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In systematic reviews, the growing number of published studies imposes a significant screening
workload on reviewers. Active learning is a promising approach to reduce the workload by automating
some of the screening decisions, but it has been evaluated for a limited number of disciplines. The suit-
ability of applying active learning to complex topics in disciplines such as social science has not been
studied, and the selection of useful criteria and enhancements to address the data imbalance problem
in systematic reviews remains an open problem. We applied active learning with two criteria (certainty
and uncertainty) and several enhancements in both clinical medicine and social science (specifically,
public health) areas, and compared the results in both. The results show that the certainty criterion is
useful for finding relevant documents, and weighting positive instances is promising to overcome the
data imbalance problem in both data sets. Latent dirichlet allocation (LDA) is also shown to be promising
when little manually-assigned information is available. Active learning is effective in complex topics,
although its efficiency is limited due to the difficulties in text classification. The most promising criterion
and weighting method are the same regardless of the review topic, and unsupervised techniques like LDA
have a possibility to boost the performance of active learning without manual annotation.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Systematic reviews are a widely used method to bring together
the findings from multiple studies in a reliable way and are often
used to inform policy and practice (such as guideline develop-
ment). A critical feature of a systematic review is the application
of the scientific method to uncover and minimise bias and error
in the selection and treatment of studies [1,2].

As a result, reviewers make efforts to identify all relevant
research for inclusion in systematic reviews. However, the large
and growing number of published studies, and their increasing rate
of publication, makes the task of identifying relevant studies in an
unbiased way both complex and time consuming. Moreover, the
specificity of sensitive electronic searches of bibliographic
databases is low. In a process known as screening, reviewers often
need to look manually through many thousands of irrelevant titles
and abstracts in order to identify the much smaller number of
relevant ones [3]. Reviews that address complex health issues or
that deal with a range of interventions are often those that have
the most challenging numbers of items to screen. Given that an
experienced reviewer can take between 30 s and several minutes
to evaluate a citation [4], the work involved in screening 10,000
citations is considerable (and the screening burden in some
reviews is considerably higher than this).

Text mining facilitates the reduction in workload in conducting
systematic reviews in a range of areas [5–7]. Text mining is used
increasingly to support knowledge discovery, hypothesis genera-
tion [8] and to manage the mass of literature. Its primary goal is
to extract new information such as relations hidden in text
between named entities and to enable users to systematically
and efficiently discover, collect, interpret and curate knowledge
required for research [9]. The technology most often tested in
relation to the reduction in screening burden is automatic
classification, where a machine ‘learns’, based on manual screen-
ing, how to apply inclusion and exclusion criteria [10]; that is, it
semi-automates the screening process. Pertinent to the focus of
this paper, there have been a range of evaluations of the
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performance of various text mining tools to reducing screening
burden, some of which have achieved reductions in workload of
between 50% [4] and 90–95% [11,12] (though others have had
rather less success [13]).

The nature of the contribution that such methods can make to
systematic reviews is the subject of ongoing debate and evaluation.
In some contexts, every citation needs to be screened by two
reviewers, and in such situations the workload reduction applies
only to the ‘‘second’’ reviewer, with all citations being screened
by a human: the theory being that this will maximise recall [14].
In other contexts, citations are checked by a single reviewer, and
the theory behind semi-automation is that some of these citations
need not be screened manually; here, acceptable recall values are
high, in the 95–99% range, but do not necessarily require 100%
recall [15]. In a third context, automation is used simply to priori-
tise workload and ensure that the most likely relevant citations are
screened earlier on in the process than would otherwise be the
case [12]. Whichever situation pertains, there is a need to optimise
the performance of the (semi-) automation methods used in order
to maximise both recall and precision (see [13]).

While some studies have yielded impressive results, we lack
instances in diverse contexts. In particular, most previous work
has been undertaken in systematic reviews of clinical
interventions, and the literature in this area is likely to have
distinct advantages for machine learning which might not apply
universally. Firstly, the use of technical terminology is widespread,
and specific terms (e.g., drug names, proteins, etc.) are used in pre-
cise ways in distinct literature, in contrast to some disciplines
where complex and compound concepts may be used (e.g., ‘healthy
eating’ can be described in many ways). Secondly, the medical lit-
erature is well indexed on major databases (notably MEDLINE),
with the availability of manually assigned Medical Subject Heading
(MeSH) terms affording additional information to a classifier; such
information is not present on the citations downloaded from other
databases. There is therefore a need to assess the performance of
text mining for screening in systematic reviews of complex,
non-clinical contexts where the use of controlled vocabularies is
variable or non-existent.

