
49

A Survey on Standards for Real-Time Distribution Middleware

HÉCTOR PÉREZ and J. JAVIER GUTIÉRREZ, University of Cantabria

This survey covers distribution standards oriented to the development of distributed real-time systems.
Currently, there are many distribution standards that provide a wide and different set of real-time facili-
ties to control the temporal aspects of applications. Besides giving a general overview of these standards,
we describe the real-time mechanisms proposed by each standard to manage both processor and network
resources, discuss whether the available facilities are sufficient to guarantee determinism throughout the
whole application, and identify a set of features and deployment options that would be desirable in any
real-time distribution middleware regardless of its distribution model and standard. The survey identifies
open issues and key challenges for future research.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-Time
and Embedded Systems; C.2.4 [Distributed Systems]: Distributed Applications

General Terms: Performance, Design

Additional Key Words and Phrases: Middleware, distribution standards, networks, scheduling, real time

ACM Reference Format:
Héctor Pérez and J. Javier Gutiérrez. 2014. A survey on standards for real-time distribution middleware.
ACM Comput. Surv. 46, 4, Article 49 (March 2014), 39 pages.
DOI: http://dx.doi.org/10.1145/2532636

1. INTRODUCTION

The concept of a distributed application is not new; it has existed since two computers
were first connected and may consist of several tens of processors interconnected by
one or more communication networks. However, the programming techniques used in
these systems have evolved greatly, and they have become especially relevant in the
past decade. Today, many services are provided transparently to the user and executed
in a computer network: Automatic Teller Machines (ATMs), cable TV, and Web services
are examples used in our daily lives.

Simple and homogeneous distributed applications can be developed directly using
the communications services provided by operating systems. However, the direct use
of such services by the programmer, even if it usually provides good performance, is
error prone. Thus, a set of high-level abstractions (distribution models or paradigms)
have been defined for these communication services in order to allow the programmer
to specify interactions between components of a distributed application easily. These
include Remote Procedure Calls (RPCs), distribution based on objects (DOM), distri-
bution based on messages (MOM), distributed stream computing, or the Tuplespaces

Authors’ address: Héctor Pérez and J. Javier Gutiérrez, Computers and Real-Time Group, University of
Cantabria, Avda. de los Castros s/n, 39005 - Santander, Spain; emails: perezh@unican.es, gutierjj@unican.es.
This work has been funded in part by the Spanish government and FEDER funds under grant TIN2011-
28567-C03-02 (HI-PARTES).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/03-ART49 $15.00

DOI: http://dx.doi.org/10.1145/2532636

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http://dx.doi.org/10.1145/2532636
http://dx.doi.org/10.1145/2532636

49:2 H. Pérez and J. J. Gutiérrez

Fig. 1. Basic services provided by distribution middleware.

paradigm. Furthermore, recent trends in the industry have envisaged the use of a new
distribution model based on data (also known as the data-centric model).

In the case of systems composed of dozens of computers with heterogeneous architec-
tures, the development of distributed systems becomes complex and must (1) ensure
communication between nodes and (2) address low-level communication details, such
as the byte storage format (i.e., endianness), word size, or floating-point representation
used. The management of this complexity can be maintained transparent to the user
through the use of middleware technology, an intermediate software layer that simpli-
fies the management and programming of applications and has become an essential
tool in the development of distributed systems. Today, the concept of middleware is
very broad and provides several features:

—Communication middleware, which is an abstraction of the low-level details related
to distribution and communications

—Component middleware [Klefstad et al. 2002], which is usually based on a formal
model that enables the development of systems by assembling reusable software
modules (components) that have been developed previously by others regardless of
the application that will be used

—Model-driven middleware [Gokhale et al. 2008], which mainly focuses on achieving
a sustainable development process in terms of costs, development times, and quality
by combining component middleware with model-based software development

—Adaptive middleware [Blair et al. 2001], which enables the reconfiguration of dis-
tributed applications to modify functionalities, resource usage, security settings, and
so on

—Context-aware middleware [Rouvoy et al. 2009], which is able to interact with the
environment where distributed applications execute and take action to make changes
at runtime

We will focus on the first group described—communication middleware—which usu-
ally provides the basis for the development of higher-level middleware. This type of
middleware internally handles the details of the interconnection process between nodes
that usually consists of the following basic features (Figure 1): (1) addressing or as-
signment of identifiers to entities in order to denote their location, (2) marshalling or

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:3

transformation of data into a representation suitable for transmission over the net-
work, (3) dispatching or assignment of each request onto an execution resource for
processing, and (4) transport or establishment of a communication link for exchanging
network messages via unicast or multicast communications.

This survey focuses on standard-based distribution middleware due to its stability
and impact on the industry. Currently, there are many standards that fall within any of
the mentioned distribution paradigms. Thus, among the most representative examples
of distribution models based on RPCs are the Open Software Foundation/Distributed
Computing Environment (OSF/DCE) standard [The Open Group 1997] or the Dis-
tributed Systems Annex of Ada (DSA) [ISO/IEC 2006]. In relation to the DOM model,
this paradigm is probably one of the most relevant in current industrial applications
[Kim 2000], and an important example is the Common Object Request Broker Archi-
tecture (CORBA) standard [OMG 2011]. Other examples of the DOM model are the
Java Remote Method Invocation (RMI) [Sun Microsystems 2004] or the previously
mentioned Ada DSA, which also enables distribution based on objects. Examples of
the MOM model are the Java Message Service (JMS) [Sun Microsystems 2002], a de
facto standard, and the Data Distribution Service for Real-Time Systems (DDS) [OMG
2007]. However, the latter is often included in the data-centric category, as the distri-
bution relies solely on knowledge of the data types to share; besides supporting generic
messaging, messages are derived from the system data model (i.e., there is support
for formally defined data types). Moreover, the contents of exchanged messages are
not opaque to middleware and can be handled directly. The Tuplespaces paradigm is
principally represented by JavaSpaces [Freeman et al. 1999]. Finally, and despite the
significant number of emerging applications for the processing of large data streams
such as S4 (Simple Scalable Streaming System) [Neumeyer et al. 2010] or S-NET
[Grelck et al. 2012], there is no standardized solution for this paradigm at this time.

Unlike general-purpose systems, a real-time system is defined as a special kind of
system whose logical correctness is based on both the correctness of the outputs and
their timeliness. Thus, it is not sufficient for the software to be logically correct; the
applications must also satisfy particular timing constraints. To this end, real-time
applications rely on a scheduling scheme to specify a criterion for ordering the
use of system resources (e.g., CPUs or communication networks) in such a way
that the worst-case temporal behavior can be predicted. The problem of obtaining
computationally feasible, reliable, and accurate timing predictions can be solved
by applying different analytic techniques for single-processor, multiprocessor, or
distributed real-time systems [Liu 2000; Sha et al. 2004; Davis and Burns 2011]. In
the case of distributed systems, this process is challenging even for apparently simple
distributed systems in which complex dependencies among data or threads allocated
in different processors could be present, and therefore networks and processors should
be scheduled together [Perathoner et al. 2007].

Although a wide set of distribution standards have been enumerated so far, not all
of them are suitable for developing distributed real-time applications, as they require
a set of mechanisms and capabilities to ensure determinism—for example, thread and
network message scheduling, the assignment of scheduling parameters, or the use of
synchronization protocols for a predictable access to shared resources. These mecha-
nisms can be explicitly defined within the standard (e.g., DDS); can be added as an
extension to the original distribution model (e.g., CORBA and RT-CORBA [OMG 2005]);
or can be considered independent of distribution mechanisms, as in the case of Ada.
The JavaSpaces specification presents a high-level abstraction for building distributed
applications and so it relies on low-level communication middleware such as RMI.

Furthermore, high-integrity systems represent a special group within the real-
time systems, as they are characterized by strict restrictions on their development.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:4 H. Pérez and J. J. Gutiérrez

Traditionally, designers have proved reluctant to incorporate recent programming
techniques into the development process of these systems. However, this process has
evolved rapidly in recent years, and they are starting to consider the application of
technical advances that were inconceivable a few years ago, such as the use of priority-
based scheduling or distribution middleware.

Given the high degree of attention and wide use of middleware technology in dis-
tributed real-time systems, we believe that it is necessary to analyze the current solu-
tions and to critically assess their available real-time mechanisms. This article presents
a survey of real-time distribution middleware based on standards with the aim of pro-
viding technicians and domain experts a comprehensive overview of the area and identi-
fying significant open issues and future research directions. Likewise, it also addresses
the initial steps taken in the use of distribution standards in high-integrity systems.

This document is organized as follows. First, Section 2 reviews the distribution
architecture of real-time distribution middleware based on standards. Then, Section 3
focuses on the real-time capabilities included in those standards. Section 4 analyzes
real-time networks and their relationship with distribution middleware. Section 5 deals
with the use of distribution standards in high-integrity systems. Section 6 discusses
whether the real-time mechanisms, included in distribution standards, are enough to
ensure application predictability, and reviews the desirable features and properties for
this type of middleware. Section 7 demonstrates how implementations address the open
real-time issues left unresolved by distribution standards. Finally, Section 8 draws the
conclusions.

2. REAL-TIME DISTRIBUTION MIDDLEWARE OVERVIEW

In general-purpose systems, the use of middleware technology aims to facilitate the
programming of distributed applications. To this end, middleware provides a high-
level abstraction of the basic services provided by operating systems, mainly those
related to communications. Thus, developers are only responsible for defining which
part of the application can be accessible remotely (e.g., through an Ada DSA interface
or via a CORBA object), whereas middleware transparently establishes and manages
communication between nodes within the distributed system. Furthermore, real-time
systems also benefit from these high-level abstractions.

However, general-purpose middleware cannot be applied directly to real-time sys-
tems. In general, the distribution process (see Figure 1) presents several potential
sources of indeterminism, including marshalling/unmarshalling algorithms, transmis-
sion/reception queues for network messages, delays in transport service, or dispatch-
ing of requests. Real-time middleware aims to solve these issues by implementing
predictable mechanisms, such as the use of special-purpose real-time communication
networks or the management of scheduling parameters. Consequently, this kind of
middleware addresses not only distribution issues but should also provide developers
with mechanisms that allow the temporal behavior of the distributed application to
be determined. The remainder of this section introduces the most notable distribution
standards for distributed real-time systems.

