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Compressive Sensing: From Theory to Applications, a
Survey

Saad Qaisar, Rana Muhammad Bilal, Wafa Iqbal, Muqaddas Naureen, and Sungyoung Lee

Abstract: Compressive sensing (CS) is a novel sampling paradigm
that samples signals in a much more efficient way than the estab-
lished Nyquist sampling theorem. CS has recently gained a lot of
attention due to its exploitation of signal sparsity. Sparsity, an in-
herent characteristic of many natural signals, enables the signal
to be stored in few samples and subsequently be recovered accu-
rately, courtesy of CS. This article gives a brief background on the
origins of this idea, reviews the basic mathematical foundation of
the theory and then goes on to highlight different areas of its ap-
plication with a major emphasis on communications and network
domain. Finally, the survey concludes by identifying new areas of
research where CS could be beneficial.

Index Terms: Compressive imaging, compressive sensing (CS), in-
coherence, sparsity, wireless sensor networks (WSNs).

I. INTRODUCTION

Compressive sensing (CS) has witnessed an increased in-
terest recently courtesy high demand for fast, efficient, and
in-expensive signal processing algorithms, applications, and
devices. Contrary to traditional Nyquist paradigm, the CS
paradigm, banking on finding sparse solutions to underdeter-
mined linear systems, can reconstruct the signals from far fewer
samples than is possible using Nyquist sampling rate. The prob-
lem of limited number of samples can occur in multiple scenar-
ios, e.g., when we have limitations on the number of data captur-
ing devices, measurements are very expensive or slow to capture
such as in radiology and imaging techniques via neutron scat-
tering. In such situations, CS provides a promising solution. CS
exploits sparsity of signals in some transform domain and the
incoherency of these measurements with the original domain. In
essence, CS combines the sampling and compression into one
step by measuring minimum samples that contain maximum in-
formation about the signal: This eliminates the need to acquire
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and store large number of samples only to drop most of them
because of their minimal value. CS has seen major applications
in diverse fields, ranging from image processing to gathering
geophysics data. Most of this has been possible because of the
inherent sparsity of many real world signals like sound, image,
video, etc. These applications of CS are the main focus of our
survey paper, with added attention given to the application of
this signal processing technique in the communication and net-
works domain.

This article starts with presenting a brief historical back-
ground of CS during last four decades. It is followed by a com-
parison of the novel technique with conventional sampling tech-
nique. A succinct mathematical and theoretical foundation nec-
essary for grasping the idea behind CS is given. It then surveys
major applications of CS specifically in the communications and
networks domain. In the end, open research areas are identified
and the article is concluded.

II. HISTORICAL BACKGROUND

The field of CS has existed for around four decades. It was
first used in Seismology in 1970 when Claerbout and Muir gave
attractive alternative of least square solutions [1], Kashin [2]
and Gluskin [3] gave norms for random matrices. In mid eight-
ies, Santosa and Symes [4] suggested l1-norm to recover sparse
spike trains. In 1990s, Rudin, Osher, and Fatemi [5] used total
variation minimization in Image Pro-cessing which is very close
to l1 minimization. Some more contributions of this era are [6]–
[11]. The idea of CS got a new life in 2004 when David Donoho,
Emmanuel Candes, Justin Romberg, and Terence Tao gave im-
portant results regarding the mathematical foundation of CS. A
series of papers have come out in last six years and the field is
witnessing significant advancement almost on a daily basis.

A. Nyquist Sampling Theorem

In 1949, Shannon presented his famous proof that any band-
limited time-varying signal with ‘n’ Hertz highest frequency
component can be perfectly reconstructed by sampling the sig-
nal at regular intervals of at least 1/2n seconds. In tradi-
tional signal processing techniques, we uniformly sample data
at Nyquist rate, prior to transmission, to generate ‘n’ sam-
ples. These samples are then compressed to ‘m’ samples; dis-
carding n−m samples.

At the receiver end, decompression of data takes place to re-
trieve ‘n’ samples from ‘m’ samples. The paradigm of Shan-
non’s sampling theory is cumbersome when extended to the
emerging wide-band signal systems since high sampling rates
may not be viable for implementation in circuitry: High data-
rate analog-to-digital converters are computationally expensive
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Fig. 1. Traditional data sampling and compression versus CS.

and require more storage space. After reviewing the conven-
tional sampling theorem one may wonder: Why should we go
through all computation when we onlyneed ‘m’ samples in the
end for transmission? Are the real world signals always band
limited? How can we get ‘n’ samples efficiently, especially if
we need a separate hardware sensor for each sample? The al-
ternative theory of CS [12], [13] by Candes, Tao, Romberg, and
Donoho have made a significant contribution to the body of sig-
nal processing literature, by giving sampling theory a new di-
mension, as described in subsequently.

Fig. 1 represents concept of traditional data sampling and CS.
Further elaboration follows in subsequent sections.

III. CS PARADIGM

CS theory asserts that we can recover certain signals from
fewer samples than required in Nyquist paradigm. This recov-
ery is exact if signal being sensed has a low information rate
(means it is sparse in original or some transform domain). Num-
ber of samples needed for exact recovery depends on particular
reconstruction algorithm being used. If signal is not sparse, then
recovered signal is best reconstruction obtainable from s largest
coefficients of signal. CS handles noise gracefully and recon-
struction error is bounded for bounded perturbations in data. Un-
derneath are some definitions that are later used to discuss acqui-
sition/reconstruction models and behaviour of CS to non-sparse
signals and noise.

