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Self-adaptive software is capable of evaluating and changing its own behavior, whenever the evaluation
shows that the software is not accomplishing what it was intended to do, or when better functionality or
performance may be possible. The topic of system adaptivity has been widely studied since the mid-60s
and, over the past decade, several application areas and technologies relating to self-adaptivity have
assumed greater importance. In all these initiatives, software has become the common element that
introduces self-adaptability. Thus, the investigation of systematic software engineering approaches is
necessary, in order to develop self-adaptive systems that may ideally be applied across multiple domains.
The main goal of this study is to review recent progress on self-adaptivity from the standpoint of com-
puter sciences and cybernetics, based on the analysis of state-of-the-art approaches reported in the lit-
erature. This review provides an over-arching, integrated view of computer science and software
engineering foundations. Moreover, various methods and techniques currently applied in the design of
self-adaptive systems are analyzed, as well as some European research initiatives and projects. Finally,
the main bottlenecks for the effective application of self-adaptive technology, as well as a set of key
research issues on this topic, are precisely identified, in order to overcome current constraints on the
effective application of self-adaptivity in its emerging areas of application.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Since the mid-60s, the topic of system adaptivity has been
widely studied and significant efforts have been made by the scien-
tific community to find new approaches to elucidate the basic prin-
ciples of self-adaptivity theory and practice. Thereafter, the
scientific literature on self-adaptivity has been extensive, mainly
over the past decade. Different interpretations and concepts have
nevertheless been produced by the research community, as the
subject is still the focus of intense research and development.
Although a lack of consistency is normal in any evolving field of
scientific research, it does little to support uniform global
understanding.

Over the past decade, the importance of self-adaptivity has
been increasingly acknowledged in its various application areas
and related technologies. Software engineering and related topics
are the common elements in the successful introduction of self-
adaptivity. Hence, the imperative need to investigate systematic
software engineering approaches for the development of self-adap-
tive systems, which would ideally be applicable across multiple
domains (Brun et al., 2009).

Modern embedded software systems have to execute multiple
tasks in diverse scenarios. These systems are increasingly expected
to function in a dependent way in changing environments and to
react to changes within the system. Self-adaptive embedded sys-
tems have to make decisions on adaptivity at runtime with respect
to changing requirements (Weiss, Becker, Kamphausen, Raderm-
acher, & Gérard, 2011). Self-adaptive software is capable of evalu-
ating and changing its own behavior, whenever the evaluation
shows that the software is not accomplishing what it was intended
to do, or when better functionality or performance may be possible
(Salehie & Tahvildari, 2011). Artificial intelligence represents an
effective way of emulating adaptivity, making organized and
efficient systems easier to reconfigure and more highly adaptive
(Leitao, 2009).

The central goal of this paper is to review recent progress on
self-adaptivity from the viewpoint of computer science and cyber-
netics. Its analysis and compilation of information from the litera-
ture identifies key scientific and technical challenges and assesses
cutting-edge theories, methods and techniques for the design and
development of self-adaptive systems. The main bottlenecks that
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prevent the immediate inclusion of self-adaptivity software into
worldwide technology are also discussed.

The rest of this paper is organized as follow. Some definitions of
self-adaptativity are discussed in Section 2. Section 3 focuses on
the self-adaptive capabilities of complex systems, the main tools,
and their methods, which range from traditional to recent ap-
proaches. Section 4 explores the main applications or application
domains, as well as challenges and research opportunities in self-
adaptivity that may take us beyond state-of-the-art applications
in the near future. Finally, a few concluding remarks discuss cur-
rent and future directions for further research.

2. Self-adaptivity: some definitions

Biology and nature offer plenty of powerful mechanisms, re-
fined by evolutionary processes over millions of years, to handle
emergent and evolving environments (Leitao, 2009). These natural
self-adaptive systems have attracted the attention of software
designers, because of the ease with which they can change their
own behavior in response to changes in their environment
(Nakagawa, Ohsuga, & Honiden, 2008).

This review of the literature on self-adaptivity has identified
numerous definitions, a detailed discussion of which is beyond
the scope of this paper. Here, we enumerate only some of the most
commonly accepted definitions.

Definition 1. Self-adaptivity is the capability of the system to
adjust its behavior in response to the environment. The ‘‘self’’
prefix indicates that the systems autonomously decide (i.e., with
minimal or no interference) how to adapt or to organize them-
selves so that they can accommodate changes in their contexts and
environments. While some self-adaptive systems may be able to
function without any human intervention, guidance in the form of
higher-level objectives (e.g., through policies) is useful and real-
izable in many systems (Brun et al., 2009).
Definition 2. In the context of multi-model systems, adaptation is
a procedure or method for switching between models. Adaptivity
can therefore be defined as the capability of a system to achieve
its goals in a changing environment, by selectively executing and
switching between models. This capability contrasts with the con-
ventional use of the term adaptation used in mono-model systems,
where design parameters or relations are tuned to fit observed
behavior (Ravindranathan & Leitch, 1998).
Definition 3. A self-adaptive system consists of a closed-loop sys-
tem (i.e., modify in runtime itself using feedback due to continuous
changes of the system), its requirements and existing tendencies in
developing and deploying complex system, thereby reducing
human efforts in the computer interaction. The conception of
self-adaptive system depends on user’s requirements, system
properties and environmental characteristics. Self-adaptive soft-
ware requires high dependability, robustness, adaptivity, and
availability (Naqvi, 2012).
Definition 4. A self-adaptive system evaluates its own behavior
and changes its own performance when the evaluation indicates
that it is not accomplishing what the software is intended to do,
or when better functionality or performance is possible (Salehie
& Tahvildari, 2011).

Although these definitions address run-time changes regarding
functional and non-functional requirements, many researchers in
the software engineering community have mainly focused their ef-
forts on non-functional aspects.
Salehie and Tahvildari (2011) decompose the adaptation mech-
anism into several processes: monitoring software entities (self-
awareness) and the environment (context-awareness), analyzing
significant changes, planning how to react, and executing, so that
the decisions to take effect. In most of the existing solutions, the
adaptation processes are assigned to an external adaptation man-
ager that is separate from the application logic. An adaptation man-
ager realizes the four above-mentioned processes, to control the
behavior of adaptable software. 1. The application logic is pro-
grammed in adaptable software that receives signals from the sen-
sors and effectors required for self-adaptivity.

Self-adaptive topics have been widely addressed in several soft-
ware engineering research areas: requirements engineering
(Brown, Cheng, Goldsby, & Zhang, 2006; Sawyer, Bencomo, Whit-
tle, Letie, & Finkelstein, 2010), software architecture (Den Hamer
& Skramstad, 2011; Garlan, Cheng, Huang, Schmerl, & Steenkiste,
2004; Garlan, Cheng, & Schmerl, 2003; Oreizy et al., 1999; Richter
et al., 2006), middleware (Geihs et al., 2009; Liu & Parashar, 2006;
Schmitt, Roth, Kiefhaber, Kluge, & Ungerer, 2011), and component-
based development (Bencomo, Grace, Flores, Hughes, & Blair, 2008;
Peper & Schneider, 2008); even so, these are invariably isolated ini-
tiatives. Self-adaptivity and feedback have also been studied from
the perspectives of Systems Theory, Artificial Intelligence and
Computer Science providing theoretical foundations and applica-
tion fields such as: control engineering, mobile and autonomous
robots, multi-agent systems, fault-tolerant computing, dependable
computing, distributed systems, autonomous computing, self-
managing systems, autonomous communications, adaptable user
interfaces, machine learning, economic and financial systems, busi-
ness and military strategic planning, sensor networks, pervasive
and ubiquitous computing, etc. Software is the key and common
element that enables these systems to be self-adaptive.
3. Self-adaptivity: past and present in tools and methods

The complexity of current software systems and uncertainty in
computational environments have motivated us to explore new
ways for the design and management of systems and services
(Abelson et al., 2000; Brun & Medvidovic, 2007a, 2007b; Di Mar-
zo-Serugendo, Gleizes, & Karageorgos, 2005; Diao et al., 2005) in
fields such as Artificial Intelligence, Control Theory and Biology.
In this endeavor, the capability of the system to adjust perfor-
mance prior to changes in the environment by self-adaptivity is
one of the most active research directions.
3.1. Main approaches

Self-adaptive systems may be characterized by their operating
conditions and by multiple dimensional properties such as central-
ization and decentralization, top-down and bottom-up approaches,
feedback latency, and environmental uncertainty (low vs. high).
The main approaches to deal with self-adaptivity are presented
as follows, highlighting the key roles of computer science and
cybernetics.