2.1. CORBA and RT-CORBA

CORBA [OMG 2011] is DOM middleware that follows the client-server paradigm and
whose main feature is to facilitate the interoperability between heterogeneous applica-
tions (i.e., those coded in different programming languages, executed on different plat-
forms, or even those middleware implementations developed by different companies).
The specification was developed by an industry consortium called the Object Manage-
ment Group (OMG). An overview of CORBA architecture is shown in Figure 2(a). It is
comprised of the following components:

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:5

Fig. 2. Please provide the Figure and caption or renumber

—Object Request Broker (ORB): ORB represents the core of middleware and is respon-
sible for coordinating the communication between client and server nodes.

—System Interfaces: These consist of a set of interfaces grouped according to their scope,
which include (1) a collection of Basic Services that support the ORB (e.g., location
of remote objects, concurrency, persistence); (2) a set of Common Interfaces across a
wide range of application domains (e.g., database management, data compression,
authentication); (3) a group of interfaces for a particular application domain (Domain
Interfaces) such as telecommunications, banking, and finance; and (4) User-Defined
Interfaces (i.e., not standardized).

Since there is no software, operating system, or programming language that meets
all industrial requirements, the main objective of CORBA is to provide solutions to
support the heterogeneity of systems, relying on two basic aspects:

—Language-Independent Middleware (Multilanguage): CORBA objects are defined by
using a description language called Interface Definition Language (IDL). Currently,
within the CORBA standard, there are specifications for the mapping of data types
to multiple programming languages (Ada, Java, or C, for example).

—Platform-Independent Middleware (Interoperable): CORBA defines a generic trans-
port protocol called General Inter-ORB Protocol (GIOP). This protocol ensures in-
teroperability between CORBA objects regardless of whether they are allocated to
ORBs from different vendors or to different platforms. The Internet Inter-ORB Proto-
col (IIOP) is the specific mapping of the GIOP protocol over TCP/IP networks, which
is considered the baseline transport for CORBA implementations.

Communication between nodes is performed by using several CORBA entities, which
are illustrated in Figure 2(b) and described next:

—Object Request Broker: The ORB provides mechanisms to enable transparent invo-
cation of a remote method as if it were a local method. Thus, the ORB abstracts the
location of remote objects and the method of communicating with them.

—Client Stubs and Server Skeletons: These represent those parts of the code, which
are usually automatically generated, in charge of redirecting the remote call through
the ORB, as well as performing the marshalling and unmarshalling operations.

—Object Reference: This is an opaque reference that uniquely determines the location
of a remote object and is called an Interoperable Object Reference (IOR). The IOR
includes details of all network protocols and receiving ports that the ORB can use to

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:6 H. Pérez and J. J. Gutiérrez

process incoming requests. This reference is generated and managed by the Portable
Object Adapter (POA).

—Communication Networks: Both client and server nodes communicate through the
ORB by using the GIOP protocol. This protocol is on top of the OSI transport layer
and can be implemented on top of several network protocols; however, the CORBA
standard only includes guidelines to implement it for networks based on IP.

Although CORBA provides comprehensive support for distributed objects, this stan-
dard does not include support for real-time applications. Therefore, this lack of support
was addressed by the OMG through an optional set of extensions to CORBA called
RT-CORBA [OMG 2005]. These extensions are described next:

—RT-ORB: An ORB extension that adds functions for the creation and destruction
of specific real-time entities (e.g., mutexes, threadpools, or scheduling policies) and
enables the assignment of priorities for their usage by internal ORB threads.

—RT-POA: Represents an extension to the POA [OMG 2011] and provides support
for the configuration of the real-time policies defined by RT-CORBA. Such policies
handle the end-to-end priority propagation models, the management of remote calls,
the priority banded connections, or the selection/configuration of available network
protocols.

—Priority and Priority Mapping: These represent an interface that both defines a
generic priority data type (regardless of the underlying operating system) and pro-
vides operations to map native priorities onto RT-CORBA priorities (range 0 to
32,767) and vice versa. This mapping is implementation defined.

—Mutex: A portable interface for accessing the mutexes supplied by the RT-ORB. It
provides synchronization mechanisms for controlling access to shared resources (e.g.,
sections of code).

—RTCurrent: An interface to determine the priority of the current invocation (i.e., it
enables the priority of application threads to be handled).

—ThreadPool: A mechanism to control the degree of concurrency during the execution
of remote calls on the server side.

—Scheduling Service: This is a service that simplifies the configuration of the timing
aspects of the system. Through this service, RT-CORBA allows the application to
specify its requirements based on various parameters such as priorities, deadlines,
or expected execution time, whereas middleware will be responsible for setting up
the required resources to meet them.

The use of these RT-CORBA entities enables the development of critical (e.g., real-
time control systems) and noncritical (e.g., travel agencies or online shopping cart) real-
time applications. Currently, RT-CORBA is employed in a wide range of scenarios such
as Software Defined Radios [Bard and Kovarik 2007] or Industrial Robotics [Amoretti
et al. 2006] and can be considered a very mature technology.

2.2. The Ada Distributed Systems Annex

The Ada programming language [ISO/IEC 2012] is an international standard that
includes an annex dedicated to developing distributed applications: Annex E or Ada
DSA. The major strength of the DSA is that the source code is written without regard
for whether it will be executed on a distributed platform or on a single processor.

In the design of distributed systems, an application designed for a single processor
can be divided into different functionalities that, when acting together, can provide a
particular service to end users. The execution of each of these functionalities may be
distributed across several interconnected nodes, while end users transparently invoke
the service. In the Ada programming language, each part of the complete application

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:7

Fig. 3. Components of the DSA distribution model involved in a synchronous remote call.

that is independently assigned to each node is called a partition. Formally, according
to the Ada Reference Manual, “a partition is a program or part of a program that can
be invoked from outside the Ada implementation.” [ISO/IEC 2012]

The partitioning of an application through the DSA is not defined by the standard but
is implementation defined. Partitions communicate with each other by exchanging data
through RPCs (Remote Call Interface) and distributed objects (Remote Types). The DSA
defines two kinds of partitions: active, which can execute in parallel with one another,
possibly in a separate address space and on a separate computer; and passive, which
are partitions without a task or thread of control (e.g., storage nodes). It is worth noting
that the terms task and thread can be used indistinctly in the context of this survey.

Active partitions communicate through the Partition Communication Subsystem
(PCS), a language-defined interface responsible for routing subprogram calls from one
partition to another. Access to PCS should not be done directly from the application
level, but from calling and receiving stubs. The PCS supports compilers used to gener-
ate stubs for a standard interface without being concerned with the underlying imple-
mentation. Despite this standardization effort, a recent revision of the programming
language [ISO/IEC 2006] allows the use of alternative interfaces to PCS in order to
facilitate the interoperability with other middleware (e.g., CORBA).

The high-level components of the distribution model proposed by the DSA are
illustrated in Figure 3. This figure represents the sequence diagram of a synchronous
remote call between two partitions: a partition that requires remote services (calling
partition) and a partition that provides these services (called partition) through a
remote call interface.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:8 H. Pérez and J. J. Gutiérrez

Although the DSA allows distributed systems to be built in a simple manner, it is not
specifically designed to support predictable applications, and most of the issues that
affect determinism have been left up to the implementation. However, there is some
previous research in this line, and there are implementations that show that it can be
used for real-time applications [Vergnaud et al. 2004; Campos et al. 2006]. Although
this annex has not had a very significant commercial impact [Kermarrec 1999], Ada
has traditionally been used and is still used to build real-time single-processor systems,
so it is worth considering the analysis of this standard and its future development.

2.3. The Data Distribution Service for Real-Time Systems

Anonymous and asynchronous dissemination of information has been a common re-
quirement for many different distributed applications, such as control systems, sensor
networks, and industrial automation systems. The DDS [OMG 2007] aims to facili-
tate the exchange of data in these kinds of systems through the publisher-subscriber
paradigm. Unlike other specifications that follow this paradigm, the communication
model proposed by the DDS is data centric (i.e., the focus is on the data itself). A data-
centric architecture must formally define the data type to be shared in the distributed
system, and then information is exchanged anonymously by simply writing and read-
ing samples of that data type. With a data-centric approach, middleware is aware of
the content of the information exchanged and so it can directly handle it (e.g., data
filtering).

As with most of the standards defined within OMG, DDS supports multilanguage
and multiplatform capabilities by using the IDL language [OMG 2011] to define shared
data types and the DDS Interoperability Wire Protocol (DDSI) [OMG 2009] to interop-
erate among different implementations, respectively. Beyond this, OMG has recently
released the Extensible and Dynamic Topic Types specification [OMG 2012] to provide
support for extensible and evolvable distributed systems using DDS. This specification
allows data types to be dynamically defined (i.e., they can be used without compile-
time knowledge) or modified (i.e., data fields can be added or removed). To this end, the
specification provides DDS with a structural data type system, new data type represen-
tations, different serialization or encoding formats, and a new API for the management
of data types at runtime.

The DDS conceptual model is based on the abstraction of a strongly typed Global Data
Space, where publisher and subscriber respectively write (produce) and read (consume)
data, leading to middleware focused on obtaining data independently from its origin.
To better handle the exchange of data, the standard defines a set of entities involved
in the communication process. Applications that wish to share information with others
can use this Global Data Space to declare their intent to publish data through the
DataWriter (DW) entity. Similarly, applications that need to receive information can
use the DataReader (DR) entity to request particular data. Publisher and Subscriber
entities are containers for several DWs and DRs, respectively, which share common
QoS parameters. Likewise, these entities are grouped in Participants of a Domain.
Only entities belonging to the same Domain can communicate. At a higher level of
abstraction, the Participant entity contains all DWs, DRs, Publishers, and Subscribers
that share a common QoS in the corresponding Domain.

To exchange information among entities, Publishers only need to know about the
specific Topic (i.e., the data type to share) and Subscribers require registration of their
interest in receiving particular Topics, whereas middleware may establish and man-
age the communication transparently. Within the definition of a Topic, one or more
elements can be designed as a Key. This entity enables the existence of multiple in-
stances of the same Topic, thus allowing DRs to differentiate the source of the incom-
ing data for instance (e.g., a set of vehicles updating their position or a cluster of

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:9

Fig. 4. Communication model for DDS.

temperature sensors providing information from different areas). The example in
Figure 4 shows a distributed system that consists of three Participants in a single
Domain and two Topics. Both Topics have a single DW in charge of generating new
data samples. However, successive updates for Topic #1 will only be received by one
DR, whereas new samples for Topic #2 will be received by two DRs.

