendly, but can still
be useful in teaching [see, e.g., Cross et al. 2002] and may be integrated into otherwise
beginner-friendly environments such as the BlueJ IDE [Kölling 2008].

Typical visual debuggers have significant limitations from the point of view of
learning programming fundamentals. They generally step through code only at the
statement level, leaving most of the educationally interesting dynamics of expres-
sion evaluation implicit. The visualization and user interface controls of a “regular
visual debugger” are geared toward programming-in-the-large, not toward explicating
programming concepts and principles such as assignment, function calls, parameter
passing, and references, all of which the user is assumed to understand already. Only
information essential for an expert programmer is shown, with the goal of helping the
programmer to find interesting (defective) stages of execution in as few steps as pos-
sible while ignoring as many details as possible. The target programs may be large
in terms of both code and data. For such reasons, the visualization shown by a typi-
cal visual debugger is not particularly graphic, and consists primarily of text within
standard GUI widgets.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:26 J. Sorva et al.

Fig. 12. A part of the Basic programming environment on the Atari 2600 [image from Atwood 2008].

Bennedsen and Schulte [2010] conducted an experimental study in which a group of
CS1 students used the visual debugger built into the BlueJ IDE to step through object-
oriented programs, while a control group used manual tracing strategies. They found
no significant differences in the performance of the groups on a post-test of multiple-
choice questions on program state. A rerun of the experiment using a different de-
bugger yielded similar results. Bennedsen and Schulte surmise that “it could be that
the debugger is not useful for understanding the object interaction but just for finding
errors in the program execution.”

Despite their limitations, visual debuggers are worth a mention in this section be-
cause they are highly useful tools that novices do encounter in CS1 courses, because
they do visualize certain aspects of program dynamics, and because they serve as a
point of departure for reviewing the more education-oriented systems below.

5.3.2. Early Work: Systems for BASIC, Pascal (Plus Relatives), and Pseudocode: Basic Program-
ming, Amethyst, DISCOVER, and VisMod. An early educational PV system that supported
visual tracking of program execution was Basic Programming, “an instructional tool
designed to teach you the fundamental steps of computer programming” [Robinett
1979]. Basic Programming was an integrated environment for the Atari 2600 com-
puter, in which the user could input BASIC code and view its execution. In addition to
the Status and Program regions shown in Figure 12, the system featured a Variables
region that displayed the current values of variables during a program run and a Stack
region that showed the stages of expression evaluation in more detail than a regular
visual debugger does. The system also provided a 2D graphics region for displaying
sprites.

Amethyst (Figure 13) was a PV system prototype that visualized data as two-
dimensional graphics during a program run [Myers et al. 1988]. Amethyst differed
from the earlier algorithm visualization systems from which it was derived in that
it created visualizations automatically for any program. The user would nevertheless
manually mark through the GUI which data items should be visualized.

DISCOVER [see Ramadhan et al. 2001, and references therein] was a prototype of
an intelligent tutoring system that featured an explicit conceptual model of a notional
machine in the form of a visualization (Figure 14). We discuss here only the software
visualization features of DISCOVER.

One way for students to use DISCOVER was similar to that typical of the other tools
reviewed in this section: the student would step through an existing program’s execu-
tion and observe changes in variables, etc., with the help of a graphical machine model.
A more unusual feature of the system was the immediate visualization of partial solu-
tions during editing. When this functionality was enabled and the user typed in a new

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:27

Fig. 13. A Pascal program in Amethyst [Myers et al. 1988]. Amethyst used different shapes to emphasize
the different types of values; for instance, the rounded rectangles in this figure denote integer values.

Fig. 14. The user has just completed writing a program in DISCOVER [image from Ramadhan et al. 2001].
He has used the editor to input pseudocode into the Algorithm Space. In the immediate execution mode, the
effects of each new statement on execution instantly shown through updates to the other panels.

statement into their program, DISCOVER would instantly show onscreen the effects
of the new statement on the entire program run.

Some of the evaluations of DISCOVER examined the impact of the visualization. In
an experiment, students who used a visualization-enabled version of the system made
fewer errors and completed tasks quicker than other students who used a version
that did not visualize execution or support line-by-line stepping through execution;

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:28 J. Sorva et al.

Fig. 15. A Modula-2 program in VisMod [Jiménez-Peris et al. 1999].

however, the the result was not statistically significant [Ramadhan et al. 2001; see
also Ramadhan 2000].

VisMod [Jiménez-Peris et al. 1999] was a beginner-friendly programming environ-
ment for the Modula-2 language. The system had various features designed with
the novice programmer in mind, including a pedagogically oriented visual debugger
(Figure 15). The system had a cascading-windows representation for the call stack,
as well as line graphics of certain data structures (lists and trees). The authors report
that students liked it.

5.3.3. C/C++ Animators: Bradman, Korsh et al.’s Tool, OGRE, VINCE, and VIP. Smith and
Webb [1991, 1995a] created Bradman, a visual debugger intended for novice C pro-
grammers. The explicit goal of the system was to improve students’ mental models of
program execution by helping them visualize the dynamic behavior of programs. As
with any debugger, a user of Bradman could put in their own code and examine its be-
havior statement by statement. Compared to regular debuggers, a novelty in Bradman
was the detailed English explanations of each statement as it was executed. Smith and
Webb report that students liked these explanations and reacted particularly positively
to a version of Bradman that included them in comparison to one that did not [Smith
and Webb 1995b]. The other novelty in Bradman was its illustration of changes in
program state. Bradman showed previous and current states of a program side by
side for convenient comparison. This is pictured in Figure 16, which also illustrates
how Bradman visualized references using graphical arrows. The explicit treatment of
state changes was particularly useful since Bradman did not support stepping back-
wards. Smith and Webb [2000] report on an experimental evaluation of Bradman in
which they found that CS1 students who used Bradman for examining teacher-given
programs performed significantly better in a multiple-choice post-test on parameter
passing than did students without access to Bradman. Other, similar tests performed
during the intervention did not yield statistically significant differences between
groups.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:29

Fig. 16. One of Bradman’s GUI windows after the C statement p = & k has just been executed [Smith and
Webb 1995a]. The previous state is shown side by side with the current state. (The rest of the program does
not appear in the Variables window.)

Fig. 17. The program visualization tool of Korsh et al. [image from Korsh and Sangwan 1998]. The user
has used uppercase type declarations to mark which parts of the program should be visualized on the right.
Expression evaluation is shown step by step in the Operations panel.

A prototype system for visualizing the behavior of C++ programs for CS1 and CS2
students was presented by LaFollette et al. [2000; Korsh and Sangwan 1998]. Their
tool used abstract graphics (mostly boxes inside boxes; see Figure 17) to visualize the
values of variables, the call stack, and the stages of expression evaluation. The system
required the user to annotate the source code to indicate which parts he wished to
visualize, which may have made it quite challenging for novices to use effectively. The
user could also adjust the level of detail by selecting which operations were animated
and which were not.

VINCE was a tool for exploring the statement-by-statement execution of C
programs—self-written by students or chosen from a selection of given examples [Rowe
and Thorburn 2000]. VINCE visualized computer memory on a relatively low level
of abstraction, as a grid which illustrated where pointers point and references refer

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:30 J. Sorva et al.

Fig. 18. VINCE executing a C program [Rowe and Thorburn 2000]. Each square in the grid corresponds to
a single byte of memory. Note that the mouse cursor is over a four-byte integer, which is currently stored in
the variable square as indicated by the text at the bottom.

(Figure 18). The system’s authors compared the confidence and C knowledge of CS1
students who used VINCE for extra tutorials over a three-week period to those of a
control group who did not do the extra tutorials. Their results suggest that VINCE
had no significant impact on students’ self-assessment of their programming ability,
but the VINCE users did in fact learn more than the control group (as might be ex-
pected since they had extra learning activities). The students liked VINCE.

A related system that came out later, OGRE, visualized C++ programs using 3D
graphics [Milne and Rowe 2004]. Each scope within a running program (e.g., a method
activation) was represented by a flat plane on which small 3D figures appear to rep-
resent objects and variables. References and pointers were shown as arrows, and data
flow as an animation in which a cylinder moved through a pipe between source and
target (Figure 19). The user could step forward and backward, and use 3D-game-like
controls for moving about, rotating the view, and zooming in and out. Milne and Rowe
[2004] conducted an experimental study to determine the effectiveness of the OGRE
approach. Their target group was not a CS1 course but second-year students who had
just completed a course on object-oriented C++ programming. Milne and Rowe report
that students who were given additional OGRE-based tutorials on certain difficult top-
ics to complement other learning materials could answer questions on those same top-
ics significantly better than other students who had not had that access. An interview
study showed that students liked OGRE, as did the instructors who had used it.

VIP is another system for visualizing C++ programs that is akin to a visual debug-
ger but intended for a CS1 audience [Virtanen et al. 2005]. It displays relationships
between variables (e.g., references are shown as arrows) and highlights the details
of expression evaluation. As shown in Figure 20, VIP has a facility for displaying
teacher-given hints and instructions to the student at predefined points in ready-made
example programs [Lahtinen and Ahoniemi 2007]. The system does not support object-
orientation.

Isohanni (née Lahtinen) and her colleagues have reported on the use of VIP in a
number of recent papers.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:31

Fig. 19. Two snapshots of the animation that OGRE used to show a value being assigned from a variable
to another [Milne and Rowe 2004].

Lahtinen et al. [2007a] describe a CS1 course in which students were given the
opportunity to use VIP when doing voluntary “pre-exercises” in preparation for lab
sessions. Of the students who did the pre-exercises, more than a quarter chose to use
VIP, but traditional pen-and-paper strategies were more popular still. Lahtinen et al.
also observed that the volunteers who used VIP were less likely to drop out of the
course; this does not imply that VIP was responsible for this trend, however.

Another article reports a survey of programming students in a number of European
universities on their opinions of program visualization [Lahtinen et al. 2007b]. This
study was not specific to VIP, but roughly half of the students surveyed had taken
a course in which VIP was used. The survey results suggest that the students who
found programming challenging but manageable were the most positive about using
visualizations, while the strongest and weakest students were less impressed. These
findings are in line with the study of Ben-Bassat Levy et al. [2003] on Jeliot 2000,
discussed above, in which a “middle effect” was observed.

Ahoniemi and Lahtinen [2007] conducted an experiment in which randomly selected
students used VIP during CS1, while a control group did not. They tested the students
on small code-writing tasks. No significant differences were found when the entire
treatment group and control group were considered. However, Ahoniemi and Lahti-
nen also identified among their students “novices and strugglers” who either had no
prior programming experience or for whom the course was difficult. Of the novices and
strugglers, the ones who used VIP did significantly better than the ones in the control
group. Ahoniemi and Lahtinen also surveyed the students to find out how much time
they had used to review materials and found that the novices and strugglers in the
VIP group used more time than the ones in the control group did; this is not very sur-
prising, since the students who used VIP had some extra materials (the visualizations

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:32 J. Sorva et al.

Fig. 20. A C++ program within VIP. The at method of a string is about to be called. The evaluation pane in
the top right-hand corner displays previous steps; in this case, the most recent steps involve the evaluation
of at’s parameter expression. This is a teacher-given example program, into which the teacher has embedded
natural language information about individual lines of code. One such explanatory message is shown in the
top left-hand corner.

and their usage instructions) to study. The authors conclude that the benefit of visual-
izations may not be directly due to the visualization itself but to how the visualization
makes studying more interesting and leads to increased time on task.

Isohanni and Knobelsdorf [2010] qualitatively explored how CS1 students used VIP
on their own. They report that students use VIP for three purposes: exploring code,
testing, and debugging. Isohanni and Knobelsdorf discuss examples of ways in which
students use VIP for debugging in particular. Some students used VIP in the way
intended by the teacher, that is, to step through program execution in order to find
the cause of a bug. Other working patterns were also found, however. Some students
stopped running the program in VIP as soon as a bug was found and from then on re-
lied on static information visible in VIP’s GUI (an extremely inefficient way of making
use of VIP, the authors argue). Others still abandoned VIP entirely after they discov-
ered a bug. Isohanni and Knobelsdorf ’s study shows that students do not necessarily
use visualization tools in the way teachers intend them to, and underlines the need for
explicit teaching about how to make use of a PV tool. In another article, the authors
further describe the ways in which students use VIP; this work provides an illustration
of how increasing familiarity with a visualization tool over time can lead to increas-
ingly productive and creative ways of using it [Isohanni and Knobelsdorf 2011].

5.3.4. Java Animators: JAVAVIS, Seppälä’s Tool, OOP-Anim, JavaMod, JIVE, Memview, Coffee-
Dregs, JavaTool, and EVizor. Three distinct system prototypes from around the same time

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:33

Fig. 21. JIVE displays various aspects of a Java program’s execution [Gestwicki and Jayaraman 2005].
Object relationships are illustrated on the left, with a sequence diagram of history information below it.

built on UML to illustrate the execution of Java programs. JAVAVIS [Oechsle and
Schmitt 2002] was an educationally motivated debugger, which used UML object dia-
grams and sequence diagrams to expose program behavior in a learner-friendly way.
Unlike many of the other systems reviewed, JAVAVIS featured limited support for
multithreading. Seppälä [2004] presented a similar visual debugger for CS1 use. His
prototype system visualized the execution of object-oriented Java programs as dynamic
object state diagrams, a notation that “attempts to show most of the runtime state of
the program in a single diagram.” In particular, the system visualized both method
invocations and references between objects in the same graph. Seppälä’s visualization
essentially combined elements of the object diagrams and collaboration diagrams of
UML. OOP-Anim Esteves and Mendes [2003, 2004] was a program visualization tool
for object-oriented programs, which produced a step-by-step visualization of its execu-
tion, showing classes in UML, and objects as lists of instance variables and methods.
Variables were visualized as small boxes which could store references to objects (shown
as connecting lines between variable and object).