Sparsity: Natural signals such as sound, image or seismic
data can be stored in compressed form, in terms of their pro-
jection on suitable basis. When basis is chosen properly, a large
number of projection coefficients are zero or small enough to
be ignored. If a signal has only s non-zero coefficients, it is
said to be s-sparse. If a large number of projection coefficients
are small enough to be ignored, then signal is said to be com-
pressible. Well known compressive-type basis include 2 dimen-
sional (2D) wavelets for images, localized sinusoids for music,
fractal-type waveforms for spiky reflectivity data, and curvelets

for wave field propagation [14].
Incoherence: Coherence measures the maximum correlation

between any two elements of two different matrices. These two
matrices might represent two different basis/representation do-
mains. If Ψ is a n×n matrix with Ψ1, · · ·,Ψn as columns and Φ
is an m × n matrix with Φ1, · · ·,Φm as rows. Then, coherence
µ is defined as

µ(Φ,Ψ) =
√
nmax |Φk,Ψj| (1)

for 1 ≤ j ≤ n and 1 ≤ k ≤ m. It follows from linear algebra
that

1 ≤ µ(Φ,Ψ) ≤
√
n. (2)

In CS, we are concerned with the incoherence of matrix used
to sample/sense signal of interest (hereafter referred as mea-
surement matrix Φ) and the matrix representing a basis, in
which signal of interest is sparse (hereafter referred as repre-
sentation matrix Ψ). Within the CS framework, low coherence
between Φ and Ψ translates to fewer samples required for re-
construction of signal. An example of low coherence measure-
ment/representation basis pair is sinusoids and spikes that are
incoherent in any dimension [15], and can be used for compres-
sively sensing signals having sparse representation in terms of
sinusoids.

Restricted isometry property (RIP): RIP has been the most
widely used tool for analysing the performance of CS recovery
algorithms [16] as illustrated below through CS acquisition and
reconstruction models and illustrated in Fig. 2.

A. Acquisition Model

Signal acquisition model of CS is quite similar to conven-
tional sensing framework. If X represents the signal to be
sensed, then sensing process may be represented as

Y = ΦX (3)

where, X ∈ Rn, is the signal to be sensed; Φ is m-by-nmeasure-
ment matrix and Y ∈ Rm is measurement vector. Under conven-
tional sensing paradigm ‘m’ must be at least equal to ‘n’. How-
ever CS states that ‘m’ can be far less than ‘n’, provided signal
is sparse (accurate reconstruction) or nearly sparse/compressible
(approximate reconstruction) in original or some transform do-
main. Lower values for ‘m’ are allowed for sensing matrices that
are more incoherent within the domain (original or transform) in
which signal is sparse. This explains why CS is more concerned
with sensing matrices based on random functions as opposed
to Dirac delta functions under conventional sensing. Although,
Dirac impulses are maximally incoherent with sinusoids in all
dimensions [15], however data of interest might not be sparse in
sinusoids and a sparse basis (original or transform) incoherent
with Dirac impulses might not exist. On the other hand, random
measurements can be used for signals s-sparse in any basis as
long as Φ obeys the following condition [17]

m = s log(
n

s
). (4)

As per available literature, Φ can be a Gaussian [18],
Bernoulli [19], Fourier, or incoherent measurement matrix [12].
For a class of reconstruction algorithms known as basis pursuit
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(BP), [20] states that most s-sparse signals can be exactly recov-
ered just by ensuring

m ≥ 4s. (5)

Equations (6) and (7) quantify ‘m’ with respect to incoher-
ence between sensing matrix and sparse basis. Other important
consideration for robust compressive sampling is that measure-
ment matrix well preserves the important information pieces in
signal of interest. This is typically ensured by checking RIP of
reconstruction matrix Θ(product of measurement matrix with
representation basis) [16]. RIP is defined on isometry constant
δS of a matrix, which is the smallest number such that

(1 − δS)||x||2l2 ≤ ||Θx||2l2 ≤ (1 + δS)||x||2l2 (6)

holds for all s-sparse vectors ‘x’. We will loosely say that a ma-
trix obeys the RIP of order s if δS is not too close to one. RIP
insures that all subsets of s columns taken from matrix are nearly
orthogonal and sparse signal is not in null space of matrix being
used to sense it (as otherwise it cannot be reconstructed). Sim-
ilarly, if δ2S is sufficiently less than one, then all pair wise dis-
tances between s-sparse signals must be well preserved in the
measurement space, as shown by

(1−δ2S)||x1−x2||2l2 ≤ ||Θ(x1−x2)||2l2 ≤ (1+δ2S)||x1−x2||2l2
(7)

for s-sparse vectors x1 and x2.

B. Reconstruction Model

A nonlinear algorithm is used in CS, at receiver end to recon-
struct original signal. This nonlinear reconstruction algorithm
requires knowledge of a representation basis (original or trans-
form) in which signal is sparse (exact recovery) or compressible
(approximate recovery). Signal of interest X, can be expressed
in representation basis as

Ψx = X (8)

where x is s-sparse vector, representing projection coefficients
of X on Ψ. Measurement vector Y, can now be rewritten in terms
of x as

Y = Θx (9)

where Θ = ΦΨ is m× n dimensional, reconstruction matrix.
Reconstruction algorithms in CS, try to solve (9), and exploit

the fact that solution is sparse, usually by minimizing l0, l1, or l2
norm over solution space. According to classical least square so-
lution (minimization of l2 norm), reconstructed solution × may
be expressed as

× = min
x:Θx=Y

||x||l2 = ΘT (ΘΘT )−1Y (10)

where

||x||l2 =

√

√

√

√(

N
∑

i=1

|xi|2). (11)

Similarly, by using l1 minimization or BP, as it is known in CS
literature, signal can be exactly recovered from ‘m’ measure-
ments by solving a simple convex optimization problem [21]
through linear programming.

Fig. 2. Compressive acquisition and reconstruction.

× = min
x:Θx=Y

||x||l1 (12)

where

||x||l1 =

√

√

√

√(

N
∑

i=1

|xi|). (13)

Some reconstruction techniques are based on l0 minimization.

× = min
x:Θx=Y

||x||l0 (14)

where

||x||l0 =

√

√

√

√(

N
∑

i=1

|xi|0). (15)

l2 minimization mostly gives unsatisfactory results with non-
sparse signals. Since real world signals are usually compressible
rather than sparse, l2 minimization is not an attractive option
for reconstruction. On the other hand, l0 minimization though
gives accurate results; however, has computational disadvantage
of being a NP hard problem. To address this issue, [13]–[23] use
l1 norm, as it gives same results as l0 minimization under cer-
tain circumstances. Specifically, [13] shows that reconstruction
error of linear programming (l1 norm minimization) has upper
bound, provided Θ obeys uniform uncertainty principle and x
is sufficiently sparse. Fig. 3 shows l2 and l1 minimizations for 3
dimensional data. Plane is the set of all x vectors that satisfy Y =
Θx. l2 minimization is equivalent to blowing up a hypersphere
and picking point where it touches the solution plane. Since l2
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Fig. 3. Geometry of CS minimization.

ball is spherical, usually it picks points away from coordinate
axis (non-sparse members of solution plane), whereas l1 ball
has axis aligned shape which helps to introduce a preference for
sparse members of solution set.