Publishers and Subscribers are not required to communicate directly among them-
selves, but they are rather loosely coupled in terms of the following:

—Time, because data samples could be stored and retrieved later (e.g., when new
Subscribers join the distributed system and require information about the previous
state of the system)

—Space, because Publishers of data do not need to know about each individual receiver,
whereas Subscribers do not need to know the source of the data samples—that is,
Publishers and Subscribers are not known by each other

As was mentioned earlier, the development of distributed systems with DDS is bound
to another specification that sets the main guidelines for performing the communication
among entities: the DDSI. This protocol aims to guarantee the interoperability among
different implementations by using the standard Real-Time Publish-Subscribe Wire
Protocol (RTPS) [OMG 2009] together with the Common Data Representation (CDR)
defined in CORBA [OMG 2011]. Although this specification is focused on IP networks,
any other real-time network protocol could be used. For those interested readers, a
detailed introduction to DDS can be found in Corsaro and Schmidt [2012].

Finally, although DDS has been designed to be scalable, efficient, and predictable,
few researchers have evaluated its real-time capabilities [Pérez and Gutiérrez 2012].
Nevertheless, it is considered a mature technology and has already been deployed in
several real-time scenarios such as Defense [Schmidt et al. 2008], Automation [Ryll
and Ratchev 2008], or Space [Gillen et al. 2012].

2.4. The Distributed Real-Time Specification for Java

Besides the distribution standards, there are other nonstandard solutions that have
attracted great interest among developers. This is the case of the Java programming
language and its extensions for distributed real-time systems, which is considered a de
facto standard by the community.

Java was initially designed as a programming language for general-purpose systems
and, therefore, has several drawbacks for the development of predictable applications,

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:10 H. Pérez and J. J. Gutiérrez

Fig. 5. Components of the RMI distribution model involved in an asynchronous remote call.

especially those aspects related to the management of internal resources such as mem-
ory or processor scheduling [Basanta-Val et al. 2010]. For distributed real-time systems,
one of the most notable research works is the Distributed Real-Time Specification for
Java (DRTSJ) [Sun Microsystems 2000], which integrates two existing Java technolo-
gies:

—Real-Time Specification for Java (RTSJ) [Bollella and Gosling 2000], which defines a
Java specification to address the limitations of the language when used in real-time
systems. As one of the guiding principles was to avoid making syntactic extensions
to the language, real-time support was achieved through new libraries, refined Java
mechanisms, and a real-time Java Virtual Machine (JVM) with support for both
general-purpose and real-time applications. Nevertheless, this specification is only
conceived for single-processor systems.

—Remote Method Invocation (RMI) [Sun Microsystems 2004], which defines a DOM
model based on Java objects by defining a new interface, called Remote, which enables
the differentiation of distributed objects from local ones. An overview of the high-level
components involved in the RMI architecture is shown in Figure 5, which represents
the sequence diagram of an asynchronous remote call between a client and a server.
This architecture is comprised of the following components:
—Client Stubs or Proxies and Server Skeletons: Represent the interface between the

application layer and the rest of the RMI system. They are in charge of providing
transparent distribution facilities.

—Remote Reference Layer: Responsible for handling the semantics of remote invoca-
tions, both on client and server sides.

—Transport Layer: Used to set up the connections and manage the low-level com-
munication details. The specification defines the RMI wire protocol, which relies
on two other protocols: Java Object Serialization and HTTP.

Even though Java is one of the most popular programming languages, no official
DRTSJ specification has yet been released, although there is an early draft available
[Sun Microsystems 2012] and the working group Web site [Sun Microsystems 2000]
outlines the important features of the future specification. Nevertheless, several lines

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:11

of research aim to adapt the language to a deterministic model not only for single-
processor environments but also for distributed ones [Tejera et al. 2007; Basanta-Val
et al. 2010].

3. ANALYSIS OF REAL-TIME DISTRIBUTION MIDDLEWARE BASED ON STANDARDS

The main objective in the design of distributed real-time systems lies in guaranteeing
determinism over the whole application. For this purpose, distribution standards in-
clude different mechanisms to control the timing aspects of software and enable the
application of analytic techniques to them. Basically, these mechanisms attempt to
highlight implicitly how the available resources of the system should be used, mainly
those concerned with the management of processors and communication networks. To
this end, this section analyzes the distribution standards according to (1) the manage-
ment of the processors, discussing the mechanisms provided to ensure a predictable
timing behavior of tasks or threads, and (2) the management of networks to guaran-
tee a deterministic network usage. In particular, this analysis reviews the distribution
mechanisms proposed by RT-CORBA, Ada DSA, DDS, and Java DRTSJ, as they provide
outstanding and standardized solutions for the development of distributed real-time
systems.

3.1. RT-CORBA

The extension of the CORBA specification for real-time systems—RT-CORBA [OMG
2005]—adds new interfaces and mechanisms that aim to increase the predictability
of applications distributed through CORBA. The standard is divided into two distinct
parts: the first deals with those systems that are suitable for a priori timing analysis
to determine whether their timing constraints are satisfied (static systems), whereas
the second focuses on systems with variable workload and whose schedulability is
guaranteed at runtime (dynamic systems).

The use of the set of real-time entities defined by RT-CORBA enables applications to
configure and control the system resources explicitly, as is described next.

3.1.1. Managing Processor Resources. According to the static scheduling chapter of this
specification, the main features of the RT-CORBA architecture are as follows:

—Scheduling Based on Fixed Priority Scheduling Policy: This first part of the spec-
ification includes only those systems scheduled by means of fixed priorities. This
scheduling policy is implemented by the majority of real-time operating systems, es-
pecially those following the Portable Operating System Interface (POSIX) real-time
standard [The Open Group 1998].

—Use of Threads as Schedulable Entities: In this case, RT-CORBA priority can be
applied, and there are functions for conversion to the native priorities of the system
on which they execute. According to this priority mapping, RT-CORBA defines three
priority models:

• Client_Propagated, where the invocation is executed in the remote node at the
priority of the client, which is transmitted with the request message.

• Server_Declared, when all the requests to a particular distributed object are
executed at a priority preset in the server.

• Priority Transforms Model, which enables the user to define priority transforma-
tions that modify the priority associated with the server depending on different
parameters, such as the current system workload or state. The transformation
is done with two functions called inbound (which transforms the priority before
running the server’s code) and outbound (which transforms the priority with
which the server makes calls to other remote services).

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:12 H. Pérez and J. J. Gutiérrez

—Definition of Threadpools to Control the Degree of Concurrency in the Server: This
mechanism enables different applications to share a number of threads. The config-
uration of this entity enables the specification of the number of threads that must
be preallocated, the number of threads that may be created dynamically, and their
default priority. It also allows groups of threads to be defined based on priority
(ThreadpoolLanes).

—Deterministic Access to Shared Resources: RT-CORBA defines a local Mutex object
to coordinate contention for shared resources. This mutex should implement a syn-
chronization protocol based on priority inheritance. However, the standard does not
specify any particular protocol, so implementations are responsible for setting which
protocol or protocols may be used.

The specification of RT-CORBA incorporates a chapter dedicated to dynamic schedul-
ing, which basically introduces two concepts:

—Use of Different Scheduling Policies: The possibility of introducing other scheduling
policies in addition to the fixed-priority one, such as Earliest Deadline First (EDF)
[Liu and Layland 1973], Least Laxity First (LLF) [Mok 1983], and Maximize Accrued
Utility (MAU) [Jensen et al. 1985]. The scheduling parameters are defined as a
container that can contain more than one simple value and can be changed by the
application dynamically at runtime.

—Use of Distributable Threads as a Schedulable Entity: The Distributable Thread
enables end-to-end scheduling by identifying scheduling segments and scheduling
points that may be allocated in a separate address space. Scheduling segments rep-
resent pieces of code associated with a given set of scheduling parameters specifically
set by the application. Scheduling points define points in time and/or code at which
the scheduler is run and may result in schedule changes [OMG 2005].

3.1.2. Managing Network Resources. RT-CORBA does not explicitly consider the possi-
bility of passing scheduling parameters to the communication networks, although it
defines other mechanisms to mitigate the lack of predictability associated with the use
of general-purpose communication networks. These are described as follows:

—Protocol Properties: RT-CORBA provides interfaces to specify the preferred protocol
and to fine-tune the parameters of the protocol on both the client and server side.
There are implementations that extend this interface to map the RT-CORBA priori-
ties onto the underlying network [Schmidt 2005], although this is not standardized
in the specification.

—Use of Private Connections: Ordinarily, given that GIOP is a connection-oriented pro-
tocol, the ORB is allowed to reuse or share a network connection to service multiple
remote objects. However, multiplexing requests on a single connection implies that
a client may be blocked while the connection is being used by another invocation.
This mechanism removes this blocking by enabling the client to obtain a dedicated
connection (that is, nonmultiplexed) per remote object.

—Definition of Priority-Banded Connections: This mechanism allows multiple connec-
tions between clients and servers to be established by associating each connection
with a single or a range of priorities. This mechanism aims to reduce priority inver-
sions when the underlying transport protocol is not deterministic.

3.2. The Data Distribution Service for Real-Time Systems

The DDS standard was explicitly designed to build distributed real-time systems. To
this end, this specification adds a set of Quality of Service (QoS) parameters to configure
nonfunctional properties. In this case, DDS provides high flexibility in the configura-
tion of the system by associating a set of QoS parameters to each individual entity.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:13

Fig. 6. QoS parameters defined by DDS.

Furthermore, DDS enables the modification of some of these parameters at runtime
while performing a dynamic reconfiguration of the system. This set of QoS parameters
allows several aspects of data, networks and computing resources to be configured and
may be classified in the following categories (Figure 6):

—Data Availability: This comprises parameters for controlling queuing policies and
data storage. The parameters that fall into this category are Durability, Lifespan,
and History.

—Data Delivery: This specifies how data must be transmitted and presented to the
application. The parameters that fall into this category are Presentation, Reliability,
Partition, Destination_Order, and Ownership.

—Data Timeliness: This controls the latency in the distribution of data. The parameters
that fall into this category are Deadline, Latency_Budget, and Transport_Priority.

—Maximum Resources: This limits the amount of resources that may be used in the
system through parameters such as Resource_Limits or Time-Based_Filter.