A top-down self-adaptive system is often centralized and oper-
ates with the guidance of a central controller or policy, assesses its
own behavior in the current surroundings, and adapts itself
accordingly, whenever its monitoring and analysis systems indi-
cate that it should do so. This type of system often operates with
an explicit internal representation of itself and its overall aims.
An analysis of a top-down self-adaptive system and its compo-
nents provides a clear understanding of the overall system and
its behavior. On the contrary, decentralization is often a feature
of cooperative self-adaptive or self-organizing systems, which
function without a central authority. They are usually bottom-up,
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have a large number of components and interact locally according
to simple rules. The global behavior of the system emerges from
these local interactions. Specific properties of a global system
may not, therefore, be easily deduced from an analysis of only
the local properties of its parts.

Most engineered and nature-inspired self-adaptive systems of-
ten reflect biological or sociological phenomena. In practice, the
line between these two approaches is not clear and compromises
will often lead to an engineering approach incorporating tech-
niques from both alternatives (Brun et al., 2009).

3.1.1. External control mechanisms
Garlan et al. (2004) used external control mechanisms for self-

adaptivity, based on the belief that they provide a more effective
engineering solution than internal mechanisms, because they
localize the concerns of problem detection and resolution in sepa-
rable modules that can be analyzed, modified, extended, and re-
used across different systems. The proposed framework adopts
an architecture-based approach, to provide a reusable infrastruc-
ture and mechanisms for specific systems.

Schmeck, Müller-Schloer, Cakar, Mnif, and Richter (2010) de-
scribe a system with either internal or external control mecha-
nisms, which provide a way of controlling the behavior of the
system by setting certain attributes of the system and its environ-
ment to specific values (contrary to the common belief that it is not
possible to control environmental parameters). The control mech-
anism is considered a central entity, but it might be distributed or
have a multi-level structure. The authors also define a degree of
autonomy to be able to quantify how autonomously a system is
working. The degree of autonomy measures external control that
is exerted directly by the user (no autonomy) and distinguishes
it from internal or external control of a system that might be fully
controlled by an observer/controller architecture that is part of the
system (full autonomy).

3.1.2. Component based software engineering (CBSE)
Bencomo et al. (2008) give an overall description of the ap-

proach implemented by Genie, a tool that supports the modeling,
generation and operation of highly reconfigurable component-
based systems. Likewise, Mishra and Misra (2009) utilized CBSE
to design a model for a self-adaptive system that automatically
performs the component integration process at runtime, by access-
ing the equivalent component from an a priori available repository.
The model integrates the caching technique to reduce the time
needed to search for the best-fitted component to replace the
one that is required, when a system fails to respond due to compo-
nent failure. Component assessment, in order to get the best alter-
native component, is done by numerical metadata, a measure that
assigns the number of match functionalities for each component
present in the repository. The computation of numerical metadata
is based on the concept of an abstract syntactic tree and different
systems will therefore be obtained before each environment at
run time.

Yeom and Park (2012) described a scalable framework for
developing adaptive, autonomous, highly distributed, and mobile
agent-based network applications. They defined a set of key fea-
tures for adaptive and autonomous component-based agents in
their architecture. Furthermore, they also presented functional
requirements for building an application composed of a federation
of agents.

3.1.3. Model-driven
Supported by an innovative model-driven development meth-

odology that is based on abstract adaptation models and corre-
sponding model-to-code transformations, Geihs et al. (2009)
designed a piece of middleware for the development and operation
of context-aware, self-adaptive applications. They designed an ab-
stract, platform-independent model that performed automatic
code generation, providing high flexibility for the development of
adaptive applications.

Vogel, Neumann, Hildebrandt, Giese, and Becker (2009) pro-
posed a model-driven approach to developing self-adaptive sys-
tems with self-monitoring architectures. This approach can lead
to incremental synchronization between the run-time system
and models for different self-management activities.

In heterogeneous intelligent control (i.e., artificial intelligence-
based control using heterogeneous knowledge), models are se-
lected from different layers, involving different sources of knowl-
edge. The knowledge used to determine the model switching
strategy is crucial to its efficient operation. A default strategy can
be encoded as a set of deterministic model-switching procedures.
More generally, switching knowledge, or more formally meta
knowledge, can also be encoded as either a set of rules or, at least
conceptually, as a set of principles (Ravindranathan & Leitch,
1998).

3.1.4. Nature-inspired engineering
Nature-inspired engineering is a relatively young research area

(Brun et al., 2009). Nevertheless, the application of nature-inspired
strategies for designing self-adaptive software is receiving more
attention from public and private sectors. One research line is cen-
tered on software and hardware design solutions (Abelson et al.,
2000; Brun & Medvidovic, 2007a, 2007b; Di Marzo-Serugendo
et al., 2007) inspired by natural and biological systems. Another re-
search strategy is focused on how to build self-adapting software
systems on the basis of the properties and the behavior of natural
and biological systems (Clement & Nagpal, 2003; Shen et al., 2006;
Yu, Ramaswamy, & Bush, 2008). Similarly, Leitão (2008) proposed a
bio-inspired solution, presenting evolving mechanisms based on
self-organization, supervision and learning concepts, and ant-
based communication, supported by the use of multi-agent
principles.

3.1.5. Multiagent systems
The key features of multiagent systems in the engineering of

self-adaptive systems are, specifically, loose coupling, context sen-
sitivity, robustness in response to failure and unexpected events.
Goal-based, loose coupling of agents provides the flexibility needed
for self-adaptivity and reuse (Weyns & Georgeff, 2010). Agents are
independent objects that can accomplish their tasks and are flexi-
ble components that can be combined with and segregated from
each other in a framework (Yeom & Park, 2012). Nowadays, new
cooperative strategies for multi-agent systems and the combina-
tion of high-level compressed-state representation and a hybrid re-
ward function produce the best results, in terms of both task
completion rates and learning efficiency. An interesting application
of self-adaptive agent-based fuzzy-neural system to enhance the
performance of scheduling jobs in a wafer fabrication factory in
proposed in (Chen, 2011).

Each component can be implemented as a mobile agent that can
travel through computers using their own migration schemes,
regardless of whether it is a homogeneous or heterogeneous agent.
It means that each component can autonomously migrate to an-
other computer or duplicate itself and send copies to others. An-
other important issue is to facilitate the dynamic association of
one or more components in distributed systems. The framework
can support low-level operating and networking details for agent
migration and communication.

3.1.6. Feedback systems
Control engineering emphasizes feedback loops, elevating them

to first-class entities (Franklin, Powell, & Emami-Naeini, 2006;



7270 F.D. Macías-Escrivá et al. / Expert Systems with Applications 40 (2013) 7267–7279
Hellerstein, Parekh, Diao, & Tilbury, 2004; Tanner, 1963), claiming
that almost any system that is considered automatic has some ele-
ment of feedback control. One reason for the widespread use of
feedback control is its guarantee that the measured output will
track a desired behavior or reference even in the presence of dis-
turbance. The concept of feedback and feedback loops is therefore
essential for enabling self-adaptive systems.