Though basic sense of energy minimization is common to
all solution frameworks, yet variants exist in approach to solve
norm minimization equation. Section IV summarizes categories
of various reconstruction algorithms in present literature.

C. CS for Non-Sparse Signals

As shown in [13], if

δ2S ≤
√
2− 1 (16)

then, solution × to l1 minimization problem (10), obeys

|| × −x||l2 ≤ C0

||x− xS ||l1√
s

(17)

and
|| × −x||l1 ≤ C0||x− xS ||l1 (18)

for some constant C0, where x is the original signal, xS is the
signal x with all but the largest s components set to 0. If x is
s-sparse, then x = xS and, thus the recovery is exact. If x is
not s-sparse, then this asserts that quality of reconstruction is
as good as reconstruction obtainable from s largest coefficients
of x (positions of which were unknown at time of acquisition).
So, while conventional sensing paradigm needs more sensing
resources and fancy compression stage for compressible signals,
CS provides a simpler acquisition model to sense and compress
implicitly.

D. Noise Robustness in CS

Practically every sensed signal will at least have quantization
noise owing to finite precision of sensing device. If, noisy mea-
surement signal is expressed as

Y = Θx+ E (19)

where E is error signal, with energy bounded as

||E||l2 ≤ ε (20)

where ε is a finite constant, then, solution to relaxed l1 mini-
mization problem may be expressed as

× = min
x:||Θx−Y ||l2≤ε

||x||l1 . (21)

According to [13], solution to (17) obeys

|| × −x||l2 ≤ C0

||x− xS ||l1√
s

+ C1ε (22)

provided
δ2S ≤

√
2− 1 (23)

for some constants C0 and C1.

IV. RECONSTRUCTION ALGORITHMS

Many efficient algorithms exist in literature, which, instead of
finding ‘m’ largest coefficients at the same time, attempt to find
these coefficients iteratively [24]–[26]. To present an overview
of reconstruction algorithms for sparse signal recovery in CS,
these algorithms may be broadly divided into six types as shown
in Fig. 4 and elaborated as follows.

A. Convex Relaxation

This class of algorithms solves a convex optimization prob-
lem through linear programming [27] to obtain reconstruction.
The number of measurements required for exact reconstruction
is small but the methods are computationally complex. BP [28],
BP de-noising (BPDN) [28], modified BPDN [29], least abso-
lute shrinkage and selection operator (LASSO) [30], and least
angle regression (LARS) [31] are some examples of such algo-
rithms. Recent works show matrix versions of signal recovery
called ||M1||1 nuclear norm minimization [32]. Instead of re-
constructing norm minimization tries to recover a low rank ma-
trix M from Θx. Since rank determines the order, dimension
and complexity of the system, low rank matrices correspond to
low order statistical models.

B. Greedy Iterative Algorithm

This class of algorithms solve the reconstruction problem by
finding the answer, step by step, in an iterative fashion. The idea
is to select columns of Θ in a greedy fashion. At each iteration,
the column of Θ that correlates most with Y is selected. Con-
versely, least square error is minimized in every iteration. That
row’s contribution is subtracted from Y and iterations are done
on the residual until correct set of columns is identified. This is
usually achieved in M iterations. The stopping criterion varies
from algorithm to algorithm. Most used greedy algorithms are
matching pursuit [11] and its derivative orthogonal matching
pursuits (OMP) [24] because of their low implementation cost
and high speed of recovery. However, when the signal is not
much sparse, recovery becomes costly.

For such situations, improved versions of OMP have been de-
vised like regularized OMP [33], stagewise OMP [34],

compressive sampling matching pursuits (CoSaMP) [35],
subspace pursuits [36], gradient pursuits [37], and orthogonal
multiple matching pursuit [38].

C. Iterative Thresholding Algorithms

Iterative approaches to CS recovery problem are faster than
the convex optimization problems. For this class of algorithms,
correct measurements are recovered by soft or hard thresholding
[25], [39] starting from noisy measurements given the signal is
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Fig. 4. Compressing sensing reconstruction algorithms and their classification.

sparse. The thresholding function depends upon number of iter-
ations and problem setup at hand. Message passing (MP) algo-
rithms [26] are an important modification of iterative algorithms
in which basic variables (messages) are associated with directed
graph edges. A relevant graph in case of CS is the bipartite graph
with ‘n’ nodes on one side (the variable nodes) and ‘m’ nodes
on the other side (the measurement nodes). This distributed ap-
proach has many advantages advantages like low computational
complexity and easy implementation in parallel or distributed
manner. Expander matching pursuits [40], sparse matching pur-
suit [41], and sequential sparse matching pursuits [42] are re-
cently proposed algorithms in this domain that achieve near-
linear recovery time while using O(s log(n/s)) measurements
only. Recently, proposed algorithm of belief propagation also
falls in this category [43].

D. Combinatorial/Sublinear Algorithms

This class of algorithms recovers sparse signal through group
testing. They are extremely fast and efficient, as compared to
convex relaxation or greedy algorithms but require specific pat-
tern in the measurements; Φ needs to be sparse. Representative
algorithms are Fourier sampling algorithm [44], chaining pur-
suits [45], heavy hitters on steroids (HHS) [46], etc.

E. Non Convex Minimization Algorithms

Non-convex local minimization techniques recover CS sig-
nals from far less measurements by replacing l1-norm by lp-
norm where p ≤ 1 [47].