Gallego-Carrillo et al. [2004] presented JavaMod, a visual debugger for Java pro-
grams with applications in education. The primary difference between JavaMod and
a regular visual debugger lies in how JavaMod treated each structural element of
the code separately rather than stepping through the program line by line. For in-
stance, the initialization, termination check, and incrementation of a for loop were
each highlighted as separate steps in execution (cf., e.g., the Basic Programming sys-
tem, described previously, and Jeliot, The Teaching Machine, and UUhistle, discussion
forthcoming).

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:34 J. Sorva et al.

Fig. 22. A Java program running in Memview [Gries et al. 2005]. The classes C and D appear within Static
Space, objects within the Heap, and frames on the Stack.

JIVE is a sophisticated debugging environment for Java programs [Gestwicki and
Jayaraman 2005; Lessa et al., n.d.] currently implemented as a plugin for the Eclipse
IDE. JIVE is not meant exclusively for pedagogical use and its expandable visual-
izations (Figure 21) can be used also for examining larger object-oriented programs,
including multithreaded ones. JIVE supports reverse stepping and has various other
features beyond the scope of our review. The authors have used the system in a variety
of courses, introductory-level programming among them.

The creation of the Memview debugger [Gries et al. 2005] was motivated by the de-
sire to support the use of Gries and Gries’s teachable memory model (see Section 2.2
above) by introducing a system that automates the creation of memory diagrams.
Memview, which is an add-on for the DrJava IDE [Allen et al. 2002], works much like
a regular visual debugger, but has a more sophisticated and beginner-friendly way of
displaying the contents of memory that works well for small CS1 programs (Figure 22).
Gries et al. [2005] report anecdotal evidence of the tool’s success in teaching.

CoffeeDregs [Huizing et al. 2012] is a visualization tool explicitly meant for present-
ing a conceptual model of Java program execution for learners. It emphasizes the re-
lationships between classes and objects, which are represented as abstract diagrams.
Only some tentative evaluations of the system prototype have been carried out so far
[Luijten 2009].

One more tool for visualizing Java programs to novices is JavaTool [Brito et al. 2011;
Mota et al. 2009]. The system is similar to a regular visual debugger, but features
beginner-friendly controls for stepping through an animation of the program. Only a
small subset of Java is supported (no objects; only a handful of standard functions
can be called). JavaTool’s most distinguishing feature is that it is designed as a plugin
for the popular Moodle courseware. It is intended to be used for small programming

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:35

Fig. 23. A static method, two objects, and a class in EVizor [Moons and De Backer 2013]. The constructor
of the student class has been invoked from the main method and is being executed.

assignments in which the student writes and debugs code in their web browser and
submits it for grading, receiving instant feedback from the system and optionally peer
feedback from other students.

EVizor is a visualization plugin for the Netbeans IDE [Moons and De Backer 2013].
It visualizes Java program executions as abstract diagrams (Figure 23), allowing the
user to step forward and backwards, to zoom and pan the visualization, and to adjust
the positions of the visual elements. The user can also access online explanations of
the elements on demand. In addition to controlled viewing, EVizor supports embed-
ding interactive popup quizzes into a visualization—a form of responding. Unlike the
large majority of the other tools we have reviewed, the visualization in EVizor is explic-
itly grounded in cognitive psychology, in particular cognitive load theory (e.g., textual
explanations appear close to the relevant visual elements to avoid split attention) and
research on visual perception (e.g., the colors used have been chosen so that they are
easy for humans to recognize visually). Experiments by the system’s authors indicate
that students found it easier to answer questions about program behavior when they
had access to EVizor than when they did not [Moons and De Backer 2013].

5.3.5. Long-Term Tool Development: From Eliot to Jeliot 3. One of the longest-lasting and
most-studied program visualization tools for CS1 is Jeliot. Its longevity, as with almost
any successful piece of software, is based on shedding its skin a few times, sometimes
accompanied by a change of viscera. The stages of the Jeliot project have recently been
reviewed by Ben-Ari et al. [2011].

Jeliot started out as Eliot [Sutinen et al. 1997], a software visualization tool that
graphically animated data (variables) in user-defined C programs. In Eliot, the user
selected which variables were animated, and also had a partial say in what the visual-
ization of a program run looked like through the choice of colors and locations for the
boxes that represented variables. Eliot’s goals were primarily on the algorithm visu-
alization side, and it reportedly worked best when used by programmers who had at
least a bit of experience rather than by complete beginners.

Jeliot I, a Java implementation of Eliot [Haajanen et al. 1997], was a proof-of-
concept system for bringing program animations to the World Wide Web. Lattu
et al. [2000] evaluated Jeliot I in two introductory programming courses. Some of
their interviewees found Jeliot I to be helpful and suitable for beginners. Although a
statistical comparison was not possible, Lattu et al. observed that students in a course
whose teaching was reworked to include Jeliot I as much as possible in lectures and
assignments gained much more from the experience than did students in a course
that introduced the system only briefly and gave it to students as a voluntary learning
aid. Lattu et al. conclude that using Jeliot I forces teachers to rethink how they teach

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:36 J. Sorva et al.

Fig. 24. A snapshot of a Java program being executed in Jeliot 2000 [Ben-Bassat Levy et al. 2003]. The
code is shown on the left. On its right is shown the topmost frame of the call stack, with local variables. A
conditional has just been evaluated in the top right-hand corner.

programming. Despite the positive experiences, Lattu et al. [2000, 2003] also found
problems with bringing Jeliot I to a CS1 context: the GUI was too complex for some
novices to use, and many aspects of program execution, which novices would have
found helpful to see, were left unvisualized (e.g., objects and classes).

Jeliot 2000 [Ben-Bassat Levy et al. 2003] was a reinvention of Jeliot as a more
beginner-friendly tool, with complete automation and a more straightforward GUI
(Figure 24). In Jeliot 2000, the user did not control the appearance of the visualization
or what aspects of execution were animated. Instead, Jeliot 2000 automatically visu-
alized Java program execution in a detailed and consistent manner, all the way down
to the level of expression evaluation. Control decisions were shown as explanatory
text (see Figure 24). The user stepped through the animation using control buttons
reminiscent of a household remote control. Jeliot 2000 did not support object-oriented
concepts, although references to array objects were graphically displayed as arrows.

Ben-Bassat Levy et al. studied introductory programming students using Jeliot 2000
in a year-long course. They found that students using the system significantly im-
proved the results of the students who used it, with an apparent “middle effect”.

“Even in long-term use, animation does not improve the performance of all
students: the better students do not really need it, and the weakest students
are overwhelmed by the tool. But for many, many students, the concrete
model offered by the animation can make the difference between success and
failure. Animation does not seem to harm the grades neither of the stronger
students who enjoy playing with it but do not use it, nor of weaker students
for whom the animation is a burden. . . . The consistent improvement in the

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:37

Fig. 25. Jeliot 3 executing a Java program. The visualization extends that of Jeliot 2000 (Figure 24). The
main novelty of Jeliot 3 is its support for object orientation. This picture [from Ben-Ari et al. 2011], also
shows how active method calls are stacked on top of each other in the Method Area.

average scores of the mediocre students confirms the folk-wisdom that they
are the most to benefit from visualization.” [Ben-Bassat Levy et al. 2003]

As the improvement in grades occurred only some way into the course, Ben-Bassat
Levy et al. conclude that “animation must be a long-term part of a course, so that
students can learn the tool itself”. Ben-Bassat Levy et al. further found that the stu-
dents who used Jeliot 2000 developed a different and better vocabulary for explaining
programming concepts such as assignment than did a control group that did not use
Jeliot. This, the authors remind us, is particularly significant from the socio-linguistic
point of view, according to which verbalization is key to understanding.

Jeliot 2000 was improved upon by adding support for objects and classes to produce
Jeliot 3 [Moreno and Myller 2003; Moreno et al. 2004]. Jeliot 3, shown in Figure 25,
can be used as a standalone application or as a plugin for the pedagogical IDE BlueJ
[Myller et al. 2007a]. Kirby et al. [2010] created a variation of Jeliot for visualizing C
programs by combining the user interface of Jeliot 3 with a C++ interpreter taken from
the VIP tool (see below) [Kirby et al. 2010]. Jeliot has also been extended to generate
prediction questions that students can answer with their mobile phones in classroom
situations Pears and Rogalli [2011a, 2011b].

A number of studies have investigated Jeliot 3 in practice.
Three small-scale studies have explored students’ use of Jeliot 3 in first-year

programming courses [Kannusmäki et al. 2004; Moreno and Joy 2007; Sivula 2005].
Kannusmäki et al. studied the use of Jeliot 3 in a distance education CS1 course,

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:38 J. Sorva et al.

in which using the tool was voluntary. They report that their weakest students in
particular found Jeliot helpful for learning about control flow and OOP concepts, but
some other students chose not to use the tool at all. Moreno and Joy’s students found
Jeliot 3 easy to use, and most of those who tried it continued to use it voluntarily for
debugging. Despite this, Moreno and Joy found that their students did not always un-
derstand Jeliot’s animations and failed to apply what they did understand. Sivula also
reports positive effects of Jeliot on motivation and program understanding, but points
to how the students he observed did not use Jeliot’s controls effectively for studying
programs and ignored much of what might have been useful in the visualization.

Ebel and Ben-Ari [2006] used Jeliot 3 in a high-school course, and report that the
tool brought about a dramatic decrease in unwanted pupil behavior. Ebel and Ben-Ari’s
results came from studying a class whose pupils suffered from “a variety of emotional
difficulties and learning disabilities,” but had normal cognitive capabilities. Although
it is unclear how well this result can be generalized to other contexts, the study does
indicate that program visualization can help students focus on what is to be learned.

Bednarik et al. [2006] used eye-tracking technology to compare the behavior of
novices and experts who used Jeliot 3 to read and comprehend short Java programs.
They found that experts tested their hypotheses against Jeliot’s animation, using Je-
liot as an additional source of information. Novices, on the other hand, relied on the
visualization, interacting with the GUI and replaying the animation more. They did
not read the code before animating it.

Sajaniemi et al. [2008] studied the development of student-drawn visualizations of
program state during a CS1. Parts of their findings concern the effect of visualiza-
tion tools on such drawings. Some of the students used Jeliot 3 for part of the course,
then switched to the metaphorical OO animations (see above), while the others did
the reverse. Irrespective of the group, the great majority of students did not use vi-
sual elements that were clearly taken from the PV tools. When they did, students’
visualizations appeared to be mostly influenced by whichever tool they had used most
recently. [Sajaniemi et al. 2008] discuss the differences in some detail, pointing out,
for instance, that Jeliot users tended to stress expression evaluation more, but made
more errors when depicting objects and their methods.

Myller et al. [2009] investigated the use of Jeliot 3 in a collaborative learning set-
ting. CS1 students worked in small groups in a number of laboratory sessions, during
which their behavior was observed by the researchers. They found that students were
especially interactive when they were required to engage with Jeliot 3 by entering
input to the program. Viewing the visualization made students particularly uninter-
active, even when compared to moments where they were not viewing a visualization
of program execution at all. Myller et al. conclude that having students merely view a
visualization is not a good idea as it reduces collaboration.

Ma et al. [2009, 2011] observed that Jeliot 3 helped many of their students to learn
about conditionals, loops, scope, and parameter passing, but that they found its visu-
alization of references to be too complex. The authors contend that a simpler visual-
ization system tailored for the specific topic of object assignment seemed to be more
suitable for the task.

Maravić Čisar et al. [2010, 2011] used experimental studies in two consecutive years
to evaluate the impact of Jeliot 3 on a programming course. During the course, some
students used Jeliot for programming and debugging in the place of a regular IDE
(which includes a visual debugger). In code comprehension post-tests, the students who
used Jeliot performed significantly better than the control groups. Student feedback
was also positive.

Wang et al. [2012] report a study in which a group of students were first shown
textual explanations of how a program execution and then (separately) an animation

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:39

Fig. 26. An object viewer window within the jGRASP debugger. Control has just returned from the third
constructor call on line 14, and a reference is about to be assigned to variable c.

of the program in Jeliot, while another group first viewed the animation and then saw
the explanations. Wang et al. found that the explanations-first group outperformed
the animations-first group in a post-test that required them to explain programming
concepts.

5.3.6. Other Multi-Language Animators: jGRASP, The Teaching Machine, ETV, and HDPV.
GRASP [Cross et al. 1996], later jGRASP [Cross et al. n.d., Cross et al. 2011], is
another long-lived software visualization system. The system is an IDE that features
a wide array of enhancements for the benefit of the novice programmer, such as the
static highlighting of control structures in code, and conceptual visualization of data
structures. Of most interest for present purposes is the aspect that falls within the
domain of program animation: jGRASP’s visual debugger features “object viewers”,
which can visualize not only certain high-level data structures but also runtime
entities of CS1 interest, such as arrays, objects in general, and instance variables
[Cross et al. 2011]. The original GRASP was meant for Ada programming; jGRASP has
full support for several languages, including Java and C++. Experimental evaluations
of jGRASP have so far revolved around its AV support in courses on data structures.