Over the past few decades, software engineering has to some
degree neglected the relevance of dynamic aspects and has mainly
considered static architecture for systems. On the contrary, control
engineering and control methods have developed over decades on
the basis feedback loops and dynamic models. A seminal paper by
Magee and Kramer on dynamic structure in software architecture
(Magee & Kramer, 1996) addressed relevant aspects to set the sci-
entific foundations for many subsequent research projects (Cheng,
Garlan, & Schmerl, 2005; Garlan et al., 2003; Kramer & Magee,
2007; Oreizy et al., 1999). However, while these research projects
implement feedback systems, the actual feedback loops are kept
hidden or are abstracted. Certainly, the feedback loop has an
important and decisive role in software process management and
its improvement and is essential to software evolution. Well-
known examples are the feedback loops at every stage in Royce’s
waterfall model (Royce, 1970) or the risk feedback loop in Boehm’s
spiral model (Boehm, 1988).

Common to most of the existing approaches is their identifica-
tion of four processes for adaptivity: monitoring, analyzing, plan-
ning, and executing (MAPE). In this section, we will explore tools
and methods for addressing key topics in self-adaptive software
systems, closely related to the achievement of previously men-
tioned processes, as illustrated in Fig. 1.

Broadly divided into two categories, these tools and methods
may be either global or specific. Global tools and methods enable
or assist designers and developers to create a self-adaptive system
from the standpoint of a whole system. Specific methods are those
for studying, designing, implementing, and supporting any of the
aforementioned specific processes for self-adaptivity such as
MAPE.

3.2. Global tools and methods

3.2.1. Models
Bencomo (2009) studied what is called an ‘‘eternal software

system’’, a kind of system that is required to survive variations in
its execution environment with or without human intervention.
The research argues that run-time self-representations (runtime
models) are the key to the production of an eternal software sys-
tem. The author describes the methods to sustain the point of view
that self-representation, reflection and architectural models are
basic principles to support the use of runtime models.

Goal-based models have proven to be effective for the specifica-
tion of self-adaptive systems, monitoring and switching between
Fig. 1. Adaptivity processes and associated topics.
adaptive behaviors. The ability to reason about partial goal satis-
faction is a particular strength of goal-based modeling. A notable
body of work in software engineering has applied goal-based mod-
eling notations, such as i⁄ (E. Yu, 1995), to discover and to specify
the requirements of self-adaptive systems. Indeed, i⁄ represents
goals as a structure of connected nodes without explicitly repre-
senting a logical relationship between the parent and offspring.
Another tool called Soft-goal Interdependency Graph (SIG) uses
an AND-OR graph which decomposes and relates goals using
AND and OR relationships. For example, the NFR framework bene-
fits from SIG (Chung, Nixon, Yu, & Mylopoulos, 2000). Design deci-
sions stimulate the model from operationalization nodes, and the
reasoning propagates the impacts though goals. Designers evaluate
their decisions, by reviewing the degree of satisfaction with goals
that are achieved.

The majority of existing architectures for the adaptation man-
ager in self-adaptive software take advantage of the Sensor-Plan-
Act (SPA) model, used extensively in building traditional robotic
systems (Salehie & Tahvildari, 2011). In these systems, events are
collected, analyzed, and fused to update the domain model (i.e.,
global model). The system then plans its strategy in the new situ-
ation. However, the idea of behavior-based robotics is to use dis-
tributed specialized task-achieving modules, called behaviors,
and to apply command fusion instead of sensor fusion (Arkin,
1998). So, there is no need to develop, to maintain, and to extend
a coherent monolithic model of the adaptable software and its con-
text. However, while goal-driven models are used in requirements
engineering, they have not previously been systematically used for
run-time adaptation.

More than two decades ago, Rao and Georgeff (1995) intro-
duced the basics of the Belief-Desire-Intention (BDI) agent archi-
tecture model. The BDI model is an agent building style based on
an agent architecture that provides a reasoning mechanism with
the concepts of belief, desire (or goal) and plan. This pioneering
model and its extensions in multi-agent systems are well-estab-
lished and built on a strong body of knowledge, which could be
useful in designing self-adaptive software systems; some of the
frameworks discussed later in this article are supported by this
model.

Today’s distributed embedded systems comprise various fields
of application in a complex ‘system of systems’ scenario, which
hold great advantages in terms of flexibility, resource utilization,
energy efficiency and robustness. They should be able to adapt to
changes in the environments and the internal system, requiring
enhanced development methods to incorporate adaptation into
their design. Weiss et al. (2011) present the self-⁄ profile, a model-
ing extension for describing the adaptation, and the respective de-
sign flow with built-in transformations.

3.2.2. Simulation
Some essential theories, techniques and computational proce-

dures for modeling and simulation are identified by Couture (Cou-
ture & Valcartier, 2007), and summarized as follows.

� Game Theory. This is a theory of interactions based on decisions
and relative advantage. This quantifies decision fitness at an
individual pair level, but is harder to apply to more diffuse sys-
tems. The important aspect here is how to distinguish positive
from negative evolutionary paths – goal directed behaviors.
� Spin Glasses. This technique, borrowed from physics, uses a

lattice of interacting points and is chiefly found in complexity
work on cellular automata, which can be used to model many
physical phenomena. The technique, whilst excellent for simu-
lation, proves mathematically difficult, but is important in
relation to the demonstration of emergent, higher level
structures.
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� Time Series Analysis. Based on communications theory, time
series analysis seeks to identify regularities in the behavior of
a system over time, trying to quantify cyclic or chaotic (strange)
attractors. It is often applied to financial systems. The main
drawback is that the system must have a large amount of data
for analysis, though its advantage is that limits can be placed on
system behavior.
� Fuzzy Logic. In the analysis of nonlinear systems, fuzzy logic

gives us a way of quantifying many interacting variables, gener-
ating a result that maps all possible interactions of the inputs.
This technique has yet to be widely applied to complex ideas,
but has importance insofar as it has the potential to treat multi-
ple conflicting variables in decision systems.
� Multiobjective Optimization. This idea, drawn from operational

research, attempts to account for the interdependency of multi-
ple values in the real world and in combination with evolution-
ary computation, helps us to study the dynamics of epistatic
systems and multiple global optima (Pareto fronts) common
to such systems. It involves many techniques, some of which
involve synergic considerations.
� System Dynamics. This computer modeling technique attempts

to quantify how the dynamics of systems, based on assumptions
of how the parts/variables are interconnected (their depen-
dency structure), differs from our preconceptions about such
dynamics. It highlights the difficulties of predicting actual com-
plex system behavior when our views are constrained by the
results of over-simplified reductionist experiments.
� Evolutionary Dynamics. By statistically measuring the diversity,

cumulative activity and innovations of evolving systems it
becomes possible to classify these in terms of their open-ended
evolutionary potential. The technique allows the emergent
behavior of artificial and natural systems to be determined.
However, few, if any artificial systems currently show any
unbounded emergent potential.
� Multi-Agent Systems. This technique, based upon artificial life

ideas, studies the dynamics of collections of interacting autono-
mous agents. The self-organization that follows from different
initial assumptions and sets of agent values helps to quantify
how different features of real systems can interact and evalu-
ates their stability to perturbations caused by changes in their
internal structure and their goals. Leitão (2008) has studied
the design of reconfigurable manufacturing systems supported
by the use of multi-agent principles; multi-agent systems,
derived from distributed artificial intelligence, suggest the def-
inition of distributed control based on autonomous agents that
can perform efficient, flexible and robust manufacturing
control.

Discrete Event System Specification (DEVS) (Zeigler, Kim, &
Praehofer, 2000) is a formalism, which provides a means of speci-
fying the components of a system (of systems) in a discrete event
simulation. In DEVS formalism, one must specify basic models and
how they connect up with each other. These basic models are
called atomic models and larger models, which are obtained by
connecting these atomic blocks in meaningful fashion, coupled
models. Each of these atomic models has in-ports (to receive exter-
nal events), out-ports (to send events), a set of state variables,
internal transition, external transition, and time advance functions.
3.2.3. Architecture
New architectural concepts and services embodying layers of

middleware are now possible as hardware and software artifacts
become faster, cheaper, and better at a relatively predictable rate
coupled with the growing acceptance of a network-centric para-
digm (where distributed applications with a range of QoS needs
are constructed by integrating separate components connected
by various forms of communication services).

