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A mobility model is used to generate the trajectories of mobile nodes in simulations when developing new
algorithms for mobile networks. A model must realistically reflect the scenario in which the technology will
be used to reliably validate the algorithm. Considerable progress has been made toward realistic mobility
models in the academic literature, and models have become quite complex. A consistent taxonomy has not
yet been established for this field. A new multifaceted taxonomy is presented in this work that provides a
framework for authors to clearly and consistently describe their models, making them easier to understand
and reproduce. By surveying the application field of mobile communication networks, a common nomencla-
ture and a high-level view of existing literature are provided, which are required to reduce duplication of
effort and to enable a better sense of the way forward. A tactical scenario demonstrates the application of
the taxonomy to model construction.
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1. INTRODUCTION

Mobile networks are formed dynamically, with the location of a node dependent on
the movement of a device with its owner. Collecting these node movements, or traces,
provides the ability to recreate the network dynamics for the purpose of validating new
protocols, routing algorithms, and identity/trust management schemes in the labora-
tory. However, such trace data is resource intensive to collect, has a fixed number of
nodes, and represents a single dataset. The number of nodes in the network can greatly
affect connectivity and hence the performance of new technologies, and robust statisti-
cal sampling requires the analysis of multiple datasets. For these reasons, simulations
that enable flexible trace generation are often employed as a first step. A mobility
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model provides the basis for generating a mobile node’s trajectory in a simulation. The
choice of model is important because any assumptions made in the model will alter
the node trajectories, which can have a dramatic effect on the apparent performance
of the technology being studied [Hong et al. 1999; Camp et al. 2002; Bai et al. 2003,
Basgeet et al. 2003; Yoon et al. 2003; Blakely and Lowekamp 2004; Lagar-Cavilla et al.
2007; Chen et al. 2010]. The choice of scenario has also been shown to be important
[Helgason et al. 2010]. Different application areas require scenarios with different
types and degrees of randomness. For example, the tactical military domain has a low
degree of randomness because missions are carried out with a purpose and in a par-
ticular environment, whereas simulating everyday pedestrian movement has a higher
degree of randomness. Together, these results indicate that choosing the right model
for a given scenario is paramount to validating the research. This recognition has led
to increasingly complex models.

Research and development in mobile networks is expanding, and effectively commu-
nicating the models is important for the advancement of the field. However, communi-
cation issues in the mobile networking literature have been found to lead to difficulties
with the reproducibility of simulation results, as demonstrated in Kurkowski et al.
[2005] for relatively simple models. This applies equally to the models on which these
simulations are based. The growing complexity of mobility models makes clear, concise,
and complete model descriptions ever more difficult, invariably leading to omissions.

Standardizing the way we talk about mobility models will facilitate communica-
tion and access to the literature by nonexperts. A mobility model taxonomy composed
of six elements is proposed in this work, including Spatial Constraints, Target Se-
lection, Pathfinding, Motion, Pause Time, and Group Dynamics. By considering each
element separately, the taxonomy provides a framework through which researchers
can completely and systematically describe their work, improving communication and
reproducibility. It also provides a common nomenclature and a high-level view of what
already exists, which is required to reduce duplication of effort and to enable a better
sense of the way forward.

Because mobility models are cross-disciplinary, it would be impractical to carry out
an exhaustive survey of the state of the art. To manage the scope, this survey is limited
to microscopic models from the mobile communications literature, excluding models
developed explicitly for vehicular networks.

2. CLASSIFICATION APPROACH

A variety of approaches to classifying models in the literature have been used.
Bettstetter [2001] classifies the models from the point of view of their degree of ran-
domness. Several classify the literature in terms of entity versus group mobility (e.g.,
Camp et al. [2002], Babaei et al. [2007], and Nabi et al. [2011]). Other classifications
distinguish whether or not a model accounts for obstacles, such as geometric versus
nongeometric [Williams and Huang 2009], unguided versus guided [Aravind and Tahir
2010], and free space versus geographic [Ahmed et al. 2010]. Musolesi and Mascolo
[2009] use a classification scheme consisting of synthetic, trace-based, and social net-
work models, which is not comprehensive. Stepanov et al. [2005] divide the models into
random, area constrained, profile based, trace based, and integrated. Since the field is
reaching a point where most models fall into the integrated category, this classification
is no longer viable. Aschenbruck et al. [2011] classify models in terms of dependencies
and restrictions on node movement: temporal (influenced by past movement), spatial
(influenced by surrounding nodes), geographic (confined to an area), no dependencies,
or hybrid. Like the previous taxonomy, many models fall under Aybrid in this taxonomy.

The preceding classification schemes fail to provide a crisp separation because they
attempt to classify the models in their entirety, when most recent models are actually
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Fig. 1. The taxonomy of mobility model elements, shown with examples of methods that can be applied.
Methods may be combined, and more methods can be added as work in the field progresses. Model elements
may influence one another, as indicated by the dashed lines.

composed of multiple model elements. Figure 1 shows the proposed taxonomy for the
elements of a mobility model. The elements were selected by considering what has
been recognized in several framework descriptions as separate stages in a simulation
(e.g., Choi et al. [2007], Basu et al. [2008], Holliday [2008], Papageorgiou et al. [2009],
and Medina et al. [2010]), then assessing the commonalities of existing models along
with what makes each model unique. Sample categories of methods observed in the
literature are given in the shaded boxes of Figure 1, and the dashed links indicate the
potential for a method within a model element to affect the choices available in other
elements.

Describing a model using model elements requires a high-level description of the
model that includes any relationships between the model elements, followed by a de-
tailed description of each of the individual elements. All models must define the space
along with any constraints (Spatial Constraints, Section 2.1), the process by which
nodes can select their next desired location (Target Selection, Section 2.2), and the
dynamics of how they get there, which can be more than simple linear motion (Motion,
Section 2.4). The path they will follow to get to the next target (Pathfinding, Section 2.3)
is only required when a node must pass through a set of intermediate points en route to
its target. Optionally, nodes can pause between targets (Pause Time, Section 2.5), and
they can behave as groups (Group Dynamics, Section 2.6). Some mobility models are
hierarchical, with a secondary model embedded within a primary model; the elements
must be described for each model in the hierarchy.

In the sections that follow, the model elements are discussed separately, giving exam-
ples of methods that have been applied in published work for each; these were selected
to give a flavour of the state of the art. Methods may be combined, and more methods
can be added as work in the field progresses. Conceptual frameworks for multiple-
model simulations and software frameworks are discussed in Section 3. In Section 4,
examples are given for how to both describe and construct a model using the taxonomy,
and the taxonomy is applied to a selection of models to show similarities and trends in
terms of these elements.
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2.1. Spatial Constraints

Every model must address how the simulation area or volume is defined, which in
turn sets limitations on node positions. Node positions can be unlimited, real but
constrained to a bounded area, constrained to be outside of obstacles, or constrained to
graph vertices and edges. Restricting nodes to a grid is a special case of a graph where
the vertices are evenly spaced.

It has been shown that the scenario and its structure have a far greater effect on con-
tact time, contact rate, and intercontact time measurements than accurate simulation
parameters [Helgason et al. 2010], indicating that incorporating spatial restrictions in
a mobility model will have a substantial effect on results. As shown in Figure 1, Spatial
Constraints can directly affect the choice of methods available for Target Selection and
Pathfinding elements.

2.1.1. Unlimited Free Space. In the simplest approach, nodes are allowed to move with-
out restriction [Rubin and Choi 1997; Sanchez and Manzoni 2001].

2.1.2. Bounded Free Space. By adding boundaries to the unlimited free space approach,
the nodes are constrained to a finite space or subspace. Periodic boundary conditions,
where the simulation is executed on a torus, make a node reappear on the opposite side
of the simulation plane (i.e., “wrap around”) with the same direction and velocity [Haas
1997]. Nodes can enter and exit the boundaries of the simulation via a random arrival
process such as a Poisson, Erlang process [Rubin and Choi 1997; Borrel et al. 2005;
Helgason et al. 2010]. Boundaries can be implicitly enforced via the Target Selection
method by restricting the target to be within or on the boundaries [Johnson and Maltz
1996; Royer et al. 2001] or by defining the behaviour of a node when it encounters a
boundary, such as choosing a new random direction pointed into the simulation space
[Tolety 1999].

2.1.3. Forbidden Regions. Regions of the simulation space that nodes are forbidden to
occupy are useful for modelling buildings and other obstacles (e.g., Aschenbruck et al.
[2007], Papageorgiou et al. [2009], and Wu et al. [2011]).

2.1.4. Graph Constrained. Nodes can be constrained to graph edges and vertices to
restrict their motion and targets.! The simplest graph is a polar grid [Bei-Zhan et al.
2007] or Cartesian grid [Chiang 1998; Basagni et al. 1999; Davies 2000; Bai et al. 2003;
Washington and Iziduh 2009; Bhandari et al. 2010]. The graph can be augmented with
a higher density of vertices in preferred areas [Gloor et al. 2004; Medina et al. 2010].
A synthetic graph can be generated by randomly selecting the length and end-point
positions of horizontal and vertical grid edges [Zheng et al. 2010], or selecting vertex
positions randomly [Kang et al. 2011] or using an algorithm that generates scale-free
vertex distributions [Lee et al. 2012].