Non-convex optimization is mostly utilized in medical imag-
ing tomography, network state inference, streaming data re-
duction. There are many algorithms proposed in literature that
use this technique like focal underdetermined system solution
(FOCUSS) [48], iterative re-weighted least squares [49], sparse

bayesian learning algorithms [50], Monte-Carlo based algo-
rithms [51], etc.

F. Bregman Iterative Algorithms

These algorithms provide a simple and efficient way of solv-
ing l1 minimization problem. [52] presents a new idea which
gives exact solution of constrained problems by iteratively solv-
ing a sequence of unconstrained sub-problems generated by
a Bregman itertive regularization scheme. When applied to
CS problems, the iterative approach using Bregman distance
regularization achieves reconstruction in four to six iterations
[52]. The computational speed of these algorithms is particu-
larly appealing compared to that available with other existing
algorithms.

Table 1 lists down the complexity and minimum measurement
requirements for CS reconstruction algorithms. For instance, as
shown in [36], BP can reliably recover signals with n = 256
and sparsity level upto 35, from only 128 measurements. Con-
versely, OMP and ROMP can only be reliable up to sparsity
level of 19 for same n and m. Performance of Basis pursuit ap-
pears promising as compared to OMP derivatives from mini-
mum measurements perspective.

However, [34] shows that for n = 10000,m = 1000, and
signal sparsity of 100, BP takes approximately 482 seconds for
recovery. For the same problem, OMP takes only 8 seconds.

V. APPLICATIONS OF COMPRESSING SENSING

A. Compressive Imaging

A.1 CS in Cameras

CS has far reaching implications on compressive imaging
systems and cameras. It reduces the number of measurements,
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Table 1. Complexity and minimum measurement requirement of CS
reconstruction algorithms.

Algorithm Complexity Minimum
measurement (m)

BP [28],[36] O(n3) O(s logn)
OMP
[24],[33],[36]

O(smn) O(s logn)

StOMP [34] O(n logn) O(n logn)

ROMP
[33],[35]

O(smn) O(s log2 n)

CoSAMP
[35]

O(mn) O(s logn)

Subspace
pursuits [36]

O(smn) O(s log(n/s))

EMP [40] O(n log(n/s)) O(s log(n/s))
SMP [41] O(n log(n/s) logR) O(s log(n/s))

Belief prop-
agation [43]

O(n log2 n) O(s logn)

Chaining
pursuits [45]

O(s log2 n log2 s) O(s log2 n)

HHS [46] O(s poly log(n)) O(poly(s, log n))

hence, power con-sumption, computational complexity and stor-
age space without sacrificing the spatial resolution. With the ad-
vent of single pixel camera (SPC) by Rice University, imag-
ing system has transformed drastically. The camera is based
on a single photon detector adaptable to image at wavelengths
which were impossible with conventional charge coupled device
(CCD) and complementary metal oxide semiconductor (CMOS)
images [53]–[55].

CS allows reconstruction of sparse n×n images by fewer than
n2 measurements. In SPC, each mirror in digital micromirror
device (DMD) array performs one of these two tasks: Either re-
flect light towards the sensor or reflect light away from it. There-
fore, light received at sensor (photodiode) end is weighted aver-
age of many different pixels, whose combination gives a single
pixel. By taking m measurements with random selection of pix-
els, SPC acquires recognizable picture comparable to an n pixels
picture.

In combination with Bayer colour filter, single pixel camera
can be used for colour images (hyperspectral camera) [56]. Data
captured by single pixel camera can also be used for background
subtraction for automatic detection and tracking of objects [57],
[58]. The main idea is to foreground objects from background,
in a sequence of video frames. However, it is quite expensive for
wavelengths other than visible light. CS solves solves the prob-
lem by making use of the fact that in vision applications, natural
images can be sparsely represented in wavelet domains [59]. In
random projections of a scene with incoherent set of test func-
tion and reconstruct it by solving convex optimization problem
or OMP algorithm. CS measurements also decrease packet drop
over communication channel.

Recent works have proposed the design of tera hertz imaging
system. In this system, image acquisition time is proportional to
speed of the THz detector [60]. The proposed system eliminates

Fig. 5. Block diagram of compressive imaging camera [54].

the need of tera hertz beam and faster scanning of object.

A.2 Medical Imaging

CS is being actively pursued for medical imaging, particu-
larly in magnetic resonance imaging (MRI). MR images, like
angiograms, have sparsity properties, in domains such as Fourier
or wavelet basis. Generally, MRI is a costly and time consuming
process because of its data collection process which is depen-
dent upon physical and physiological constraints. However, the
introduction of CS based techniques has improved the image
quality through reduction in the number of collected measure-
ments and by taking advantage of their implicit sparsity. MRI is
an active area of research for CS community and in recent past,
a number of CS algorithms have been specifically designed for
it [52], [61]–[64].

A.3 Seismic Imaging

Seismic images are neither sparse nor compressible in strict
sense but are compressible in transform domains e.g., in curvelet
basis [65]. Seismic data is usually high-dimensional, incom-
plete and very large. Seismology exploration techniques depend
on collection of massive data volume which is represented in
five dimensions; two for sources, two for receivers and one
for time. However, because of high measurement and compu-
tational cost, it is desirable to reduce the number of sources
and receivers which could reduce the number of samples. There-
fore, sampling technique must require fewer number of samples
while maintaining quality of image at the same time. CS solves
this problem by combining sampling and encoding in one step,
by its dimensionality reduction approach. This randomized sub
sampling is advantageous because linear encoding does not re-
quire access to high resolution data. A CS based successful re-
construction theory is developed in this sense known as curvelet-
based recovery by sparsity-promoting inversion (CRSI) [66].