One of the main strategies adopted in previous work with auto-
matic classifiers is active learning [4]. This ‘supervised’ machine
learning technique involves beginning with a small training set
and, through iteration, the training set is increased in size and util-
ity (see Fig. 1). Once a given stopping criterion is reached (for
example, when all relevant studies have been identified, or when
the reviewers have run out of time for manual screening), the pro-
cess ceases, and the remainder of studies not yet screened manu-
ally is discarded. There is thus a good ‘fit’ between the screening
Fig. 1. The active le
process in a systematic review, and the method of active learning.
As manual screening progresses, the quantity of training material
increases, and there is the opportunity for the classifier to ‘suggest’
items for manual screening, thus making the process more effi-
cient. Although there is an accepted risk when automation is used
that some relevant studies may be missed, the gains in terms of
reducing burden might make this approach worthwhile. An evalu-
ation of the trade-off between potentially missing studies and
reducing burden is required. Given the concerns raised about using
such technologies in complex topics, it is important to evaluate
performance over a range of conditions.

The primary aim of this study is to assess the suitability of
active learning applications to screening in systematic reviews of
complex topics, with an emphasis on determining optimal condi-
tions for running these technologies. This paper therefore
addresses the following research questions:

1. Does active learning demonstrate similar performance (reduc-
tion of burden) in systematic reviews of public health (complex
topics) as observed in clinical areas?

2. What features of the active learner improve performance?
Specifically,
(a) does the criterion used to determine the next instances to
be annotated in the active learning cycle (i.e., certainty or
uncertainty) affect performance? And
(b) do different types of enhancements to the classifier affect
performance?
2. Methods

Active learning methods can be classified into two categories
from the perspective of data processing: pool-based and stream-
based [16]. Pool-based active learning methods assume an unla-
belled pool of instances, and determine the most appropriate
instances to be annotated from a given data set by sorting them
in terms of their informativeness. They often require considerable
computational cost and memory. In contrast, stream-based active
learning methods receive instances one at a time and decide
whether or not the instance should be annotated. However,
experiments suggest that stream-based approaches can have poor
learner rates and raise too many unnecessary queries compared to
pool-based approaches [17].

In this paper, we focus on pool-based active learning methods,
since we are interested in learning from specific data sets, in which
the sparse positive instances should be identified and presented for
annotation as early as possible during the annotation process.
arning process.
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2.1. Task description

In the current study, we use active learning for the purposes of
two-class text classification tasks, i.e., determining whether a given
document is relevant, or irrelevant, in the systematic review for
which it is being screened. We have three presumptions about
these tasks. Firstly, each data set is imbalanced, and the number
of positive instances is much smaller than the number of negative
instances. Secondly, each data set contains several separate views
of the documents to be classified (e.g., title and abstract and, some-
times, keywords and MeSH terms in our case). Each title or abstract
is represented with bag-of-words (BOW). BOW is a simple repre-
sentation of a text as a set of words with their frequencies in the
text. BOW ignores their order and may miss information in the
text, but it is often used in text classification. Thirdly, each data
set is fixed and small enough for pool-based methods to be applied.
2.2. Active learning criteria

We use a support vector machine (SVM) classifier to carry out
classification of instances [18]. SVM is one of the most frequently
used classifiers. It finds a hyper-plane that separates positive and
negative training instances by a maximum margin boundary. We
have used two different criteria to determine the next instances
to be annotated (i.e., the next title and abstract to be screened
manually) in the active learning cycle: Certainty and Uncertainty,
both of which are compared with a baseline Random criterion.
Certainty selects the next instances to be annotated by selecting
those instances with the highest probability of being relevant to
the review, based on the output of classifiers trained on previously
annotated instances. This criterion aims to ensure that positive
instances are presented for annotation as early as possible, and
thus, this criterion is suitable for the purpose of reducing the bur-
den. This criterion is also considered to be effective for finding
good classification models on the imbalanced data since the
instances effective for the classification should be close to the
small number of positive examples. This Certainty criterion has
been shown to be an effective method for carrying out active
learning on imbalanced data sets, as demonstrated in [19]. This cri-
terion, however, has a potential drawback in that it may produce a
hastily generalised classifier that is biased to a limited set of posi-
tive instances and misses other positive instances. Uncertainty, in
contrast, selects the next instances to be annotated by finding
those instances that are closest to the separating hyper-plane of
the SVM classifier, i.e., the instances for which the classifier is most
uncertain about whether they represent positive or negative
instances. The presentation of such uncertain instances to be anno-
tated aims to improve the ability of the classifier to find the best
separating hyper-plane, and thus to improve its accuracy in classi-
fying new instances. (Some uncertain instances may require more
careful consideration in manual annotation and thus more annota-
tion (screening) costs than other instances, as they are close to the
boundary of being relevant or irrelevant, but we assume that all of
the instances require the same annotation costs.) As a weak base-
line comparison of these different instance selection methods, we
also employ a method that randomly selects the next instance to
be classified (Random), and this corresponds to manual screening
without active learning.
2.3. Pool-based active learning on imbalanced data