Schantz and Schmidt (2002) stated that the growing impor-
tance of middleware stems from recognition of the need for more
advanced support – beyond simple connectivity – to construct
effective distributed systems. For over twenty years, the industry
has developed various architectural solutions based on middle-
ware technologies to alleviate many complexities associated with
developing software for distributed applications. Some of the most
successful middleware technologies have centered on distributed
object computing (DOC). DOC is an advanced, mature, and field-
tested middleware connectivity paradigm that also supports flexi-
ble and adaptive behavior. At the heart of distribution middleware
are request brokers, such as Common Object Request Broker Archi-
tecture (CORBA) from OMG, Java Remote Method Invocation (RMI)
from Sun, Distributed Component Object Model (DCOM), and Sim-
ple Object Access Protocol (SOAP) from Microsoft.

New results have emerged from the paradigm of Service Ori-
ented Architecture (SOA). Dustdar, Goeschka, Truong, and Zdun
(2009), addressed the challenges of how to adapt services, pro-
cesses, and teams to changing situations by means of the SOA-
based approach, comprising model-driven compliance support,
runtime interaction mining, run-time management of require-
ments, and an explicit control-loop architecture.

The AESOP (ArchitecturE for Service-Oriented Process-Monitor-
ing and -Control) (Karnousko, Colombo, Jammes, Delsing, & Bange-
mann, 2010) initiative envisages a SOA approach for monitoring
and control (batch and continuous processes). The SOA-based ap-
proach proposed by AESOP can, on the one hand, simplify the inte-
gration of monitoring and control systems as an application layer.
On the other hand, these networking technologies can simplify the
inclusion or migration from existing solutions and integration of
the next generation SCADA and distributed control systems at a
network layer.

Mittal, Zeigler, Risco Martín, Sahin, and Jamshidi (2009) de-
scribe how various elements such as automated DEVS model gen-
eration, automated test-model generation, and net-centric
simulation over SOA are put together in the DEVS Unified Process
(DUNIP) (Mittal, 2007). The infrastructure provides for a plat-
form-free specification language DEVSML (Mittal, Risco-Martin, &
Zeigler, 2007b) and its net-centric execution using a service-ori-
ented architecture called DEVS/SOA (Mittal, Risco-Martin, & Zeig-
ler, 2007a). Both the DEVSML and DEVS/SOA provide novel
approaches to integrate, collaborate, and remotely execute models
on SOA.

Nakagawa et al. (2008) describe an approach to developing self-
adaptive systems utilizing a requirements model to build the sys-
tem architecture. They illustrate the generation of system architec-
tures by using descriptions of goal-oriented requirements analysis.
Later, Nakagawa et al. (Nakagawa, Ohsuga, & Honiden, 2010), sta-
ted that in their framework, developers build an architecture mod-
el representing components and the connections between them
first, and then implement these components by inheriting our ex-
tended behavior class in order to construct an agent corresponding
to the self-⁄ system.

Finally, the IBM Autonomic Computing Architecture (IBM-Cor-
poration) is one of the pioneering architectures for self-adaptive
systems that explicitly exposes the feedback control loop mecha-
nism and the adaptation steps as shown in Fig. 2. Functional com-
ponents and interfaces are identified for decomposing and
managing the feedback loop. This architecture provides a frame-
work for building self-managing systems as long as it constitutes
a blue print for developing feedback control loops.

The competing and complementary strategies and approaches
to middleware based solutions simultaneously represent a healthy
and robust technical area of continuing innovation, as well as a



Fig. 2. IBM autonomic computing architecture.

Fig. 3. Block diagram of a feedback control loop.
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source of confusion due to the multiple forms of similar capabili-
ties, patterns, and architectures (Schantz & Schmidt, 2002).

3.2.4. Frameworks
R&D into middleware patterns, frameworks, and standards for

distributed systems have played a leading role in establishing the
technical viability of collections of systems that can dynamically
adapt, within real-time constraints, their collective behavior to
varying operating conditions, delivering the appropriate applica-
tion level response under these different conditions.

Two of the most representative approaches in the domain of
middleware frameworks, are Java 2 Enterprise Edition (J2EE) (Ora-
cle) and .NET (Microsoft). Both approaches have introduced ad-
vanced software engineering capabilities to the mainstream IT
community and incorporate various levels of middleware as part
of the overall development process, although only partial support
is available for adaptive performance of critical and embedded
solutions. In the case of J2EE, promising extensions have been
developed, some of which are discussed in this paper.

Adaptive Communication Environment (ACE) (DOC-Group) over
other host infrastructure middleware alternatives (.NET/CLR and
J2EE) is another interesting solution. ACE is a freely available,
highly portable toolkit that shields applications from differences
between native OS programming capabilities, such as file handling,
connection establishment, event de-multiplexing, inter-process
communication, (de)marshaling, concurrency, and synchroniza-
tion. These characteristics motivate some world-wide applications
(Schantz & Schmidt, 2002).

The Open Services Gateway initiative (OSGi) framework (OSGi-
Alliance, 2012) is a modular system and services platform for Java
programming language that implements a complete and dynamic
component model, which is not sufficiently well addressed in
standalone Java/VM environments. Applications or components
(coming in the form of bundles for deployment) can be remotely
installed, started, stopped, updated, and uninstalled without
requiring a reboot; management of Java packages/classes is speci-
fied in great detail. The application life-cycle management (start,
stop, install, etc.) is done via APIs that allow for remote download-
ing of management policies. The service registry allows bundles to
detect the addition of new services, or the removal of services, and
adapt accordingly. Some authors (Choonhwa & Nordstedt, 2003;
Gu, Pung, & Zhang, 2004; Helal et al., 2005; Jonghwa, Dongkyoo,
& Dongil, 2005) have used the OSGi framework for the develop-
ment of adaptive software systems. Some widely used current
framework implementations, all under open source licenses, are,
for instances, Knopflerfish, Apache Felix, Concierge OSGi and
Equinox.

JADE (Java Agent DEvelopment Framework) (Telecom-Italia), a
software framework fully implemented in Java, provides a multi-
threaded programming style for constructing agents. It simplifies
the implementation of multi-agent systems through a middle-
ware that complies with Foundation for Intelligent Physical Agents
(FIPA) specifications and through a set of graphical tools that sup-
ports the debugging and deployment phases. The agent platform
can adopt a cross-machine distribution (not even needing to share
the same OS) and the configuration can be controlled via a remote
GUI. The configuration can be even changed at run-time by moving
agents from one machine to another, as and when required. JADE
allows developers to describe concurrent behaviors on it, which
can be a foundation for constructing multi-processes on self-⁄
systems.

JADE provides a multi-threaded programming style for con-
structing agents, although by itself it provides no support to the
agent building style of the BDI model. The Jadex (Pokahr, Braubach,
& Lamersdorf, 2003) framework implements a BDI-infrastructure
for JADE agents, in order to provide a reasoning mechanism with
the belief, desire (or goal) and plan concepts. This framework is
also used as a platform for self-⁄ systems. Since developers can de-
scribe plans and these activating conditions in Jadex, it satisfies the
autonomous activation requirement; however, it requires develop-
ers to describe the relationship between plans and goals, and this
makes it difficult to understand the concurrent processes.