Graphs can be constructed from geographical maps [Scourias and Kunz 1999; Tian
et al. 2002; Stepanov et al. 2005; Schwamborn et al. 2010; Sousa et al. 2011], where
the vertices of the graph may be points on physical infrastructure or locations that a
user might visit, and the edges connect the vertices to create allowed paths. Additional
vertices can be inserted to represent finer-grained detail [Ekman et al. 2008; Kim et al.
2009]. Random street maps can be constructed using algorithms designed to reflect the
characteristics of urban and rural roads [Barthélemy and Flammini 2008; Bitner et al.
2009; Strano et al. 2012].

1For clarity, graphs will be composed of vertices and edges to differentiate them from the mobile network’s
nodes and communication links.
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2.1.5. Forbidden Regions and Graph Constrained. Obstacles can form the basis of a graph,
to ensure that nodes avoid them. A Voronoi diagram [Okabe et al. 2000] created from
the obstacle vertices results in a graph where the edges lie between obstacles [Jardosh
et al. 2005; Babaei et al. 2007]. Conceptually, any edge on the Voronoi diagram that
intersects with an obstacle boundary becomes a “doorway.” Alternatively, a graph can
be constructed from a predefined set of vertices by placing an edge between two vertices
if there is no obstacle between them [Aschenbruck et al. 2010a].

2.1.6. Bounded Free Space and Graph Constrained. To increase randomness in graph-
based methods, they can be combined with bounded free space methods to constrain
motion to a region within a certain distance of a graph element. For example, the
vertices and edges can form the skeleton of the area within which nodes are constrained
[Zhou et al. 2004], or each vertex can mark the centre of a square region from which a
node can select a target [Ahmed et al. 2010].

2.2. Target Selection

A target is a point in the simulation space that defines a node’s desired coordinates.
The Target Selection model element defines the method by which a node’s next target
is selected. Note that spatial constraints or desired node behaviour may require a route
to be defined between the node’s current position and the target; this is discussed in
the Pathfinding model element (Section 2.3).

2.2.1. Random Trips. An early definition of a random walk is a random process con-
sisting of a sequence of discrete steps of fixed length in a random direction [Pearson
1905]. A generic term, random trip, was introduced for variants of the random walk
that consist of random, independent node movements [Le Boudec and Vojnovié¢ 2006]. A
node on a random trip chooses a new target stochastically via probability distribution
functions (PDFs) for position, direction, distance, and/or travel time. The form of the
PDF and its parameters can change the target selection behaviour:

—Uniform: A uniform distribution can be used to select a value with equal probability
throughout a range [Rubin and Choi 1997; Royer et al. 2001; Rhee et al. 2011].

—Normal: A normal or Gaussian distribution reflects a tendency to select values near
a mean value [Tolety 1999; Kang et al. 2011].

—Exponential: An exponential distribution is used to favour smaller values, with the
probability decaying rapidly as values increase [Jardosh et al. 2005].

—Power Law: A power-law distribution also favours smaller values. A Lévy distribu-
tion, associated with patterns seen in nature, can be approximated to a truncated
power-law distribution for distance under some conditions [Song et al. 2010; Rhee
et al. 2011; Lee et al. 2012], although it has been shown that a Gamma distribution
is a better fit to data collected on various animals [Edwards et al. 2007].

Discrete time and space. Discrete space random walks, also known as cellular au-
tomata, are constrained to a unit grid. The Target Selection method is invoked at each
timestep, and direction is the random variable. Each potential direction is assigned
a probability, and at each timestep, a node chooses a new direction based on these
probabilities [Basagni et al. 1999; Bai et al. 2003]. Staying in the current cell can be an
option [Perera et al. 2002; Kraaier and Killat 2004]. Motion in the x and y dimensions
can be controlled separately by using two Markov chains, with transition probabilities
assigned to states that can increment, decrement, or leave the coordinate unchanged
[Chiang 1998].

Discrete time. In discrete time random trips, a node generates a new target at each
timestep. The target coordinates can be sampled over the entire simulation space, or
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to enforce local movement, they can be sampled equivalently as a displacement in
the x and y dimensions [Sanchez and Manzoni 2001; Piérkowski et al. 2009], as a
distance and direction from the current position, or as a speed and direction [Tolety
1999; Bettstetter 2001; Kang et al. 2011]. Since the timestep size is fixed, the distance
is directly proportional to the speed of a node; hence, this type of Target Selection
method also determines node speed in the Motion element. Speed and direction chosen
relative to current values yields smoother motion [Tolety 1999; Aravind and Cui 2008;
Kang et al. 2011].

Variable time and space. In variable time and space random trips, movements may be
of variable length in a random direction and variable in time. The target selection can
implement this by stochastically selecting position, direction, distance, speed, and/or
time (due to the relationship between speed, distance, and time). A node can sample
its target coordinates directly from the entire simulation space [Johnson and Maltz
1996]; however, when there is a spatial constraint of forbidden regions, the Target
Selection model must disallow targets selected in the forbidden regions [Papageorgiou
et al. 2009; Wu et al. 2011]. When a node must be constrained to a particular region,
the next target can be randomly selected from within the region [Aravind and Cui
2008; Batabyal and Bhaumik 2012]. When speed is defined in the Motion element,
sampling time and direction from separate distributions yields a random target [Chen
et al. 2007].

Random vertex. For graph-constrained models, space is discretized, although not
necessarily into regular intervals. Selecting a vertex randomly over all vertices via a
uniform PDF [Tian et al. 2002], or one dependent on distance [Jardosh et al. 2005; Lee
et al. 2012], is the simplest target selection approach. The set of potential targets can
be limited by selecting a subset of the graph’s vertices from which the node may choose
such as only allowing destinations at the outer edge of the graph [Sousa et al. 2011],
or selecting from vertices associated with a type of activity [Zheng et al. 2010].

2.2.2. Location Bias. Location bias methods introduce an increased probability of se-
lecting a target at a point, or within a region, that is more attractive based on some
factor. The reason for the attraction may be an event that would attract nodes (e.g.,
a first responders scenario), or areas of the simulation space that are preferable (e.g.,
popular areas of a college campus). The attractiveness of a location can be dynamic
and can be affected by distance.

Attraction points, also known as hotspots, can be static throughout the simulation,
can be set to appear at specified times in the simulation [Jardosh et al. 2005; Huang
et al. 2008], or can arrive and disappear following a random process such as a Poisson
process [Borrel et al. 2005]. In the absolute case, hotspots become potential targets by
virtue of their existence. In scenarios where hotspots appear dynamically, a hotspot
may become the target for the nearest node [Schwamborn et al. 2010] or group of nodes
[Ng and Zhang 2005; Rollo and Komenda 2009], or a random subset of nodes may be
forced to select it as their next target [Jardosh et al. 2005]. Other approaches include
constraining the target selection to a specified region around the hotspot [Huang et al.
2008] and having a node choose a target probabilistically from the set of hotspots.
Hotspot regions can be defined, and a node can stochastically choose whether to be
inside or outside a hotspot region, then choose a random point inside the selected
region [Khadivi et al. 2006; Batabyal and Bhaumik 2012].

By dividing the simulation space into cells, location bias over all cells can be imple-
mented by assigning a probability to each cell. This probability can be derived from
empirical data [Nunes and Obraczka 2011], or it can be a function that is inversely
proportional to the distance to the cell [Bhandari et al. 2010]—or for an embedded
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graph, the number of shortest path hops to the cell [Babaei et al. 2007]. The next tar-
get may be a specific point inside the selected region, such as a graph vertex [Babaei
et al. 2007; Bhandari et al. 2010], or a random point within the selected region [Nunes
and Obraczka 2011].

Methods of extracting hotspot regions from empirical data are given in Nunes and
Obraczka [2011] and Kim et al. [2006]. The former is cell based, whereas the latter
represents hotspots as two-dimensional normal distributions. The latter approach ad-
dresses problems associated with determining the appropriate cell size: if too small, a
hotspot can become diluted; if too large, a hotspot region can be overestimated.

2.2.3. Random Trips with Location Bias. Location bias can be combined with discrete time
and space random trip methods by letting the probability of selecting each direction
be dynamic to simulate the appearance of an attraction point in the simulation [Guo
et al. 2010].

2.2.4. Social Interaction. Scenarios involving people may require a means of reflecting
a node’s desire to be near other nodes. This can be accomplished through the applica-
tion of network theory. In a social network, the strength of the relationships between
every pair of nodes is defined in its social interaction matrix, which in network theory
terminology is equivalent to a weighted adjacency matrix. Each element (i, j) of the
matrix defines the strength of the interaction between nodes i and j. There are several
models that can be used to create a social interaction matrix by generating networks
with specific qualities, including:

—Small World: A sparsely connected, decentralized, highly clustered network with a
large number of nodes [Watts 1999], also known as the Caveman model, implemented
in Musolesi and Mascolo [2007], Fischer et al. [2010], and Boldrini and Passarella
[2010].

—Scale Free: A network that is scale invariant—that is, the number of social con-
nections for any given node is independent of the number of nodes in the network
[Barabasi and Albert 1999], used by Herrmann [2003].

—Holme-Kim: A scale-free network with additional clustering [Holme and Kim 2002],
used by Fischer et al. [2010].

—Toivonen: A highly clustered network where highly connected nodes are connected to
other highly connected nodes and the distribution of node degree is broad [Toivonen
et al. 2006], used by Fischer et al. [2010].

—Assortatively Mixed Network: A network in which nodes connect preferentially to
other nodes that are like them in some way [Newman 2003]. For example, in Wang
et al. [2011], the attributes of gender, age, academic major, and type of research
institute are applied.