Like the later incarnations of Jeliot, The Teaching Machine [Bruce-Lockhart and
Norvell 2000] is a system for visualizing the execution of user code at a detailed level.
The Teaching Machine visualizes C++ and Java programs in a way that is similar
to, but richer than, a regular visual debugger (Figure 27). In particular, the novice can
choose to view the stages of expression evaluation in detail to aid comprehension. Step-
ping back within the execution is also supported. Moreover, as shown in Figure 28, The
Teaching Machine is capable of automatically creating dynamic diagrams of the rela-
tionships between data. Later versions have added support for teacher-defined popup
questions [Bruce-Lockhart et al. 2009]; this development appears to have been pri-
marily motivated by a wish to quiz students about algorithms on a higher level of
abstraction. The Teaching Machine can be used as a plugin within the Eclipse IDE.

The Teaching Machine has been used by its authors in various programming
courses, who provide anecdotal evidence of how the system helped them teach in class
[Bruce-Lockhart and Norvell 2007; Bruce-Lockhart et al. 2007]. Their students liked
the system, especially when it was tightly integrated with course notes. However,
while the students of more advanced courses used The Teaching Machine on their
own to study programs with apparent success, CS1 students tended to leave the
tool alone and only viewed it while the instructor was using it. Bruce-Lockhart and
Norvell [2007] report on a modified CS1 course that did not work very well, in which

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:40 J. Sorva et al.

Fig. 27. The Teaching Machine executing a C++ program [Bruce-Lockhart et al. 2007]. The view resembles
that of a regular visual debugger, the main difference being the Expression Engine at the top, which displays
expression evaluation in detail. The part of the expression that will be evaluated next is underlined.

“we found at the end of the course that most of the first year students had never run
[The Teaching Machine] on their own and consequently didn’t really understand how
either the [system], or the model it was based on, worked.” However, after a suitable
emergency intervention—extra labs in which students had to work hands-on with the
system—at the end of the course, “student response was overwhelmingly positive and
the course was at least rescued.”

Terada [2005] described a tool called ETV, which was capable of producing visual
traces of programs written in one of a variety of languages. ETV supported stepping
both forwards and backwards, and visualized the call stack using cascading windows
of source code (akin to VisMod, above). Terada [2005] used ETV in a first-year pro-
gramming course, and reports a mix of student opinions of the tool.

Another multi-language program animator for C/C++ and Java, HDPV, was pre-
sented by Sundararaman and Back [2008]. Like systems such as Jeliot and jGRASP
(above), HDPV displayed data in memory as an abstract diagram. In HDPV, users
could only step forward in the execution trace, but had access to various advanced con-
trols (e.g., zoom, pan, collapse, move elements) that enabled them to choose what to
view. Like jGRASP, HDPV also featured algorithms for the automatic layout of certain
common data structures.

5.3.7. Python in the Modern Browser: Jype and the Online Python Tutor. Jype is a web-
based integrated development environment for Python programming [Helminen 2009;
Helminen and Malmi 2010]. In addition to serving as an IDE, it can be used for explor-
ing teacher-given example programs and as a platform for the automatic assessment
of given programming assignments. Jype is intended specifically for CS1 use and has
a number of beginner-friendly features, among them support for program and algo-
rithm visualization. The system uses the Matrix framework [Korhonen et al. 2004] for

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:41

Fig. 28. Another layout of windows within The Teaching Machine [Bruce-Lockhart et al. 2007]. The a stack
frame and the heap are explicitly shown, along with a linked view that graphically displays relationships
between data.

automatically visualizing data structures such as arrays and trees when they appear
in programs. Jype also visualizes the call stack in a richer way than a typical visual
debugger, as illustrated in Figure 29.

Another new, web-based system for visualizing small Python programs is Online
Python Tutor [Guo 2013], shown in Figure 30. Like Jype, it allows the user to step
forward and backwards in a Python program at the statement level, and supports the
distribution of teacher-given examples and small programming assignments with au-
tomatic feedback. The visualizations created by Online Python Tutor can be embedded
onto web pages, and have been integrated into an online textbook, for instance. The
system has many users; it has been used by thousands of students taking massive
open online courses (MOOCs) [Guo 2013].

5.3.8. Systems for Functional Programming: ‘Typical Functional Debuggers’ and ZStep95. There
are numerous debuggers for functional programs that allow the user to step through
the stages of expression evaluation; some of these are explicitly education-oriented. An
early system for visualizing the dynamics of functional programs (in the Miranda lan-
guage) was presented by Auguston and Reinfelds [1994]. Mann et al. [1994] reported
a study using LISP Evaluation Modeler, which traced the evaluation of Lisp expres-
sions. They found positive transfer effects from the use of the system for debugging,
and their students were eager to use it. ELM-ART [see, e.g., Weber and Brusilovsky
2001] is an intelligent Lisp programming tutor for beginners, which features a com-
ponent that visualizes expression evaluation. The DrScheme/DrRacket IDE also uses
some visual elements to present program dynamics, among its other beginner-friendly
features [see, e.g., Findler et al. 2002]. (Systems of this kind appear as “typical func-
tional debuggers” in Tables IV and V.)

ZStep95 was an untypical Lisp debugging environment suitable for educational
use [Lieberman and Fry 1997]. It was an evolution of ZStep84 [Lieberman 1984].
ZStep95 allowed stepping backward and forward in a program and visualized expres-
sion evaluations in a floating window positioned on top of the evaluated code, thus

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:42 J. Sorva et al.

Fig. 29. A part of Jype’s user interface. The call stack is visualized at the bottom left. The blue box signifies
returning from a function.

reducing the need to move gaze from source code to an animation area. A program run
could also be controlled by jumping directly to a point where a selected expression is
evaluated. Previous values of expression evaluations could be selected for viewing, as
could the expressions that produced in a certain graphical output. We are not aware of
an evaluation of ZStep in an educational context.

5.3.9. Producing Snapshots: Kasmarik and Thurbon’s Tool, CMeRun, and Backstop. Kasmarik
and Thurbon [2003] used an unnamed system that could produce visualizations of
specific program examples. Their tool took Java code as input and produced a sequence
of graphical diagrams to illustrate the given program’s states, in particular the values
that variables get at different stages of execution. The tool’s authors evaluated their
visualizations (which had been created by the teacher using the tool) experimentally
in a CS1 course. They had students answer questions about small example programs,
which were additionally accompanied by visualizations in the case of the treatment
group. The treatment group’s results were significantly better than the control group’s,
without a significant increase in the time they spent on the task.

Etheredge [2004] described a tool called CMeRun, designed to aid novice program-
mers debug their programs. CMeRun instrumented C++ code in such a way that when
the code was run, an execution trace was printed out. The user could examine the trace

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:43

Fig. 30. A program running in Online Python Tutor.

to see which statements were executed and what the values of variables were at each
stage. For instance, an execution of the line

for (i = 0; i <= SIZE; i++)

might appear in the trace of a CMeRun-augmented program as

for (i = 0; i<3> <= SIZE<4>; i<3>++)

Backstop [Murphy et al. 2008] produces descriptions of Java program runs in a sim-
ilar way. The system also has additional features intended to ease debugging, such as
beginner-friendly explanations of runtime exceptions.

Etheredge [2004] and Murphy et al. [2008] have reported positive responses to
CMeRun and Backstop from teacher and student evaluators.

5.4. Applying a Visualization

The seven systems listed in this section can all be used at the applying level of the
2DET’s direct engagement dimension (the highest level explicitly supported by the
systems we reviewed). In some of them, this is the primary way to use the system,
while in others it is one of several modes of use. Overall, there is quite a bit of variety
among these seven systems, each of which implement applying in a distinctive way.
Nevertheless, with the exception of Gilligan’s system and WinHIPE, the systems all
provide interactions that involve the applying of given content in a way that can be
loosely characterized as visual program simulation (as defined above in Section 3).

5.4.1. Programming-by-Demonstration to Learn About the Machine: Gilligan’s System. Pro-
gramming by demonstration is a visual programming paradigm that uses expressive
GUIs to empower end-users to program without having to write program code: “the
user should be able to instruct the computer to “Watch what I do,” and the computer
should create the program that corresponds to the user’s actions” [Cypher 1993]. By
and large, programming-by-demonstration systems, even those whose target audience
is programming beginners, fall into the empowering systems category in Pausch’s
[2005] taxonomy (see Section 3) and out of the scope of this review. However, we
are aware of one programming-by-demonstration system whose goals were different
enough to justify an exception.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:44 J. Sorva et al.

Fig. 31. Students interact within the virtual world presented by ViRPlay3D2 to design object-oriented pro-
grams [Jiménez-Dı́az et al. 2008]. Two separate screenshots are shown here. On the left, a user is viewing
message passing in action between two other objects (avatars) from a first-person perspective. Passing a
message is graphically represented as throwing a ball to the recipient. On the right, a user is examining an-
other object’s Class-Responsibility-Collaboration card [Beck and Cunningham 1989], which describes how
he can interact with the object.

Gilligan [1998] created a prototype of a programming-by-demonstration system for
novice programmers. The system aimed not only to provide an accessible way of ex-
pressing programs but also to explicitly teach a model of computation in the process. It
used analogies to everyday objects to present a user interface through which the novice
programmer expresses what they wish their program to do: the computer’s math pro-
cessor and logic unit are represented by a calculator, a stack of initially blank paper
represents memory, a clipboard with worksheets represents the call stack, and so forth.

The user of Gilligan’s system—the programmer—takes on the role of a clerk who
intends to accomplish a task using this equipment according to certain rules. In doing
so, the user produces a sequence of actions that defines a program. Using the calcu-
lator produces an arithmetical or logical expression, for instance, and adding a new
worksheet to the clipboard starts a subroutine call. The system writes and displays
the resulting program as Pascal code that matches the user’s interactions with the
GUI. By engaging in these clerical activities, the user would learn about their corre-
spondence to the execution model of Pascal programs and would—hypothetically, at
least—be better equipped to transition to regular programming later.

The system was never evaluated in practice, as far as we know. A later prototype
extended Gilligan’s work to object-oriented Java programming [Deng 2003].

5.4.2. Role-Playing Objects: ViRPlay3D2. Jiménez-Dı́az et al. [2005] presented early work
on a 3D environment which was intended to allow students to role-play and learn to
understand the (inter)actions of the objects of a given OOP program as it runs. This
project has since evolved toward having groups of students role-play object actions
in order to specify the actions of an OOP program that is to be created—an activity
analogous to visual programming on a higher level of abstraction. Jiménez-Dı́az et al.
[2008, 2011] used a system called ViRPlay3D2 (Figure 31) to provide a virtual three-
dimensional world in which students control avatars that each represent an object in
the execution of an object-oriented program. Each student tries to follow the instruc-
tions specific to his or her kind of object. One of the students at a time is active and
can delegate tasks to other objects by passing messages to them. The goal is to collabo-
ratively produce a working object-oriented software design for a problem and to verify
that it works. Students can choose to change the definitions of classes to improve their
design. Execution simulations can be saved and reviewed. The system also features a

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:45

Fig. 32. Dönmez and İnceoğlu’s [2008] visual program simulation system.

“scripted mode” in which the characters act automatically instead of being controlled
by students. In addition to designing programs, ViRPlay3D2 can also be used to exam-
ine case studies of program design; in this usage, it provides a highly abstract form of
visual program simulation.

The results of an experimental study did not show a significant difference between
ViRPlay3D2 users and a control group that role-played object-oriented scenarios
without the help of a software system [Jiménez-Dı́az et al. 2011]. Both students and
instructors liked the software.

5.4.3. Learner-Controlled Execution: Dönmez and İnceoğlu’s Tool. Dönmez and İnceoğlu
[2008] present a visual program simulation system prototype: their tool has the stu-
dent take an active role in program execution in order to improve their understanding
of the notional machine that underlies C# programming. Using the tool’s GUI, students
simulate the execution of code they have written in a limited subset of C#. Students
use the GUI to evaluate arithmetical and logical expressions, and to create and assign
to variables. The view, shown in Figure 32, resembles that of a regular visual debugger,
with one major difference: there is no way to make the computer run or step through
the program. Instead, GUI controls are present that allow and require the user to in-
dicate what happens when the program is run. For instance, to create a new variable,
the user is expected to press the New Variable button, type in the variable’s name in
the dialog that pops up, select its type, and click OK to close the dialog.

Dönmez and İnceoğlu’s system could only handle certain simple kinds of programs.
Many fundamental topics with complex runtime dynamics, such as functions (except
for a handful of built-in single-parameter functions, as above), references, and objects,
are not supported. To our knowledge, no evaluation of the system has been reported.

5.4.4. Text-Driven Simulation: Online Tutoring System. Kollmansberger [2010] developed
and used another program visualization tool that can be characterized as a visual pro-
gram simulation system. His Online Tutoring System (Figure 33) presented students
with short ready-made programs written in Visual Basic for Applications. Similar to

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:46 J. Sorva et al.