We have also investigated the effects of four different types of
enhancements to the classifier to improve the efficiency of our
active learning task:
1. alleviation of the data imbalance problem (i.e., many more
negative than positive instances)

2. use of ensemble classifiers
3. covariate shift method [20]
4. clustering the data prior to classification

We explain these enhancements in the rest of this section.

2.3.1. Alleviation of data imbalance problem
We have experimented with two possible solutions to the data

imbalance problem. Firstly, a weighting method (WEIGHTING) was
employed, which assigns greater weights to positive instances than
to negative instances. Each weight was set to the ratio of the
number of positive instances to the number of negative instances.
Secondly, we performed experiments that employ the aggressive
undersampling method [4] (AU). AU trains a classifier using all
positive and negative instances, undersamples (i.e., throws away)
negative instances that are closest to the separating hyper-plane
of the classifier, and re-trains the classifier on the undersampled
instances. AU has been proposed to alleviate the problem of simple
undersampling in that simple undersampling tends to push the
separating hyperplane close to positive instances. We note this
method has the potential drawback that it cannot produce a
reasonable classifier since the method does not use the instances
close to the separating hyper-plane. These are compared with a
NO-WEIGHTING method, which assigns the same weight to all of the
instances.

2.3.2. Use of ensemble classifiers
Since the data sets contain separate views of the data to be

classified, we are able to build several different classifiers, and to
combine them into ensemble classifiers. We employed a simple
method to see whether the use of different views affects the per-
formance. We train classifiers on each view individually and select
the next set of instances to be annotated based on information out-
put by merging the predictions from all of the classifiers, through
the multiplication of predicted probabilities (VOTING). In order to
evaluate the performance of the VOTING method, we also performed
experiments using Patient Active Learning (PAL) [4] that randomly
selects a classifier to determine the next set of instances to be
annotated, instead of using the output of all classifiers to make
the decision. PAL aims to avoid hasty generalisation (i.e., the poten-
tial for missing clusters of documents that have very different
terms from those documents in the initial training set) for a limited
set of positive instances by exploiting instances from different
views (classifiers).

2.3.3. Covariate shift method
Although the criteria employed in this paper have previously

also been employed in active learning, a potential problem is a
selection bias problem that the distribution of instances selected
through active learning, according to the application of the
instance selection criteria described above, may be very different
from the overall distribution of instances in the data pool. In order
to reduce the potentially negative effect that this bias could have
on the performance of the classifier, we have experimented with
the use of a simple covariate shift method. We use the two-stage
approximation method described in [20] (CS). This method tries
to match the distribution of the training data to the distribution
of the target data that the model is applied to. The method solves
an additional two-class classification problem, using a logistic
regression classifier, that treats the training data as one class and
target data as the other class. A ratio indicating the likelihood that
each training instance will appear in the target data is calculated,
and the ratio is used to weight each training instance to mimic
the distribution of the target data. We use the instances in the data
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pool as the target data so that the method can alleviate the differ-
ences between the distributions of the selected instances and the
instances in the data pool. The data pool contains the selected
instances, and this has a potential to cause a problem where the
inclusion of instances confuses a classifier in the first stage of the
CS method, but the performance (in terms of the evaluation criteria
explained later) was similar when we excluded the selected
instances in our preliminary experiments.

2.3.4. Clustering the data prior to classification
Since we are interested in a specific data pool, we can apply

(unsupervised) clustering methods to the data pool in advance. We
can obtain cluster-based feature representations that are induced
from the entire data pool. The feature representations will differ
from the original representation BOW, which has often been
employed in active learning for text classification (e.g., [4]), and they
will provide different views to avoid hasty generalisation that may
miss some positive instances. We incorporate latent dirichlet alloca-
tion (LDA) [21] for this purpose. LDA is a Bayesian generative model
that represents documents as a mixture of hidden topic distribu-
tions, each of which is represented by a floating value. We use the
values for topics as another feature representation of documents.