B. Biological Applications

CS can also be used for efficient and inexpensive sensing in
biological applications. The idea of group testing [67] is closely
related to CS. It was used for the first time in World War II to
test soldiers for syphilis [68]. Since the test for syphilis antigen
in blood is costly, instead of testing blood of each and every
soldier, the method used to group the soldiers and pool blood
samples of whole group and test them simultaneously. Recent
works show usage of CS in comparative deoxyribonucleic acid
(DNA) microarray [69]. Traditional microarray bio-sensors are
useful for detection of limited number of micro organisms. To
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detect greater number of species large expensive microarrays are
required. However, natural phenomena are sparse in nature and
easily compressible in some basis. DNA microarrays consist of
millions of probe spots to test a large number of targets in a
single experiment. In traditional microarrays, single spot con-
tains a huge number of copies of probes designed to capture sin-
gle target and hence collects data of a single data point. On the
contrary, in comparative microarrays test, sample is measured
relative to test sample. As a result, it is differentially expressed
- as a fraction of the total number of reference genes and test
samples. CS gives an alternative design of compressed microar-
rays [70] in which each spot contains copies of different probe
sets reducing the overall number of measurements and still effi-
ciently reconstructing from them.

C. Compressive Radio Detecting and Ranging (RADAR)

CS theory contributes to RADAR system design by elimi-
nating the need of pulse compression matched filter at receiver
and reducing the analog to digital conversion bandwidth from
Nyquist rate to information rate, simplifying hardware design
[71]. It also offers better resolution over classical RADARs
whose resolution can be limited by time-frequency uncertainty
principles [72], [73]. Resolution is improved by transmitting
incoherent deterministic signals, eliminating the matched filter
and reconstructing received signal using sparsity constraints. CS
has successfully been demonstrated to enhance resolution of
wide angle synthetic aperture RADAR [74]. The CS techniques
can effectively be used for monostatic, bistatic and multistatic
RADAR. The information scalability property of CS allows it
to detect, classify and recognize target directly from incoher-
ent measurements without performing reconstruction or approx-
imate computation. CS imaging is also applicable in sonar and
ground penetrating RADARs (GPRs) [75], [76], [77]. Similarly,
[78] presents an interesting combination of CS and change de-
tection for human motion identification imaging.

D. Analog-to-Information Converters (AIC)

Communication systems utilizing high bandwidth radio fre-
quency (RF) signals face an inherent problem in the rates re-
quired for sampling these signals. In most applications, infor-
mation content of the signal is much smaller than its bandwidth;
it maybe a wastage of precious hardware and software resources
to sample the whole signal. Compressive sampling solves the
problem by replacing ‘analog to digital conversion (ADC)’ by
‘AIC’. The approach of random non-uniform sampling used in
ADC is bandwidth limited with present hardware devices [79]
whereas AIC utilizes random sampling for wideband signals
for which random non-uniform sampling fails. AIC is based
on three main components: demodulation, filtering and uniform
sampling [80], [81]. The initially developed random demodula-
tor was limited to discrete multi-tone signals and incurred high
computational load [81]. Random filtering utilized in AIC re-
quires less storage and computation for measurement and recon-
struction [82]. Recent works propose a converter whose three
main components are multiplication of analog signal with bank
of periodic waveforms, low pass filtering and uniform sampling
at uniform sampling at low rate [83].

VI. CS IN COMMUNICATIONS AND NETWORKS

CS is an attractive tool to acquire signals and network fea-
tures in networked and communication systems. Below, we have
sampled few interesting CS applications in communication and
networking domain.

A. Sparse Channel Estimation

CS has been used in communications domain for sparse
channel estimation. Adoption of multiple-antenna in commu-
nication system design and operation at large bandwidths,
possibly in gigahertz, enables sparse representation of chan-
nels in appropriate bases. Conventional technique of training-
based estimation using least-square (LS) methods may not be
an optimal choice. Various recent studies have employed CS
for sparse channel estimation. Compressed channel estimation
(CCS) gives much better reconstruction using its non-linear re-
construction algorithm as opposed to linear reconstruction of
LS-based estimators. In addition to non-linearity, CCS frame-
work also provides scaling analysis. CCS based sparse channel
estimation has been shown to achieve much less reconstruction
error while utilizing significantly less energy and, in some cases,
less latency and bandwidth as well [84].

The estimation of underwater acoustic channels, which are in-
herently sparse, through CS technique yields results better than
the conventional ‘least square estimator’. It also gives approxi-
mately equal and in some cases better than the channel estima-
tion through subspace methods from array-processing literature
[85]. The use of high time resolution over-complete dictionaries
further enhances channel estimation. BP and OMP are used to
estimate multipath channels with Doppler spread ranging from
mild, like on a normal day, to severe, like on stormy days. Only
CS based estimators can handle significant Doppler spread effi-
ciently by exploiting inter-carrier interference explicitly.

Recently, Taubock et al. [86] have presented a mechanism of
estimating doubly-selective channels within multicarrier (MC)
systems such as orthogonal frequency division multiplexing
(OFDM). The work builds on an earlier technique proposed by
same investigators in which sparsity of MC systems is exploited
in delay-Doppler domains through CS. Sparsity of the signals
is severely affected by inter-symbol interference (ISI) and inter-
carrier interference (ICI) in MC communications. [86] focuses
on determining and then overcoming such leakage effects. A
basic compressive channel estimator estimates ‘diagonal’ chan-
nel coefficients for mildly dispersive channels. In order to com-
bat effects of strongly dispersive channels and to enhance spar-
sity, the transform basis that had been conventionally used until
now - discrete Fourier transform - is changed to a more suitable
sparsity-enhancing basis developed explicitly through an itera-
tive basis design algorithm. As a result, the novel compressive
channel estimator can predict off-diagonal channel coefficients
also, that are an outcome of ISI/ICI.

B. Spectrum Sensing in CR Networks

CS based technique is used for speedy and accurate spectrum
sensing in cognitive radio technology based standards and sys-
tems [87], [88]. IEEE 802.22 is the first standard to use the con-
cept of cognitive radio, providing an air interface for wireless
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communication in the TV band. Although, no spectrum sensing
method is explicitly defined in the standard, nonetheless, it has
to be fast and precise. Fast Fourier sampling sampling (FFS) -
an algorithm based on CS - is used to detect wireless signals as
proposed in [87]. According to the algorithm only ‘m’ (where
most energetic frequencies of the spectrum are detected and the
whole spectrum is approximated from these samples using non-
uniform inverse fast Fourier transform (IFFT). Using fewer sam-
ples FFS results in faster sensing, enabling more spectrum to be
sensed in the same time window.