Fig. 33. An assignment on string catenation within the Online Tutoring System [Kollmansberger 2010].
The student has first chosen the expression txtFirst.Text + txtSecond.Text for evaluation, then the
subexpression txtFirst.Text. Now the system informs them that the next step is to access the variable:
consequently the user has to look at the values in memory (on the right) and type in "11" (in quotes, to
highlight that it is a string). Subsequent steps include typing in "4" and "114" at the appropriate moments.

Dönmez and İnceoğlu’s tool, the Online Tutoring System required the student to pre-
dict which statement the computer will execute next (by clicking on the correct line),
and to indicate the order in which the parts of the statement are dealt with (by click-
ing on the appropriate part of the code). Furthermore, the student must type in the
resulting values at every stage of expression evaluation and assignment. The system
provided textual prompts at each step of the way to indicate what type the next step
should be (e.g., subexpression selection or accessing a variable). When the student got
an answer wrong, the system told them the correct answer, which the student then
had to reproduce within the system in order to proceed. Incorrect answers were re-
flected in the student’s grade for the assignment, but the same assignment could be
tried repeatedly.

Kollmansberger reports a high course completion rate for two sections of a CS1 class
that used the Online Tutoring System for 12 additional exercises at various points
of the course. According to opinion surveys, the students liked it for the most part,
although some found the user interface unwieldy and the exercises too repetitive.

5.4.5. Different Modes of Engagement: UUhistle. UUhistle is a program visualization sys-
tem for CS1 that supports different modes of user interaction [Sorva 2012; Sorva and
Sirkiä 2010]. UUhistle visualizes a notional machine for the Python programming lan-
guage; the notional machine and the visualization largely resemble those of Jeliot 3,
although UUhistle makes the call stack more explicit and focal.

UUhistle can be used for animating existing programs so that the user controls
the pace of the execution. In an “interactive coding mode,” UUhistle interprets and
visualizes each statement as soon as the user types it in (cf. the DISCOVER system
above). Moreover, UUhistle can be used as a platform for different visualization-based
assigments. Teachers may embed popup questions into example programs for students
to answer; they may also configure example programs as visual program simulation

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:47

Fig. 34. A visual program simulation exercise in UUhistle. The user is manually controlling the execution
of a small recursive program, and has just dragged a parameter value into the topmost stack frame in order
to create a new variable there. He is just about to name the variable using the context menu that has popped
up. The Info box in the lower left-hand corner provides links to additional materials.

Fig. 35. A UUhistle user has created a new object when they should have merely formed another reference
to an existing object. UUhistle’s feedback seeks to address a suspected misconception concerning object
assignment.

exercises in which the learner directly manipulates the graphics using the mouse
to execute a given program (cf. Dönmez and İnceoğlu’s system and Online Tutoring
System above). Examples of visual program simulation exercises in UUhistle are
shown in Figures 34 and 35. An exploratory study has suggested that students’
simulation behavior in UUhistle can be a useful source of information about the

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:48 J. Sorva et al.

Fig. 36. A Python program within ViLLE.

students’ misconceptions [Sirkiä and Sorva 2012], and UUhistle provides automatic
feedback that seeks to address programming misconceptions that students’ mistakes
suggest they may have [Sorva 2012; Sorva and Sirkiä 2011, and see Figure 35]. The
system can automatically grade students’ solutions and submit them to courseware.

Sorva and his colleagues conducted mixed-methods research on an early UUhistle
prototype, focusing in particular on visual program simulation exercises [Sorva et al.,
accepted; Sorva 2012]. They found that there is significant variation in how learners
perceive the visualization and VPS exercises; for instance, some learners do not always
perceive the visualization to represent computer behavior at all, and even when they
do, may fail to associate what they see in UUhistle with the broader context of pro-
gramming. On the other hand, others made these important connections and learned
substantially from the system. The variance in students’ emotional responses matches
this variety of ways of understanding VPS. Students were further found to use a mix of
tactics for solving VPS assignments, ranging from surface approaches and guesswork
to reasoning about the content of the visualization. In a controlled experiment, a short
VPS session in UUhistle resulted in improvement in students’ ability to trace pro-
grams featuring function calls and parameters—but not other programs—compared
to a control group. A complementary qualitative analysis suggested that the effective-
ness of VPS exercises is likely to depend on a successful alignment of specific learning
goals with the specific GUI interactions required of the learner.

5.4.6. Variety in Assignments: ViLLE. ViLLE is an online learning platform which started
out as a program visualization system for CS1 that displays predefined program ex-
amples to students statement by statement [Rajala et al. 2007; Rajala et al. nd]. Our
review focuses on ViLLE’s program visualization functionality.

ViLLE comes with a selection of example programs; teachers can also define and
share their own. The user can choose to view a program within ViLLE as either Java,
C++, Python, PHP, JavaScript, or pseudocode, and change between languages at will.
ViLLE supports a limited “intersection” of these languages.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:49

ViLLE’s program visualizer has several beginner-friendly features beyond what
a regular visual debugger offers, some of which are shown in Figure 36. The user
can step forward or backwards. Each code line is accompanied by an automatically
generated explanation. Arrays are graphically visualized. Teacher-defined popup
questions can be embedded into programs to appear at predefined points of the
execution sequence. ViLLE can grade the answers to multiple-choice questions in the
popup dialogs and communicate with a course management system to keep track of
students’ scores [Kaila et al. 2008].

Apart from multiple-choice questions, ViLLE also supports a few other assignment
types (Rajala et al., http://ville.cs.utu.fi). Students may be required to sort lines of code
that have been shuffled or to fill in some Java code to complete a program. Recent
versions of ViLLE feature a “Clouds & Boxes” assignment type, which is essentially
a simple form of visual program simulation that uses standard widgets as controls:
the user has to carry out certain aspects of program execution manually (e.g., frame
allocation, variable creation, line changes) while the computer takes care of certain
other aspects (e.g., expression evaluation).

ViLLE’s authors have investigated the impact of the tool with a series of exper-
imental studies that involve levels of direct engagement between no viewing and
responding.

Laakso et al. [2008] found that previous experience with using ViLLE had a signifi-
cant effect on how well high school students learned from given examples, and conclude
that to get the most out of a visualization tool, students need to be trained to use it
effectively. Rajala et al. [2008] compared the performance of a treatment group using
ViLLE and a control group on code-reading tasks. They found no significant differences
in post-test scores between the groups. Kaila et al. [2009a] found that having students
respond to ViLLE’s popup questions during program execution had a better impact on
learning than merely having students view example programs. Another publication
by the authors reports that found that introductory programming students learned
more when using ViLLE in pairs than when working alone, especially with regard
to more challenging topics such as parameter passing [Rajala et al. 2009]. A longer-
term evaluation studied three consecutive introductory programming course offerings
in high school, whose teaching was identical except for ViLLE being used throughout
the course in the third offering; using ViLLE significantly raised course grades [Kaila
et al. 2010]. According to an opinion survey, students tend to like the system [Kaila
et al. 2009b]; see also Alsaggaf et al. [2012].

5.4.7. Configuring Illustrations of Functional Programs: WinHIPE. WinHIPE is an education-
oriented IDE for functional programming that includes a program visualization
functionality [Pareja-Flores et al. 2007]. The system is not specifically meant for
beginners—indeed, the authors have used it in more advanced courses [Pareja-Flores
et al. 2007; Urquiza-Fuentes and Velázquez-Iturbide 2007, 2012]—but is a plausible
choice for a functional CS1 as well.

WinHIPE visualizes an execution model of pure functional programs that is based
on rewriting terms (no assignment statements). The user configures each animation by
selecting which aspects are to be visualized and in what order term-rewriting proceeds
in the visualization. Using this facility, teachers can produce and customize dynamic
visualizations of selected examples, which can be exported for students to view. When a
visualization is being viewed, the evaluation of expressions is shown step by step, and
the user can step back and forth in the evaluation sequence. WinHIPE’s authors have
also experimented with an activity in which students use WinHIPE to produce visu-
alizations of given source code [Urquiza-Fuentes and Velázquez-Iturbide 2007, 2012];
this is a form of applying a visualization to given content.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:50 J. Sorva et al.

5.5. Low-Level Approaches

The systems reviewed so far have represented notional machines that operate on
high-level languages at various levels of abstraction that are not very close to the
underlying hardware. One way to learn about program dynamics—albeit rare in
CS1—is to first build a low-level foundations by visualizing an actual or simplified
system that explains programming on the assembly language or bytecode level. Many
existing program visualization tools might serve a purpose in such an endeavor.

Biermann et al. [1994] created a system, This is How A Computer Works, for vi-
sualizing Pascal programs to freshmen at different levels of abstraction below the
code: a compiler level, a machine architecture level, and a circuit level. The simu-
lator MPC1 presented a simplified computer in terms of processor operation codes,
RAM cells, and registers [Sherry 1995]. The SIMPLESEM Development Environment
[Hauswirth et al. 1998] and MieruCompiler [Gondow et al. 2010] also map high-level
language semantics to assembly code. EasyCPU [Yehezkel et al. 2007] visualizes a
model of computer components—registers, I/O ports, etc.—and highlights how each
component is active in the execution of an assembly-language program. A different
sort of low-level approach was implemented in ITEM/IP, which visualized the execu-
tion of a Pascal-like language in terms of a Turing machine [Brusilovsky 1992].

Some low-level systems have featured learner-controlled simulation of a very low-
level machine represented within a highly abstract three-dimensional virtual world.
In the CpuCITY system, the student used an avatar to perform hardware-level oper-
ations such as “take this packet to RAM” [Bares et al. 1998]. JV2M applies a simi-
lar immersive approach to Java programming by having a student-controlled avatar
perform in-game tasks that match the bytecode instructions corresponding to a given
Java program [see, e.g., Gómez-Martı́n et al. 2005, 2006]. Figure 37 shows a screenshot
of JV2M.

Various other low-abstraction PV systems exist; the previously discussed systems
are a fairly arbitrary selection. Many of the systems may be useful for the goal of
teaching about low-level phenomena (which is indeed the stated goal of most of the
systems). We will not review low-level systems in more detail, as our primary interest
is in CS1 and systems that help students learn the runtime semantics of a high-level
language. We consider systems that deal with assembly language too detailed to be
practical for this purpose as the “black boxes” inside the “glass box” of the notional
machine shown are too small and too numerous to achieve the necessary simplicity [cf.
du Boulay et al. 1981].5

6. DISCUSSION

We comment briefly on a few themes that arise from our review.

6.1. System Characteristics Overviewed

The previous section illustrates the variety in the systems designed for teaching be-
ginners about program dynamics, and also points to some trends and typical features
within the set of such systems.

Most of the systems support a single programming language, often one that was a
popular CS1 language at the time the system was created. Only some of the endur-
ing systems support more than one language; the longest-lived ones (e.g., jGRASP,
Jeliot, The Teaching Machine) all have evolved towards supporting multiple lan-
guages. The most common forms of representation in the systems are debugger-like

5We do think that exposing CS1 students to compiled code can be instructive, but as an additional measure,
not as the main way to learn about a notional machine for a high-level paradigm.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:51

Fig. 37. The user is executing a compiled Java program in JV2M [image from Gómez-Martı́n et al. 2006].
The bytecode instructions correspond to actions in the virtual world. The user’s avatar is the big feline in
the middle. The dog on the right is Javy, a helpful intelligent agent that provides advice.

standard widgets and abstract two-dimensional graphics; 3D and virtual worlds con-
tinue to be rare in systems of the kind we reviewed.

Controlled viewing is by far the most common form of direct engagement with vi-
sualization in the systems; in most, it is the only mode above viewing that is sup-
ported. Many of the systems work as extended visual debuggers that allow students
to control the viewing of their own programs. The level of abstraction is commonly
either that of a regular visual debugger, or just below so that the call stack, ref-
erences/pointers, and expression evaluation are emphasized; much lower-level and
higher-level visualizations also exist. Practically all the systems rely on a single, fixed
level of abstraction in the visualization although they may allow different degrees of
granularity in stepping through a program. Other common additions to regular de-
buggers include textual clarifications of execution steps and smooth animations that
highlight the transitions between states. Modes of interaction with higher levels of di-
rect engagement—responding and applying—are more common in recent systems than
in older ones. None of the systems significantly features explicit support for presenting
or creating.

6.2. The Problem of Dissemination

Most of the systems we reviewed appear to have been short-lived research prototypes
that have been soon discarded once the system had been constructed or an evalu-
ative study carried out. Very few of the systems have remained in active use and
development for more than a few years. Only a small handful of systems have been
used outside their site of creation; none can be said to belong in the mainstream

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:52 J. Sorva et al.

of CS1 education. Open-source communities working on these systems are almost
nonexistent.

Teachers’ reasons for not adopting software visualization tools include Hundhausen
et al. [2002], Naps et al. [2003], Ben-Bassat Levy and Ben-Ari [2007], and Kaila [2008]:

— the lack of teacher time for learning about systems or configuring them;
— poor fit with specific aspects of the course (e.g., programming language, teachers’

personal pedagogical styles);
— attitudes toward software visualization;
— doubts about educational effectiveness (sometimes even the sentiment that SV

tools further complicate topics that are already complicated);
— concern about SV taking away class time needed for other activities;
— lack of integration with other materials;
— the (perceived or real) poor usability of the tools;
— various detailed issues concerning specific visualizations.