Some effort has also gone into DEVS formalism, mainly aiming
at support for multiplatform simulation capability as provided by
DEVS/SOA framework. It consists of distributed simulation be-
tween different DEVS platforms or simulator engines such as DEV-
SJAVA and DEVS-C++, on Windows or Linux platforms.
3.3. Specific tools and methods

Specific tools and methods are those that support one or more
specific tasks for self-adaptivity: monitoring of the managed sys-
tem or the environment to collect data for adaptation, analysis of
the monitored data to take adaptivity decisions, planning to deter-
mine the steps to achieve adaptivity, and the execution of the steps
of the plan to achieve adaptivity.
3.3.1. Feedback control loops
Feedback control loops are considered a key issue in pursuing

self-adaptivity for any system, because feedback control supports
the four above-mentioned processes as inherent to adaptation:
MAPE. The classic structure of a feedback control loop is depicted
in Fig. 3.

Core to the design of a feedback control loop is the choice of
controller. One of the most used so far is the PID (Proportional-
Integral-Derivative) controller (Franklin et al., 2006) with regard
to precision and stability (Peng, Chen, Yu, & Zhao, 2010). PID
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controllers are usually the best choice, where only rough knowl-
edge of the underlying process is available (Bennett, 1993).

Brun et al. (2009) consider that adaptive control in control the-
ory involves modifying the model or the control law of the control-
ler to be able to cope with slowly occurring changes in the
controlled process. Therefore, a second control loop is installed
on top of the main controller. This second control loop adjusts
the controller’s model and operates much slower than the underly-
ing feedback control loop. For example, the main feedback loop,
which controls a web server farm, reacts rapidly to bursts of Inter-
net load to manage QoS. A second slow-reacting feedback loop may
adjust the control law in the controller to accommodate or to take
advantage of anomalies emerging over time. New approaches
based on adaptive observers and artificial neural networks have
also been applied to mobile robots with limited information (Bong
Seok, Jin-Bae, & Yoon-Ho, 2011).

3.3.2. Decision-making
Some researchers have constructed software to carry out deci-

sion-making process by using rule-based approaches or control
theory. In some cases, decision-making systems are inspired by
biological processes, such as the human nervous system and emer-
gent behavior in insect species that form colonies (McKinley,
2004).

According to MAPE methodology, when the alternative actions
have been analyzed, decision-making is applied to decide (to plan)
which actions will be performed, if any. Context information may
also be used during adaptation planning and decision-making
(Gjorven, Eliassen, & Aagedal, 2006). Therefore, Adaptation Plan-
ning, Decision-making and Context Sensing and Reasoning services
should be provided as part of any self-adaptive service platform.

Among the different forms of decision-making noted by Roy
(1996)-selecting, sorting, ranking, and description- the decision-
making process in self-adaptive software is closer to the selecting
format. The decision-making process basically addresses an action
selection problem, in order to select a proper action from a finite
set of alternatives (Salehie & Tahvildari, 2011). In a goal-driven ap-
proach the problem of decision-making can be defined as:

Given an adaptation goal set G, an adaptation action set AC, and an
attribute set AT from a software system, the problem is how to build a
goal-action-attribute model and to select the appropriate action aci at
run-time, to satisfy goals under different conditions.

This problem has some similarity to decision-making problems
in robotics and agent-based systems. Most existing solutions for
self-adaptive software benefit from the Sensor-Plan-Act (SPA)
model, used extensively in building traditional robotic systems.
In a goal-driven model, decision-making mechanisms can perform
in two general competitive and cooperative forms. Goals compete
with each other when selecting the next action in competitive
decision-making procedures, whereas in the cooperative form,
the preferences of goals are combined and fused to determine what
to do next. In the cooperative category, Arkin (1998) suggested that
super-positioning (vector addition) is the most straightforward
method, if it is feasible. In the competitive methods, arbitration is
a way to select one goal (winner-takes-all), e.g., based on prede-
fined priorities. Maes (1994) argued that autonomous agents with
no explicit goals and goal-handling capabilities will lead to signif-
icant limitations in their operation, and went on to propose a less
autocratic method: an activation network for actions, in order to
facilitate dynamic action selection based on stimulated goals or
actions.

A notable point about a goal-driven decision process is that it
may not be possible or even efficient to use automated planning,
in this case, reactive planning. Planning can be an appropriate op-
tion for self-healing, but is generally not effective for self-optimiz-
ing (Salehie & Tahvildari, 2011). Therefore, having a goal-based
decision-making mechanism does not necessarily mean that a
planning-based approach is employed.

There are more ‘‘democratic’’ ways of decision-making, based
on adopting a voting mechanism. In general, voting-based mecha-
nisms can arguably be placed in the competitive category. Their so-
cial choice methods and voting games are well known in
cooperative game theory, in order to combine decisions made by
agents.

Decision-making problems have been extensively studied in
many fields. The selection of an action from a set of alternatives be-
comes harder when the decision-making process involves several
criteria rather than a single criterion. These types of problems
are known as Multi-Criteria Decision-Making (MCDM) problems.
Sridhar, Madni, and Jamshidi (2009) proposed an innovative mech-
anism for MCDM problems, with decision-making at the coordina-
tor level, based on several competing and/or contradicting criteria
that exist in systems within an SoS.

They generalize the problem of MCDM in the following way
(Sridhar et al., 2009):

Let X ¼ fs1; s2; . . . ; smg and X ¼ fx1; x2; . . . ; xmg be a set of alter-
natives and a set of criteria, respectively. The decision-making pro-
cess proceeds by formulating a matrix A with set of criteria and set
of alternatives, given by:

A ¼
a11 a12 . . . a1n

a21 a22 a2n
..
...
. . .
. ..

.

am1 am2 . . . amn

0
BB@

1
CCA

Each entry (aij) denotes the degree to which the criterion (xj) is sat-
isfied by the alternative (si. The idea is now to reduce the multicri-
teria problem into a single global criterion problem, by aggregating
all the elements of matrix A, given by a = H(a1, a2, . . ., amj), with H as
the aggregation operator. The most common aggregation operator
is the weighted arithmetic mean. In a later work, Sridhar et al.
(2009) investigated the pitfalls of common aggregation operators
(such as weighted mean) and provided a countermeasure for aggre-
gating criteria without using common aggregators.

Sawyer et al. (2010) proposed a mathematical framework that
supports decision-making over requirement alternatives; the
parameters for the decision model should be measurable so that
they can be related to the data collected during system monitoring;
and the computational complexity of the decision model should be
such that it can be evaluated efficiently at run-time. This frame-
work is built on existing outranking and interactive approaches
to multi-criteria decision-making (Roy, 1996), as well as on re-
search evaluating alternatives and dealing with conflicts in goal
models.

In technical terms, cognitive decision-making is generally
understood as mimicking a human-like complex mental decision
process. Implementations often rely on incremental and recursive
reasoning and on inference processes closely associated with ma-
chine-learning strategies to refine rule sets and to resolve conflicts
(Bochow & Emmelmann, 2011). The human being, when making
decisions, tends to work with vague or imprecise concepts, which
can often be expressed linguistically. One way of modelling deci-
sion-making processes is based on the theory of Approximate Rea-
soning (AR), which enables certain classes of linguistic statements
to be treated mathematically. The foundation of AR is Zadeh’s the-
ory of Fuzzy sets, which sets out to preserve the approximate nat-
ure of human reasoning rather than trying to avoid it. His
viewpoint is that this element of imprecision is an important factor
contributing to human intelligence (Zadeh, 1965). Fuzzy systems,
neuro-fuzzy systems, and theoretical development related to Fuzzy
Logic and applications are very active research topics, a thorough
review of which lies outside the scope of this paper. A complete
survey on hybrid expert systems is provide in Sahin, Tolun, and
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Hassanpour (2012). There is a clear trend in neuro-fuzzy and rough
neural expert systems’ areas with the aim of enabling self-adaptiv-
ity. A novel design of an adaptive neuro fuzzy inference system
(ANFIS) for estimation contact forces of a robotic manipulator in
proposed in Petković, Pavlović, Ćojbašić, and Pavlović (2013).
Self-adaptivity is indeed fostering the dynamic adjustment of the
searching space according to the performance indices (Hung &
Lin, 2012; Wu, 2011).