In [88], a wideband spectrum sensing scheme using dis-
tributed CS is proposed for CR networks. This work uses multi-
ple CR receivers to sense the same wide-band signal through
AICs, produce the autocorrelation vectors of the compressed
signal and send them to a centralized fusion center for deci-
sion on spectrum occupancy. The work exploits joint sparsity
and spatial diversity of signals to get performance gains over a
non-distributed CS system.

In past, work has also been done in which CS is applied in par-
allel to time-windowed analog signals [89]. By using CS, load
of samples on the digital signal processor reduces but the ADC
still has to digitize analog signal to digital signal. In order to
overcome this problem, CS is applied directly on analog sig-
nals. This is done on segmented pieces of signal; each block is
compressively sensed independent of the other. At the receiver,
however, a joint reconstruction algorithm is implemented to re-
cover the signal. The sensing rate is greatly reduced using ‘par-
allel’ CS while reconstruction quality improves.

[90] proposes a cyclic feature detection framework based on
CS for wideband spectrum sensing which utilizes second order
statistics to cope with high rate sampling requirement of con-
ventional cyclic spectrum sensing.

Signal sparsity level has temporal variation in CR networks,
and thus optimal CS rate is not static. [91] introduces a frame-
work to dynamically track optimal sampling rate and determine
unoccupied channels in a unified way.

C. Ultra Wideband (UWB) Systems

In the emerging technology of UWB communication, CS
plays a vital role by reducing the high data-rate of ADC at re-
ceiver [92]. CS moves hardware complexity towards transmitter
by exploiting the channel itself: Channel is assumed to be part
of UWB communication system. The work proposed in [92] has
enabled a 3 GHz-8 GHz UWB system to be implemented which
otherwise, using Nyquist rate ADCs, would have taken years to
reach industry. CS, as used in pulse-based UWB communica-
tion utilizes time sparsity of the signal through a filter-based CS
approach applied on continuous time signals.

D. Wireless Sensor Networks (WSNs)

CS finds its applications in data gathering for large WSNs,
consisting of thousands of sensors deployed for tasks like in-
frastructure or environment monitor-ing. This approach of us-
ing compressive data gathering (CDG) helps in overcoming the
challenges of high communication costs and uneven energy con-
sumption by sending ‘m’ weighted sums of all sensor readings
to a sink which recovers data from these measurements [93], as
shown in Fig. 4. Although, this increases the number of signals

Fig. 6. Baseline data gathering and compressive data gathering (adap-
ted from [93]).

sent by the initial ‘m’ sensors, but the overall reduction in trans-
missions and energy consumption is significant since m << n
(where n is the total number of sensors in large-scale WSN).
This also results in load balancing which in turn enhances life-
time of the network. Lou et al. [93] propose a scheme that can
detect abnormal readings from sensors by utilizing the fact that
abnormalities are sparse in time-domain.

CS is also used, in a decentralized manner, to recover sparse
signals in energy efficient large-scale WSNs [94]. Various phe-
nomena monitored by large scale WSNs usually occur at scat-
tered localized positions, hence, can be represented by sparse
signals in the spatial domain. Exploiting this sparsity through
CS results in accurate detection of the phenomenon. According
to the proposed scheme [94], most of the sensors are in sleep-
ing whereas only a few are active. The active sensors sense their
own information and also come up with optimum sensor val-
ues for their sleeping one-hop neighbours through ‘consensus
optimization’ - an iterative exchange of information with other
active one-hop neighbours. Using a sleeping WSN strategy not
only makes the network energy efficient but also ensures detec-
tion of a physical phenomenon with high accuracy.

The task of localization and mapping of the environment as
quickly as possible, for reliable navigation of robots in WSNs
has utilized CS technique for its benefit [95]. A mobile robot,
working in an indoor WSN for event detection application, may
need to know its own position in order to locate where an inci-
dent has happened. The conventional approach of using naviga-
tion system to build a map requires estimation of features of the
whole surrounding. This result in data coming to mobile robot
from all sensors in the network, most of which is highly corre-
lated - computational load may increase substantially, especially
in case of large scale sensor networks. CS enables the making of
high quality maps without directly sensing large areas. The cor-
relation amongst signals renders them compressible. The nodes
exploit sparse representation of parameters of interest in order
to build localized maps using compressive cooperative mapping
framework, which gives superior performance over traditional
techniques [95].

E. Erasure Coding

CS can be utilized for inexpensive com-pression at encoder;
making every bit even more precious as it carries more infor-
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mation. To enable correct recovery of the compressed data af-
ter passing through erasure channels, CS is again utilized as a
channel coding scheme [96]. Such CS erasure coding (CSEC)
techniques are not a replacement of channel coding schemes;
rather they are used at the application layer, for added robustness
to channel impairments and in low-power systems due to their
computational simplicity. In CSEC, CS not only compresses the
required samples to m << n, it also disperses the information
contained in these m samples to a larger number of k samples,
where still k << n. The sensing matrix Φ in such schemes is
augmented with an additional number of e rows, where e is
the number of erasures. At the receiver side, if any of the e or
more samples are lost, signal can still be reconstructed using CS
reconstruction techniques with high probability unlike conven-
tional erasure coding techniques which discard corrupt symbol
completely.

F. Network Management

Network management tasks usually use ‘traffic matrices
(TM)’. However, these matrices have many empty spaces as di-
rect observation of TM for large networks may not be possible.
Therefore, interpolation from the available values is essential.
Internet TMs mostly do not satisfy the conditions necessary for
CS but by exploiting the spatio-temporal structure, TM can be
recovered from as less as 2% values [97]. The interpolation of
missing values is achieved by using spatio-temporal CS tech-
nique called sparsity regularized matrix factorization (SRMF),
which finds a global low-rank approximation of TM and then a
local interpolation technique like k-nearest neighbours is aug-
mented with it to fully recover the traffic matrix.