A number of recent initiatives have sought to aid the dissemination of pedagogical
practices within computing education in general and educational software visualiza-
tion in particular. Forums have been launched for sharing [e.g., Fincher et al., n.d.;
Korhonen, n.d.; Algoviz, n.d.], teachers have been given financial aid to lower collabo-
ration thresholds [e.g., Korhonen, n.d.], and technical solutions have been developed to
increase intercompatibility and extensibility so that tools are easier to integrate into
different contexts (e.g., Karavirta [2007]; Moreno [2005]). Such initiatives can help
promote the dissemination of PV tools; however, for CS1 teachers to make informed
decisions about whether and how to use the tools, more empirical research is needed.

6.3. Empirical Evaluations and the Role of Engagement

Many of the visualization systems for CS1 have been evaluated informally, with posi-
tive teacher experiences and encouraging course feedback often being reported. How-
ever, student opinions are a notoriously treacherous measure of the effectiveness of
a pedagogy [see, e.g., Clark 1982], and it is less clear whether—and how, for whom,
under what circumstances, and at what cost—using the systems has resulted in sig-
nificant learning gains. Various systems have also been evaluated more rigorously,
either qualitatively or through controlled experiments. Usually, the evaluations have
been carried out by the system authors themselves at their own institutions, often in
their own teaching. Many of the findings from these studies have been positive, sug-
gesting that the program visualizations have served a purpose, at least in the context
for which they were crafted.

What about the role of engagement, identified as potentially so important by the
software visualization community (Section 4)? To what extent do the hypothesized en-
gagement effects apply to notional-machine visualization in CS1?

In Section 5, we referred to a number of studies that have evaluated the various
program visualization systems. Table VI uses the 2DET to summarize those of the
evaluations that sought to determine the relative effectiveness of different engagement
levels. To produce Table VI, we made the following delimitations.

— The table lists only quantitative between-subject experiments that checked for the
statistical significance of results.

— Only studies that used different modes of engagement as conditions are listed. (Not
using a visualization at all does count as no viewing.) This excludes studies comparing
two different tools (e.g., a regular visual debugger vs. an educationally oriented
visualization) used in the same way.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:53

Table VI. Experimental Evaluations of Program Visualization Tools Comparing Levels of Engagement

System Source Scope of
experiment

Treatment Control Measure Statistical
significance?

two visual
debuggers

Bennedsen and
Schulte 2010

lab controlled
viewing / given
content

no viewing /
given content

reading tasks no

Bradman Smith and
Webb 2000

lab controlled
viewing / given
content

no viewing /
given content

reading tasks yes (in one
task only)

VIP Ahoniemi and
Lahtinen 2007

lab controlled
viewing / given
and modified
content

no viewing /
given and
modified
content

writing tasks yes (among
novices and
strugglers)

ViLLE Rajala et al.
2008

lab controlled
viewing (and
responding?) /
given content

no viewing /
given content

reading and
writing tasks

no

ViLLE Kaila et al.
2009a

lab responding /
given content

no viewing
and
controlled
viewing /
given content

reading and
writing tasks

yes

ViLLE Kaila et al.
2010

course responding /
given content

no viewing /
given content

reading and
writing tasks

yes

UUhistle Sorva 2012 lab applying /
given content

no viewing /
given content

reading tasks yes (in one
task only)

— Only studies in which the participants learned about typical CS1 content are
included.

— Studies that gave the experimental group additional assignments to do on top of
those of the control group are excluded. (It is not a very interesting result that
additional tasks lead to more learning.)

— Only studies in which researchers or teachers assessed learning outcomes are
included. This rules out opinion polls, for instance.

— We only included studies in which an intervention was followed by a distinct
assessment phase (e.g., an exam) that was the same for each group. (For instance,
we are not interested here in whether students using a program visualization
could answer questions about the program being visualized better than others
who only saw the code. On the other hand, we would be interested in whether the
students had learned to decipher a different program better as a result of their
experiences with the visualization.)

Most of the experimental studies listed in Table VI involve comparisons between
low levels of engagement, and usually pit controlled viewing or responding against not
using a visualization at all. The studies have revolved largely around example-based
learning and given content. Most of the existing systems have not been experimentally
evaluated at all. The results of the evaluations to date largely support the use of vi-
sualization, but it is difficult to draw further conclusions. All in all, we must conclude
the CER literature on generic PV systems does not yet tell us very much about what
the relative effectiveness of levels of engagement beyond controlled viewing is for CS1
students.

6.4. Opportunities for Research

We list here a few avenues for future work within program visualization for CS1. Some
of these paths have been explored more thoroughly in other contexts (e.g., other kinds
of educational software, other forms of visualization), others less; in any case, we be-
lieve that in order to credibly transfer results to the context we are interested in, stud-
ies that involve genuine CS1 courses, learning objectives, and students are needed.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:54 J. Sorva et al.

As noted above, learner engagement with visualizations is an area in which much
remains to be discovered. The 2DET taxonomy that we presented in this article is
one possible basis for generating and testing hypotheses on this subject. We recom-
mend that researchers take explicitly into account also the second dimension of the
2DET, learners’ engagement with the content being visualized, which has often been
implicit or ignored in the CER literature to date. Future studies should also consider
the transferability of what students learn from a visualization. Does the knowledge
transfer to answering questions related to the visualization, to program-tracing tasks,
or program-writing skills? Does the engagement level play a role in how transferable
the knowledge learned is?

Direct engagement constitutes only one of the things that impacts the effectiveness
of educational software visualization, and there may be trade-offs in adopting certain
modes of engagement. One example of this was discussed by Sorva [2012], who noted
that the authenticity of learning tasks is stressed as important by various forms of
constructivist learning theory, and continued with the observation that “when profes-
sional programmers use program visualization tools to visualize program dynamics,
it is typically on the controlled viewing level of direct engagement, most commonly
in a visual debugger. . . . Visual program simulation involves a trade-off: it sacrifices
the authenticity of controlled viewing in order to provide a higher degree of direct en-
gagement [the applying of given content] and encourage learners to make use of the
visualization” [Sorva 2012, p. 224]. As another example, the highest levels of direct
engagement—creating, especially—bring certain challenges in the context of PV for
CS1, such as the time investment required of the students and the difficulty of cre-
ating visualizations when one’s knowledge of fundamental concepts is fragile [ibid.,
p. 221]. Such trade-offs merit further study.

There is, within the educational SV community, increasing recognition that any po-
tentially useful capabilities of a visualization system matter less than what the learn-
ers make of the system for themselves. Studies of CS1 students’ tool usage patterns
and their conceptions of PV tools have shown that many students do not perceive
the potential benefits of PV and do not use PV tools as their teachers intended [e.g.,
Isohanni and Knobelsdorf 2010; Laakso et al. 2009; Sorva 2012]. This is something
that system creators can affect, as can teachers. Those who create visualization sys-
tems must also remember that not nearly all the ways of promoting engagement in-
volve software features; higher engagement may also be brought about by improved
visualization-based pedagogies. The integration of program visualization with the rest
of the teaching and learning environment has surfaced as an important theme in com-
puting education research [see, e.g., Ben-Bassat Levy and Ben-Ari 2007; Sorva 2012].
Evaluative studies on interventions in which PV is strongly and longitudinally inte-
grated into a CS1 course are scarce, however. Work could also be done in order to
produce learning materials in which program visualization interfaces naturally with
texts and other content so that using visualizations becomes a natural part of the
learner’s “reading process” [cf. Shaffer et al. 2011]. Peer learners are a key component
of many teaching and learning environments; however, the social aspects of learning
from program visualizations have seen little study.

We would like to see more studies in which the specific content that is being learned
about (e.g., parameters, references, OOP fundamentals, or loops) is taken into consid-
eration when evaluating generic PV systems. A generic PV system, or a particular
mode of user interaction within a system, is not going to be equally effective for all
objects of learning. Knowing how well a system or mode of interaction works for a
specific goal would help both in choosing the right tools for teaching and in improving
on the existing systems. A related path for tool development is to design systems to
explicitly address the specific misconceptions that CS1 students are known to have

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:55

about fundamental concepts; this is currently very rare in the generic PV systems that
we have reviewed [see Sorva and Sirkiä 2011 for an example]. Our work in this article
could also be extended by reviewing specialized PV systems that teach about particular
topics.

The effects of cognitive load [in the sense of working memory load; Paas et al. 2003;
Plass et al. 2010] and multimedia instruction [Mayer 2005, 2009] on learning have
been studied in many contexts. Although the associated theories have a lot to say
about the design of visual learning environments, they are not exerting much explicit
influence on current work on educational PV [with exceptions; Moons and De Backer
2013]. For instance, careful consideration of the “split-attention effect” (according to
which learning is hindered, for example, by having to pay attention to a visualization
and a spatially separate textual explanation at the same time) could contribute to the
design of better PV systems. Another limitation of much work to date is the almost
nonexistent use of audio, despite the fact that using the auditory and visual channels
simultaneously is one of the few known ways of alleviating the problem that human
working memory is extremely limited in capacity. Moreover, cognitive load research
provides one of the theoretical frameworks that could be used as a basis for creating
PV systems that adapt to their users and in particular to the users’ prior, and growing,
knowledge.

A contribution to the field would also be the construction of a PV system that in-
corporates many of the good ideas that exist as fragments in the various prototype
systems described in the literature. Building a PV system for CS1 that sees genuinely
widespread adoption may require not only integration with other course materials but
also a departure from the prevalent “I made a prototype for my thesis” mode of sys-
tem development, perhaps in the form of commercial product development or a lively
open-source project.

7. CONCLUDING REMARKS

The primary contribution of this article is to overview the existing literature on
program visualization systems whose purpose is to help beginners learn about the
execution-time dynamics of computer programs. Our review provides a description of
the systems and summarizes the evaluative studies that have been reported in the
literature. The review shows that program visualization systems for beginners are of-
ten short-lived research prototypes that support user-controlled viewing of program
animations; a recent trend is to support more engaging modes of user interaction.
Evaluations of the systems that we reviewed have tended to suggest a positive impact
on learning introductory programming. Within the context of our survey, we have fur-
thermore revisited the topic of learner engagement, observed that research to date is
insufficient for drawing nuanced conclusions about the topic, and suggested a refined
framework that could be used to structure future research. Future work there is a lot
of: while many systems have been built, and many studies carried out, much remains
unstudied about the complex interactions between program visualization tools, learn-
ers, learning environments, forms of engagement, and particular learning objectives.

REFERENCES

Ahoniemi, T. and Lahtinen, E. 2007. Visualizations in preparing for programming exercise sessions. Elec.
Notes Theoret. Comp. Sci. 178, 137–144.

Algoviz. n.d. Algoviz.org: The algorithm visualization portal. http://www.algoviz.org/.
Allen, E., Cartwright, R., and Stoler, B. 2002. DrJava: A lightweight pedagogic environment for Java.

SIGCSE Bull. 34, 1, 137–141.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:56 J. Sorva et al.

Alsaggaf, W., Hamilton, M., Harland, J., D’Souza, D., and Laakso, M.-J. 2012. The use of laptop computers
in programming lectures. In Proceedings of the 23rd Australasian Conference on Information Systems
(ACIS’12). 1–11.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths,
J., and Wittrock, M. C. 2001. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s
Taxonomy of Educational Objectives. Longman.

Andrianoff, S. K. and Levine, D. B. 2002. Role playing in an object-oriented world. SIGCSE Bull. 34, 1,
121–125.

Atwood, J. 2008. Everything I needed to know about programming I learned from BASIC (blog post).
http://www.codinghorror.com/blog/2008/04/everything-i-needed-to-know-about-programming-i-learned-
from-basic.html.

Auguston, M. and Reinfelds, J. 1994. A visual Miranda machine. In Proceedings of the Software Education
Conference (SEC’94). 198–203.

Bares, W. H., Zettlemoyer, L. S., and Lester, J. C. 1998. Habitable 3D learning environments for situated
learning. In Proceedings of the 4th International Conference on Intelligent Tutoring Systems (ITS’98).
76–85.

Beck, K. and Cunningham, W. 1989. A laboratory for teaching object oriented thinking. SIGPLAN Not.
24, 10, 1–6.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. 2006. Analyzing individual differences in program
comprehension. Tech. Instruc. Cogn. Learn. 3, 3, 205–232.

Ben-Ari, M. 2001. Constructivism in computer science education. J. Comp. Math. Sci. Teach. 20, 1, 45–73.
Ben-Ari, M., Bednarik, R., Ben-Bassat Levy, R., Ebel, G., Moreno, A., Myller, N., and Sutinen, E. 2011. A

decade of research and development on program animation: The Jeliot experience. J. Vis. Lang. Comput.
22, 375–384.

Ben-Bassat Levy, R. and Ben-Ari, M. 2007. We work so hard and they don’t use it: Acceptance of software
tools by teachers. SIGCSE Bull. 39, 3, 246–250.

Ben-Bassat Levy, R., Ben-Ari, M., and Uronen, P. A. 2003. The Jeliot 2000 program animation system.
Comp. Educ. 40, 1, 1–15.

Bennedsen, J. and Schulte, C. 2010. BlueJ visual debugger for learning the execution of object-oriented
programs? ACM Trans. Comput. Educ. 10, 2, 1–22.

Biermann, A. W., Fahmy, A. F., Guinn, C., Pennock, D., Ramm, D., and Wu, P. 1994. Teaching a hierarchical
model of computation with animation software in the first course. SIGCSE Bull. 26, 1, 295–299.