—User Configuration: These parameters allow extra information to be added to each
entity at application level.

Finally, this specification follows the subscriber-requested, publisher-offered pattern
to set QoS parameters. By using this pattern, both publishers and subscribers must
specify compatible QoS parameters to establish the communication. Otherwise, mid-
dleware must indicate to the application that communication is not possible.

3.2.1. Managing Processor Resources. The DDS specification does not explicitly address
the scheduling of threads in the processors, as this is an implementation-defined as-
pect. However, a subset of the QoS parameters defined by the standard is focused
on controlling the temporal behavior and improving the predictability of the applica-
tion. The three parameters of Data Timeliness, which are highlighted in Figure 6, are
particularly important in the management of resources for real-time systems. In par-
ticular, the specification has defined the following parameters for managing processor
resources:

—Deadline: This parameter indicates the maximum amount of time available to
send/receive data samples belonging to a particular topic. However, it does not define
any associated mechanism to enforce this timing requirement; therefore, this QoS
parameter only represents a notification service in which middleware informs the
application that the deadline has been missed.

—Latency_Budget: This parameter is defined as the maximum acceptable delay in
message delivery. However, the standard emphasizes that this parameter may not

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:14 H. Pérez and J. J. Gutiérrez

Fig. 7. Timing control in DDS.

be enforced or controlled by middleware; therefore, this parameter can be used to
optimize the internal behavior of middleware.

These two QoS parameters, even if both share similar objectives, are applied at dif-
ferent levels, as illustrated in Figure 7. This figure shows how the Deadline parameter
is monitored within the DDS layer, whereas the Latency_Budget is applied within the
DDSI layer.

DDS defines different mechanisms to enable communication among entities. On the
publisher side, the communication mechanism is straightforward: when new data are
available, the DW performs a simple write call (e.g., write or dispose) to publish data
into a DDS Domain. Then, the data sample is transmitted using asynchronous and
one-to-one or one-to-many communication modes. However, DDS also provides support
to block the calling thread until the data sample has been delivered and acknowledged
by the matched DRs.

On the subscriber side, the reception of data can be performed in polling, synchronous
mode, and asynchronous mode. These models are not only valid for the reception of data
but also for the notification of any change in the communication status (e.g., nonful-
fillment of requested QoS). In particular, the application could be notified through the
following:

—Polling, as application threads can invoke the nonblocking operations to obtain data
or changes in the communication status.

—Listeners, attaching a callback function to asynchronously access modifications in
the communication status while the application keeps executing (i.e., middleware
threads are responsible for managing any change in the communication status).

—Conditions and Wait-sets, which allow application threads to be blocked until one or
several conditions are met. Both represent the synchronous mechanism to manage
any change in the communication status.

3.2.2. Managing Network Resources. In relation to networks, this specification defines
a set of features focused on guaranteeing determinism for communications, such as
the use of scheduling parameters in networks and the definition of the format for the
exchanged messages.

The passing of scheduling parameters to communication networks is performed
through another QoS parameter included in the Data Timeliness category (see
Figure 6):

—Transport_Priority: Unlike the Latency_Budget, which attempts to optimize the in-
ternal behavior of middleware, this parameter prioritizes the access to the commu-
nication network (see Figure 7). Furthermore, since communications are unidirec-
tional, it is only associated with DW entities.

Moreover, the DDSI specification defines the set of rules and features required to en-
able communication among DDS entities. Although this specification is not particularly

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:15

oriented to the use of real-time networks, it does not preclude their use and only lists a
set of requirements for the underlying networks. The most important point addressed
by the specification is the description of the RTPS protocol, which is responsible for
specifying how to disseminate data among nodes. This requires the definition of the
exchange information protocols and message formats. In particular, the structure of an
RTPS message consists of a fixed-size header followed by a variable number of submes-
sages. By processing each submessage independently, the system can discard unknown
or erroneous submessages and thus facilitate future extensions of the protocol.

Another key feature of DDS is the overhead introduced by internal middleware op-
erations. In this case, the standard defines a series of operations to be performed by
implementations that may consume both processor and network resources. In partic-
ular, DDS provides a service for the management of remote entities called Discovery.
This service describes how to obtain information about the presence and characteris-
tics of any other entity within the distributed system. Although the standard describes
one specific discovery protocol for the purpose of interoperability, it allows other ap-
proaches to be implemented. Under the required discovery protocol, implementations
must create a set of DDS entities by default. These built-in entities are responsible
for (1) establishing the communication transparently with the user and (2) discovering
the presence or absence of remote entities (e.g., a plug-and-play system). This kind of
network traffic, which is internal to middleware, is called metatraffic and should be
considered in the timing analysis.

3.3. Distributed Systems Annex of Ada

DSA only deals with those mechanisms related to distribution, such as the configura-
tion of the partitions of a program, the distribution models supported, or how to perform
the communication between partitions. However, Ada DSA delegates the concurrent
and real-time features to other parts of the language, such as those defined in the Real-
Time Systems Annex (Annex D). Thereafter, since the use of DSA is closely linked to
Ada programming, the analysis of the standard will consider the features included in
the core of the language and the Real-Time Systems and Distributed Systems annexes.

The latest versions of the language—Ada 95, Ada 2005, and Ada 2012—have defined
new mechanisms to develop predictable applications within the Real-Time Systems
Annex and the Ada concurrency model. Therefore, the concurrency and the real-time
mechanisms are supported by the language itself with the definition of the following:

—Tasks: These represent active entities that provide support for programming con-
current or parallel operations and interaction mechanisms. Furthermore, different
scheduling parameters can be assigned to them, such as a priority or a scheduling
deadline.

—Protected Objects: These provide a task-safe and deterministic access to shared data,
as well as an event synchronization mechanism.

—Timing Facilities: These include different kinds of clocks and timers to measure real
time and execution time of a single task or a group of tasks, as well as statements to
suspend tasks with absolute, relative, or conditional delays.

—Flexible and Extensible Scheduling Facilities for Tasks: This includes standard
scheduling policies based on fixed or dynamic priorities that can be simultaneously
applied on the same system.

Although Ada defines a coherent real-time model for single-processor and multi-
processor systems, it does not address distributed systems. That is, the DSA is not
specifically designed to support real-time applications. However, there are research
works that demonstrate that it is possible to write real-time implementations within
the standard [Gutiérrez and Harbour 1999, 2001]. The key aspects of the language

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:16 H. Pérez and J. J. Gutiérrez

for the management of processor and communication network resources are described
briefly next.

3.3.1. Managing Processor Resources. The Ada concurrency model is supported by tasks
and several interaction mechanisms, and it has the following features:

—Flexible and Extensible Scheduling Model: The language allows the use of different
scheduling policies on the same partition, thus enabling the execution of applications
with heterogeneous requirements. Ada includes the following scheduling policies
within the Real-Time Systems Annex:

• FIFO_Within_Priorities is a preemptive scheduling policy based on fixed prior-
ities that uses First-In-First-Out (FIFO) order for the same priority level.

• Nonpreemptive_FIFO_Within_Priorities is a nonpreemptive scheduling policy
based on fixed priorities that uses FIFO order for the same priority level.

• Round_Robin_Within_Priorities is a preemptive scheduling policy based on fixed
priorities in which tasks are time sliced for the same priority level.

• EDF_Across_Priorities is a preemptive scheduling policy based on dynamic pri-
orities that uses deadlines for ordering tasks at the same priority level.

—Support for Servicing Concurrent Remote Calls: The specification requires support
for executing concurrent remote calls and for waiting until the return of the remote
call. As mentioned previously, the communication among active partitions is carried
out in a standard way using the PCS, although the specification does not define how
it is performed (i.e., it is implementation defined).

—Predictable Access to Shared Resources: Protected objects guarantee mutually exclu-
sive access to shared resources, but they themselves do not provide bounded blocking
times during access. For this, the standard has defined a set of protocols depending
on the scope:

• Synchronization protocols (or locking policies according to Ada terminology),
which enable deterministic access to shared resources. The Real-Time Systems
Annex only obliges the implementation of the Priority Ceiling Protocol for both
fixed priorities [Sha et al. 1990] and EDF [Baker 1991] versions, although it
does not preclude the use of other policies.

• Queuing policies to specify the order in which tasks are queued for accessing
shared resources. Two queuing policies are language defined: priority order
(Priority_Queuing) and arrival order (FIFO_Queuing).

3.3.2. Managing Network Resources. Like RT-CORBA, Ada DSA does not consider the
possibility of passing scheduling parameters to the communication networks, although
there are some research works that have incorporated this concept [Gutiérrez and
Harbour 1999, 2001].

Furthermore, Ada DSA does not have any mechanism for the transmission of prior-
ities, as this aspect is open to implementation. Pautet and Tardieu [2000] propose a
mechanism to handle the transmission of priorities following the same scheme defined
by RT-CORBA. In Campos et al. [2004, 2006], some mechanisms for handling the trans-
mission of priorities within DSA are proposed. These mechanisms are in principle more
powerful than those of RT-CORBA, as they allow total freedom in the assignment of
priorities both in the processors and in the communication networks at a configuration
stage without modifying the application logic.

3.4. THE DISTRIBUTED REAL-TIME SPECIFICATION FOR JAVA

The development framework provided by the Java language is also an important tech-
nology within the real-time community. The model of distributed systems for real-time

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:17

Java is being developed by the JSR-50 Expert Group [Sun Microsystems 2000]. How-
ever, the lack of a definitive specification means that there is only an outline of its
key elements. The major objective is to incorporate the concepts of distribution and
real-time to Java instead of adapting the language to provide this support.

As in the case of Ada DSA, Java defines a real-time model for single-processor sys-
tems, which is defined by the RTSJ specification. DRTSJ builds on top of the mecha-
nisms included in RTSJ, including the following:

—Timing Facilities: These allow the use of different types of clocks, such as high-
resolution, absolute, and relative time clocks.

—A New Memory Management Mechanism: This avoids the effects of the garbage
collector by defining different memory areas (HeapMemory, ImmortalMemory, and
ScopedMemory).

—Synchronization and Resource-Sharing Facilities: The priority inversion problem is
avoided by introducing the use of synchronization protocols (e.g., protocols based
on priority inheritance and priority ceiling) and nonblocking communication mecha-
nisms (e.g., WaitFreeWriteQueue and WaitFreeReadQueue).