2.4. Evaluation settings

2.4.1. Evaluation method
To evaluate the criteria in Section 2.2 and enhancements in

Section 2.3, the evaluation was conducted in two stages. In Stage
1, the different instance selection criteria (Certainty, Uncertainty)
was tested in conjunction with each of the approaches to alleviate
the problem of imbalanced data sets (WEIGHTING, AGGRESSIVE UNDER-

SAMPLING, and NO-WEIGHTING). In addition, the baseline criterion Ran-
dom was tested in conjunction with the NO-WEIGHTING method as a
baseline. The combination of features from Stage 1 that had the
best performance were then combined with other enhancements
in Stage 2. The enhancements tested in Stage 2 were the ensemble
classification methods (VOTING and PAL); the covariate shift method
(CS); clustering (LDA); and a no-enhancement baseline (PLAIN). PAL

WITH AU with the Uncertainty criterion was also tested since it
was demonstrated as one of the best performing methods on the
data sets used [4]. A summary of this process can be seen in Fig. 2.

2.4.2. Pseudo active learning
We have evaluated the active learning methods introduced

above within a pseudo active learning scenario. In order to simu-
late active learning, we repeated the following cycle. Firstly, we
applied classifiers to unlabelled instances and selected the n top
ranking instances according to the instance selection criteria
employed in the experiment. We then retrieved and added the cor-
rect labels for the selected instances (since, in our pseudo active
learning scenario, manually labelled data already exists for the
data sets used). Finally, we retrained the classifiers, taking into
account the newly labelled instances.

Our experiments selected 5 instances (n ¼ 5) per cycle,
following [4]. We also tested 1, 5 and 10 for n, but our preliminary
experiments showed that there was little difference in perfor-
mance (in terms of the evaluation criteria explained later) for these
small n. The retraining of the classifiers and selection of instances
were performed in less than one second in our preliminary exper-
iments, meaning that the same settings can be used in a real active
learning scenario.

2.4.3. Data sets
Our evaluation was carried out using two different data sets.
The first data set (the clinical data set) contains three corpora:

proton beam, micro nutrients, and copd [4]. This has been used in
previous active learning experiments. The second data set,
compiled by ourselves (the social science data set) contains four
corpora (reviews) on public health topics: Cooking Skills, Sanitation,
Tobacco Packaging, and Youth Development.

Each of the corpora represents each training instance, i.e., a
document, as three or four separate views (feature vectors) that
correspond to features extracted from titles, abstracts, title con-
cepts (clinical data set only) and keywords (optional for the clinical
data set only). Our experiments make use of the feature vectors in a
BOW representation provided in the data sets, without modifica-
tion. Each instance also has labels annotated during the manual
screening processes indicating whether the document is
potentially relevant, or irrelevant for the review in question. The
screening was carried out by checking only the titles and abstracts
of each document to be classified and manually applying the label.
In the clinical data set, we have labels which indicate whether or
not a document was included based on a check of the full text of
the paper (a second phase of manual screening).

We use only the labels assigned during the first screening pro-
cess in our evaluation unless otherwise stated. This enables us to
compare the results between the two data sets. Tables 1 and 2
summarise the characteristics of the two data sets.

2.4.4. Settings for machine learning methods
We used the LIBLINEAR library [22] to create the classifiers. We

used a dual L2-regularised L2-loss support vector classification
solver for SVM and a L2-regularised logistic regression solver for
logistic regression. We added bias terms and kept other parame-
ters to the default values.

We used the LDA implemented in gensim [23]. We used all the
raw documents in the data sets to construct the LDA model. We
removed stop words from the raw documents in a pre-processing
step. We then set the number of topics to 300, and performed 20
iterations to obtain the topic distributions.

2.4.5. Performance evaluation measures
We have evaluated the performance of each method on each of

the two data sets using three different measures, i.e., Utility [24],
Coverage, and AUC.

Utility is calculated based on Yield and Burden. Yield represents
the fraction of positive instances in the data pool that are identified
by a given method, and Burden represents the fraction of positive
instances in the data pool that have to be annotated/reviewed by
reviewers. In a fully manual screening exercise, both Yield and Bur-
den are 1, i.e., all relevant studies are found through examining
every citation manually. We calculated these performance statis-
tics based on labels assigned by reviewers for the queried data
(labelled data) and labels assigned by classifiers for the remaining
data (unlabelled data).