Birch, M. R., Boroni, C. M., Goosey, F. W., Patton, S. D., Poole, D. K., Pratt, C. M., and Ross, R. J. 1995.
DYNALAB: A dynamic computer science laboratory infrastructure featuring program animation.
SIGCSE Bull. 27, 1, 29–33.

Bloom, B. S. 1956. Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain. Addison Wesley.
Booth, S. 1992. Learning to program: A phenomenographic perspective. Doctoral dissertation, University of

Gothenburg.
Boroni, C. M., Eneboe, T. J., Goosey, F. W., Ross, J. A., and Ross, R. J. 1996. Dancing with DynaLab: Endearing

the science of computing to students. SIGCSE Bull. 28, 1, 135–139.
Brito, S., Silva, A. S., Tavares, O., Favero, E. L., and Francês, C. R. L. 2011. Computer supported collab-

orative learning for helping novice students acquire self-regulated problem-solving skills in computer
programming. In Proceedings of the 7th International Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS’11). 65–73.

Brown, M. H. 1988. Exploring algorithms using Balsa-II. Comp. 21, 5, 14–36.
Bruce-Lockhart, M. P., Crescenzi, P., and Norvell, T. S. 2009. Integrating test generation functionality

into the teaching machine environment. In Electronic Notes in Theoretical Computer Science, vol. 224,
115–124.

Bruce-Lockhart, M. P. and Norvell, T. S. 2000. Lifting the hood of the computer: Program animation with the
teaching machine. In Proceedings of the Canadian Conference on Electrical and Computer Engineering
(CCECE’00). 831–835.

Bruce-Lockhart, M. P. and Norvell, T. S. 2007. Developing mental models of computer programming inter-
actively via the Web. In Proceedings of the 37th Annual Frontiers in Education Conference (FIE’07).

Bruce-Lockhart, M. P., Norvell, T. S., and Cotronis, Y. 2007. Program and algorithm visualization in
engineering and physics. In Electronic Notes in Theoretical Computer Science, vol. 178, 111–119.

Brusilovsky, P. and Loboda, T. D. 2006. WADEIn II: A case for adaptive explanatory visualization. SIGCSE
Bull. 38, 3, 48–52.

Brusilovsky, P. L. 1992. Intelligent tutor, environment and manual for introductory programming. Educ.
Train. Tech. Int. 29, 1, 26–34.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:57

Byckling, P. and Sajaniemi, J. 2005. Using roles of variables in teaching: Effects on program construction.
In Proceedings of the 17th Workshop of the Psychology of Programming Interest Group (PPIG’05).
278–292.

Carlisle, M. C. 2009. Raptor: A visual programming environment for teaching object-oriented programming.
J. Comput. Sci. Coll. 24, 4, 275–281.

Clancy, M. 2004. Misconceptions and attitudes that interfere with learning to program. In Computer Science
Education Research, S. Fincher and M. Petre Eds., Routledge, 85–100.

Clark, R. E. 1982. Antagonism between achievement and enjoyment in ATI studies. Educat. Psychol. 17, 2,
92–101.

Corritore, C. L. and Wiedenbeck, S. 1991. What do novices learn during program comprehension? Int. J.
Hum.-Comput. Inter. 3, 2, 199–222.

Cross, II, J. H., Barowski, L. A., Hendrix, T. D., and Teate, J. C. 1996. Control structure diagrams for Ada
95. In Proceedings of TRI-Ada: Disciplined Software Development (ADA’96). 143–147.

Cross, II, J. H., Hendrix, T. D., and Barowski, L. A. 2002. Using the debugger as an integral part of teaching
CS1. In Proceedings of the 32nd Annual Frontiers in Education Conference (FIE’02).

Cross, II, J. H., Hendrix, T. D., and Barowski, L. A. 2011. Combining dynamic program viewing and testing
in early computing courses. In Proceedings of the 35th Annual IEEE International Computer Software
and Applications Conference (COMPSAC’11). 184–192.

Cross, II, J. H., Barowski, L. A., Hendrix, D., Umphress, D., and Jain, J. n.d. jGRASP - An integrated
development environment with visualizations for improving software comprehensibility (website).
http://www.jgrasp.org/.

Cypher, A. 1993. Watch What I Do: Programming by Demonstration. MIT Press.
Deng, J. 2003. Programming by demonstration environment for 1st year students. Master’s thesis, School

of Mathematics, Statistics and Computer Science, Victoria University of Wellington.
Dönmez, O. and İnceoğlu, M. M. 2008. A Web-based tool for novice programmers: Interaction in use.

In Proceedings of the International Conference on Computational Science and its Applications
(ICCSA’08).

du Boulay, B. 1986. Some difficulties of learning to program. J. Educ. Comput. Res. 2, 1, 57–73.
du Boulay, B., O’Shea, T., and Monk, J. 1981. The black box inside the glass box: Presenting computing

concepts to novices. Int. J. Man-Mach. Stud. 14, 237–249.
Ebel, G. and Ben-Ari, M. 2006. Affective effects of program visualization. In Proceedings of the 2nd

International Workshop on Computing Education Research (ICER’06). 1–5.
Eckerdal, A. and Thuné, M. 2005. Novice Java programmers’ conceptions of “object” and “class”, and

variation theory. SIGCSE Bull. 37, 3, 89–93.
Eskola, J. and Tarhio, J. 2002. On visualization of recursion with Excel. In Proceedings of the 2nd Program

Visualization Workshop (PVW’02). 45–51.
Esteves, M. and Mendes, A. J. 2003. OOP-Anim, a system to support learning of basic object oriented

programming concepts. In Proceedings of the 4th International Conference on Computer Systems and
Technologies: e-Learning (CompSysTech’03). 573–579.

Esteves, M. and Mendes, A. J. 2004. A simulation tool to help learning of object oriented programming
basics. In Proceedings of the 34th Annual Frontiers in Education Conference (FIE’04).

Etheredge, J. 2004. CMeRun: Program logic debugging courseware for CS1/CS2 Students. SIGCSE
Bull. 36, 1, 22–25.

Fernández, A., Rossi, G., Morelli, P., Garcia Mari, L., Miranda, S., and Suarez, V. 1998. A learning en-
vironment to improve object-oriented thinking. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’98).

Fincher, S., E. A. n.d. Share project: Sharing & representing teaching practice (website).
http://www.sharingpractice.ac.uk/homepage.html.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., and Felleisen, M. 2002.
DrScheme: A programming environment for scheme. J. Func. Program. 12, 2, 159–182.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., and Zander, C. 2008.
Debugging: Finding, fixing and flailing, a multi-institutional study of novice debuggers. Comp. Sci.
Educ. 18, 2, 93–116.

Gajraj, R. R., Williams, M., Bernard, M., and Singh, L. 2011. Transforming source code examples into
programming tutorials. In Proceedings of the 6th International Multi-Conference on Computing in the
Global Information Technology (ICCGI’11). 160–164.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:58 J. Sorva et al.

Gallego-Carrillo, M., Gortázar-Bellas, F., and Velázquez-Iturbide, J. Á. 2004. JavaMod: An integrated Java
model for Java software visualization. In Proceedings of the 3rd Program Visualization Workshop
(PVW’04). 102–109.

George, C. E. 2000a. EROSI - Visualizing recursion and discovering new errors. SIGCSE Bull. 32, 1,
305–309.

George, C. E. 2000b. Evaluating a pedagogic innovation: Execution models & program construction ability.
In Proceedings of the 1st Annual Conference of the LTSN Centre for Information and Computer Sciences
(LTSN’00). 98–103.

George, C. E. 2000c. Experiences with novices: The importance of graphical representations in supporting
mental models. In Proceedings of the 12th Workshop of the Psychology of Programming Interest Group
(PPIG’00). 33–44.

George, C. E. 2002. Using visualization to aid program construction tasks. SIGCSE Bull. 34, 1, 191–195.
Gestwicki, P. and Jayaraman, B. 2005. Methodology and architecture of JIVE. In Proceedings of the ACM

Symposium on Software Visualization (SoftVis’05). 95–104.
Gilligan, D. 1998. An exploration of programming by demonstration in the domain of novice programming.

Master’s thesis, School of Mathematics, Statistics and Computer Science, Victoria University of
Wellington.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., and Zilles, C. 2008. Identify-
ing important and difficult concepts in introductory computing courses using a Delphi process. SIGCSE
Bull. 40, 1, 256–260.

Gómez-Martı́n, P. P., Gómez-Martı́n, M. A., Dı́az-Agudo, B., and González-Calero, P. A. 2005. Opportunities
for CBR in learning by doing. In Proceedings of the 6th International Conference on Case-Based
Reasoning (ICCBR’05). 267–281.

Gómez-Martı́n, M. A., Gómez-Martı́n, P. P., and González-Calero, P. A. 2006. Dynamic binding is the name
of the game. In Proceedings of the Conference on Entertainment Computing (ICEC’06). 229–232.

Gondow, K., Fukuyasu, N., and Arahori, Y. 2010. MieruCompiler: Integrated visualization tool with
“horizontal slicing” for educational compilers. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE’10). 7–11.

Gračanin, D., Matković, K., and Eltoweissy, M. 2005. Software visualization. Innov. Syst. Softw. Eng. 1, 2,
221–230.

Gries, D. 2008. A principled approach to teaching OO first. SIGCSE Bull. 40, 1, 31–35.
Gries, P. and Gries, D. 2002. Frames and folders: A teachable memory model for Java. J. Comput. Sci.

Coll. 17, 6, 182–196.
Gries, P., Mnih, V., Taylor, J., Wilson, G., and Zamparo, L. 2005. Memview: A pedagogically-motivated visual

debugger. In Proceedings of the 35th Annual Frontiers in Education Conference (FIE’05). 11–16.
Guo, P. J. 2013. Online Python tutor: Embeddable web-based program visualization for CS education. In

Proceedings of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE’13).
Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Teräsvirta, T., and Vanninen, P. 1997. Animation of user

algorithms on the Web. In Proceedings of Symposium on Visual Languages (VL’97). 360–367.
Hattie, J. and Purdie, N. 1998. The SOLO model: Addressing fundamental measurement issues. In Teach-

ing and Learning in Higher Education, B. Dart and G. Boulton-Lewis Eds., Australian Council for
Educational Research, 145–176.

Hauswirth, M., Jazayeri, M., and Winzer, A. 1998. A Java-based environment for teaching programming
language concepts. In Proceedings of the 28th Annual Frontiers in Education Conference (FIE’98).
296–300.

Helminen, J. 2009. Jype - An education-oriented integrated program visualization, visual debugging,
and programming exercise tool for Python. Master’s thesis, Department of Computer Science and
Engineering, Helsinki University of Technology.

Helminen, J. and Malmi, L. 2010. Jype - A program visualization and programming exercise tool for
Python. In Proceedings of the 5th International Symposium on Software visualization (SOFTVIS’10).
153–162.

Hertz, M. and Jump, M. 2013. Trace-based teaching in early programming courses. In Proceedings of the
44th ACM Technical Symposium on Computer Science Education (SIGCSE’13). 561–566.

Holliday, M. A. and Luginbuhl, D. 2004. CS1 assessment using memory diagrams. SIGCSE Bull. 36, 1,
200–204.

Huizing, C., Kuiper, R., Luijten, C., and Vandalon, V. 2012. Visualization of object-oriented (Java) programs.
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU’12).
65–72.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:59

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. 2002. A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13, 3, 259–290.

Isoda, S., Shimomura, T., and Ono, Y. 1987. VIPS: A visual debugger. IEEE Softw. 4, 3, 8–19.
Isohanni, E. and Knobelsdorf, M. 2010. Behind the curtain: Students’ use of VIP after class. In Proceedings

of the 6th International Workshop on Computing Education Research (ICER’10). 87–96.
Isohanni, E. and Knobelsdorf, M. 2011. Students’ long-term engagement with the visualization tool VIP.

In Proceedings of the 11th Koli Calling International Conference on Computing Education Research
(KoliCalling’11). 33–38.

Jiménez-Dı́az, G., Gómez-Albarrán, M., Gómez-Martı́n, M. A., and González-Calero, P. A. 2005. Software
behavior understanding supported by dynamic visualization and role-play. SIGCSE Bull. 37, 3, 54–58.

Jiménez-Dı́az, G., Gómez-Albarrán, M., and González-Calero, P. A. 2008. Role-Play virtual environments:
Recreational learning of software design. In Proceedings of the 3rd European Conference on Technology
Enhanced Learning: Times of Convergence: Technologies Across Learning Contexts (EC-TEL’08).
27–32.

Jiménez-Dı́az, G., González-Calero, P. A., and Gómez-Albarrán, M. 2011. Role-play virtual worlds for
teaching object-oriented design: The ViRPlay development experience. Softw. Prac. Exp. 42, 2, 235–253.

Jiménez-Peris, R., Pareja-Flores, C., Patiño-Martı́nez, M., and Velázquez-Iturbide, J. Á. 1997. The locker
metaphor to teach dynamic memory. SIGCSE Bull. 29, 1, 169–173.

Jiménez-Peris, R., Patiño-Martı́nez, M., and Pacios-Martı́nez, J. 1999. VisMod: A beginner-friendly program-
ming environment. In Proceedings of the ACM Symposium on Applied Computing (SAC’99). 115–120.

Jones, A. 1992. Conceptual models of programming environments: How learners use the glass box. Instruct.
Sci. 21, 6, 473–500.