To select a node’s next target, one can use the social interaction matrix to choose a
community—and from that select, a location. The social interaction matrix can be
analyzed to identify cliques (groups of fully connected nodes) [Herrmann 2003] or com-
munities (densely connected groups) [Musolesi and Mascolo 2007; Wang et al. 2011],
for instance using the Girvan-Newman [Newman and Girvan 2004] or modularity
maximization [Kang et al. 2011] algorithms. A node’s next target community can be
chosen as that with the maximum total social attraction [Musolesi and Mascolo 2007;
Wang et al. 2011] or can be selected probabilistically over all communities based on the
total social attraction [Boldrini and Passarella 2010]. Once the community has been
selected, the target coordinates could be randomly selected within the selected com-
munity’s assigned region [Musolesi and Mascolo 2007; Boldrini and Passarella 2010]
or taken as the location of the node in the selected community that has the highest
individual social interaction value [Wang et al. 2011].
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Alternatively, the attraction to a location or region might increase with its “popular-
ity.” This could be implemented by assigning to it a PDF that is a periodic function of
time, increasing at certain times of day. The probability of selecting a location can be
computed as proportional to the number of nodes at or going to the location [Borrel
et al. 2005]. By dividing the simulation space into rectangular cells, a probability can
be assigned to each cell that is a function of its popularity. One approach is to initially
place nodes using the growth and rewiring properties of a scale-free network, where an
initial cell is selected with a probability proportional to the number of nodes currently
in each cell [Lim et al. 2010]. In another approach, the popularity of a cell might be
interpreted from each node’s individual perspective, as equivalent to the population of
the region as last perceived by the node [Mei and Stefa 2009].

There are other social factors that may influence a node’s selection, such as the social
attraction of a node to the “owner” of a location [Fischer et al. 2010]. A node repulsion
factor can be used to reduce the frequency of meetings between nodes with a weak social
attraction caused by them having a common social acquaintance [Fischer et al. 2010].

2.2.5. Social Interaction with Location Bias. In a combined method, the social interactions
can be augmented to include attraction to a point or region to select the next target.
If the desired behaviour of a node is to prefer shorter distances, the attraction to a
location can be implemented as a decaying function of distance [Borrel et al. 2005; Mei
and Stefa 2009; Boldrini and Passarella 2010]. A node may have an introverted nature,
which can be represented using the above distance and popularity terms modified by
a factor that increases the effect of the distance term and decreases the effect of the
popularity term, and vice versa for extroverted nodes [Mei and Stefa 2009].

2.2.6. State Transitions. When a characteristic of a node can be expressed in terms of
a finite number of “states” and the probabilities associated with a node’s next state
depend only on its current state, the target selection process can be expressed as a
finite state machine. A state may reflect the node’s modality, where it is, or what it
is doing. A transition probability matrix (or transition table) can be used to select the
next target; when a node makes a transition from one state to another, it selects its
next target based on its new state. State transition methods are commonly used as the
first stage in a multiple-method target selection process.

Ifthe states of a model represent the geographical region that a node occupies, such as
in a model where the simulation space is divided into cells, the new state determines
the region and the target could be selected as a random point in that region. The
transition matrix can be populated such that a node must choose an adjacent cell
[Liang and Sheng 2005], or defined to reflect a desired node density for each cell [Ueno
et al. 2011], which may be useful for including obstacles by disallowing regions of the
simulation space. The states could equivalently be defined as communities, each of
which is assigned a geographic space, that a node may choose to move between [Hsu
et al. 2009]. This allows for overlapping regions.

If the state is instead the type of cell [Murray and Pesch 2004], the transition matrix
can be defined to reflect a time-dependent probability that a node in one type of cell
will move to another type of cell. For example, in the morning, a node in a “town” might
have a higher probability of moving to a “city” cell, and the reverse in the evening. If a
different cell type is selected, a cell of that type is chosen randomly.

When the node’s states are activities, the transition matrix gives the probability
that a node chooses its next activity based on its current activity. The location of the
next target is determined by the new activity. Each activity may have a fixed location
[Stepanov et al. 2005], a target may be randomly selected from a set of locations
associated with the selected activity [Hsu et al. 2005; Zheng et al. 2010], or it may
be selected within a region associated with an activity using a uniform [Scourias and
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Kunz 1999] or normal [Cho et al. 2011] distribution. Fixed activity locations and regions
of activity can be combined [Schwamborn et al. 2010]. Transition probabilities can be
derived from time usage surveys [Scourias and Kunz 1999; Kim et al. 2009; Zheng et al.
2010] or extracted from traces [Hsu et al. 2005; Stepanov et al. 2005; Kim et al. 2006].
Multiple tables can be used to reflect activities being more likely to occur at a certain
time of day [Scourias and Kunz 1999; Hsu et al. 2005, 2009]. For example, a node may
be more likely to go out to eat at mealtimes. Time dependence can be introduced by
defining the transition probabilities as a continuous function of time [Cho et al. 2011],
which smooths the transitions between time periods, and increases the flexibility of
the model by allowing the transition probability to be a continuous function of the time
since the activity was last done.

Finally, when the states reflect the node’s current modality—for example, its mood,
state of being, or other intrinsic characteristic—the transition matrix can give the
probability of switching to another modality. The selected modality then determines the
next target selection method. For example, consider a node with two states, exploring
and revisiting. For either state, a node explores (visits a new random target) with a
probability p that is a power-law function of the number of locations it has already
visited, and with 1 — p it revisits a previously visited location [Song et al. 2010; Munjal
et al. 2011]. This has been shown to agree with empirical data.

2.2.7. Location Bias with State Transitions and Social Attraction. In an approach that combines
modality state transitions with location bias, one cell is defined as a node’s home cell,
and a node’s state is either inside its home cell or in an outside cell [Boldrini and
Passarella 2010]. When in an outside cell, it selects a random target in its current cell
with a probability p that reflects its desire to be away from home, and with 1 — p selects
a random target in its home cell. When at home, the probability of choosing an outside
cell is a function of social attraction.

2.2.8. Deterministic. Deterministic targets do not have a stochastic element to them;
the targets are either manually predefined or selected via rules. For example, in a
scenario where all of the vertices on a graph must be visited, a node’s target can be
selected as the nearest nonvisited vertex [Aschenbruck et al. 2010a]. A deterministic
method based on the social interaction matrix uses a predefined set of meeting locations
as targets [Herrmann 2003].

2.2.9. Checkpoint List. A checkpoint list is an ordered set of targets that a node must
visit and used in conjunction with another Target Selection method. In the simplest
checkpoint list, a node visits a manual set of targets in the order assigned [Hong et al.
1999]. A node’s checkpoint list can be selected as a random subset of a larger set of
targets, ordered stochastically according to a power-law function of the distance to the
target [Lee et al. 2012]. Another approach is to generate targets for each node as a
random walk consisting of a random number of steps and ordering the checkpoint list
using a PDF that may be uniform [Tuduce and Gross 2005].

Time can provide the stochastic aspect of a checkpoint list. For example, sequential
activities selected via an activity-based transition matrix can be assigned times such
that a randomly selected pause time and maximum travel time allows for the next
activity to be reached [Zheng et al. 2010], or cliques identified using the social inter-
action matrix can be assigned checkpoint times such that all cliques are able to meet
[Herrmann 2003].

2.3. Pathfinding

When the simulation space has obstacles, a node may not be able to move directly to its
next target; in these cases, a path can be defined that consists of a set of intermediate
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points through which the node must pass. In other cases, a model might require a node
to behave nonlinearly between targets. The Pathfinding model element determines the
coordinates of intermediate points between targets.

2.3.1. Graph Traversal Algorithms. When the Spatial Constraint is limited to graph edges
and vertices, the node must find a path through the intermediate vertices to its target
vertex. Graph traversal algorithms are applied to determine the path. When the Spatial
Constraint calls for forbidden regions, a path from source to target must be found that
avoids obstacles or undesirable areas. In such cases, a graph can be created using the
obstacle vertices, a vertex for the source, and a vertex for the target [Aschenbruck
et al. 2007; Medina et al. 2010; Wu et al. 2011]. A graph traversal algorithm can then
be applied to find the path.

The Dijkstra shortest path algorithm [Rosen 1988] is the most commonly referenced
algorithm for determining the path with lowest cost between a given source and tar-
get vertex in the graph. The A* algorithm is an alternative to Dijkstra’s algorithm
[Schwamborn et al. 2010]. The cost can include variables such as edge length [Tian
et al. 2002; Jardosh et al. 2005; Babaei et al. 2007; Ekman et al. 2008], edge type
[Ahmed et al. 20101, speed [Zheng et al. 2010], time [Mogre et al. 2007], and edge or
vertex desirability [Medina et al. 2010].

For very large graphs, speed can be increased by implementing the graph traversal
algorithm in a hierarchical manner, determining the optimal route at a high level and
increasing granularity just along that route [Buckland 2005; Kim et al. 2009].

2.3.2. Stochastic Graph Traversal. To add diversity to a graph traversal algorithm, edges
can be assigned a probability of being selected that reflects their attractiveness
[Stepanov et al. 2005]. When Spatial Constraints combine graph-based and bounded
free space, the coordinates of the intermediate path points can be randomly sampled
within a square region around the vertex selected using a standard graph traversal
algorithm to give a more realistic variation in movement, where the size of the region
reflects the freedom of movement [Ahmed et al. 2010].