Formal language and specification plays an important role in
supporting predictable dynamic reconfiguration, metadata, com-
ponent descriptions, and policies, making them all available at
run-time. It is likely that several different languages for the various
elements mentioned above would be required. Each could be an
extension of an existing language, or could be brand new, but each
should be as ‘‘formal’’ as possible, in order to allow run-automated
reasoning at the semantic level, for example in determining substi-
tutability of services, acceptable degraded performance character-
istics etc. The essential forms of specification are: description of
patterns; self-description of components; specification of metada-
ta; and specification of policies. Each of these forms of specification
may be used in either design-time or run-time decision-making
processes (Di Marzo-Serugendo et al., 2007).

3.3.3. Requirements engineering
Adaptive software systems are increasingly being used in vari-

ous domains, such as medical community, software industry, man-
ufacturing and services of all kinds. Therefore, understanding the
requirements of an adaptive software system is critical to success-
ful development and deployment, as a means of taking advantage
of adaptation semantics that describe how systems behave during
adaptation.

Sawyer et al. (2010) argued that requirements for self-adaptive
systems should be run-time entities that can be reasoned, in order
to deal with the uncertainty of unanticipated contexts that prompt
new requirements, to understand the extent to which these
requirements are satisfied at any one time, and to support adapta-
tion decisions that can take advantage of the systems’ self-adaptive
machinery. They take inspiration from the fact that explicit, ab-
stract representations of software architectures used to be consid-
ered design-time-only entities, but computational reflection showed
that architectural concerns could be represented at run-time too,
helping systems to reconfigure themselves dynamically as the con-
text changed.

Architectural reflection provides another viewpoint on how
requirements may become run-time artifacts. Architectural reflec-
tion involves introspection of the underlying component-based
structures. It is arguable that the same principles may be applied
that permit introspection and reasoning based on (meta-) models
of requirements at run-time (Sawyer et al., 2010). Requirement
reflection enables self-adaptive systems to revise and to re-evalu-
ate design-time decisions at run-time, when more information can
be acquired on these by observing their own behavior. Current
work on computational reflection offers a potential way to struc-
ture the run-time relationship between the requirements model
and the architecture.

The KAOS methodology (Dardenne, van Lamsweerde, & Fickas,
1993) provides a graphical way to present the adaptation seman-
tics. Brown et al. (2006) identified high-level objectives for each
adaptation semantics and represented them as the corresponding
KAOS goal entity. Different states in the adaptive semantics have
also been identified and represented on the basis of KAOS require-
ments. Nakagawa et al. (2008) also use KAOS as a method for ana-
lyzing and modeling goal-oriented requirements for constructing a
self-adaptive system.

In principle, a controller at runtime can monitor the change
impact on quality requirements of the system, update the
expectations and priorities from the environment, and take reason-
able actions to improve the overall performance. In practice, how-
ever, existing controllers are mostly designed for tuning low-level
performance indicators rather than high-level requirements. Peng
et al. (2010) proposed a theoretical self-tuning method, by linking
overall satisfaction to a business value indicator as feedback, that
can dynamically adjust the tradeoff decisions as a result of differ-
ent quality requirements.

In goal-based modeling approaches, it is common practice to
build a structure to relate goals, attributes, and actions (Salehie &
Tahvildari, 2011). In software engineering, goals are mainly de-
fined and utilized in requirements specification, such as i⁄ (Yu,
1995) and SIG (Chung et al., 2000). Used in this way, goal-based
models have proven to be effective for the specification of require-
ments of a self-adaptive system and for the specification of moni-
toring and change between adaptive behaviors; a consequence of
their ability to reason about partial goal satisfaction, an accepted
particular strength of goal-based modeling.

Close collaboration between requirement engineers and soft-
ware architects for self-adaptive systems can also provide very
promising benefits (Bencomo, Grace, & Sawyer, 2009). Decisions
made about the computational architecture can give early feed-
back and enable analysis during the requirements specification. A
self-adaptive system can be modeled as a collection of target sys-
tems, each of which correspond to, and operate within, a state of
the environment.

Adaptivity is usually described through a set of properties called
self-⁄ properties, such as self-configuring, self-healing, self-opti-
mizing, and self-protecting properties, among numerous self-⁄
properties reported in the state-of-the-art, as being aligned with
non-functional requirements (NFR) and software quality factors.
Therefore, it is quite important to analyze goals at run-time, given
that they provide requirements traceability, or ‘requirements
reflection’ (Bencomo, Whittle, Sawyer, Finkelstein, & Letier, 2010).

3.4. Limitations to go beyond the state of the art

Along with other researchers (Brun et al., 2009; Dustdar et al.,
2009; Müller, Pezzè, & Shaw, 2008) in the field of software engi-
neering, we strongly support hidden, abstracted, dispersed, and
internalized feedback loops when presenting and documenting
the architecture of an adaptive system. Commonly used software
modeling notations (e.g., UML) provide no means of describing
and analyzing control and procedure to deal with uncertainty. Fur-
thermore, the lack of a notation implies the absence of an explicit
task to document control, which would in turn imply a high risk of
failure, when explicitly designing, analyzing, and validating the
feedback loops (Brun et al., 2009).

The most successful attempt to overcome the previously men-
tioned lack of notation for control loops was the XML-based mark-
up language, SCXML (State Chart XML: State Machine Notation for
Control Abstraction) (W3C, February 2007). It provides a generic
state-machine based execution environment founded on Harel
state charts. SCXML is able to describe complex state-machines.
For example, it is possible to describe notations such as sub-states,
parallel states, synchronization, or concurrency, in SCXML. This
standard has evolved from a specific domain standard (CCXML, de-
signed to support call control features in voice applications), to be-
come a general-purpose event-based state machine language.

The incorporation of closed-loop mechanisms into software sys-
tems is imperative, so that they can adapt themselves to changing
conditions. Regarding the scale of existing software applications,
their dynamic environments, and variable system requirements,
the software operation management is often costly, time-consum-
ing, and likely to be error-prone. This problem can be attributed to
the open-loop structure of many existing software systems, and
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the need for continuous human supervision. One of the shortcom-
ings of software engineering for self-adaptive applications is the
lack of actual case studies. Very limited scenarios are nowadays
available such as toy applications. Moreover, some scenarios of
self-adaptive software allow no adaptation at an application level.
The control actions are mainly focused on the middleware, server,
network, and even the operating system.

Current approaches to decision-making in adaptive software
have been effective in certain domains, but environmental dynam-
ics and software complexity have limited their general application
(McKinley, 2004). Another reported issue is the inefficiency of the
decision-making mechanism, which should be considered a cur-
rent limitation concerning system performance.

Goal-based approaches to adaptivity are not widely addressed
in many research efforts in the self-adaptive software area (Salehie
& Tahvildari, 2011). The well-established goal models in require-
ments engineering (RE) are basically designed for development
time. Their purpose is to analyze different design decisions for soft-
ware engineers instead of focusing on run-time evaluation of goals
for automated decision-making.

Leitao (2009) stated that adaptation in SoS poses important fu-
ture challenges. For example, how to adapt their emergent behav-
ior using learning algorithms is still a long way off being answered.
4. Application domains: challenges and opportunities

This section enumerates some important applications and
application domains of self-adaptive systems. Although not an
exhaustive list, we have tried not to restrict ourselves to the stan-
dard range of finance, healthcare, aerospace and military applica-
tions for system of systems (SoS) and self-adaptive software
systems.

Subsequently, current challenges and research opportunities
will be discussed, based on weaknesses in the way adaptation con-
cepts are applied at present and on the valuable work done over
the last decade in this field.
4.1. Applications and application domains

It should be noted that normally there is a mix of domains in
every application, although one or more can be predominant, for
example, sensors, wireless devices, embedded systems, and of
course, software systems, are part of the majority of other domain
applications. Hence, we should examine the following from a
standpoint of integration with multidisciplinary concepts very
much in mind.
4.1.1. SoS and intelligent infrastructure systems
Infrastructure Systems, providing services such as energy,

transport, communications, and clean and safe water are vital to
the functioning of modern society (Jamshidi, 2008).