—A New Scheduling Framework: This addresses real-time systems with both fixed and
variable workload. The specification defines a new Scheduler class in order to support
different scheduling algorithms, although it only obliges the implementation of the
preemptive scheduling policy based on fixed priorities.

—Use of Schedulable Objects: RTSJ introduces two types of schedulable objects, Real-
timeThread and AsyncEventHandler, which provide programming models based on
threads and events, respectively. The former extends the expressiveness of regular
Java threads to include real-time properties, such as:

• SchedulingParameters, which is used to determine the schedule and may be
even changed at runtime.

• ReleaseParameters, which represents different timing characteristics of each
schedulable object such as deadlines, maximum blocking times, processing costs,
or release frequencies (e.g., periodic, sporadic or aperiodic).

• MemoryParameters, which specifies the maximum amount of memory required.
• ProcessingGroupParameters, which groups a set of schedulable objects whose

execution relies on a virtual server (e.g., deferrable server).

The RTSJ specification is extended in the DRTSJ by providing the following key
elements for the management of the processors [Anderson and Jensen 2006; Sun
Microsystems 2012]:

—Coherent Support for End-to-End Requirements in Distributed Applications: Mid-
dleware must provide support for this type of requirements, not only for temporal
constraints but also other necessities such as fault management or security. To this
end, a new entity called Distributable Thread is introduced to provide an abstrac-
tion of the control flow of distributed applications. This concept is similar to the one
defined in RT-CORBA.

—An Easily Extensible Scheduling and Integrity Framework: To facilitate the build-
ing of heterogeneous and complex systems, application designers may use appro-
priate user-defined policies for recovery in the presence of failures or scheduling
distributable and local threads.

In relation to communication networks, DRTSJ does not provide any mechanism and
leaves this matter for future versions of the specification. The current draft only states
that the use of a real-time network protocol must not be mandatory by default, as this
would allow the interoperability between general-purpose and real-time systems.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:18 H. Pérez and J. J. Gutiérrez

However, the applicability of this real-time model to distributed systems still repre-
sents an open research field [Tejera et al. 2007; Basanta-Val et al. 2010]. Therefore,
since the DRTSJ specification is not yet complete and there are aspects that still have
not been addressed, a more thorough analysis of it will not be attempted. Hereinafter,
we will mainly focus on the study of the RT-CORBA, DDS, and Ada DSA standards.

4. REAL-TIME COMMUNICATION NETWORKS AND DISTRIBUTION MIDDLEWARE

Along with the distribution mechanisms provided by middleware, networks represent
the other key element in the communications of a real-time system. Although most
standards do not consider network scheduling (e.g., RT-CORBA or DSA) or provide
limited support for it (such as DDS), the amount of time for sending or receiving mes-
sages determines the response time of a distributed system. From the perspective of
real-time systems, communication networks are responsible for solving several prob-
lems, such as:

—Transmission Order for Messages Available in a Network Device: It is necessary to use
a policy to schedule which message, among all those locally available, will be the next
to be transmitted. This problem is especially relevant when using interconnection
devices (e.g., switches) that should order incoming messages from different nodes
prior to their transmission (e.g., by using priorities).

—Shared Transmission Medium Among Several Network Devices: In this case, it is
necessary to use a policy to schedule which network device, among all those available,
will be the next to transmit.

However, in general, the distribution standards that have been analyzed do not
consider any of these problems, and therefore they do not specify the required properties
of the underlying communication subsystem that may affect the temporal behavior of
the distributed system. Thus, whereas Ada DSA does not address any characteristics of
communication networks, the RT-CORBA and DDS specifications define two network
protocols to facilitate interoperability between implementations—GIOP and DDSI,
respectively. Although both protocols require the use of a message format by default,
neither addresses how communications should be performed, as this aspect is defined
by the underlying transport service.

In the first case, GIOP requires a reliable and connection-oriented transport service.
This latter requirement has motivated the adaptation of some real-time protocols to
comply with the standard, as is the case of the CAN protocol implemented by ROFES
[Lankes et al. 2003]. However, the standard defines the IIOP protocol, which uses
TCP/IP, as the reference protocol for the interconnection of CORBA subsystems. For
instance, the TAO implementation [Schmidt et al. 1998] provides a mechanism to map
RT-CORBA priorities onto the Diffserv data field [Nichols et al. 1998]. The mechanism
proposed by Diffserv is based on the principle of traffic classification, where each
network packet is placed in a different class of network traffic. Its main objective is
to provide QoS guarantees in wide area networks such as the Internet. Under this ap-
proach, developers can specify the traffic class corresponding to the IP packet through a
header data field whose length is 6 bits, thus allowing up to 64 different traffic classes.
Each network device is configured to differentiate traffic based on its class, each traffic
class being managed differently. However, Diffserv does not address what types of
traffic should be given priority treatment, as this depends on each network device.
Therefore, Diffserv cannot ensure a priori that packet processing will be uniform
throughout the network. To partially mitigate this issue, the IETF RFC 2474 standard
[Nichols et al. 1998] recommends certain values for this data field to ease interoperabil-
ity between network devices (e.g., a value of 46, corresponding to the traffic class named
Expedited Forwarding, will use a strict priority queuing above all other traffic classes).

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:19

However, the use of TCP/IP, even when using Switched Ethernet technology, is not
appropriate for hard real-time systems [Felser 2001; Zhang and Tsaoussidis 2001].
This has motivated the development of an extension to the standard called Extensible
Transport Framework (ETF) [OMG 2004], a framework that enables the integration of
communication protocols other than TCP/IP with GIOP. However, there are hardly any
developments using this framework to integrate real-time network protocols, probably
because of its complexity [Foster and Aslam-Mir 2005]. The work in Losert et al. [2004]
uses a preliminary version of ETF to implement a prototype that integrates the TTP/C
communication protocol [Kopetz 2011] with RT-CORBA, and a similar solution also
exists for TAO [O’Ryan et al. 2000].

The DDSI protocol is designed to use boundary-preserving and connectionless best-
effort transport, and only requires a minimal set of services from the transport layer. Ac-
tually, it is sufficient that the underlying transport layer offers support to send/receive
messages and detects errors during transmission (e.g., incomplete or corrupted mes-
sages). Moreover, since the size of messages is not sent explicitly by the DDSI protocol,
the underlying transport must provide a mechanism to deduce the size of the received
message. This latter requirement could be problematic for protocols that transmit data
as an unstructured sequence of bytes (stream oriented) and do not preserve the bound-
ary of messages from upper layers (e.g., TCP/IP). To address this issue, support for
stream-oriented protocols in DDSI is being discussed at OMG meetings, although nei-
ther official nor draft documents have been released yet. Finally, although the DDS
specification includes a QoS parameter to send network messages with different prior-
ities, the underlying transport is not required to be capable of managing priorities or to
support network scheduling based on priorities. Therefore, most implementations use
UDP/IP networks, although there are some academic research works that integrate
real-time communication networks, such as the CAN bus [Rekik and Hasnaoui 2009].
The OpenSplice,1 RTI-DDS,2 and OpenDDS3 implementations, for example, mainly
use a UDP/IP transport protocol and, in a similar way to what is done in TAO, map the
Transport_Priority QoS parameter to the Diffserv data field [Nichols et al. 1998].

One of the main conclusions to be drawn is that most distribution standards and im-
plementations for real-time systems currently use IP-based communication networks.
Several factors may explain this willingness to use general-purpose instead of specific
real-time communication networks, among which are their reduced costs and high data
rates, as well as the evolution of the Ethernet technology to meet new bandwidth and
market requirements, including the development of new standards (e.g., IEEE 802.1p
[IEEE 2006]) that allow the prioritization of network traffic.

Although Ethernet was originally designed to interconnect general-purpose comput-
ers, the desire to incorporate a real-time element into this increasingly popular protocol
has led to an evolving field of research during the past decade, mainly due to its features
of low cost and high transmission speed (currently up to 10Gbps). As is defined in IEEE
802.3, Ethernet technology is not deterministic and thus it is unsuitable for real-time
applications. The main problem is the MAC protocol named Carrier-Sense Multiple-
Access protocol with Collision Detection (CSMA/CD), which uses nonpredictable back-
off algorithms to avoid a message collision. However, Switched Ethernet introduces
single collision domains and thus eliminates access contention. This has increased the
volume of information that switches can receive simultaneously, and as a result, the
existence of long bursts of messages or even an excess of multicast or broadcast mes-
sages may cause queue overflow for switches [Pedreiras et al. 2003]. This effect, which

1OpenSplice is available at www.prismtech.com.
2RTI-DDS is available at www.rti.com.
3OpenDDS is available at www.opendds.org.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:20 H. Pérez and J. J. Gutiérrez

is unacceptable for hard real-time systems, can be controlled by using flow control
techniques for network traffic as is described in Vila-Carbó et al. [2008] or in the recent
IEEE 802.1Qbb specification [IEEE 2011]. In the former, the authors limit network
traffic through flow control mechanisms provided by operating systems in order to
classify, schedule, and drop network messages when sending large volumes of informa-
tion. The latter is a reference to a new standard that defines flow control mechanisms
within network devices based on message priority. Another important factor to con-
sider when using Ethernet devices for hard real-time systems is the network traffic
generated by switches. This kind of traffic, which is caused by other network protocols
such as the Spanning Tree protocol [IEEE 2004], must be disabled or modelled so that
it can be taken into account in the timing analysis.

Thus, Switched Ethernet technology is presented as a valid alternative to traditional
real-time networks as long as it is used under certain conditions (e.g., with controlled
traffic loads). This is the case, for example, of the new ARINC-664 specification, Part 7,
which is called Avionics Full-Duplex Switched Ethernet (AFDX) [ARINC 2009] and de-
fines a hard real-time network based on Switched Ethernet for aircraft data networks.

Finally, distribution middleware provides a set of software services, as shown in
Figure 1, to facilitate the distribution of one or more application among different nodes.
However, when middleware is specifically designed to be used in real-time systems, it
should also provide support for configuring networks (e.g., by allowing the assign-
ment of scheduling parameters to network messages) and should define the required
constraints on the underlying transport to ensure predictability (e.g., deterministic
resolution or suppression of message collisions, identification of the additional traffic
generated by network devices, and predictable routing).