2.3.3. On-the-Fly. In on-the-fly methods, a node makes a decision at each intermediate
path point. For on-the-fly graph traversal, a node makes a decision at every vertex. A
node may stochastically favour edges in the direction of the target that have a higher
desirability [Sousa et al. 2011], or a probability can be assigned to each outgoing
edge based on empirical data, perhaps taking into account the node’s previous vertex,
current vertex, origin, and target [Yoon et al. 2006].

To navigate around obstacles in free space on-the-fly, an iterative process can be used
[Papageorgiou et al. 2012]: when a straight line between the current position and the
target intersects an obstacle, the next intermediate point is the vertex of the obstacle
that is closest to the final destination. The process repeats until the target is reached.

2.3.4. Biased Random Trips. To create a guided random walk from origin to target
[Murray and Pesch 2004], a node can move a specified distance in each timestep at
a random angle heavily biased toward the target, until the node is within a specified
distance of the target. Alternatively, at each timestep, a node could choose a random
point inside a square region directly in front of the node, centred along the vector
connecting its current position to its target [Rollo and Komenda 2009].

The path to a target may need to follow a pattern where at first the displacements
are large, but the displacement becomes incrementally smaller as it approaches the
target. This has been suggested for search and rescue operations [Ng and Zhang 2005].

To generate paths similar to empirical data, a set of points can be generated randomly
within a rectangle defined by the origin and target at opposite corners, with their
traversal order sorted by distance from the target [Kim et al. 2006]. The number of
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points can be drawn randomly from a normal distribution centred on the average
number of points observed in the data for walks between the current region and the
target region.

2.4. Motion

The Motion model element dictates the speed and direction of a node’s movement
from one target to the next, or to its next intermediate point if there is pathfinding.
It includes methods that influence a node’s velocity or acceleration vector. Note that
velocity is composed of both speed and direction; for linear motion between two targets,
the direction is predetermined and speed defines the Motion model.

It is important to specify when the contributing variables are resampled in the
Motion method—for example, for each node at initialization, after a target has been
reached, or at each timestep. A random process (e.g., Poisson or exponential) can be
applied at each timestep to decide whether to change the speed or direction [Bettstetter
2001]. A semi-Markov process? with phases of motion speed up, middle smooth, slow
down, and pause [Zhao and Wang 2009] will change its Motion model at each transition,
remaining in each phase for a random duration.

2.4.1. Predetermined Speed. Trivially, the speed of all nodes can be the same throughout
the simulation [Batabyal and Bhaumik 2012]. For a scenario where nodes must reach
predefined locations on a predefined schedule, the speed between each checkpoint can
be set so that the next checkpoint will be reached on time [Hong et al. 1999].

2.4.2. Random Speed Distributions. The PDF for node speed reflects the node’s desired
speed behaviour:

—Uniform: A uniform distribution between a maximum and minimum value is com-
mon (e.g., Johnson and Maltz [1996], Hsu et al. [2009], Boldrini and Passarella [2010],
Lim et al. [2010], and Wang et al. [2011]). It has been shown that this distribution
should not include zero [Yoon et al. 2003].

—Normal: A normal distribution centred on the average speed [Kim et al. 2009] is
consistent with pedestrian behaviour [Helbing et al. 2000].

—Lognormal: The speed observed in empirical data has been shown to fit a lognormal
distribution [Kim et al. 2006].

—Discontinuous: A discontinuous PDF can be constructed to reflect a tendency toward
a set of preferred speeds [Bettstetter 2001], where the PDF is uniform except at each
preferred speed where a delta function creates a spike in the probability.

Alternatively, if the travel distance to the target is set, the time for the motion can
be sampled from a random distribution from which the speed can be calculated. A
simple uniform PDF [Tuduce and Gross 2005] can be applied; however, both gamma
[Zheng et al. 2010] and power-law [Rhee et al. 2011] distributions have been shown to
fit empirical data.

2.4.3. Regional Speeds. To specify areas of high or low speed, regions of the simulation
space can be assigned unique distributions from which to select speeds [Aschenbruck
et al. 2007; Pidrkowski et al. 2009; Du et al. 2012]. Speed distributions can be defined to
reflect caution in regions that a node has not yet visited [Aschenbruck et al. 2010a]. Ifa
target has been visited already, a node can choose a speed from a distribution yielding
higher speeds; otherwise, a node chooses from a distribution yielding lower speeds.

2A semi-Markov process is a continuous-time stochastic process where the state transitions form a Markov
chain, and the time between jumps are random variables whose distribution functions may depend on the
two states between which the move is made.
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2.4.4. Graph Edge Speed. Graph-based models can have a speed associated with each
edge [Sousa et al. 2011], which can be selected a priori from a distribution—for example,
uniform [Schwamborn et al. 2010]. Time-dependent speed limits assigned to each edge
can be used to truncate speeds drawn from another distribution [Zheng et al. 2010].

2.4.5. Speed Adjustment for Collision Avoidance. When nodes move along the same graph
edge at different speeds, speeds must be adjusted if collisions are to be avoided. This can
be accomplished by checking each pair of nodes i and j at each timestep and modifying
their speeds accordingly: if node i is approaching node j from behind, the distance
between them is smaller than the safe distance, and the speed of node i exceeds that of
node j, node i’s speed is reduced to that of node j [Bai et al. 2003]. Collision avoidance
can also be accomplished by adjusting the speed via an empirically derived relationship
between distance and speed [Kim et al. 2009].

2.4.6. Smooth Transitions. To reduce sudden changes in velocity, the next speed and
direction can be sampled from normal distributions centred on the current speed and
direction [Tolety 1999; Aravind and Cui 2008; Zhao and Wang 2009; Kang et al. 2011].
Further smoothing can be accomplished by applying a constant acceleration until the
desired speed is reached [Zhao and Wang 2009], or by applying a random acceleration
term in the transition to a new speed [Bai et al. 2003; Guo et al. 2010; Bettstetter 2001].
For a transition to a new direction, the change can be implemented incrementally over
a predefined period of time [Bettstetter 2001].

2.4.7. Steering Forces. Motion can be governed by steering forces acting on nodes,
where targets and the environment exert attractive and repulsive forces on nodes.
Individual parameters could be defined for every node to tune its behaviour. Note that
all forces between nodes are covered in the Group Dynamics element as Internode
forces (Section 2.6.3).

The OpenSteer library [Reynolds 1999] provides the following individual node steer-
ing forces:

—Seek: Radially align the velocity toward the target.

—Flee: Radially align the velocity away from the target.

—Pursuit: Predict the future position of a moving target and apply seek to the predicted
target.

—FEvasion: Predict the future position of a moving target and apply flee to the predicted
target.

—Arrival: Similar to seek, but when the node is inside a stopping radius of the target,
the velocity is ramped down linearly.

—Obstacle Avoidance: Avoid obstacles by keeping an imaginary cylinder of free space
in front of the node. If an obstacle intersects with the cylinder, a steering force to the
side is applied.

—Wander: Apply random steering but smooth the motion by constraining the next
random force to the surface of a sphere located slightly ahead of the node.

—Path Following: Apply a steering force that constrains the node to a tube of a specified
radius that follows a defined path curve. The position of the node in the next step
is computed, and if this is outside of the tube, seek is used to steer the node to the
closest point on the curve.

—Containment: Similar to path following, if the future position is outside of the con-
tainer, a seek steering force brings the node back toward an inside point.

—Flow Field Following: If the next position of a node will be inside a flow field, a
steering force aligning with the flow is applied.
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Subsets of these, or minor variations thereof, are implemented in Legendre et al. [2006],
Holliday [2008], and Medina et al. [2010]. Obstacle avoidance can be accomplished
using other forms of the force, such as an exponential decay [Williams and Huang
2009]. Forces of a form inspired by Newton’s universal law of gravitation can attract
a node to a point in the simulation space, inversely proportional to a power of the
distance of the node from the point [Nelson et al. 2007; Du et al. 2012].

Solving the equations of motion. The change in velocity and position can be derived
from forces using Newton’s first law, where F = ma gives the acceleration vector
corresponding to the summed force. Using unit mass, Euler integration can be used to
solve for the new velocity and position [Reynolds 1999; Legendre et al. 2006; Holliday
2008; Medina et al. 2010]3:

vt + At) = v(t) +alt + At)AL, 1)
Xt + At) = X(t) + vt + At)At. (2)

The velocity can be truncated to upper and lower bounds to reflect realistic motion
limits [Reynolds 1999; Liu et al. 2010].

As humans do not follow the same acceleration rules as other objects, it has been
suggested [Nelson et al. 2007] that rather than smoothly accelerating over a timestep,
humans change to a new constant velocity very quickly. In this case, the velocity can
evolve independently of the current velocity, v(t + At) = a(t + At)AL.

2.4.8. Steering Forces with Other Methods. When steering forces are used to influence the
motion of a node that is otherwise obeying another Motion method (e.g., constant ve-
locity toward a target, or a random walk), the two can be combined using methods that
act on the velocity. Assuming unit mass and a small enough timestep, theqcontribution

of the force can be approximated in terms of a change in velocity, Avr = F A¢; a node’s
velocity can be updated by vector addition of the velocity change due to the forces with
the velocity change due to the other Motion method [Rossi et al. 2005]. The position
can then be updated via Equation 2. In another method, the total steering force is
applied only to the direction vector by adding the direction of the summed forces to the
direction vector generated by the target selection method [Williams and Huang 2009;
Du et al. 2012].