To obtain overlay network traffic and delay information be-
tween two hosts is important for network management, moni-
toring, design, planning and assessment. Traffic matrix and de-
lay matrix represent the traffic and delay information between
two hosts, so introduce the concept of the overlay network traf-
fic matrix and delay matrix. CS theory restores traffic matrix
and delay matrix but is not suitable for overlay network. In [98],
authors propose a framework which improves CS algorithm to
make it more applicable to overlay network traffic matrix and
delay matrix restoration. After calculating the traffic matrix and
delay matrix this paper quantifies overlay network congestion,
which reflect the current network security situation. The exper-
imental results show the restoration effect of traffic matrix and
delay matrix is well and the congestion degree reflects the actual
network state.

In [98], authors estimate the missing round trip time (RTT)
measurements in computer networks using doubly non-negative
(DN) matrix completion and compressed sensing. The major
contribution of this work is systematic and detailed experimen-
tal comparison of DN matrix completion and compressed sens-
ing for estimating missing RTT estimation in computer net-
works. Results indicate that compressed sensing provides better
estimation in networks with sporadic missing values.

G. Multimedia Coding and Communication

CS has great potential to be used in multimedia communi-
cation in applications such as wireless multimedia sensor net-
works (WMSNs). In recent years, various studies have focused

on WMSNs and novel techniques for video transmission are un-
der investigation. CS provides an attractive solution as CS en-
coded images provide an inherent resilience to random channel
errors. Since the samples transmitted have no proper structure,
as a result, every sample is equally important and the quality
of reconstruction depends on the number of correctly received
samples only [99]. Furthermore, video quality can be improved
by using a low complexity ‘adaptive parity-based channel cod-
ing’ [99] which drops the samples that have error as opposed
using conventional forward error correction which entails addi-
tional overhead. A compressive sampling based video encoder
as discussed by Pudlewski and and Melodia, exploits redun-
dancy in video frames by transmitting the encoded difference
frame and recreating it, using correlation between the difference
frame and a reference frame.

To enhance the error resilience of images, joint source chan-
nel coding (JSCC) using CS is also an active area of research. In-
flation of CS measurements in order to add error robustness is
proposed by Mohseni et al. [100]. The authors propose a real
time error-correction coding step in analog domain. This makes
the image resilient to spiky noise such as salt and pepper noise
in images. The samples are precoded using a suitable encoding
matrix on the hardware side. An additional coding step follows
on the digital side. This approach inherently corrects the errors
that arise due to faulty pixel sensors. The novelty of performing
this JSCC technique is that it is done in analog hardware.

Recent work by Deng et al. propose a CS based codec that en-
hances error resilience of images [101] as illustrated in Fig. 7.
The codec makes non-sparse image signal sparse by applying
multi-level 2D discrete wavelet transform (DWT). The advan-
tage of applying CS on DWT coefficients is its ability to spread
energy of measurements over all samples. Hence, every sample
carries equal information. Novelty introduced in this work over
previous works utilizing wavelet based CS [102] is the proposed
‘multi-scale CS’ allocating more measurements to coarser level
as coefficients of low frequency sub-band containing maximum
information. This scheme increases error robustness at high
packet loss rates without any explicit error resilience method
i.e., better performance with reduced complexity than contem-
porary JSCC schemes.

CS has been in use for acquisition, sampling, encoding and
analysis of multimedia data for quite some time now and works
have been done to optimize the efficiencies of these systems. A
recent work combines a number of these systems to get an over-
all optimized ‘joint CS video coding and analysis’ setup [103].

Instead of performing compressive sampling and encoding of
input video signal and then decoding the complete length of sig-
nal, to be passed on to an analysis block, the proposed setup
performs joint encoding and analysis. This eliminates the need
for decoder to decode the whole video sequence. It in effect re-
duces much of the complexity of CS based decoder. The paper
takes ‘object tracking’ as a specific example of analysis. Ob-
ject tracking through joint CS coding and analysis is done in
two ways. Firstly, only the foreground objects are decoded and
the background is subtracted in the projected domain. Secondly,
predicted position and sizes of the boxes bounding the object,
determined by tracking algorithm, are known a priori to the de-
coder. The scheme greatly reduces the number of measurements
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Fig. 7. Robust image compression and transmission using CS [101].

required as compared to traditional techniques.

H. CS based Localization

Device localization is an important requirement in wireless
environments. It is chief component in context-aware services
and geometric routing schemes. Feng et al. [104] describe a
CS based localization solution implemented on a mobile device
with 20% and 25% localization error improvement over kNN

and kernel based methods respectively. In order to mitigate re-
ceived signal strength variation effects due to channel imped-
iments, the scheme utilizes CS theory to fine localize and en-
hance access point selection accuracy. Similarly, [105] demon-
strates application of CS to recover wireless node position in an
n-reference point grid, from only m (<< n) available measure-
ments from other devices.

I. CS based Video Scrambling

Privacy protection is an imperative aspect in context of video
surveillance, especially when streaming such data over shared
communication medium. [106] discusses application of block
based CS to scramble privacy regions in video data. The scheme
uses block based CS sampling on quantized coefficients during
compression to protect privacy. In order to ensure security, key
controlled chaotic sequence is used to construct measurement
matrix. The approach provides significant coding efficiency and
security improvements over conventional alternatives.

J. Network Traffic Monitoring and Anomaly Detection

Many basic network engineering tasks (e.g., traffic engineer-
ing, capacity planning, and anomaly detection) rely heavily
on the availability and accuracy of traffic matrices. However,
in practice it is challenging to reliably measure traffic matri-
ces. Missing values are common. This observation brings us into
the realm of CS, a generic technique for dealing with missing
values that exploits the presence of structure and redundancy in
many real-world systems. Despite much recent progress made
in CS, existing CS solutions often perform poorly for traffic ma-

trix interpolation, because real traffic matrices rarely satisfy the
technical conditions required for these solutions [107].

To address the problem of traffic metrics, authors in [107] pro-
pose a spatio-temporal CS framework with two key components:
(i) A new technique called SRMF that leverages the sparse or
low-rank nature of real-world traffic matrices and their spatio-
temporal properties and (ii) a mechanism for combining low-
rank approximations with local interpolation procedures. Au-
thors claim to have superior performance in problems involving
interpolation with real traffic matrices where we can success-
fully replace upto 98% of the values. The proposed framework
is evaluated in applications such as network tomography, traffic
prediction, and anomaly detection to confirm the flexibility and
effectiveness [107].