5. HIGH-INTEGRITY REAL-TIME SYSTEMS AND DISTRIBUTION MIDDLEWARE

During recent decades, real-time systems have increased their complexity by means of
adding dozens of processing nodes that host independent or coupled applications, most
of them having nonfunctional requirements such as deadlines, QoS, or integrity. For
instance, in high-integrity systems, a possible failure may lead to unacceptable con-
sequences or damage (e.g., financial, environmental, or personal disasters). Therefore,
these kinds of systems must undergo a certification process to verify their compliance
with certain requirements imposed by different standards: DO-178B for avionics, IEC
880 for nuclear plants, MISRA for automotive, and so forth. Due to the high costs
associated with the certification process, the development of safety-critical systems is
characterized by the simplicity of source code—that is, it tends to minimize the soft-
ware complexity to ease the certification. A common practice is to take advantage of
subsets or profiles of the selected technology that restrict the use of those features that
are difficult to certify. The challenge is greater for high-integrity distributed systems,
as it is not sufficient to certify each part of the system individually and then combine
them. Instead, the entire system must be certified.

Over the past years, the real-time community has attempted to boost flexibility to
the development process of high-integrity systems. One of the most notable efforts in
this sense is the evolution from the cyclic executive scheduling policy to a fixed pri-
ority scheduling scheme, which not only increases the flexibility in the development
process but also facilitates the management of concurrency features in high-integrity
software. Likewise, the complexity associated with the communication management
of distributed systems is motivating the exploration of the use of distribution middle-
ware in high-integrity systems. However, this kind of systems does not traditionally
consider the use of middleware, because it involves the use of an extra software layer
that makes the certification process more complex. Nevertheless, the use of middle-
ware technology can provide a set of services that may be of interest for this kind of

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:21

system, such as distribution transparency, network abstraction, communication man-
agement, or interoperability. For instance, Hugues et al. [2008] present PolyORB-HI,
a minimal middleware development that is part of TASTE [Perrotin et al. 2010], a set
of tools developed by the European Space Agency (ESA4) that supports the develop-
ment of high-integrity systems. PolyORB-HI provides basic distribution services such
as data marshalling/unmarshalling, request dispatching, and network transport. Un-
der this approach, location addressing service is based on the automatic generation of
source code from architectural descriptions (i.e., system models) instead of following
any distribution standard.

As networking support is necessary for many safety-critical applications, current dis-
tribution standards may be seen as a feasible solution. However, distribution standards
should overcome some challenges before they will be acceptable for use in high-integrity
systems, mainly those related with the size and complexity of software. There are some
efforts in this direction; for example, a DDS profile for safety-critical systems is being
discussed at meetings of the OMG.

The Ada programming language provides several facilities to aid in the development
of high-integrity systems such as SPARK [Altran Praxis 2011] or the Ravenscar profile
[ISO/IEC 2006]. The former is a subset of the sequential part of Ada that restricts the
use of certain features to facilitate the static analysis, whereas the latter defines a
safe and analyzable subset of Ada concurrency facilities. The Ravenscar profile has
become a useful tool for developing real-time single-processor systems, and it has
recently been extended to be used with multiprocessors [ISO/IEC 2012], although
its applicability to distributed systems still remains open to research [Audsley and
Wellings 2001; Urueña and Zamorano 2007; Pérez et al. 2012].

The fact that some of the capabilities of the RTSJ specification are not certifiable for a
safety-critical system has led to the proposal of a simpler profile named Safety Critical
Java, of which an official early draft specification has already been released [The
Open Group 2010]. As in the case of Ada, this profile is only aimed to single-processor
systems. Nevertheless, the use of Java in high-integrity distributed real-time systems
is currently being investigated [Tejera et al. 2007; Higuera-Toledano 2012] and will be
a notable research field in the near future.

Regarding the CORBA standard, the research of Dubey et al. [2011] presents a real-
time framework that contains a middleware implementation that is executed on top of a
real-time operating system that fulfils the ARINC-653 (Avionics Application Standard
Software Interface) avionics standard [ARINC 2006]. This specification defines a set
of entities called ports to enable the interpartition and intrapartition communication,
and that act as the input points to a real-time network (e.g., AFDX [ARINC 2009]).
However, this framework extends the CORBA Component Model (CCM) [OMG 2011]
instead of relying on the standard real-time facilities.

Although the use of middleware technology in high-integrity systems is attracting a
high degree of interest within the real-time community, current research in this field is
at an early stage and has not been sufficiently widely accepted to merit standardization.
Nevertheless, it will be a point of interest during the coming years.

Finally, the use of a time-shared scheme in high-integrity systems has evolved in re-
cent years to a more sophisticated paradigm referred to as partitioning or partitioned
systems. Partitioning is a widespread technique that enables the execution of multiple
applications in the same hardware platform with strong temporal and space isola-
tion, thus allowing the coexistence of mixed-criticality applications. This technique is
starting to be applied in a wide set of heterogeneous scenarios [MultiPARTES 2011]
that may take advantage of using real-time distribution middleware. For instance, the

4http://www.esa.int/esaCP/.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http://www.esa.int/esaCP/

49:22 H. Pérez and J. J. Gutiérrez

work included in Pérez and Gutiérrez [2013] presents an early experience with the
integration of distribution middleware into partitioned systems.

6. DISCUSSION ON REAL-TIME CAPABILITIES OF DISTRIBUTION MIDDLEWARE

After analyzing the different distribution standards aimed at the development of ap-
plications with timing requirements, this section attempts to find the similarities and
differences among these specifications, as well as to assess their appropriateness for
use in real-time systems. To better compare the different standards introduced earlier,
it is necessary to define a set of requirements that a distribution standard for real-time
systems should consider:

—Support for Scheduling in Processors and Networks: Real-time systems require strict
control of the execution of threads and the transmission of messages. This includes
support for scheduling policies in charge of ordering the concurrent access of threads
and messages to processors and communication networks, respectively.

—Control of the Scheduling Parameters: Middleware should provide mechanisms to
configure the scheduling parameters of each thread that may be executed in the
processor. Similarly, the assignment of scheduling parameters to network messages
should be supported.

—Thread Management or Concurrency Pattern: It represents the design pattern that
deals with the multi-thread paradigm that controls and processes the dissemination
of information. This feature is particularly important on the receiver side.

—Controlled Access to Shared Resources: This can be achieved through the implemen-
tation of synchronization protocols.

Two types of schedulable entities can be identified in a real-time system: threads
for processors and messages for communication networks. Real-time engineers should
be able to configure both entities, not only those defined within the application but
also those created by middleware implementations. For instance, this is the case of
Input/Output (I/O) decoupling threads, receiving threads, or built-in network messages,
which should be configured through standardized mechanisms provided by middleware.
Furthermore, those entities may also produce some kind of contention that must be
taken into account in the real-time design.

6.1. Managing Processor Resources

The temporal behavior of distribution middleware is strongly determined by the
scheduling policies and concurrency patterns [Pérez et al. 2008]. In the first case,
it is necessary to identify which mechanisms are provided by middleware to select
a specific scheduling policy and how to perform the assignment of the corresponding
scheduling parameters to the schedulable entities responsible for attending to remote
services. The second case deals with the options available to establish which thread is
responsible for sending or receiving remote requests/data.

First, it is possible that schedulers are directly supported by the operating system.
However, since these distribution standards are aimed at developing real-time systems,
it would be desirable to include operations in their APIs to set a specific scheduling
policy and the corresponding scheduling parameters for middleware threads.

Both Ada and RT-CORBA specifications provide support for different scheduling poli-
cies, including the Fixed Priorities Scheduling (FPS) policy. Similarly, the scheduling
framework defined by DRTSJ can be extended in order to support different scheduling
policies. However, the model proposed in DDS does not include the scheduling in the
processors, which remains undefined. Although the DDS standard defines several tim-
ing parameters, none is suitable to schedule threads in the processors: the Deadline

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:23

parameter could be used in some cases (i.e., EDF systems), but the standard does not
consider such use. A similar situation exists with the Latency_Budget parameter and
whose definition is not clear, although the specification proposes data batching (i.e.,
gathering a set of data samples to be sent in a single large network package) as an
example of use.

RT-CORBA is the only specification that provides mechanisms to specify the schedul-
ing parameters to be used during the execution of the requested operations on the
remote node. The specification for static systems defines two policies, Server_Declared
and Client_Propagated, which impose restrictions on the assignment of priorities and
therefore reduce the schedulability of the system [Campos et al. 2006]. Furthermore,
although the Priority Transforms model allows the modification of these policies, this
is performed within the application-supplied code, so any change in the scheduling
parameters may also require reviewing it.

Second, the processing of remote calls or incoming data represents a two-stage pro-
cess that includes (1) the listening for I/O events in communication networks and the
processing of network messages and (2) the execution of the application code associ-
ated with remote calls or incoming data, and a possible reply. The former is internally
performed and controlled by middleware, whereas the latter relies on the interaction
between middleware and the application. As discussed previously, distribution stan-
dards do not define which concurrency pattern should be used for the first stage but
specify that implementations must service concurrent remote requests (e.g., the Ada
DSA explicitly indicates this aspect, whereas RT-CORBA implicitly specifies it through
the definition of Threadpools). However, the choice of one or another concurrency pat-
tern is a factor that determines the temporal behavior of the application, so this issue
will be addressed further in the analysis of the implementations (see Section 7). Con-
cerning the second stage, RT-CORBA and Ada DSA lead the execution of application
code in the context of an internal middleware thread, whereas DDS enables the use
of internal middleware threads, by means of the Listener mechanism, or application
threads, through Wait-set structures or by directly polling for data availability in a
DR. Anyway, regardless of the thread or threads responsible for processing each stage,
it is important that middleware provides the necessary mechanisms to control their
scheduling parameters.

Finally, deterministic access to shared resources prevents the unbounded priority
inversion problem [Sha et al. 1990]. RT-CORBA, Ada, and RTSJ include the use of
synchronization protocols for access to critical sections, although only the latter two
specify that implementations need to support specific protocols (e.g., the Priority Ceiling
Protocol).

6.2. Managing Network Resources

In relation to communication networks, neither RT-CORBA nor Ada DSA include the
possibility of assigning scheduling parameters; therefore, implementations are respon-
sible for providing the necessary support for this. Concerning DRTSJ, the last report
only states that both real-time and general-purpose networks must be supported. In the
case of DDS, the specification only considers networks based on a fixed priority schedul-
ing policy and excludes any other kind of predictable networks used in the industry
(e.g., time-triggered networks). This can be dealt with by modifying the definition of
the Transport_Priority parameter as proposed in Pérez and Gutiérrez [2012].