On a three-dimensional surface, the z-plane can be considered separately from the
(x, y) plane by letting the gravitational force alter the speed of a node and letting a
path defined on the (x, ¥) plane determine the direction [Liu et al. 2010]. To solve for
the new position, the velocity can be determined via Equation 1, but the new position is
solved by advancing in the (x, y) plane in very small timesteps, with each move placing
the node on the surface at the corresponding z coordinate, stopping when the required
displacement vAt has been reached.

2.5. Pause Time

The Pause Time model element determines how long a node waits between reaching
its target and proceeding to the next. The Pause Time model element is optional.

2.5.1. Constant. The pause time can be set to be constant throughout the simulation,
using the same value for all nodes [Johnson and Maltz 1996; Papageorgiou et al. 2009;
Lim et al. 2010; Ueno et al. 2011] or using a different constant value for each node.

3Legendre et al. [2006] use Euler integration (Eq. 1) for velocity; however, the position is given in the paper
as X(t + At) = () + 0t + At)At + a(t)At?/2. This is possibly a transcription error, as it is close to the
second-order Taylor expansion of position about ¢, consistent with Leapfrog integration [Frenkel and Smit
2002].
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2.5.2. Random Distribution. A new pause time can be selected from a random distribution
for each node after a target has been reached. Parameters for the PDF's can be extracted
from empirical data. Examples from the literature include:

—Uniform: Tian et al. [2002], Borrel et al. [2005], Hsu et al. [2009], and Wang et al.
[2011].

—Exponential: Murray and Pesch [2004]. Fit to empirical data in Kim et al. [2009].

—Truncated Power Law: Mei and Stefa [2009] and Rhee et al. [2011]. Fit to empirical
data in Song et al. [2010].

—Pareto: Ekman et al. [2008]. Fit to empirical data in Tuduce and Gross [2005].

—Log-normal: Fit to empirical data in Kim et al. [2006].

—Weibull: Fit to empirical data in Zheng et al. [2010] and Schwamborn et al. [2010].

Empirical data can also be used directly by binning the observed durations to create
a cumulative distribution function (CDF) [Scourias and Kunz 1999; Hsu et al. 2005].
The parameters can vary depending on the time period [Scourias and Kunz 1999]. For
example, a node may visit a coffee shop for a longer period over the lunch hour.

2.5.3. Regional. The pause times can be defined to be geography dependent by using
different parameters for a pause time PDF in different regions. This may be useful
in scenarios where users tend to stop for longer periods of time in particular areas,
such as an airport lounge or a hotspot region. This can be implemented by dividing
the entire simulation space into rectangular cells [Liang and Sheng 2005] or treating
hotspot regions individually and all space outside the hotspots as one region [Hsu et al.
2005; Kim et al. 2006].

2.5.4. Task Based. The pause time distribution can be parameterized to reflect a node’s
task. A separate set of parameters can be used for each activity type [Zheng et al. 2010],
or a separate empirically derived pause time CDF can be generated for each activity
type [Scourias and Kunz 1999].

2.6. Group Dynamics

The optional Group Dynamics model element describes node behaviours that result
in groups of nodes staying spatially close to one another. Groups behaviours may be
defined relative to a reference, which can be a designated leader node or an imaginary
node. The behaviour of a reference node is described by the other models elements; the
dynamics described in this section are for the follower nodes. Group behaviours can
also be brought about by defining forces between the nodes. Rules that form or split
groups of nodes are another aspect of group dynamics.

The Group Dynamics element is used for models where the group is the central
concept—that is, a node must ask “what is my group doing?” before making a decision.
It excludes methods where nodes do not directly influence one another and can make
decisions individually, outside of the group construct. These methods are covered in
the Target Selection model element, such as social interaction or location bias, where
nodes are assigned a community or activity that uses a predefined static spatial region.
Although clustering emerges from these methods, it is brought about indirectly.

2.6.1. Relative to a Reference. The target and motion of a follower node can be defined
relative to a reference point, which can be a designated leader or an imaginary reference
node. A group’s leader can be predetermined, or if a social interaction matrix is present
[Kang et al. 2011], choosing the most socially attractive node in the group as the
leader. There are two approaches to selecting targets for followers in the literature; in
the first, followers select a target position relative to the reference node’s target and a
speed relative to the reference node’s speed, whereas in the second, the followers choose
their velocity vector (direction and speed) relative to the reference node’s velocity.
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When the reference chooses its target and speed, each follower node in the group can
be assigned the same target [Rollo and Komenda 2009] or a target some distance from
the reference, which can be as simple as a predetermined fixed offset from the target for
each node [Reidt and Wolthusen 2007]. Random selection methods include selecting a
displacement (Ax, Ay) [Sanchez and Manzoni 2001], a random point within a square or
circular region about the reference point [Ng and Zhang 2005], or a random vector (r, 6)
with its origin at the reference point. The distributions used to generate the random
vector can be selected to reflect the desired shape of the group, such as circular [Hong
et al. 1999], elliptical [Chen et al. 2010], or a diamond aligned with the direction of the
reference point [Ning et al. 2008]. The corresponding speeds may be the same for all
nodes in the group [Hong et al. 1999], the nodes in a group may select their speed from
a uniform distribution bounded to an interval around a common group speed [Ng and
Zhang 2005], or each node’s speed may be modified such that all nodes in the group
arrive at their targets simultaneously [Gu et al. 2011].

For models where the reference node selects a direction and speed (i.e., a random trip
with variable time and space), a follower node’s velocity may be computed as the vector
sum of the reference node’s velocity with a randomly drawn velocity deviation vector
[Wang and Li 2002]. Or, they could be selected from speed and direction distributions
centred at those of the reference node [Kang et al. 2011].

2.6.2. Merge and Divide. Scenarios may require groups to merge or divide. Merging
allows a node or group of nodes to join another group, which is useful for scenarios
where a mobile device is transferred to another user, or a user boards a vehicle with
other mobile devices. For this case, groups may be merged deterministically, such as
at set time intervals following this rule: if the distance between the groups is less than
some critical distance, they are merged and the centre of the new group is randomly
chosen within the overlapping area of the old groups [Gu et al. 2011]. When a scenario
involves nodes being assigned to tasks, the group merging rule can be that nearby
nodes not currently assigned to a task form a group by proceeding to a rendezvous
point before moving to the task location as a group [Rollo and Komenda 2009]. Group
merging can be used to ensure that there are not too many small groups with no target.
For instance, a rule might be that if a group is small and has not had a target assigned
to it for a threshold time, its nodes are merged into another group [Ng and Zhang
2005].

Group division provides the ability for some nodes in the group to change their target,
which could be used for a scenario in which a user drops their mobile device. This could
be implemented as a random process, such as by randomly selecting the number of
groups to be divided at periodic intervals, and if selected, splitting a group by selecting
two new group targets and randomly assigning each node to one group or the other [Gu
et al. 2011]. Group division is also useful for ensuring that there are enough groups
to reach every target; this can be accomplished deterministically as follows: if there is
no available group for a new target, the group that is nearest to the new target and of
sufficient size will divide [Ng and Zhang 2005]. In a scenario where all paths in a graph
must be covered, such as in a building search scenario [Aschenbruck et al. 2010a], at
each intersection with more than one path choice the group can split to fully cover the
building.

2.6.3. Internode Forces. Internode forces can introduce complex group behaviours.
Steering forces that result in group behaviour include:

—Separation: Move away from nearby nodes by adding a steering force opposite
to them. The form of the force usually decays with distance, such as a power law
[Reynolds 1999; Legendre et al. 2006; Borrel et al. 2009; Liu et al. 2010] or an
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exponential decay [Williams and Huang 2009]. The magnitude of the force may
depend on the angle of the interaction, being greater for nodes in front and less for
nodes to the side [Legendre et al. 2006].

—Cohesion: Keep nodes together by finding the mean position of all others in the
group and applying a force toward it [Reynolds 1999; Legendre et al. 2006], or by
computing the force with a function that has an attractive peak around a desired
distance [Williams and Huang 2009].

—Leader Following: Keep nodes in the vicinity of a leader (an existing node or a refer-
ence point) by applying a force toward the leader that increases with distance [Liu
et al. 2010] or is constant within a fixed radius of the leader and decays with distance
[Rossi et al. 2005]. The former case is equivalent to Cohesion using a reference point
at the group’s mean position. This can also be accomplished by setting an arrive point
(see Section 2.4.7) just behind the leader [Holliday 2008].

—Alignment: Align the velocities with a steering vector that is the difference between
the group average velocity and the node’s velocity [Reynolds 1999; Legendre et al.
2006; Holliday 2008; Liu et al. 2010].

—Upnaligned Collision Avoidance: Avoid a potential future collision with another node
by steering to avoid the site of that potential collision [Reynolds 1999].

When the forces have been computed, the velocity and position can be updated using
the methods discussed in Section 2.4.7.

3. FRAMEWORKS

Conceptual frameworks are concepts or ideas around which a model can be designed.
Conceptual frameworks that allow the implementation of multiple mobility models are
important for scenarios where node behaviour varies depending on location or task, the
involvement of hierarchical authorities, or intrinsic behavioural characteristics (e.g.,
modelling people and vehicles). Software frameworks describe software design and/or
development approaches.