Thissen and Herder (Jamshidi, 2009) illustrated the application
of systems of systems concepts with reference to a possible transi-
tion of the energy system toward sustainability, where they took a
model-based analytic approach to systems. In a second case study,
they illustrated the application of different system of systems
modeling techniques to the possible design and implementation
of flexible multi-fuel energy provision in the Netherlands.

As part of a European initiative, the MULTIFORM project (Hüf-
ner, Fischer, Sonntag, & Engell, 2012) will enhance tool support
of an integrated model-based design process of the physical sys-
tem, the controllers, and the communication and software infra-
structure for the integrated control design of large and complex
networked systems.
4.1.2. Sensor networks and embedded systems: DEMANES approach
The main purpose of sensor networks is to utilize the distrib-

uted sensing capability provided by tiny, low-powered, and low-
cost devices. Multiple sensing devices can be used cooperatively
and collaboratively to capture events or to monitor space more
effectively than a single sensing device (Jamshidi, 2009). The realm
of sensor networks ranges from the environmental to the military,
including manufacturing, commercial and health systems, to name
but a few. The heterogeneity of devices and ever-changing scenar-
ios and requirements, provides a tremendous opportunity for case
studies in self-adaptive software systems.

Genie models have been used to develop GridStix, a grid-en-
abled wireless sensor network for flood management that has been
deployed (in prototype form) on the flood plain of the River Ribble
in North Yorkshire, England (Bencomo et al., 2008). Its Gridkit mid-
dleware runs on every sensor and creates a self-managing sensor
network that is capable of reacting to changing conditions and
node failures caused by the flooding to provide a continuous flow
of environmental information.

Another application is the self-adaptivity of a sensor network
deployed for a wide area surveillance task. To that end, Rogers
et al. considered a wide area surveillance problem based upon a
simulation of an urban settings (using the Robocup Rescue Simula-
tion Environment -see http://www.robocuprescue.org/) (Rogers,
Jennings, & Farinelli, 2009).

The CHOSeN project (www.CHOSeN.eu) aims to develop applica-
tion-specifically adaptable communication technologies enabling
the real deployment of smart wireless sensor networks in large-
scale, performance-critical application fields such as the automo-
bile and aeronautic sectors.

The GINSENG project (www.ict-ginseng.eu) planned a significant
advance beyond the state-of-the-art by developing a novel perfor-
mance controlled WSN that is designed for use in a range of indus-
trial environments. GINSENG, which ended in February 2012, deals
with QoS at the communication level. Its results indicate that de-
vices can be given the ability to determine communication QoS.
This can then be offered as a service to a global device, while sub-
system and functionality integration is addressed by AESOP (Kar-
nousko et al., 2010).

Another European project is WIDE (Decentralized and Wireless
Control of Large-Scale Systems – see http://ist-wide.dii.unisi.it), an
advanced control and real-time optimization of large-scale and
spatially distributed processes based on the integrated use of dis-
tributed model predictive control and wireless sensor feedback.

A further research area for providing self-adaptive functional-
ities consist of middleware-based approaches. In the RUNES pro-
ject (Batori, Theisz, & Asztalos, 2012), a component based
middleware for reconfigurable networked embedded systems
and wireless sensor networks was investigated. Heterogeneity is
supported by installing the middleware on top of different sup-
ported operating systems for different types of hardware
platforms.

The DEMANES project (www.demanes.eu) is a new on-going re-
search initiative in the field of design, monitoring and operation of
adaptive networked embedded systems. The goal of DEMANES is to
provide a framework and component-based methods and tools for
the development of run-time adaptive systems, making them capa-
ble of reacting to changes in themselves, in their environment (bat-
tery state, availability and throughput of the network connection,
availability of external services, etc.), in user needs (requirements),
and in changing contexts.

DEMANES combines recent advances from systems and control
engineering, in order to move beyond the state of the art. The con-
cept, methodology and tools developed in DEMANES will be vali-
dated and demonstrated in three case studies: smart safe and
secure urban transport and environment, smart airport

http://www.robocuprescue.org/


Fig. 4. The concept of the DEMANES project.
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management and cooperating sensors at home. Run-time adaptiv-
ity makes the systems capable of reacting to changes in them-
selves, in their environment (battery state, availability and
throughput of the network connection, availability of external ser-
vices, etc.) and in user needs (requirements). The concept of DEM-
ANES is depicted in Fig. 4.

DEMANES follows a strict model-based approach spanning all
phases of system development, testing, deployment and operation.
The component and composition models used in formalizing the
design alternatives are refined during the development process
and assist with the quantitative evaluation of alternatives (i.e.,
guiding the designer to make the proper design choices). Relevant
subsets/aspects of the models are brought over to the executable
system to facilitate self-organization and self-optimization. The
DEMANES project aims to develop a smart integrated tool chain,
reusable components and a framework for the design, implemen-
tation, testing, validation and operation of adaptive networked
embedded systems. In addition to the tool chain, DEMANES will
further deliver a model-driven design methodology, reference de-
signs for characteristic dependable, real-time distributed systems
and a pilot implementation of a runtime platform for applications
designed according to the methodology developed. The platform
will provide for system’s self-awareness by means of performance
monitoring, runtime functional contract checking, monitoring of
real-time properties and reconfiguration.

4.1.3. Social services
Social services and applications are reflecting how new self-

adaptive functionalities can tackle relevant aspect. A clear sample,
is how a simple method for categorizing resources on social tag-
ging systems can be self-adaptive, scalable and implementable in
any real social tagging system (Córdoba, Astrain, Villadangos, &
Echarte, 2013).

Another area is the health-related services. The backbone of
network-centric health care operations is a set of interconnected
web-enabled information networks with intelligence capabilities
that support the seamless transfer of all necessary data and infor-
mation to the point of health care delivery so that the doctor or
decision-maker’s choices are always based on the best possible
data, information, and knowledge (Jamshidi, 2009).

Decision-making has also become a key process in the novel ap-
proach based on system of systems (SoS) applied to dispute man-
agement systems. Increasing attention has focused on more
effective dispute avoidance and resolution due to the significance
of the costs associated with disputes. Many researchers have at-
tempted to develop systems that aim to manage disputes by pro-
viding dispute evaluation (Ilter, 2011). SoS approach can be
useful in this domain because, while maintaining the same amount
of management and resources as before, more precise results can
be obtained from each system in the decision-making processes
of the users.

Aggressive and conservative bidding strategies reinforce adap-
tation in the variations of resource availability in ad hoc grids. Li
and Li (2012) proposed an ad hoc grid resource management sys-
tem, the producers and consumers of the ad hoc grid resource are
modeled on the self-interested decision-makers described in
microeconomic theory.
4.1.4. Manufacturing industry
The AESOP (Karnousko et al., 2010) initiative comprises a SOA

approach for monitoring and control of Process Control applica-
tions (batch and continuous process). Large process industry sys-
tems are a complex (potentially very large) set of (frequently)
multi-disciplinary, connected, heterogeneous systems that func-
tion as a complex system of which the components are themselves
systems. The proposed approach can simplify the integration of
monitoring and control systems on application layer.
4.1.5. Traffic and transportation
R&D is currently directed at the domain of Air Traffic Control

(ATC), to improve the way in which operators perceive and under-
stand complex situations. The solutions that have been found con-
tribute to building an understanding of complex situations easily
and quickly in high-stress situations. Militarily complex operations
using complex systems present similar problems and needs (Cou-
ture & Valcartier, 2007).

National transportation systems are collections of networks
composed of heterogeneous systems (sector). Research on each
sector is generally conducted independently, occasionally missing
important interactions between sectors, or even within a sector
(Jamshidi, 2009). A systematic method for modeling these interac-
tions is essential to the formation of a more complete model and
understanding of any transportation system, enabling them to ap-
ply the body of knowledge accumulated over recent years in the
fields of SoS and adaptive systems.