Although most of the standards analyzed are focused on Ethernet-based networks
(e.g., RT-CORBA with TCP/IP and DDS with UDP/IP), this communication network is
not itself suitable to provide deterministic response times, as was discussed in Section
4. However, the evolution of Ethernet technology in recent years, with the definition
of new standards, such as 802.1p [IEEE 2006], which prioritizes different message

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:24 H. Pérez and J. J. Gutiérrez

streams, together with its low cost, has resulted in a growing interest within the
industry in using this approach in the future development of real-time systems.

When distribution middleware is implemented on operating systems and network
protocols with priority-based scheduling, it is easy to transmit the priority at which a
remote service must be executed inside the messages sent through the network. For
example, this scheme is used by the Client_Propagated policy in RT-CORBA. How-
ever, this solution does not work if more complex scheduling policies, such as flexible
scheduling frameworks based on contracts [Aldea et al. 2006; FRESCOR 2006], are
used. Sending the contract parameters through the network is inefficient because
these parameters are large in size. In the same way, the dynamic change of the con-
tract parameters in the remote node is also inefficient, so other configuration schemes
are required for this kind of system.

Another important factor to consider is the size of network messages, which must be
bounded and known before the timing analysis. This point is particularly critical in the
design of predictable applications with DDS, since a DDSI message can comprise an
undefined number of submessages, including not only metatraffic but also user data.
Although this mechanism is quite efficient for minimizing the average response time,
it is not usually suitable for real-time systems that aim at guaranteeing latency limits
in each network stream. Therefore, it is up to implementations to provide the means
to define the maximum size of a DDSI message.

Finally, the presence of messages and operations belonging to middleware may cause
an increase in the response times of critical user applications. Although this overhead
depends almost exclusively on each implementation, the effect seems to be more sig-
nificant in standards such as DDS, which defines a set of built-in entities that may
consume both processor and network resources.

6.3. Comparative Summary

This section has discussed the mechanisms provided by distribution standards for the
management of processors and networks. Table I summarizes the analysis according
to the degree of support for the requirements proposed at the beginning of this discus-
sion (scheduling policies, setting of scheduling parameters, concurrency patterns, and
controlled access to shared resources).

Most of these features, which are required to bound the worst-case temporal behavior,
remain open to implementations, as is shown in Table I. Consequently, the choice of
a particular middleware determines not only the application performance but also its
predictability, and thus the ability to meet its deadlines. The choice of the concurrency
pattern for the processing of remote calls or incoming data is particularly relevant,
although this feature depends on implementations.

Finally, Figure 8 shows the evolution of these distribution standards for real-time
systems over time. As can be seen, the RT-CORBA standard was mainly reviewed and
updated until 2005, when the latest version of the standard was released. In this case,
the RT-CORBA specifications have followed an unusual sequencing of version num-
bering, which includes RT-CORBA 1.0 (1999), RT-CORBA 1.1 (2002), RT-CORBA 2.0
(2003), and RT-CORBA 1.2 (2005). Ada DSA has evolved along with the programming
language itself by introducing new real-time capabilities and safety-critical guidelines
in the two revisions of the standard released since 1995. However, these new features
are mainly standardized for single and multiprocessor systems, and current efforts in
distributed systems are still at the research level. In the case of DDS, the first specifi-
cation was introduced in 2004, and the technology has been updated more frequently
with new features and extensions. Although the first draft of DRTSJ was introduced
in 2000, this specification was not updated until 2012; an official specification has not
yet been released.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:25

Ta
bl

e
I.

R
ea

l-T
im

e
C

ap
ab

ili
tie

s
of

D
is

tr
ib

ut
io

n
S

ta
nd

ar
ds

P
ro

ce
ss

or
R

es
ou

rc
es

N
et

w
or

k
R

es
ou

rc
es

M
id

dl
ew

ar
e

S
ch

ed
u

li
n

g
po

li
ci

es

S
et

ti
n

g
of

sc
h

ed
u

li
n

g
pa

ra
m

et
er

s
C

on
cu

rr
en

cy
pa

tt
er

n
S

yn
ch

ro
.

pr
ot

oc
ol

s
S

ch
ed

u
li

n
g

po
li

ci
es

S
et

ti
n

g
of

sc
h

ed
u

li
n

g
pa

ra
m

et
er

s

R
T-

C
O

R
B

A

F
P

S
E

D
F

L
L

F
M

A
U

C
li

en
t

pr
op

ag
at

ed
S

er
ve

r
de

cl
ar

ed
P

ri
or

it
y_

T
ra

n
sf

.
T

h
re

ad
po

ol
R

eq
u

ir
ed

Im
pl

.d
ef

.
Im

pl
.d

ef
.

A
da

D
S

A

F
P

S
N

on
pr

ee
m

pt
ab

le
R

ou
n

d-
ro

bi
n

E
D

F
Im

pl
.d

ef
.

Im
pl

.d
ef

.
P

ri
or

it
y

ce
il

in
g

Im
pl

.d
ef

.
Im

pl
.d

ef
.

D
D

S
Im

pl
.d

ef
.

Im
pl

.d
ef

.
Im

pl
.d

ef
.

Im
pl

.d
ef

.
F

P
S

T
ra

n
sp

or
t

pr
io

ri
ty

Ja
va

D
R

T
S

J
F

P
S

U
se

r
de

fi
n

ed
Im

pl
.d

ef
.

Im
pl

.d
ef

.

P
ri

or
it

y
in

h
er

it
an

ce
P

ri
or

it
y

ce
il

in
g

Im
pl

.d
ef

.
Im

pl
.d

ef
.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:26 H. Pérez and J. J. Gutiérrez

Fig. 8. Timeline of real-time distribution standards history.

7. ANALYSIS OF THE REAL-TIME FEATURES OF IMPLEMENTATIONS

As discussed previously, distribution standards leave multiple aspects dependent on
implementations that may affect the temporal behavior of applications. Therefore, it
is of interest to complete the analysis by reviewing some of their reference implemen-
tations and their developments. The objective is to show how real implementations
deal with these aspects that are not explicitly addressed by standards. Among other
features, this part of the analysis will review the proposed concurrency patterns, the
support provided for configuring the schedulable entities or the synchronization mech-
anisms used to control the access to shared resources.

Selected implementations are based on a twofold criterion: on the one hand, they are
significantly compliant with their respective standards and thus can be considered as
reference implementations; on the other hand, they are open-source implementations
to allow a more thorough analysis of their real-time mechanisms to be performed.
Although the DRSTJ specification mentions one reference implementation [Sun
Microsystems 2012], it is not yet publicly available, and hereinafter we will focus on
the study of the RT-CORBA, Ada DSA, and DDS implementations.

7.1. RT-CORBA Implementations

The distribution model proposed by CORBA is a mature technology that has led to nu-
merous implementations, both commercial and open source. In the case of RT-CORBA,
there are real-time versions of the commercial distributions ORBExpress,5 e∗ORB,6
and VisiBroker,7 and open-source distributions such as ROFES (Real-time CORBA for
embedded systems) [Lankes et al. 2003], TAO (the Ace ORB) [Schmidt et al. 1998],
or PolyORB [Vergnaud et al. 2004]. PolyORB is characterized by supporting different

5ORBExpress is available at www.ois.com.
6e∗ORB is available at www.prismtech.com.
7VisiBroker is available at www.microfocus.com.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:27

distribution models, including among others the aforementioned RT-CORBA or Ada
DSA. Therefore, the analysis of PolyORB will be dealt with in the section related to
the distribution model proposed by Ada. TAO may be regarded as the most popular
open-source implementation of RT-CORBA and one of the most complete and efficient
versions currently available for real-time systems [Schmidt et al. 2001], so the analysis
will focus on this implementation in the following discussion.

TAO implements all of the mandatory features and services that have been defined
in the latest version of RT-CORBA [Schmidt 2005] with the following exceptions:

—The priority transforms model
—The use of buffers to store remote requests in threadpools
—The borrowing of threads among threadpool lanes

In relation to the concurrency patterns, TAO defines several configurable properties
depending on whether the application is acting as a server or a client. On the server
side, these parameters establish concurrency constraints that are imposed by the server
node during the processing of requests in a multithreading environment. TAO defines
two levels of concurrency that are closely related:

—Concurrency at Application Level: These policies control which thread executes the
call on the distributed object. Two values are defined:

• Orb_Ctrl_Model: This policy allows concurrent requests to a distributed object.
In this case, the application developer is responsible for providing thread-safe
access to the object (i.e., safe execution by multiple threads at the same time).

• Single_Thread_Model: By using this policy, all requests to the distributed object
are called sequentially. Therefore, concurrent calls cannot occur within the scope
of this policy.

—Concurrency at ORB Level: It represents a set of policies to define how threads
receive and process requests. These policies are only available if the application-level
concurrency is set to Orb_Ctrl_Model. In this case, TAO supports three concurrency
patterns:

• Reactive: Through this policy, a single server thread is dedicated to handling multi-
ple connections. In addition, other threads may also exist in the system to execute
internal middleware operations.

• Thread-per-connection: In this case, the ORB creates a new thread to serve each new
connection. This thread is dedicated to processing all requests performed on that
connection, which will be processed sequentially. After closing the connection, the
thread will be released.

• Threadpool: Under this policy, middleware creates a pool of threads that are respon-
sible for processing concurrent incoming requests according to a concurrency pattern
called Leader & Followers [Schmidt 1998; Pyarali et al. 2001]. In the leader-followers
pattern, several threads take turns to monitor I/O operations and then process the
requests once they have arrived. One thread becomes the leader and then takes
responsibility for awaiting a new request and also processing it (i.e., I/O operations
are not decoupled from request processing). The other threads in the pool are the
followers. As soon as the leader thread receives a new request, one of the follower
threads becomes the new leader. Once the thread finishes processing the request, it
returns to the pool and waits to become the leader again.

Concerning the client side, these parameters affect the multithreading behavior of
the client when a synchronous remote call is performed—that is, when a client thread

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:28 H. Pérez and J. J. Gutiérrez

must wait for a reply from the server. TAO defines a number of concurrency policies
for waiting replies in client nodes, which are described as follows:

• Wait-on-read: According to this policy, when a client thread invokes a synchronous
remote call, it is blocked waiting to read the reply from the server node.