3.1. Conceptual Frameworks for Multiple Mobility Models

In a given scenario, a node’s mobility model may need to vary depending on its circum-
stances, such as its location, activity, or role. To reflect a change in behaviour caused
by a node’s position in the simulation space, a mobility model can be assigned to a
static region, where all nodes obey that model when inside that region [Lu et al. 2006;
Gines et al. 2007]. A model can capture behaviour determined by the role of a node
(e.g., soldier vs. pedestrian, car vs. ambulance) by allowing each node [Boschi et al.
2008; Fongen et al. 2009] or group of nodes [Blakely and Lowekamp 2004; Reidt and
Wolthusen 2007] to follow a different model. The behaviour of a node may also vary
depending on both its role and its current location. This could be implemented by using
a different set of model parameters when a node is in a given region along with a
role-based Target Selection method [Aschenbruck et al. 2007], or by defining the model
and parameters dynamically based on a node’s role and location relative to an event
[Nelson et al. 2007; Huang et al. 2008].

Mobility models can be applied hierarchically. For instance, a node may select and
move to a target within a region using a primary model, and move around inside
that region under a secondary model for a period of time until the higher-level model
selects a new region [Ng and Zhang 2005; Ekman et al. 2008; Kim et al. 2009]. The
secondary model can be selected to reflect a behaviour associated with the current
activity [Holliday 2008]. This could apply to scenarios where a node must go to a region
to complete a task, such as shopping or search and rescue operations. In such models,
an additional pause time can be used to define how long a node spends obeying the
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secondary model. For instance, a power law distributed pause time determines how
long a node moves about in a cell via a secondary model in Nguyen et al. [2011].

Steering forces can be used exclusively to replicate arbitrary mobility models, when
each node has its own independent dynamic steering behaviour rules [Medina et al.
2010]. Obstacles and paths can be modelled in a cell-based environment as attractive
or repulsive forces acting on the nodes. Targets can be specified as an attractive force
for each node or group based on their activities, and internode forces can be applied to
dictate group behaviour. The form of the force functions and the parameters can vary
for each node depending on desired behaviour.

In handling multiple hierarchical groups such as those seen in military structures,
it may be helpful to have each group of nodes move relative to their own coordinate
system. This can be implemented by placing the origin of the coordinate system of a
subordinate group at the coordinates of its parent object [Fongen et al. 2009] or at a
reference point [Blakely and Lowekamp 2004].

3.2. Software Frameworks

BonnMotion [Aschenbruck et al. 2010b], the Texas Unified Framework [Choi et al.
2007], MobiSim [Mousavi et al. 2007], and the Mobility Model Simulation Environment
(MOMOSE) [Boschi et al. 2008] are open source, extensible object-oriented frameworks
in which arbitrary models can be implemented. In MobiSim and MOMOSE, a mobility
model is associated with a subset of the nodes, and multiple models can be used in a
simulation. In BonnMotion, a single model class is defined for all nodes, and different
behaviours can be assigned to different node types within the class. In the Texas
framework, the model is defined as a method of the node class.

Open source network simulation software such as NS-2/NS-3 [NS-3 Consortium
2012] and The ONE [Kerédnen et al. 2009] contain basic mobility models, can be ex-
tended to include new mobility models, and can read trace files generated by the previ-
ous. Commercial products such as QualNet [Scalable Network Technologies 2013] and
Legion Studio [Legion Software 2013] contain interfaces allowing for the specification
of scenarios but are less readily extensible.

4. TAXONOMY APPLICATION

The primary purpose of the taxonomy is to assist authors in completely describing their
models as a unified whole so that readers can more easily digest the various aspects
of a model. To illustrate this aspect, the taxonomy is used to describe a relatively
complex model in Section 4.1. An additional benefit of the taxonomy is that it can
provide researchers with a framework within which to assess their requirements of
a mobility model. Two example scenarios are assessed in Section 4.2. Further, the
taxonomy allows a means of analysing the literature for trends, which is discussed in
Section 4.3.

4.1. Example Model Description

A model must be described at a high level before breaking it down into its elements, and
the elements each require a thorough description. If there are multiple models used,
such as in models with multiple node types, the model for each must be described.
To give a flavour of how the taxonomy might be applied, a brief description of the
Mission Critical Mobility (MCM) model [Papageorgiou et al. 2012] is given in terms of
the taxonomy elements. MCM was selected because it is a relatively complex model
that has multiple node types, obstacles, on-the-fly pathfinding, group dynamics, and
target selection that is affected by external factors.

High-level concepts and behaviours. There are two node classes in MCM—emergency
workers and medical staff—each following a slightly different cycle that defines their
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behaviour. Emergency workers get a target, move to the target, call for reinforcements
if necessary, and pause. Medical staff go to a fixed home base location before beginning
the same cycle. Nodes are divided into groups of the same class, and each group is
assigned a leader node. MCM is based on the concept of events, which have coordinates
associated with them, and a severity: normal, serious, or complex. After a group ar-
rives at an event, reinforcements are called based on the severity of the event. Each
class of node has a FIFO queue associated with it that contains the coordinates of
serious or complex events waiting for reinforcements. If the event is serious, its coordi-
nates are added to the queue associated with the group’s class. If an event is complex,
its coordinates are added to both queues. In terms of the taxonomy elements, we have
the following:

—Spatial Constraints: Obstacles are represented by rectangular forbidden regions in
a bounded free space (Sections 2.1.2 and 2.1.3).

—Target Selection: The group’s designated leader checks the event queue correspond-
ing to its class for a target, and if one exists, it chooses that as its next target.
Otherwise, the leader’s next target becomes the coordinates of a new event: the co-
ordinates are sampled from a uniform random distribution, discarding coordinates
within forbidden regions (Section 2.2.1, variable time and space random trip). The
event severity is selected from a uniform distribution.

—Pathfinding: An on-the-fly method of creating a path from obstacles recursively draws
a line between current position and target; if an obstacle is crossed, the vertex on
the nearest edge of the obstacle that is closest to the target is added as a path point
(Section 2.3.3).

—Pause Time: Constant over the entire simulation, the same value for all nodes
(Section 2.5.1).

—DMotion: Speed is selected from a uniform distribution, for each node each time a new
target is selected; the motion is linear from path point to path point (Section 2.4.2).

—Group Dynamics: Followers are assigned a target relative to the group leader’s target
at a constant offset (Section 2.6.1).

4.2. Scenario-Based Model Requirements

A scenario gives a description of node behaviours in a given setting. These behaviours
must be reflected in the corresponding mobility model. The taxonomy provides a frame-
work to aid in constructing such a model. In this application, the scenario definition
leads to a set of behavioural requirements. For each element in the taxonomy, model
requirements are derived from the behavioural requirements, which are then used
to guide the choice of method. Two examples are given in this section. First, a “toy”
problem of visitor movements at a state fair is presented, which gives an illustration of
a derivation of model requirements based on a simplified, albeit unrealistic, scenario.
Second, a more complex example of a military tactical mobile ad hoc network (MANET)
is given to show the process for a real-world scenario.

4.2.1. State Fair. Consider a state fair that consists of six games, all situated evenly
within a 50m square. There is a gate at the centre of the western boundary from which
visitors may enter and exit, but once inside, visitors can pass through one another and
through the game booths. Each game can be played only once by each visitor, and to
play a game, a visitor stands on a spot located at the centre of the south side of its
booth. Each game takes around 6 minutes to play and can be played simultaneously by
multiple players. On the day of the fair, one visitor arrives every 5 minutes, prepared
with an ordered list of the games they will play. A visitor must visit at least three but no
more than six booths. Visitors move directly from one game to the next, and everyone
moves at the same speed of 2km/h inside the fairground.
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The goal is to create a model that will give us the trajectories of the nodes over
time for this scenario. For each model element, the required behaviour of the model is
assessed to yield an appropriate method, as follows:

—Spatial Constraints: The fair occupies a defined area, and nodes enter and exit the
space via one preset entry point on the boundary. Since visitors can pass through
the booths, obstacle avoidance is not required. Hence, the spatial constraints are
bounded free space (Section 2.1.2) with constant periodic arrivals at the entry point.

—Target Selection: Prior to entering, each visitor generates a list of games to visit
with no repetition, uniform random length between three and six, and randomly
ordered. From the perspective of a visitor, a single (x, y) coordinate represents the
booth’s location. A viable method is a random trip (Section 2.2.1) in conjunction with
a checkpoint list using these coordinates (Section 2.2.9). Since a visitor leaves the
fair after playing the games on its list, the gate coordinates are appended to each
checkpoint list.

—Pathfinding: Since there are no obstacles and no interactions between nodes, there
is no requirement for nonlinear motion between targets; hence, this element is not
required.

—Motion: The motion between path points is linear at a constant speed that is the
same for all nodes (Section 2.4.1).

—Pause Time: The time spent at any booth is assumed to follow a normal PDF centred
on 6 minutes, which is a random pause time method (Section 2.5.2).

—Group Dynamics: Nodes do not interact with each other, so this element is not re-
quired.

This toy model can be made more complex by adding requirements, which may affect
one or more model elements (as shown in Figure 1). For example, introducing obstacle
avoidance affects Spatial Constraints and Target Selection, and may also affect the
Pathfinding and Motion elements.

4.2.2. Military MANET. A more complex example is the military tactical MANET sce-
nario, for which several requirements analyses have been published [Burbank et al.
2006; Perisa et al. 2007; Holliday 2008; Aschenbruck et al. 2008; Papageorgiou et al.
2009; Fongen et al. 2009]. The scenario used in this example is the second phase of
a multinational peacekeeping mission to secure a chemical factory on hostile ground
[Salmanian 2003]. A ship provides a stationary local command centre on a nearby
body of water; unmanned aerial vehicles (UAVs) provide network connectivity; and
troops move in armoured personnel vehicles (APVs), in tanks, and on foot. The region
is mountainous with harsh conditions. The troops move toward the factory in APVs
and tanks through a mountain pass. One tank remains in the pass to secure it and to
provide connectivity to the command centre. On arrival, the troops exit the vehicles
and secure the factory. We assume that this occurs as described in Aschenbruck et al.
[2010a]: units are divided into small groups that enter the building consecutively, and
each group secures a small part of the building in such a way that the fallback path is
always secured.