Kaila, E. 2008. A survey of Finnish university teachers on the teaching of programming and tool adoption,
in Finnish. http://www.cs.hut.fi/Research/COMPSER/Verkostohanke/raportti.pdf.

Kaila, E., Rajala, T., Laakso, M.-J., and Salakoski, T. 2008. Automatic assessment of program visualization
exercises. In Proceedings of the 8th Koli Calling International Conference on Computing Education
Research (KoliCalling’08). 105–108.

Kaila, E., Laakso, M.-J., Rajala, T., and Salakoski, T. 2009a. Evaluation of learner engagement in pro-
gram visualization. In Proceedings of the12th International Conference on Computers and Advanced
Technology in Education (IASTED’09).

Kaila, E., Rajala, T., Laakso, M.-J., and Salakoski, T. 2009b. Effects, experiences and feedback from studies
of a program visualization tool. Inform. Educ. 8, 1, 17–34.

Kaila, E., Rajala, T., Laakso, M.-J., and Salakoski, T. 2010. Effects of course-long use of a program visualiza-
tion tool. In Proceedings of the 12th Australasian Conference on Computing Education (ACE’10). 97–106.

Kannusmäki, O., Moreno, A., Myller, N., and Sutinen, E. 2004. What a novice wants: Students using pro-
gram visualization in distance programming course. In Proceedings of the 3rd Program Visualization
Workshop (PVW’04). 126–133.

Karavirta, V. 2007. Integrating algorithm visualization systems. In Electronic Notes in Theoretical Computer
Science, vol. 178, 79–87.

Kasmarik, K. and Thurbon, J. 2003. Experimental evaluation of a program visualization tool for use in
computer science education. In Proceedings of the Asia-Pacific Symposium on Information Visualisation
(APVis’03). 111–116.

Kelleher, C. and Pausch, R. 2005. Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Comput. Surv. 37, 2, 83–137.

Kirby, S., Toland, B., and Deegan, C. 2010. Program visualization tool for teaching programming in C. In
Proceedings of the International Conference on Education, Training and Informatics (ICETI’10).

Kölling, M. 2008. Using BlueJ to introduce programming. In Reflections on the Teaching of Program-
ming: Methods and Implementations, J. Bennedsen, M. E. Caspersen, and M. Kolling Eds., Springer,
98–115.

Kollmansberger, S. 2010. Helping students build a mental model of computation. In Proceedings of the 15th
Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE’10). 128–131.

Korhonen, A. n.d. Ohjelmoinnin perusopetuksen verkosto.
http://www.cs.hut.fi/Research/COMPSER/Verkostohanke/index.shtml A website for networking
amongst Finnish teachers of introductory programming. Finnish Virtual University.

Korhonen, A., Helminen, J., Karavirta, V., and Seppälä, O. 2009a. TRAKLA2. In Proceedings of the 9th Koli
Calling International Conference on Computing Education Research (KoliCalling’09). 43–46.

Korhonen, A., Laakso, M.-J., and Myller, N. 2009b. How does algorithm visualization affect collaboration?
Video analysis of engagement and discussions. In Proceedings of the 5th International Conference on
Web Information Systems and Technologies (WEBIST’09). 479–488.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:60 J. Sorva et al.

Korhonen, A., Malmi, L., Silvasti, P., Karavirta, V., Lönnberg, J., Nikander, J., Stålnacke, K., and Ihantola,
P. 2004. Matrix - A framework for interactive software visualization. Research rep. TKO-B 154/04,
Department of Computer Science and Engineering, Helsinki University of Technology.

Korsh, J. F. and Sangwan, R. 1998. Animating programs and students in the laboratory. In Proceedings of
the 28th Annual Frontiers in Education Conference (FIE’98). 1139–1144.

Kumar, A. N. 2005. Results from the evaluation of the effectiveness of an online tutor on expression
evaluation. SIGCSE Bull. 37, 1, 216–220.

Kumar, A. N. 2009. Data space animation for learning the semantics of C++ pointers. SIGCSE Bull. 41, 1,
499–503.

Laakso, M.-J., Myller, N., and Korhonen, A. 2009. Comparing learning performance of students using algo-
rithm visualizations collaboratively on different engagement levels. J. Educ. Tech. Soc. 12, 2, 267–282.

Laakso, M.-J., Rajala, T., Kaila, E., and Salakoski, T. 2008. The impact of prior experience in using a
visualization tool on learning to program. In Proceedings of Cognition and Exploratory Learning in
Digital Age (CELDA’08). 129–136.

LaFollette, P., Korsh, J., and Sangwan, R. 2000. A visual interface for effortless animation of C/C++
programs. J. Vis. Lang. Comput. 11, 1, 27–48.

Lahtinen, E. and Ahoniemi, T. 2005. Visualizations to support programming on different levels of cognitive
development. In Proceedings of the 5th Koli Calling Conference on Computer Science Education
(KoliCalling’05). 87—94.

Lahtinen, E. and Ahoniemi, T. 2007. Annotations for defining interactive instructions to interpreter based
program visualization tools. In Electronic Notes in Theoretical Computer Science, vol. 178, 121–128.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. 2005. A study of the difficulties of novice programmers.
SIGCSE Bull. 37, 3, 14–18.

Lahtinen, E., Ahoniemi, T., and Salo, A. 2007a. Effectiveness of integrating program visualizations to a
programming course. In Proceedings of the 7th Baltic Sea Conference on Computing Education Research
(KoliCalling’07). 195–198.

Lahtinen, E., Järvinen, H.-M., and Melakoski-Vistbacka, S. 2007b. Targeting program visualizations.
SIGCSE Bull. 39, 3, 256–260.

Larochelle, M., Bednarz, N., and Garrison, J., Eds. 1998. Constructivism and Education. Cambridge
University Press.

Lattu, M., Meisalo, V., and Tarhio, J. 2003. A visualization tool as a demonstration aid. Comp. Educ. 41, 2,
133–148.

Lattu, M., Tarhio, J., and Meisalo, V. 2000. How a visualization tool can be used - Evaluating a tool in a
research & development project. In Proceedings of the 18th Workshop of the Psychology of Programming
Interest Group (PPIG’00). 19–32.

Lauer, T. 2006. Learner interaction with algorithm visualizations: Viewing vs. changing vs. constructing.
SIGCSE Bull. 38, 3, 202–206.

Lessa, D., Czyz, J. K., Gestwicki, P. V., and Jayaraman, B. n.d. JIVE: Java interactive visualization
environment (website). http://www.cse.buffalo.edu/jive/.

Lieberman, H. 1984. Steps toward better debugging tools for LISP. In Proceedings of the ACM Symposium
on LISP and Functional Programming (LFP’84). 247–255.

Lieberman, H. and Fry, C. 1997. ZStep 95: A reversible, animated source code stepper. In Software Visu-
alization: Programming as a Multimedia Experience, J. Stasko, J. Domingue, B. Price, and M. Brown
Eds., MIT Press, 277–292.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K., Seppälä, O., Simon, B., and Thomas, L. 2004. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bull. 36, 4, 119–150.

Luijten, C. 2009. Interactive visualization of the execution of object-oriented programs. Master’s thesis,
Department of Mathematics and Computer Science, Eindhoven University of Technology.

Ma, L. 2007. Investigating and improving novice programmers’ mental models of programming concepts.
Doctoral dissertation, Department of Computer & Information Sciences, University of Strathclyde.

Ma, L., Ferguson, J. D., Roper, M., Ross, I., and Wood, M. 2009. Improving the mental models held by novice
programmers using cognitive conflict and Jeliot visualizations. SIGCSE Bull. 41, 3, 166–170.

Ma, L., Ferguson, J., Roper, M., and Wood, M. 2011. Investigating and improving the models of programming
concepts held by novice programmers.. Comp. Sci. Educ. 21, 1, 57–80.

Maletic, J. I., Marcus, A., and Collard, M. L. 2002. A task oriented view of software visualization. In
Proceedings of the 1st International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT’02). 32–40.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:61

Mann, L. M., Linn, M. C., and Clancy, M. 1994. Can tracing tools contribute to programming proficiency?
The LISP evaluation modeler. Inter. Learn. Envir. 4, 1, 96–113.

Maravić Čisar, S., Pinter, R., Radosav, D., and Čisar, P. 2010. Software visualization: The educational tool
to enhance student learning. In Proceedings of the 33rd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO’10). 990–994.

Maravić Čisar, S., Radosav, D., Pinter, R., and Čisar, P. 2011. Effectiveness of program visualization in
learning Java: A case study with Jeliot 3. Int. J. Comp. Comm. Control 6, 4, 669–682.

Mayer, R. E. 1975. Different problem-solving competencies established in learning computer programming
with and without meaningful models. J. Educ. Psych. 67, 6, 725–734.

Mayer, R. E. 1976. Some conditions of meaningful learning for computer programming: advance organizers
and subject control of frame order. J. Educ. Psych. 68, 143–150.

Mayer, R. E. 1981. The psychology of how novices learn computer programming. ACM Comp. Surv. 13, 1,
121–141.

Mayer, R. E., Ed. 2005. The Cambridge Handbook of Multimedia Learning. Cambridge University Press.
Mayer, R. E. 2009. Multimedia Learning 2nd Ed. Cambridge University Press.
Miller, L. A. 1981. Natural language programming: Styles, strategies, and contrasts. IBM Syst. J. 20, 2,

184–215.
Milne, I. and Rowe, G. 2002. Difficulties in learning and teaching programming - Views of students and

tutors. Educ. Inf. Technol. 7, 1, 55–66.
Milne, I. and Rowe, G. 2004. OGRE: Three-dimensional program visualization for novice programmers.

Educ. Inf. Technol. 9, 3, 219–237.
Miyadera, Y., Kurasawa, K., Nakamura, S., Yonezawa, N., and Yokoyama, S. 2007. A real-time monitoring

system for programming education using a generator of program animation systems. J. Comp. 2, 3,
12–20.

Moons, J. and De Backer, C. 2013. The design and pilot evaluation of an interactive learning environment for
introductory programming influenced by cognitive load theory and constructivism. Comp. Educ. 60, 1,
368–384.

Moreno, A. 2005. The design and implementation of intermediate codes for software visualization. Master’s
thesis, Department of Computer Science, University of Joensuu.

Moreno, A. and Joy, M. S. 2007. Jeliot 3 in a demanding educational setting. In Electronic Notes in
Theoretical Computer Science, vol. 178, 51–59.

Moreno, A. and Myller, N. 2003. Producing an educationally effective and usable tool for learning, the
case of the Jeliot family. In Proceedings of the International Conference on Networked e-learning for
European Universities (EUROPACE’03).

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. 2004. Visualizing programs with Jeliot 3. In Proceedings
of the International Working Conference on Advanced Visual Interfaces (AVI’04). 373–376.

Mota, M. P., Brito, S., Moreira, M. P., and Favero, E. L. 2009. Ambiente Integrado à Plataforma Moodle para
Apoio ao Desenvolvimento das Habilidades Iniciais de Programação. An environment integrated into
the moodle platform for the development of first habits of programming, in Portuguese. In Anais do XX
Simpósio Brasileiro de Informatica na Educacaon.

Mselle, L. J. 2011. Enhancing comprehension by using random access memory (RAM) diagrams in teaching
programming: Class experiment. In Proceedings of the 23rd Annual Workshop of the Psychology of
Programming Interest Group (PPIG’11).

Murphy, C., Kim, E., Kaiser, G., and Cannon, A. 2008. Backstop: A tool for debugging runtime errors.
SIGCSE Bull. 40, 1, 173–177.

Myers, B. A. 1990. Taxonomies of visual programming and program visualization. J. Vis. Lang. Comput. 1,
97–123.

Myers, B. A., Chandhok, R., and Sareen, A. 1988. Automatic data visualization for novice Pascal program-
mers. In Proceedings of the IEEE Workshop on Visual Languages (WVL’88). 192–198.

Myller, N., Bednarik, R., and Moreno, A. 2007a. Integrating dynamic program visualization into BlueJ:
The Jeliot 3 extension. In Proceedings of the 7th IEEE International Conference on Advanced Learning
Technologies (ICALT’07). 505–506.

Myller, N., Laakso, M., and Korhonen, A. 2007b. Analyzing engagement taxonomy in collaborative algorithm
visualization. SIGCSE Bull. 39, 3, 251–255.

Myller, N., Bednarik, R., Sutinen, E., and Ben-Ari, M. 2009. Extending the engagement taxonomy: Software
visualization and collaborative learning. ACM Trans. Comput. Educ. 9, 1, 1–27.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:62 J. Sorva et al.

Najjar, L. J. 1998. Principles of educational multimedia user interface design. Hum. Fact. 40, 2,
311–323.

Naps, T. L. 2005. JHAVE: Supporting algorithm visualization. Comp. Graph. Appl. 25, 5, 49–55.
Naps, T. L. and Stenglein, J. 1996. Tools for visual exploration of scope and parameter passing in a

programming languages course. SIGCSE Bull. 28, 1, 305–309.
Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,

McNally, M., Rodger, S., and Velázquez-Iturbide, J. Á. 2003. Exploring the role of visualization and
engagement in computer science education. SIGCSE Bull. 35, 2, 131–152.

Nevalainen, S. and Sajaniemi, J. 2005. Short-term effects of graphical versus textual visualization of vari-
ables on program perception. In Proceedings of the 17th Workshop of the Psychology of Programming
Interest Group (PPIG’05). 77–91.