An application for an Automatic Guided Vehicle (AGV) transpor-
tation system illustrates the self-adaptive value of multi-agent sys-
tems. One remarkable implementation of this idea is the Emc2

(Egemin Modular Controls Concept-see http://emc2.egemin.com)
approach. This is an R&D project which has applied agent technol-
ogy to the development of a self-adaptive control system for an
automated transportation system.
4.1.6. Software industry
Some antivirus systems (e.g., IBM’s AntiVirus) apply knowledge

of the behavior of biological systems such as cells and social insects
as their inspiration for implementing emergent computing
solutions.

Denneberg and Fromm attempted to develop open software for
autonomous mobile robots. The open software concept for auton-
omous robots (OSCAR) is based on a layered model with four soft-
ware levels: command layer, execution layer, image layer, and
hardware layer (Jamshidi, 2009).

Controlling many cooperative robots is no easy task. The soft-
ware needed is complex and must allow multitasking. Many devel-
opers have begun using real-time operating systems (RTOSs) to
mitigate the complexity. In addition to their precise synchroniza-
tion of multiple events, RTOSs provide the application programmer
with predefined system services and varying degrees of hardware
abstraction, both of which aim to make software development eas-
ier and more organized (Jamshidi, 2009).
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4.2. Challenges and opportunities

A well-known problem with self-adaptive systems is that users
may not understand or trust them. Such a lack of intelligibility can
mean that users may cease to use a self-adaptive system. One well-
studied approach to addressing this problem is to provide human-
readable explanations of adaptive behavior. The intuition is that if
users can query the system’s decisions, they are is less likely to
abandon it and may, indeed, accept the system’s choices over their
own, which may not be based on a full understanding of the sys-
tem and the context (Sawyer et al., 2010).

Yu, Threm, and Ramaswamy (2011) suggested that, as control
theory has been successfully applied in robotics, self-adaption,
self-management, and additional areas, it is time to consider com-
bining control theory with complex systems theory to produce
real-time intelligence in software systems. They also point out
the importance of studying how a software agent or system could
adjust its structure and response behavior to fit the natural envi-
ronment better, by exhibiting: adaptation, cooperation, or, self-
organization, evolution, and emergence.

Researchers in the self-adaptive software domain subscribe to
the view that deciding is a vital process (among others pointed
out by Oreizy et al. (1999)), and that decision-making remains a
challenge, as noted by Salehie and Tahvildari (2005) and McKinley
(2004). Existing solutions for self-adaptive software, and more
broadly for autonomic systems, have still not addressed all the
requirements of a desired decision-making process. Maes enumer-
ates several specific requirements in Maes (1994)): finding good
enough actions, minimizing back and forth switching between ac-
tions that contribute to distinct goals, and never getting stuck in a
loop or deadlock situation to satisfy an unattainable goal, are some
of these requirements (Salehie & Tahvildari, 2011).

However, no single set of criteria and metrics exists for verify-
ing that a solution complies with these requirements. Gjorven
et al. (2006) discussed the applicability of some quality factors
for adaptation, but there are notable difficulties for evaluating
most of the quality aspects of adaptation (Salehie & Tahvildari,
2011).

Related to the area of producing real-time intelligence in soft-
ware systems Yu et al. (2011) have devised a challenge for under-
standing how global features and structures emerge from simple
local interactions and how new levels of components are formed
within complex natural processes and the development of social
systems.

Building self-adaptive software systems in a cost-effective and
predictable manner is a major engineering challenge. New theories
are needed to accommodate engineering procedures, in systematic,
traditional top-down approaches and bottom-up approaches. A
promising starting point to meet these challenges is to bring to-
gether suitable control methods and theoretical approaches for
the creative design of self-adaptive software systems.
Fig. 5. Context types continuum vs. requirement engineering methods.
4.3. How to go beyond the current state of the art

One of the trends driving researchers and practitioners is multi-
layered architectures (i.e., applications, middleware, network and
operating system infrastructure), focused on application
composition from reusable components. This middleware-centric,
multi-layered architecture descends directly from the adoption of
a network-centric viewpoint brought about by the emergence of
the Internet and the componentization and commoditization of
hardware and software (Schantz & Schmidt, 2002).

The new generation of architectures should enable desired fu-
ture development, by rapid prototyping, development and deploy-
ment of on demand services, with the purpose of enhancing
flexibility, communication performance, robustness, and scalabili-
ty (Letaifa, Haji, Jebalia, & Tabbane, 2010).

While self-adaptive software systems are being adopted in
more domains, it is imperative to re-formulate, or evolve current
methods and tools related to feedback loops. A clear target is there-
fore to hybridize concepts and method from control engineering,
artificial intelligence, computer science and cybernetics, to be
jointly adapted and applied to software-intensive self-adaptive
systems.

We would emphasize that feedback control loops, although
implicitly contained in many existing software systems, have to
be made more explicit, before they become a first-class citizen of
architecture, design, and infrastructure support (Müller et al.,
2008).

On the topic of requirements engineering, we propose to ex-
plore the use of non-uniform methods of requirements engineer-
ing, in order to deal with non-homogeneous contexts. In
consequence, we outlined a diagram of context types versus meth-
ods, as shown in Fig. 5.

Operational (real-time) decision-making is supported by two
sets of technologies (i.e., information and decision technologies)
and underpinned by three disciplines: data fusion/analysis, deci-
sion modeling, and systems engineering (Tien, 2009). Data fu-
sion/analysis methods include data mining, visualization, data
management, probability, statistics, quality, reliability, fuzzy logic,
multivariable testing, and pattern analysis; however, real-time
data fusion/analysis is more complex and requires additional re-
search. Decision-modeling methods include discrete simulation, fi-
nite element analysis, stochastic methods, neural networks,
genetic algorithms, optimization, and so on; however, real-time
decision modeling, like real-time data fusion/analysis, also requires
additional research, especially since all steady-state models be-
come irrelevant in a real-time environment. Systems engineering
includes cybernetics or feedback and control; it integrates people,
processes and products from a holistic perspective, especially hu-
man-centered systems that are computationally-intensive and
intelligence-oriented. Similarly, undertaking systems engineering
within a real-time environment requires additional thought and
research.

More extensive research in decision-making for adaptive soft-
ware is needed. In particular, further study of decision-making
optimization would help it evolve; although there is a solid theo-
retical basis (classical, fuzzy logic, etc.) there is a lack of integration
of this knowledge for self-adaptive software systems. For instance,
an algorithm based on self-adaptive particle swarm optimization
(MSSE-SPSO), which combines a particle swarm optimization with
a self-adaptive evolution strategy is suggested in Jiang, Li, and
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Huang (2013). However, the stability of self-adaptive and self-
organizing systems is a bottleneck and new Lyapunov-based ap-
proaches are nowadays applied to guarantee stability (Lian, 2012).

Future systems must accommodate high-dimensional sensory
data, must continue to learn from new experiences and take
advantage of new adaptations as they become available (McKinley,
2004). Moreover, the use of simulated models could be devised as
one possible solution to face the lack of case studies of self-adap-
tive applications.
5. Concluding remarks

This review has presented, from a computer science point of
view, concepts, methods and challenges in the new field of self-
adaptive software systems, in a simple and systematic way. An
understanding of this new and challenging topic will certainly help
to promote their practical application and promotion by the soft-
ware engineering and computer science communities.

Through this literature review of self-adaptivity, we have
looked at some theoretical and practical approaches for the
achievement of a new generation of software systems and have
identified some key issues for us to move beyond the state of the
art. Feedback control and artificial intelligence techniques are
identified as two of the enabling disciplines that will favor the
development of a new generation of self-adaptive systems. This pa-
per has sought to lay the foundations for self-adaptative software
engineering as a mature field, which can harness existing systems
and will not solely rely on technological improvements for its
progress.
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