Given true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) for labelled data (TPL; TNL; FPL; FNL)
and unlabelled data (TPU ; TNU ; FPU ; FNU) and total number of
instances N, Yield is calculated as

Yield ¼ TPL þ TPU

TPL þ FNL þ TPU þ FNU ; ð1Þ

and Burden is calculated as

Burden ¼ TPL þ TNL þ FPL þ TPU þ FPU

N
: ð2Þ

Here, FNL and FPL should be zero since there is one label, but we
incorporated these into the definition of Yield so that we can apply
this measure when we used both labels in the evaluation. Yield
should be high and Burden should be low, and Yield is more impor-
tant than Burden in systematic reviewing because of the need to



Fig. 2. Stages and conditions evaluated.

Table 1
The characteristics of the Clinical data sets.

Proton beam Micro nutrients Copd

#Positives 243 258 196
#Negatives 4,508 3,752 1,410
Title U U U

Abstract U U U

Title concepts U U U

Keywords U U U

Table 2
The characteristics of the Social science data sets.

Cooking
Skills

Sanitation Tobacco
Packaging

Youth
Development

#Positives 220 498 149 1537
#Negatives 11,295 4966 3061 14,007
Title U U U U

Abstract U U U U

Title
concepts

x x x x

Keywords x x x x
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include all relevant documents in a review. Given Yield and Burden
and considering their different levels of importance, Utility is calcu-
lated as a weighted sum of Yield and 1� Burden, and it is defined as

Utility ¼ b � Yieldþ ð1� BurdenÞ
1þ b

: ð3Þ

Here, b is a constant that represents the relative importance of Yield,
in comparison to Burden, and it is set to 19, following [24].
As a further evaluation measure, we also calculated Coverage,
which indicates the ratio of positive instances in the data pool that
are annotated during active learning. Coverage is defined as

Coverage ¼ TPL

TPL þ FNL þ TPU þ FNU : ð4Þ

Coverage is introduced since the reviewers in practice might run
out of time during active learning and they may not be able to
accomplish the screening used to calculate the Utility.

We calculated Utility and Coverage on the 80% randomly
partitioned documents from the entire data set. The remaining
20% of the entire data set were treated as a test set to evaluate Area
Under the ROC Curve (AUC). This measure evaluates the perfor-
mance of the final classifiers. This measure does not directly relate
to the burden for reviewers, and thus is not the main objective of
this paper, but this is important in order to estimate the expected
performance of the classifiers when applied to newly published
documents when the reviews are updated. The remaining were
used for calculating Utility and Coverage.

Evaluation was performed after every five steps of active
learning (25 annotations), and the results reported represent the
average over 10 separate trials. The separations for trials were con-
sistent among the evaluations for fair comparison.
3. Results and discussion

3.1. Evaluation on the clinical data set

We applied several active learning methods to the clinical data
set in our settings, as well as the settings of [4]. For brevity, we only
show the results on the micro nutrients corpus in the figures for this
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data set. Please refer to the Supplementary Material for the results
on the other corpora.

We firstly performed several experiments using different
combinations of those methods that aim to alleviate the data
imbalance problem, combined with either the Uncertainty or Cer-
tainty instance selection criterion. As a baseline, we employed the
NO-WEIGHTING method with the baseline criterion Random (i.e.,
Stage 1 of Fig. 2).

As shown in Fig. 3(a), all methods perform better than the base-
line in terms of Utility, thus demonstrating the general desirability
of employing active learning. Considering the different active
learning configurations, AU with Uncertainty shows the highest
Utility during the early stages of annotation. However, other
methods surpass the Utility performance of this method after about
20–30% of the data have been annotated. A high Utility is always
desirable regardless of the number of cycles in active learning,
since Utility takes into account the annotations after stopping the
active learning and the early stage does not necessarily mean a
small number of required manual annotations. These results show
the superiority of the other methods compared to AU with
Uncertainty.

The results in Fig. 3(a) also show that the two active learning
criteria Certainty and Uncertainty produce few differences in
terms of Utility. Furthermore, the employment of the WEIGHTING

method has little effect on Utility. If this method worked well
and it succeeded to adjust the most uncertain probability to be
Fig. 3. Evaluation on the micro nutrients corpus with differ
0.5, the most uncertain instances would be found and the Utility
would be higher. This small effect on the Utility implies that it is
difficult to find the most uncertain instances for the imbalanced
labels with the WEIGHTING method.