In the following analysis, the required behaviour of each element of the model is
derived from the scenario description; these are then assessed to identify some potential
approaches:

—Spatial Constraints: The scenario is carried out in a defined region that has obstacles
such as buildings and bodies of water, and regions that are more or less preferable
based on terrain suitability and safety. Inside the factory, it has indoor obstacles such
as walls. Graph-based methods with forbidden regions (Section 2.1.5) and bounded
free space combined with graph constraints (Section 2.1.6) satisfy the requirements.
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The graph can be designed with a higher density of vertices in preferred areas
(Section 2.1.4). Free space methods with forbidden regions (Section 2.1.3) will prevent
the selection of targets inside an obstacle but do not account for less preferable
regions; this method would have to be paired with another method such as steering
forces (Section 2.4.7).

—Target Selection: The strong planning aspects of military operations means that the
model should allow a tactical level of target selection for nodes or groups of nodes,
based on their role in the mission, its region of operations, and the terrain. For
example, a UAV’s role is to fly in a circular pattern above the region of operations,
and the last tank to reach the mountain pass stays there for the remainder of the
scenario. Deterministic target selection with checkpoints (Sections 2.2.8 and 2.2.9)
allows for preplanned targets for each node. To introduce variations in movement
patterns, location bias methods (Section 2.2.2) could be used to bias target selection
to within the intended region of operations.

—Pathfinding: The Pathfinding method must avoid obstacles and choose a route that
maximizes safety and ease of passage, and accommodate different behaviours for
each node type (e.g., a vehicle will view a narrow path differently than ground troops).
Graph traversal methods (Section 2.3.1) and biased random trips (Section 2.3.4)
may provide the required behaviour. Stochastic graph traversal (Section 2.3.2) intro-
duces variations in path selection.

—DMotion: The Motion element must accommodate differences in movement patterns
for different types of nodes and be able to accommodate differences in their intrinsic
properties (e.g., average speed). The average speed should change in hostile envi-
ronments. This requirement is satisfied by using regional speeds (Section 2.4.3) for
free space environments and a graph edge speed (Section 2.4.4) for graph-based
environments.

—Pause: The pause time after reaching a target should reflect the individual task of
the node based on mission goals—hence, task-based pause times (Section 2.5.4) is an
appropriate method. A PDF centred on the task-based pause time could be used to
introduce randomness (Section 2.5.2).

—Group Dynamics: The hierarchical command structure dictates that group behaviour
should reflect the concept of leaders and followers in a variety of group formations.
This can be accomplished via target or velocity selection relative to a reference point
(Section 2.6.1), or by applying internode forces (Section 2.6.3). Group dynamics must
allow soldier nodes to enter and exit vehicle nodes, and behave appropriately in both
cases. This can be achieved by moving the occupants of a vehicle relative to the
vehicle’s reference point (Section 2.6.1). The group dynamics inside the factory are
dictated by the need to merge and divide (Section 2.6.2) in the process of securing
the building.

Other requirements not explicit in the scenario description can be included. If the activ-
ities of adversarial forces are included, the model could incorporate dynamic changes to
the environment, such as explosions that may make a route inaccessible, or adversary
nodes that should be avoided. These may affect the Target Selection, Pathfinding, or
Motion elements. The inclusion of battle casualties would result in the need to be capa-
ble of node removal, or of a change in node state to reflect the damage. If realistic motion
is required, the model must provide smooth motion, prevent unintentional collisions,
and disallow two nodes of the same type occupying the same physical space. Motion
methods that satisfy these requirements are given in Sections 2.4.5, 2.4.6, and 2.4.7.

4.3. High-Level Survey

The taxonomy can also be used to provide a high-level view of the literature. Tables I
through IV show the taxonomy applied to a selection of models, building on those
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Table I. A Selection of Simple Models with Random or Location-Biased Target Selection and No Pathfinding or
Group Dynamics Element

Each “X” denotes the model’s category of methods; a “1” or “2” in the Target Selection element indicates a

hierarchy of target selection methods.

Spatial Target Path Motion Pause Group
= .% 3
o |8 '% + % 3 E < |3 5 2 3
elEl ZI5(E2IE Bl 8B IRE R 1Sllel. - BllE S
SIS IEIEIEIEIBE|2 e 8c € |E|E|nels|2EIEE 5|5 12|E
EAH IR e R B ERE
k82|52 B RS 5EEIEREES A a SEEE R
RWP96|| X X X X
Smooth01|| X X X X
RBP02|| X X X X
Manhat03 X || X X X | X
Pixel04 X || X X X
Pragma05 || X X X X
HotWP06|| X X X | X X
ModWP06 || X X X | X X
Ripple07|| X X X
Subway07 || X X X X X
HeteroRW09 || X X XX
Cluster10|| X X X X
TLevyW11|| X X X X
STEPS11|| X 21 X
SLAW12 X X X X X
Affinity12|| X X X

previously classified in Aschenbruck et al. [2011]. The list of models is not exhaustive;
specifically, it excludes simple variations of non-random waypoint (RWP) random trip
models and models that did not specify all of the aspects of the taxonomy. Software
and multimodel frameworks were excluded because the tabular presentation would be
ineffective. Models are referred to in the tables by an identifying key with a two-digit
suffix representing the year of publication; the key-reference mapping for the tables is
given in Table V. The tables are sorted by year of publication, from which the seminal
works become more evident. It is important to note, however, that the publication date
is for the referenced cited, which is not necessarily the first appearance of the model,
particularly when the citation is a journal article. In the tables, a model is said to
be bounded if it states its dimensions or discusses boundary conditions or regions;
otherwise, it is classified as free space.

Table I shows the RWP model and some of its variants. RWP variants with graph-
based spatial constraints choose a random adjacent vertex, but otherwise they are
bounded free space models that choose a random target, some with location bias. This
table shows that variations of RWP continue to appear in the literature.

In Table II, models with random or location-biased Target Selection methods that
use a graph traversal technique for Pathfinding are shown. Jardosh et al. [2005]
(Obstacle05 in Table V) were the first to address obstacles directly by creating a graph
from the obstacles. Tian et al. [2002] (Graph02) were the first to apply graph traver-
sal with a random Target Selection method, and the method became quite popular
in 2007. However, Table IV shows that Scourias and Kunz [1999] (Activity99) were
the first to use graph traversal with state transition methods, making theirs the first
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Table II. A Selection of Models with Random or Location-Biased Target Selection That Use Graph Traversal
Techniques for Pathfinding and Do Not Model Group Dynamics Explicitly
Each “X” denotes the model’'s category of methods.

Spatial Target Path Motion Pause Group
- & 3
. g 0 . i) =]
B8 EEEEE 2L 2R k|2 55 & 22| &
- 8§ SBIEEIE|BRIEIEg% = 8lal [Slelcl=IB]l8E ]S
I C (B e E B RS Ee|S EEEEle B 2 EEIE 5 2
R R EHA R B REE
Key |BE|S [ERBERR|SSGR|(IEEERS S @B|SEEE € 2|4
Graph02 X [|X X X X
Obstacle05 X| X ||[X|X X X X
Statistical06 X ||X X X X X
GraphRWO07 X [|X X X X
GraphWP07 X [|X X X X
OMBAAOQ7 X| X X X X X
Disaster07 || X |X X XX X
CORPS08 X X X X
Human09 X X X X X
DiAm10 X [|X X X X X
RandStreet10 X [|X X X X
Anchor10 || X X || XX X XX
Sousall X ||IX|X X X X

graph traversal Pathfinding overall. There is an apparent lack of overlap between
graph-based Spatial Constraints and Group Dynamics within the sample of models.

Table III shows a selection of models that use an explicit Group Dynamics method.
Hong et al. [1999] (RPGM99) were the first to introduce group motion by using a
reference point; similar models were developed later with slight variations. The first
combining group methods with graph-based spatial constraints was Zhou et al. [2004]
(VTrack04). Steering forces were first implemented to bring about group behaviours
by Legendre et al. [2006] (Behavioural06).

Table IV shows a selection of models that use state transition methods or social in-
teraction methods for the Target Selection element. In this sample of models, Scourias
and Kunz [1999] (Activity99) were the earliest implementers of state transition meth-
ods. Although the notion was introduced by Herrmann [2003], the table shows that
Musolesi and Mascolo [2007] (CommunityMO07) published the first complete model in
the mobile communications field to use social networks to choose a target region. Mei
and Stefa [2009] (SmallWorld09) followed with a two-stage variation, similar to that
of the Community model in Boldrini and Passarella [2010] (CommunityB10). This was
augmented in the Home Cell model (HomeCell10) with state transitions and a loca-
tion bias. Because social interaction methods implicitly lead to group-like behaviours,
it is not surprising that social models do not employ explicit Group Dynamics meth-
ods; however, it is interesting to note the lack of overlap between models using state
transitions and explicit Group Dynamics methods.