Another application domain for CS is traffic volume anomaly
detection. In the backbone of large-scale networks, origin-
to-destination (OD) traffic flows experience abrupt unusual
changes known as traffic volume anomalies, which can result
in congestion and limit the extent to which end-user quality of
service requirements are met [108]. Given link traffic measure-
ments periodically acquired by backbone routers, the goal is to
construct an estimated map of anomalies in real time, and thus
summarize the network ‘health state’ along both the flow and
time dimensions. Leveraging the low intrinsic-dimensionality of
OD flows and the sparse nature of anomalies, a novel online es-
timator is proposed based on an exponentially-weighted least-
squares criterion regularized with the sparsity-promoting norm
of the anomalies, and the nuclear norm of the nominal traffic ma-
trix. After recasting the non-separable nuclear norm into a form
amenable to online optimization, a real-time algorithm for dy-
namic anomalography is developed and its convergence estab-
lished under simplifying technical assumptions. Comprehensive
numerical tests with both synthetic and real network data cor-
roborate the effectiveness of the proposed online algorithms and
their tracking capabilities, and demonstrate that they outperform
state-of-the-art approaches developed to diagnose traffic anoma-
lies.

K. Network Data Mining

A major challenge in network data mining applications is
when the full information about the underlying processes, such
as sensor networks or large online database, cannot be practi-
cally obtained due to physical limitations such as low band-
width or memory, storage, or computing power. In [109], au-
thors propose a framework for detecting anomalies from these
large-scale data mining applications where the full information
is not practically possible to obtain. Exploiting the fact that the
intrinsic dimension of the data in these applications are typically
small relative to the raw dimension and the fact that compressed
sensing is capable of capturing most information with few mea-
surements, authors show that spectral methods used for volume
anomaly detection can be directly applied to the CS data with
guarantee on performance.

L. Distributed Compression in WSNs

Distributed source coding is a compression technique in
WSNs in which one signal is transmitted fully and rest of the
signals are compressed based on their spatial correlation with
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main signal. DSC performs poorly when sudden changes occur
in sensor readings, as these changes reflect in correlation param-
eters and main signal fails to provide requisite base information
for correct recovery of side signals. Only spatial correlation is
exploited in DSC, while under no-event conditions, sensor read-
ings usually have a high temporal correlation as well.

[110] presents a distributed compression framework which
exploits spatial as well as temporal correlation within WSN. CS
is used for spatial compression among sensor nodes. Tempo-
ral compression is obtained by adjusting number of measure-
ments as per the temporal correlation among sensors. When sen-
sor readings are changing slowly, few measurements are gener-
ated. In case, significant changes are detected in sensor readings
measurements are generated more rapidly. To allow traction of
changing compression rate at receiving station, recently devel-
oped rateless codes are used for encoding. Rateless codes are
based on the idea that every receiving station continues col-
lecting encoded data until decoding can be finished success-
fully. Proposed framework features low complexity single stage
encoding and decoding schemes as compared to two stage en-
coding and decoding in previous state-of-the-art, while keeping
the compression rate same. Compression rate of

∑m

i=1
H(Xi) is

achievable, where Xi is the reading from sensor i and H(·) rep-
resents the entropy of signal.

M. Network Security

CS can be used as an effective tool for provision of network
security with vast potential to contribute. As one example appli-
cation, clone detection, aiming to detect the illegal copies with
all of the credentials of legitimate sensor nodes, is of great im-
portance for sensor networks because of the substantial impact
of clones on network operations like routing, data collection,
and key distribution, etc [111]. Authors in [111] propose a novel
clone detection method based on CS claiming to have the lowest
communication cost among all detection methods. They exploit
a key insight in designing their technique that the number of
clones in a network is usually very limited. Based on the sparsity
of clone appearance in the network, they propose a compressed
sensing-based clone identification (CSI) scheme for static sen-
sor networks.

VII. PROSPECT OF CS IN FUTURE

The idea of CS application to real-time systems is still in its
infancy but one can fairly expect to see CS applied in many com-
munication and networking systems in future, as the demand for
cheaper, faster and efficient devices is on the rise. A prospec-
tive field of application of CS can be the broadband systems
where there is a need to bring innovations in the physical layer
technologies to achieve capacity increase and improved network
security through resilient architectures and security mechanism
that are proactive to threats. These demands make CS a prospec-
tive candidate as it increases capacity by reducing the number of
samples required to be stored and adds error resilience. The de-
livery of video over mobile broadband systems is currently an
active area of research. The use of CS to exploit spatio-temporal
sparsity in 3D video frames can lead to efficient 3D video cod-
ing and transmission on mobile hand-held devices. With the

use of CS as a joint source channel coding scheme, complex-
ity of the system can be greatly reduced. Next phase of wire-
less networks is expected to experience an increase in video de-
mand. WSNs can benefit from the knowledge and application of
CS. Another flourishing field of interest for researchers is wear-
able computing with one application being wireless body sensor
networks. For example, wearable body sensors used to trans-
mit vital signals for monitoring can make use of CS in order to
reduce size and complexity of wearable devices. CS has the po-
tential to be a paradigm shifter in RF architecture. Work is under
way by researchers at University of Michigan [112], to develop
a novel RF architecture employing concepts of CS in order to
get lower power alternatives to existing devices. Basic premise
behind their contribution is a significant power saving achieved
courtesy sub-Nyquist sampling of RF signals.

VIII. CONCLUSIONS

In this review article, we have provided a comprehensive sur-
vey of the novel CS paradigm and its applications. We have
traced origins of this technology and presented mathematical
and theoretical foundations of the key concepts. Numerous re-
construction algorithms aiming to achieve computational effi-
ciency and high speeds are surveyed. The applications of CS
in diverse fields such as imaging, RADARs, biological applica-
tions and analog to information converters are discussed. There
has been a surge recently to apply CS to communications and
networks domain. We have captured this interest through a set
of sample applications and have identified few potential research
areas where CS can act as a paradigm shifter.
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