In order to further investigate possible performance differences
in the methods alleviating the data imbalance, we calculated Cov-
erage during active learning. Fig. 3(b) illustrates the results. These
results show that, for methods employing the Uncertainty
instance selection criterion, the coverage of positive instances is
less than perfect, even when most of the instances have been
checked (i.e., the Coverage value remains at less than 1). This
means that there still is a need to check the remaining instances
when active learning is terminated. Indeed, AU employing the
Uncertainty criterion presents an even lower number of positive
instances to annotate than the RANDOM method. In contrast to
Uncertainty, however, the Coverages of Certainty-based methods
reach 1 after only part of the complete data set has been used
(i.e., all positive instances are presented to reviewers for annota-
tion during the active learning process). This means that the
remaining instances do not need to be checked even if the classifi-
ers would predict them as positive instances. However, it is prob-
lematic to determine the point at which all positive instances have
been reviewed, and hence the point at which active learning can
stop. This can be the focus of future work.

The results in Fig. 3(b) demonstrate that the calculation of
Coverage is useful in helping to determine the most appropriate
ent criteria and weighting methods (Stage 1 of Fig. 2).



Fig. 4. Evaluation on the micro nutrients corpus with different enhancements (Stage 2 of Fig. 2).
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configuration for active learning, since it reveals differences in the
utility of Certainty and Uncertainty that are not taken into account
by the Utility measure.

We also calculated AUC in Fig. 3(c) by applying the classifiers
resulting from machine learning to the test set. The results provide
an indication of how well the classifiers will perform when applied
to newly published documents. These results show that methods
employing WEIGHTING always produce the highest AUC during active
Fig. 5. Evaluation of different criteria and weighting methods with a previou
learning, and the AUC on the corpora ranges is high and it is close to
or more than 0.95. This AUC curve also shows that annotating 30%
of data is enough to achieve the model that performs as well as the
model trained on the annotations of the entire data. Although the
high AUC is not the main goal of this study, the results show
Certainty works as well as or better than Uncertainty in AUC,
and Certainty is shown to be as useful as Uncertainty on
imbalanced data sets.
s analysis carried out on the micro nutrients corpus (Stage 1 of Fig. 2).



Fig. 6. Evaluation of different enhancements with a previous analysis carried out on the micro nutrients corpus (Stage 2 of Fig. 2).
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From the analyses in Fig. 3 above, we can conclude that
WEIGHTING with Certainty constitute the most promising settings
for active learning on imbalanced data sets.

We subsequently compared the performance of active learning
according to the addition of the other types of enhancements
introduced above, i.e., CS, VOTING, PAL, and LDA (i.e., Stage 2 of
Fig. 2). For comparison purposes, we also show the results without
any enhancements (PLAIN) and the results with one of the best
performing methods on the data sets used [4] (PAL WITH AU with
Fig. 7. Evaluation on the Cooking Skills corpus with differe
Uncertainty). For all of the enhancements mentioned, the reported
results employ the WEIGHTING method with the Certainty selection
criterion, given that this configuration achieved the best overall
results, which is consistent with the results illustrated in Fig. 3.

Fig. 4 compares the results achieved by the different enhance-
ments. PAL WITH AU shows a similar tendency to AU with Uncertainty
as that observed in Fig. 3, in that its performance is worse than
other methods. The results obtained by the other methods are
broadly comparable to each other. Since all methods except for
nt criteria and weighting methods (Stage 1 of Fig. 2).
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PLAIN employ multiple classifiers, our results indicate that PLAIN can
safely be used, in order to achieve maximum efficiency.
3.1.1. Comparison with a previous analysis carried out on the clinical
data set

As mentioned above, the clinical data set was the focus of a
previous, similar series of experiments. We therefore compared
the results we achieved with those previously published [4] to
ensure that the results are consistent.

The original evaluation differs from ours in two ways. First, it
uses the labels assigned during the first screening process only
for the purposes of training the classifiers, while the labels
assigned during the second screening process are used only for
evaluation and are not provided to the classifiers during training.
Second, the test set is not used and the entire data are used for
calculating Utility and Coverage in the original evaluation. AUC is
not used in this evaluation.

We show the results in Figs. 5 and 6, which correspond to Figs. 3
and 4 respectively in the sense of the stages in Fig. 2. The results
are consistent with the corresponding results regardless of the dif-
ferences in the evaluation settings, except for the proton beam
corpus.