By considering the Motion element in all of the tables, it can be seen that Bai et al.
[2003] were the first to introduce collision avoidance in this sample of models, and
smoothing of motion was introduced in Bettstetter [2001]. The use of steering forces to
control motion was first introduced in Legendre et al. [2006] and was combined with
other methods to control motion in Williams and Huang [2009] and Liu et al. [2010].
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Table Ill. A Selection of Models That Explicitly Incorporate Group Behaviours
Each “X” denotes a category of methods; a “1” or “2” in the Target Selection element indicates a hierarchy of
target selection methods.

Spatial Target Path Motion Pause Group
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RPGM99 || X X|X X X
Column01 X X X
Structured04 || X XX X X
VTrack04 || X X [|X X X X|X
RefRegion05 || X 1 2 XX XbIXb|  [X[|X[X
Coalition05 X X X@ X
Behavioural06 || X X X X
Diamond08 || X X X X
GroupForce09 X X X X X
Skiing10 || X X X X X
Tactical10 X| X X X |X|X X X|X
SocComm11 X ||X X X
Mission12 || X|X X X X X X

aAssumed, specifies an average speed but no distribution.
b Assumed, nodes “could stop for a pause time 7.”

5. DISCUSSION

Mobility models are needed to test research ideas for mobile networks, but the choice of
model can dramatically affect the test results. Simple mobility models are sufficient for
initial testing of new ideas for protocols, routing algorithms, and security schemes but
are insufficient for proving their viability in real-world conditions. Numerous models
have been developed in recent years to address the need for realism, but the RWP
model continues to dominate [Kurkowski et al. 2005]. Factors contributing to the small
uptake of newer models may include a lack of understanding of the models themselves,
or of which model is appropriate for their research. The taxonomy presented in this
work can assist with these issues.

The adoption of a taxonomy that enables a systematic definition of mobility models
will enhance communication by allowing authors and readers to think of their models
in terms of their various components while keeping all of the pertinent information
together. The literature contains some incomplete or disjointed model descriptions that
may be impeding their uptake. In future literature, authors can use the taxonomy as
a framework in which to completely and systematically describe their models. This, in
addition to addressing the issues identified in Kurkowski et al. [2005], will increase
reproducibility, which facilitates scientific progress. Moreover, to discuss the common
characteristics of the models for the taxonomy, a consistent nomenclature had to be
established. The use of common language will support clearer communications between
researchers and allow similarities and differences between models to be more easily
recognized. As the taxonomy matures, it will enable a more economical communication
of ideas and concepts, relieving authors of the burden of having to explain established
concepts and making novel contributions more evident.
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Table IV. A Selection of Models That Utilize State Transitions and Social Interactions
Each “X” denotes the model’s category of methods; a “1” or “2” in the Target Selection element indicates a
hierarchy of target selection methods.

Spatial Target Path Motion Pause Group
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Activity99 X [ 2 1 21X Xb XX
Murray04 || X 2 1 X X¢
AreaGraph05 || X X 1 2 X X X
WeightedWP05 || X X X¢
Mold05 || X X X XX
WLANO5 || X 2 1 X X
Stepanov05 X X X X X X X
Kim06 || X 2¢ 1 X X X
CommunityM07 || X X X
Workday08 X |2 1 X X X
RealMobGen08 || X X X X
TVCommO09 || X 2 1 X X
SmallWorld09 || X 2 1 piC
Udel09 X ||2 1 X X X
Agendal0 X |2 11X X X X X X
CommunityB10 || X 2 1 X
HomeCell10 || X 211|111 X
SMOOTH11 2 1|1 2 X X

%Assumed, but unspecified.

bAssumed, specifies a “system wide average speed.”

¢Assumed due to reference to RWP.

dUnit step size and random distance means that speed will necessarily be random.

A mobility model must reflect the variety of scenarios under which the technology will
be applied. Many models exist in the literature, with significant repetition in each of
the model elements, as shown in Tables I through IV. Rather than attempting to select
a model in its totality, a researcher requiring a mobility model for testing purposes can
select an appropriate method for each model element based on requirements derived
from the use case scenario (cf. Section 4.2). If an appropriate method does not exist, the
new method will be certain to contribute novel features to the research community. A
guideline that maps requirements to existing methods for a variety of scenarios would
be useful future work.

It has been proposed that the RWP model continues to be used due to its simplicity
[Munjal et al. 2011]. For researchers who are not mobility model experts, validating
their work depends on understanding the context of the simulation results, which
makes complex models unappealing. It can also be difficult for the nonexpert to choose
parameters for complex models. For example, in force-based models, the steering forces
can be difficult to parameterize [Tripp et al. 2010]. Excess complexity can impede sci-
entific progress in this respect. In their simulations, Helgason et al. [2010] showed
that network measurements were relatively insensitive to changes in the distribu-
tion of node speeds, node arrival process parameters, node size, and minimum node
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Table V. Mapping of Model Names to Reference

Key Reference Key Reference
Activity99 [Scourias and Kunz 1999] OMBAAO07 [Babaei et al. 2007]
Affinity12 [Batabyal and Bhaumik 2012] | Pixel04 [Kraaier and Killat 2004]
AgendalO [Zheng et al. 2010] Pragma05 [Borrel et al. 2005]
Anchorl0 [Ahmed et al. 2010] RandStreet10 |[Aschenbruck and Schwamborn 2010]
AreaGraph05 [Bittner et al. 2005] RBP02 [Bettstetter and Wagner 2002]
Behavioural06 |[Legendre et al. 2006] RealMobGen08 | [Walsh et al. 2008]
Clustered10 [Lim et al. 2010] RefRegion05 [Ng and Zhang 2005]
Coalition07 [Reidt and Wolthusen 2007] Ripple07 [Chen et al. 2007]
Column01 [Sanchez and Manzoni 2001] | RPGM99 [Hong et al. 1999]
CommunityB10 | [Boldrini and Passarella 2010] | RWP96 [Johnson and Maltz 1996]
CommunityMO07 | [Musolesi and Mascolo 2007] | Skiing10 [Liu et al. 2010]

CORPS08 [Huang et al. 2008] SLAW12 [Lee et al. 2012]

DiAm10 [Schwamborn et al. 2010] SmallWorld09 | [Mei and Stefa 2009]
Diamond08 [Ning et al. 2008] Smooth01 [Bettstetter 2001]
Disaster07 [Aschenbruck et al. 2007] SMOOTH11 [Munjal et al. 2011]
Graph02 [Tian et al. 2002] SocComm11 [Kang et al. 2011]
GraphRWO07 [Mogre et al. 2007] Sousall [Sousa et al. 2011]
GraphWP07 [Mogre et al. 2007] Statistical06 [Yoon et al. 2006]
GroupForce09 |[Williams and Huang 2009] Stepanov05 [Stepanov et al. 2005]
HeteroRW09 [Piérkowski et al. 2009] STEPS11 [Nguyen et al. 2011]
HomeCell10 [Boldrini and Passarella 2010] | Structured04 | [Blakely and Lowekamp 2004]
HotWP06 [Khadivi et al. 2006] Subway07 [Toubiana et al. 2007]
Human09 [Papageorgiou et al. 2009] Tacticall0 [Aschenbruck et al. 2010a]
Kim06 [Kim et al. 2006] TLevyW11 [Rhee et al. 2011]
Manhat03 [Bai et al. 2003] TVCommO09 [Hsu et al. 2009]
Missionl2 [Papageorgiou et al. 2012] Udel09 [Kim et al. 2009]
ModWP06 [Hyytia et al. 2006] VTrack04 [Zhou et al. 2004]

Mold05 [Liang and Sheng 2005] WeightedWPO05 | [Hsu et al. 2005]
Murray04 [Murray and Pesch 2004] WLANO5 [Tuduce and Gross 2005]
Obstacle05 [Jardosh et al. 2005] Workday08 [Ekman et al. 2008]

separation, whereas the scenario itself had greater impact. Further research into the
level of realism required to simulate mobile networks in a variety of scenarios may
help to identify unneeded complexity.

The RWP model may also continue to be used due to the lack of other suitable
benchmarks for the field. A novel approach to the development of benchmarks involves
populating a database with parameters used in the force-based Universal Mobility
Modeling Framework (UMMF) [Medina et al. 2010], with the resultant network mea-
surements (e.g., contact time, intercontact time) from the simulation [Tripp et al. 2010].
The user would then specify desired network measurements, and the database would
return the UMMF parameters that would result in the desired network properties.
Since UMMEF has been shown to be capable of recreating other models, the approach
is promising.

Techniques and models from other domains have been applied to the mobile net-
working domain, but there are more that can be considered. The social sciences have
generated models of pedestrian dynamics, particularly in crowds [Pelechano et al. 2005;
Bellomo and Dogbe 2011], and the tourism domain has generated models of both pedes-
trian and vehicular traffic (e.g., [Gloor et al. 2004; Steiner et al. 2007]. Pathfinding and
collision avoidance are used in the robotics domain [Gelenbe et al. 1997]. Some of the
methods described here are taken from simulation methods in the physical sciences;
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although it is well established in microscopic simulation that Verlet integration is su-
perior to Euler integration [Frenkel and Smit 2002], it has not been established at this
scale whether the extra complexity is necessary.

Although only a portion of the literature on mobility models is presented in Tables I
through IV, the analysis with respect to the taxonomy supports a better understanding
of past work and the current state of the art, which may help guide the way ahead.
As more literature is examined, it may be logical to extend the taxonomy to include
new optional elements, such as Initialization and Event Dynamics. The application
of standards such as a taxonomy and a common nomenclature will enhance under-
standing and encourage the increased adoption of more realistic models in the mobile
communications field.
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