Nevalainen, S. and Sajaniemi, J. 2006. An experiment on short-term effects of animated versus static
visualization of operations on program perception. In Proceedings of the 2nd International Workshop
on Computing Education Research (ICER’06). 7–16.

Nevalainen, S. and Sajaniemi, J. 2008. An experiment on the short-term effects of engagement and
representation in program animation. J. Educ. Comput. Res. 39, 4, 395–430.

Oechsle, R. and Morth, T. 2007. Peer review of animations developed by students. In Electronic Notes in
Theoretical Computer Science, vol. 178, 181–186.

Oechsle, R. and Schmitt, T. 2002. JAVAVIS: Automatic program visualization with object and sequence
diagrams using the Java Debug Interface (JDI). In Revised Lectures on Software Visualization,
International Seminar, S. Diehl Ed., Springer, 176–190.

Paas, F., Renkl, A., and Sweller, J., Eds. 2003. Educational psychologist. Cogn. Load Theory 38, 1.
Pane, J. F., Ratanamahatana, C. A., and Myers, B. A. 2001. Studying the language and structure in

non-programmers’ solutions to programming problems. Int. J. Hum.-Comp. Stud. 54, 2, 237–264.
Papert, S. 1993. Mindstorms: Children, Computers, and Powerful Ideas. Da Capo Press.

Pareja-Flores, C., Urquiza-Fuentes, J., and Velázquez-Iturbide, J. Á. 2007. WinHIPE: An IDE for functional
programming based on rewriting and visualization. SIGPLAN Not. 42, 3, 14–23.

Pea, R. D. 1986. Language-independent conceptual “bugs” in novice programming. J. Educ. Comp. Res. 2, 1,
25–36.

Pears, A. and Rogalli, M. 2011a. mJeliot: A tool for enhanced interactivity in programming instruction.
In Proceedings of the 11th Koli Calling International Conference on Computing Education Research
(KoliCalling’11). 10–15.

Pears, A. and Rogalli, M. 2011b. mJeliot: ICT support for interactive teaching of programming. In
Proceedings of the 41st Annual Frontiers in Education Conference (FIE’11).

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., and Paterson, J. 2007.
A survey of literature on the teaching of introductory programming. SIGCSE Bull. 39, 4, 204–223.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. 1986. Conditions of learning in novice
programmers. J. Educ. Comp. Res. 2, 1, 37–55.

Petre, M. 1995. Why looking isn’t always seeing: Readership skills and graphical programming. Comm.
ACM 38, 6, 33–44.

Phillips, D. C., Ed. 2000. Constructivism in Education: Opinions and Second Opinions on Controversial
Issues. The National Society for the Study of Education.

Plass, J. L., Moreno, R., and Brünken, R., Eds. 2010. Cognitive Load Theory. Cambridge University Press.
Price, B. A., Baecker, R. M., and Small, I. S. 1993. A principled taxonomy of software visualization. J. Vis.

Lang. Comput. 4, 3, 211–266.
Ragonis, N. and Ben-Ari, M. 2005. A long-term investigation of the comprehension of OOP concepts by

novices. Comp. Sci. Educ. 15, 3, 203–221.
Rajala, T., Laakso, M.-J., Kaila, E., and Salakoski, T. 2007. VILLE - A language-independent program

visualization tool. In Proceedings of the 7th Baltic Sea Conference on Computing Education Research
(KoliCalling’07). 151–159.

Rajala, T., Laakso, M.-J., Kaila, E., and Salakoski, T. 2008. Effectiveness of program visualization: A case
study with the ViLLE tool. J. Inf. Tech. Educ. Innov. Prac. 7, 15–32.

Rajala, T., Kaila, E., Laakso, M.-J., and Salakoski, T. 2009. Effects of collaboration in program visualization.
In Proceedings of the Technology Enhanced Learning Conference (TELearn’09).

Rajala, T., Kaila, E., and Laakso, M.-J. ViLLE: Collaborative education tool (website). http://ville.cs.utu.fi.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

A Review of Generic Program Visualization Systems 15:63

Ramadhan, H. A. 2000. Programming by discovery. J. Comp. Assist. Learn. 16, 83–93.
Ramadhan, H. A., Deek, F., and Shilab, K. 2001. Incorporating software visualization in the design of

intelligent diagnosis systems for user programming. Art. Intell. Rev. 16, 61–84.
Robinett, W. 1979. Basic Programming.
Roman, G.-C. and Cox, K. C. 1993. A taxonomy of program visualization systems. Comp. 26, 12, 97–123.
Ross, R. J. 1983. LOPLE: A dynamic library of programming language examples. SIGCUE Outl. 17, 4, 27–31.
Ross, R. J. 1991. Experience with the DYNAMOD program animator. SIGCSE Bull. 23, 1, 35–42.
Rowe, G. and Thorburn, G. 2000. VINCE - An online tutorial tool for teaching introductory programming.

Brit. J. Educ. Tech. 31, 4, 359–369.
Sajaniemi, J. n.d. The roles of variables home page. http://cs.joensuu.fi/∼saja/var roles/.
Sajaniemi, J. and Kuittinen, M. 2003. Program animation based on the roles of variables. In Proceedings of

the ACM Symposium on Software Visualization (SoftVis’03). 7–16.
Sajaniemi, J. and Kuittinen, M. 2005. An experiment on using roles of variables in teaching introductory

programming. Comp. Sci. Educ. 15, 1, 59–82.
Sajaniemi, J., Byckling, P., and Gerdt, P. 2007. Animation metaphors for object-oriented concepts. In

Electronic Notes in Theoretical Computer Science, vol. 178, 15–22.
Sajaniemi, J., Kuittinen, M., and Tikansalo, T. 2008. A study of the development of students’ visualizations of

program state during an elementary object-oriented programming course. J. Educ. Res. Comp. 7, 4, 1–31.
Scheiter, K., Gerjets, P., and Catrambone, R. 2006. Making the abstract concrete: Visualizing mathematical

solution procedures. Comp. Hum. Behav. 22, 1, 9–25.
Schulte, C. and Bennedsen, J. 2006. What do teachers teach in introductory programming? In Proceedings

of the 2nd International Workshop on Computing Education Research (ICER’06). 17–28.
Scott, A., Watkins, M., and McPhee, D. 2008. Progranimate - A Web enabled algorithmic problem solving

application. In Proceedings of the International Conference on E-Learning, E-Business, Enterprise
Information Systems, & E-Government (EEE’08). 498–508.

Seppälä, O. 2004. Program state visualization tool for teaching CS1. In Proceedings of the 3rd Program
Visualization Workshop (PVW’04). 118–125.

Shaffer, C. A., Naps, T. L., and Fouh, E. 2011. Truly interactive textbooks for computer science education.
In Proceedings of the 6th Program Visualization Workshop (PVW’11). 97–106.

Sherry, L. 1995. A model computer simulation as an epistemic game. SIGCSE Bull. 27, 2, 59–64.
Shinners-Kennedy, D. 2008. The everydayness of threshold concepts: State as an example from computer

science. In Threshold Concepts within the Disciplines, R. Land and J. H. F. Meyer Eds., SensePublishers,
119–128.

Simon. 2011. Assignment and sequence: why some students can’t recognize a simple swap. In Proceedings
of the 11th Koli Calling International Conference on Computing Education Research (KoliCalling’11).
16–22.

Sirkiä, T. and Sorva, J. 2012. Exploring programming misconceptions: An analysis of student mistakes in
visual program simulation exercises. In Proceedings of the 12th Koli Calling International Conference
on Computing Education Research (KoliCalling’12). 19–28.

Sivula, K. 2005. A qualitative case study on the use of Jeliot 3. Master’s thesis, Department of Computer
Science, University of Joensuu.

Sleeman, D., Putnam, R. T., Baxter, J., and Kuspa, L. 1986. Pascal and high school students: A study of
errors. J. Educ. Comp. Res. 2, 1, 5–23.

Smith, P. A. and Webb, G. I. 1991. Debugging using partial models. In Proceedings of the 4th Australian
Society for Computer in Learning in Tertiary Education Conference (ASCILITE’91). 581–590.

Smith, P. A. and Webb, G. I. 1995a. Reinforcing a generic computer model for novice programmers. In
Proceedings of the 7th Australian Society for Computer in Learning in Tertiary Education Conference
(ASCILITE’95).

Smith, P. A. and Webb, G. I. 1995b. Transparency debugging with explanations for novice programmers. In
Proceedings of the 2nd Workshop on Automated and Algorithmic Debugging (AADEBUG’95). 105–118.

Smith, P. A. and Webb, G. I. 2000. The efficacy of a low-level program visualization tool for teaching
programming concepts to novice c programmers. J. Educ. Comp. Res. 22, 2, 187–215.

Sorva, J. 2010. Reflections on threshold concepts in computer programming and beyond. In Proceedings of the
10th Koli Calling International Conference on Computing Education Research (KoliCalling’10). 21–30.

Sorva, J. 2012. Visual program simulation in introductory programming education. Doctoral dissertation,
Department of Computer Science and Engineering, Aalto University.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

�

�

�

�

�

�

�

�

15:64 J. Sorva et al.

Sorva, J. 2013. Notional machines and introductory programming education. ACM Trans. Comput. Educ.
13, 4.

Sorva, J. and Sirkiä, T. 2010. UUhistle - A software tool for visual program simulation. In Proceedings of the
10th Koli Calling International Conference on Computing Education Research (KoliCalling’10). 49–54.

Sorva, J. and Sirkiä, T. 2011. Context-sensitive guidance in the UUhistle program visualization system. In
Proceedings of the 6th Program Visualization Workshop (PVW’11). 77–85.

Sorva, J., Lönnberg, J., and Malmi, L. accepted. Students’ ways of experiencing visual program simulation.
Comp. Sci. Educ.

Stasko, J. T. and Patterson, C. 1992. Understanding and characterizing software visualization systems. In
Proceedings of the IEEE Workshop on Visual Languages (VL’92). 3–10.

Stützle, T. and Sajaniemi, J. 2005. An empirical evaluation of visual metaphors in the animation of roles of
variables. Inform. Sci. J. 8, 87–100.

Sundararaman, J. and Back, G. 2008. HDPV: Interactive, faithful, in-vivo runtime state visualization for
C/C++ and Java. In Proceedings of the 4th ACM Symposium on Software Visualization (SoftVis’08).
47–56.

Sutinen, E., Tarhio, J., Lahtinen, S.-P., Tuovinen, A.-P., Rautama, E., and Meisalo, V. 1997. Eliot - An
algorithm animation environment. Teaching and Learning rep. A-1997-4, Department of Computer
Science, University of Helsinki.

Terada, M. 2005. ETV: A program trace player for students. SIGCSE Bull. 37, 3, 118–122.
Thomas, L., Ratcliffe, M., and Thomasson, B. 2004. Scaffolding with object diagrams in first year program-

ming classes: Some unexpected results. SIGCSE Bull. 36, 1, 250–254.
Thuné, M. and Eckerdal, A. 2010. Students’ conceptions of computer programming. Tech. rep. 2010-021,

Department of Information Technology, Uppsala University.

Urquiza-Fuentes, J. and Velázquez-Iturbide, J. Á. 2007. An evaluation of the effortless approach to build al-
gorithm animations with WinHIPE. In Electronic Notes in Theoretical Computer Science, vol. 178, 3–13.

Urquiza-Fuentes, J. and Velázquez-Iturbide, J. Á. 2009. A survey of successful evaluations of program
visualization and algorithm animation systems. ACM Trans. Comp. Educ. 9, 2, 1–21.

Urquiza-Fuentes, J. and Velázquez-Iturbide, J. A. 2012. Comparing the effectiveness of different educational
uses of program animations. In Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE’12). 174–179.

Vagianou, E. 2006. Program working storage: A beginner’s model. In Proceedings of the 6th Baltic Sea
Conference on Computing Education Research (KoliCalling’06). 69–76.

Vainio, V. and Sajaniemi, J. 2007. Factors in novice programmers’ poor tracing skills. SIGCSE Bull. 39, 3,
236–240.

Velázquez-Iturbide, J. Á., Pérez-Carrasco, A., and Urquiza-Fuentes, J. 2008. SRec: An animation system of
recursion for algorithm courses. SIGCSE Bull. 40, 3, 225–229.

Virtanen, A. T., Lahtinen, E., and Järvinen, H.-M. 2005. VIP, a visual interpreter for learning introduc-
tory programming with C++. In Proceedings of the 5th Koli Calling Conference on Computer ACM
Transactions on Computing Education (KoliCalling’05). 125–130.

Wang, P., Bednarik, R., and Moreno, A. 2012. During automatic program animation, explanations after
animations have greater impact than before animations. In Proceedings of the 12th Koli Calling
International Conference on Computing Education Research (KoliCalling’12). 100–108.

Weber, G. and Brusilovsky, P. 2001. ELM-ART: An adaptive versatile system for web-based instruction. Int.
J. Art. Intell. Educ. 12, 351–384.

Yehezkel, C., Ben-Ari, M., and Dreyfus, T. 2007. The contribution of visualization to learning computer
architecture. Comp. Sci. Educ. 17, 2, 117–127.

Received May 2012; revised November 2012; accepted May 2013

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 15, Publication date: November 2013.