For the proton beam corpus, the AU with Uncertainty shows the
best Utility. The seeming superiority of this method in comparison
to others, however, is not necessarily correct. This is because the
proton beam corpus contains an instance whose two labels from
the different screening procedures are inconsistent, i.e., the label
from the first screening (of titles and abstracts) shows that the
Fig. 8. Evaluation on the Cooking Skills corpus wi
instance is negative, but the label for the second screening (of
full-text documents) shows that the instance is positive. Such
inconsistencies can degrade the performance of the active learning
method. This can not only confuse the classifiers but also degrade
the Yield since there are only 23 positive instances for the second
screening. (It should be acknowledged, however, that such mis-
takes are likely to occur, since human-applied categories are rarely
100% correct.)

For the other two corpora, these results are consistent in that
AU with Uncertainty shows the best Utility in the early stages of
annotation, and other methods surpass the Utility after a certain
point. This high Utility (with the high Yield) in the early stages of
annotation is consistent with the results reported in [4]. When
employing the methods with Certainty, Coverage reaches 1 after
only part of the complete data set has been used. These consistent
results lead to the same conclusion as in our context that WEIGHTING

with Certainty is the most promising setting.
3.2. Evaluation on the social science data set

In the same way as for evaluation carried out on the clinical data
set, we firstly compared the use of the Uncertainty and Certainty
selection criteria, combined with methods aimed at alleviating the
data imbalance problem (i.e., Stage 1 of Fig. 2). Similarly to the clin-
ical data set, we selected the Cooking Skills corpus to show the
results in the figures since the same analyses apply to the other
corpora. Please refer to the Supplementary Material for the results
on the other corpora.
th different enhancements (Stage 2 of Fig. 2).
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Fig. 7(a) compares the Utility of these different settings. These
results are consistent with the experiments on the clinical data
set, in that AU with Uncertainty shows the best performance in
the early stages of annotation, and other methods surpass the per-
formance after a certain point. Compared to the results in Fig. 3(a),
the Utility is slow to saturate on some corpora.

For the Coverage shown in Fig. 7(b), the experiments involving
the use of the Certainty criterion achieve superior results com-
pared to those using Uncertainty. Among the experiments using
the Certainty criterion, the WEIGHTING method achieves the highest
coverage on all the data sets. In contrast to the results shown in
Fig. 3(b), Coverage reaches 1 only after most of the data sets have
been annotated. This shows that the identification of positive
instances in the social science data set is more complex than for
the clinical data set.

We have also calculated AUC. Fig. 7(c) shows that WEIGHTING

achieves the highest AUC on most of the data set, regardless of
the criteria employed. In contrast, AU performs worse than other
methods. A possible explanation is that this method may remove
important negative training instances that are close to the separat-
ing hyper-plane. AUC is less than 0.9 on the data set. This shows
that the classification problem is more difficult in the social science
data set than in the clinical data set.

To summarise, the analyses shown in Fig. 7 indicate that the use
of the WEIGHTING method, in conjunction with the Certainty
criterion, appears to be the most promising. This is consistent with
the results shown in Fig. 3. Compared to Fig. 3, Utility is slow to
Fig. 9. Evaluation on the micro nutrie
saturate, Coverage is slow to reach 1 and AUC is low. These results
show the limitation of active learning on the complex data set.

We subsequently compared the other enhancement methods,
in the same way as for the experiments carried out on the clinical
data set (i.e., Stage 2 of Fig. 2). We used WEIGHTING with Certainty,
with the exception of the method PAL WITH AU.

The Utility score for the different methods is presented in
Fig. 8(a). PAL WITH AU performs best for the earlier steps of active
learning, similarly to AU with Uncertainty as in Fig. 4(a), while
other methods show similar performance and achieve better Utility
scores.

In terms of Coverage, most methods perform similarly when the
Uncertainty criterion is employed, as shown in Fig. 8(b).

Although the methods with Certainty show similar perfor-
mance in terms of both Utility and Coverage, LDA improves the per-
formance for AUC as shown in Fig. 8(c). This shows the potential
advantage of LDA for active learning tasks, and we can incorporate
additional raw data sets, since LDA is unsupervised. Ensemble learn-
ing methods like VOTING and PAL also show some improvement over
PLAIN especially on the COOKING SKILLS data set, but the improvement
is small compared to that achieved when using LDA. The application
of the CS method has no effect on the results, which may be because
the Certainty and AUC are not sensitive to the sampling bias prob-
lem. We also investigated ensemble learning methods combined
with LDA, but there were few differences in performance.

These results in Fig. 8 compared to Fig. 4 show that most of the
methods behave similarly on the two data sets except for LDA. The
nts corpus with different views.
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employment of LDA shows some improvement on the social science
data set in AUC, although it does not affect performance on the clin-
ical data set.
3.3. Analysis of the difference between two data sets

The results of the application of active learning were broadly
consistent for the data sets from the two different areas (clinical
and social science), and WEIGHTING with Certainty are shown to be
the most promising in both data sets.

There were also two differences in the results. First, the results
from the two data sets show that the active learning is more diffi-
cult on the social science data set compared to the clinical data set.
Second, LDA was shown to be useful in improving the AUC on the
social science data set, but it did not affect the AUC on the clinical
data set.

To investigate possible reasons for these differences, a further
experiment was carried out to minimise the differences between
the two data sets. Since the clinical data set contains additional
views based on keywords from MeSH terms and title concepts
(MESH), we checked the effects of these views in the clinical data
set. Specifically, using WEIGHTING with Certainty, we evaluated the
performance (1) with or without views from MESH and (2) with or
without a view from LDA.

As shown in Fig. 9, the additional views from MESH have little
effect on the performance of the classifier on the clinical data set.
This limited impact of the additional views indicates that the addi-
tional difficulties in active learning in the social science data set are
caused by the problem itself, i.e., nature of the difficulty in screen-
ing in this data set, and not by the additional information available
in the clinical data set from the MeSH terms.

The additional views affected the AUC on the micro nutrients
corpus, and LDA also helps in filling the performance gaps between
the classifiers with and without MESH. This indicates that the view
from LDA and the views from MESH are similar to some extent and
LDA has the potential to enhance the active learning for the areas
where the manually assigned information like MeSH terms are
not available.
4. Conclusions

This paper addresses the active learning methods on imbal-
anced data sets in systematic reviews of clinical medicine and
social science (specifically, public health) research. The methods
are compared using three different performance measures and
from three different views. Utility and Coverage are used to evalu-
ate the reduction of the screening burden, and additionally AUC is
used to evaluate the classification performance. The WEIGHTING

method with the Certainty instance selection criterion is the most
promising approach for active learning on the imbalanced data sets
in both areas and under all evaluation measures, which enables us
to achieve our primary goal to reduce the screening burden with-
out hurting the performance of the classifier. Coverage and AUC
especially reveal differences among the methods that are not taken
into account in Utility. Evaluation using the Coverage measure
shows that Certainty accelerates the identification of relevant
studies from the large number of published studies. By employing
the AUC measure, we show the WEIGHTING method produces a high
performing classifier. We also show the potential of LDA to enhance
the active learning especially when no manually assigned informa-
tion such as MeSH terms is available and, hence, to improve the
classification performance of active learning in more challenging
areas.

Previous evaluations of semi-automating the screening process
in systematic reviews have focused on clinical and genetic litera-
ture [13]. We have extended the scope of available evaluations to
incorporate social science literature since it is important to identify
the challenges and provide solutions in non-clinical areas. The nov-
elty of our approach is that, by using identical methods, we have
provided a direct comparison between clinical and social science
systematic reviews, showing that there are new, but surmountable,
problems in the new domain. Our methods demonstrated that
active learning is also promising for complex social science topics,
frequent in public health systematic reviews, that certainty criteria
are useful for both clinical and social data, and that weighting posi-
tive instances is useful to overcome data imbalance. We compared
seven different corpora, three of clinical data and four of social sci-
ence data to prove the value of our methods. Despite the complex
nature of social science data, our methods have performed well in
both settings, and we explained what steps can be taken to over-
come the data imbalance problem in systematic reviews. More-
over, we have demonstrated that the differences in the active
learning results in these data from the two different areas are
not due to the absence of controlled vocabulary terms in the social
science data, but to the nature of the different vocabularies used.
As this is the first extension of these methods into the social sci-
ence domain, our focus was on the generalisation of the methods.

As future work, we will undertake further work to achieve
greater performance and evaluate the generalizability of our
results in other reviews. We will also further investigate the poten-
tial of LDA and other unsupervised learning methods. The perfor-
mance in active learning is affected by the presence of diverse
terminology in a data set, which particularly affected the public
health data sets, but methods such as LDA have potential to reduce
these difficulties. Since LDA is an unsupervised learning method, the
addition of more raw documents can improve the model. We can
also obtain multiple views by employing different unsupervised
models or employing models with different numbers of topics.
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