• Wait-on-reactor: Under this policy, a single thread is responsible for performing all
requests, although it can still perform other internal middleware operations while
waiting for the replies (i.e., it is not blocked). When a reply is received, this single
thread will be notified in order to process it.

• Wait-on-leader-follower: This policy enables client threads to wait for replies using
the Leader & Followers concurrency pattern. Therefore, client threads waiting for
replies become followers and can be used to perform other I/O or internal middleware
operations. As with the Wait-on-reactor case, when a reply is received, the target
thread will be notified in order to process it.

In relation to the scheduling for processors, TAO provides support for scheduling
policies based on fixed priorities and the importance of threads (Most Important First
[MIF]) [Schmidt 2005]. The latter policy is not included in the RT-CORBA standard
and defines a parameter called importance to determine which thread should execute.

Although RT-CORBA does not consider the assignment of scheduling parameters to
the communication networks, TAO provides a method to schedule IP-based networks.
As an extension to RT-CORBA, TAO provides a mechanism to map RT-CORBA pri-
orities to network priorities via the configuration protocol properties service. Thus, it
is possible to differentiate classes of network traffic. To this end, it uses a data field
within the IP header called Diffserv [Nichols et al. 1998]. In TAO, protocol properties
can be set at the ORB, thread, or object level, so it is possible to enable the network
priority mapping for all requests invoked (1) through a particular ORB, (2) through the
thread itself, or (3) through the remote object itself, respectively.

Finally, the RT-CORBA standard does not address other kinds of real-time features,
such as the priority mapping between native priority and CORBA priority or the syn-
chronization protocol used for shared resources. For the former, TAO defines three
priority mappings that are based on a one-to-one mapping (Direct mapping), one-to-
one mapping but within a predefined range of CORBA priorities (Continuous mapping),
and one-to-many mapping that covers the whole range of CORBA priorities (Linear
mapping). For the latter, TAO does not oblige the use of any specific synchronization
protocol, so the choice of this protocol will depend on what is provided by the underlying
real-time operating system by default.

7.2. Ada DSA Implementations

Although distributed programming with Ada DSA is easier and more intuitive than
with other technologies based on DOM and/or RPCs [Kermarrec 1999], the commercial
impact of this annex has not been very significant and only a couple of implementa-
tions are relevant today: GNAT Library for Ada Distributed Environment (Glade) and
PolyORB. Glade [Pautet and Tardieu 2000] is the original implementation of DSA of-
fered by AdaCore to support the development of distributed applications with real-time
requirements, although its maintenance has been discontinued today and its function-
ality has been replaced by PolyORB [Vergnaud et al. 2004]. PolyORB was introduced
as middleware that can support different distribution standards such as CORBA, RT-
CORBA, DSA, or Web Services. It is distributed with the GNAT compiler, and, in princi-
ple, it is envisaged for applications programmed in Ada. It currently supports CORBA,
some basic notions of RT-CORBA (priorities and their propagation) and Ada DSA.

The architecture of PolyORB is divided into three separate layers: the application
layer (referred to as application personality), the neutral layer or microkernel, and

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:29

the protocol layer (referred to as protocol personality). Therefore, PolyORB provides
a set of common components on top of which several personalities can be developed.
This type of architecture allows different personalities to be combined, either at the
application level or at the protocol level, within the same software system and thus
enables interoperability and integration of different distribution paradigms under a
single platform. Furthermore, this architecture allows different communication pro-
tocols to be used regardless of the application personality (e.g., the communication
between DSA partitions can be done through the GIOP protocol, which is defined in
the CORBA specification). The key features of this interoperability rely on (1) the use
of a common network protocol for communications and (2) the conversion of any data to
neutral data structures defined in the microkernel. This microkernel does not provide
the same services as a conventional ORB, but it does include facilities for performing
the conversion between distribution models.

For the management of remote calls, PolyORB supports different configurations to
adapt the interaction between personalities and the microkernel. These configurable
features include (1) the ORB tasking policies (which determine which tasks will execute
requests from remote nodes), (2) the ORB controller policies (which determine which
tasks will execute internal middleware operations such as I/O processing), and (3) the
tasking runtimes (which represent a set of restrictions that must be fulfilled by system
tasks). They are briefly described as follows:

—Tasking Runtimes: PolyORB defines three tasking profiles or runtimes to establish a
set of restrictions on the concurrency model. The choice of a specific tasking runtime
is a compilation-time parameter that can take the following values:

• Full Tasking: This runtime enables all middleware capabilities to manage and
synchronize system tasks.

• No Tasking: Under this runtime, no tasking is required and therefore applica-
tions can hold a single task at most.

• Ravenscar: This runtime enables the concurrency facilities that are compliant
with the Ravenscar profile [ISO/IEC 2006].

—Tasking Policies: These policies control the creation of tasks for processing incoming
remote calls. PolyORB defines the following four policies:

• No Tasking: Under this policy, the environment task processes all incoming
requests and internal middleware operations.

• Thread Pool: This policy defines a group of tasks or threadpool responsible for
processing all jobs in middleware. As in the case of Glade, there are three config-
urable parameters: min_spare_threads, which indicates the minimum number
of tasks created at start-up time; max_spare_threads, which represents a ceiling
in the number of tasks available to process requests (i.e., tasks are deallocated
if the number of tasks is greater than the ceiling); and max_threads, which
indicates the absolute maximum number of tasks that the group may contain.

• Thread Per Session: This policy creates one task per network connection (i.e.,
when a new communication session is opened). The task terminates when the
connection is closed.

• Thread Per Request: This policy creates one task per incoming request. The task
is terminated when the request is completed.

PolyORB tasking policies and tasking runtimes have a dependency among them-
selves, so distributed applications must be configured with a coherent scheme (e.g., the
No Tasking runtime implies the No Tasking policy).

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:30 H. Pérez and J. J. Gutiérrez

—ORB Controller Policies: Four policies are defined that affect the internal behavior
of middleware, such as the assignment of internal operations and I/O monitoring to
middleware tasks:

• No Tasking: Under this policy, a loop monitors I/O operations and processes the
requests.

• Workers [Schmidt 1998]: Under this policy, all threads are equal and monitor
the I/O operations and process the incoming requests alternatively.

• Half Sync/Half Async [Schmidt and Cranor 1996; Pyarali et al. 2001]: This
policy defines one single task to monitor the I/O operations and add the requests
to a queue while the other tasks are responsible for processing them (i.e., I/O
operations are decoupled from request processing).

• Leader/Followers [Schmidt 1998; Pyarali et al. 2001]: As in the case of TAO,
this policy defines several tasks that take turns to monitor I/O sources and
then process the requests once they have arrived (i.e., I/O operations are not
decoupled from request processing).

This middleware is oriented to be used in real-time systems since it partially supports
the RT-CORBA standard (static scheduling based on fixed priorities). Furthermore, the
DSA personality, even when the standard does not include explicit support for real-time
distributed systems, follows the same static scheduling scheme as RT-CORBA: Client
Propagated and Server Declared.

This implementation does not explicitly consider the possibility of passing schedul-
ing parameters to the communication networks or configuring synchronization proto-
cols to control access to shared resources. For the latter, the Ada Real-Time Systems
Annex allows the Priority Ceiling Protocol to be applied by means of a compiler direc-
tive (pragma) that configures by default all protected objects created by middleware.
However, the appropriateness of this default configuration will depend on the target
application.

7.3. DDS Implementations

The increasing interest within the industry in applying the distribution model defined
by DDS has motivated the development of several implementations, both commercial
(CoreDX8 or RTI-DDS9) and open-source software (OpenSplice10 or OpenDDS11). For
our purposes, we have selected OpenSplice middleware because it is a reference open-
source implementation and is considered one of the most efficient implementations of
the standard.

PrismTech, one of the driving forces behind the DDS standard, develops and mar-
kets a software product called OpenSplice. It relies on a modular collection of plug-
gable services that provide the essential DDS functionality and a set of features such
as networking, resource management, monitoring, or persistence. Additionally, DDS
applications built using OpenSplice can be configured to use two different deployment
architectures, namely, federated and standalone. Under the former architecture, appli-
cations and middleware services are decoupled (i.e., services are executed as a set of
daemons shared by all applications) and interface directly through shared memory; for
the latter architecture, DDS applications are built as standalone processes.

As discussed in Section 6, the DDS specification does not standardize the schedul-
ing of threads. To handle this issue, OpenSplice implements two different scheduling

8CoreDX is available at www.twinoakscomputing.com.
9RTI-DDS is available at www.rti.com.
10OpenSplice is available at www.prismtech.com.
11OpenDDS is available at www.opendds.org.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:31

policies or classes: Timeshare, in which threads have to regularly yield the processor
to other threads of equal priority (i.e., round-robin within priorities), and Realtime,
which represents a preemptive scheduling based on fixed priorities. In any case, the
assignment of priorities to any internal threads spawned by OpenSplice is performed
through a proprietary extension of the QoS parameters, which allows the priority to be
specified as an absolute value or as a value relative to the priority of the parent thread.

In the case of communication networks, the assignment of scheduling parameters
is performed through the Transport_Priority QoS parameter, which is mapped to the
Diffserv field [Nichols et al. 1998] within the IP header in order to prioritize net-
work traffic through capable network elements (e.g., routers or high-level switches).
To handle the transmission and reception of data through the network, OpenSplice
implements different networking services:

—rt-networking Service: Proprietary and noninteroperable with other DDS implemen-
tations, this service is able to handle different classes of network traffic through the
definition of priority bands associated to proprietary entities called network channels.
Once these network channels are created and configured, the rt-networking service
selects the most appropriate channel for each incoming/outgoing network message
based on the priority specified in the Transport_Priority QoS parameter.

—DDSI2 Service: The implementation of the OMG DDSI specification.
—DDSI2E Service: A commercial extension of DDSI2 that enhances the core service

with support for some of the features included in the rt-networking service, such as
the definition of priority bands.

To deal with the issue of unbounded size for DDSI messages mentioned in Section 6.2,
OpenSplice implements a proprietary extension of the standard that allows the maxi-
mum size of DDSI messages to be configured. This improves the head-of-line blocking
issue and provides a mechanism for controlling priority inversion.

Concerning the concurrency model for the dissemination of information, OpenSplice
defines a threadpool composed of a variable number of internal threads depending on
which services are being executed. To handle the reception and processing of incoming
data samples, OpenSplice relies on two different services: the networking and the
domain services. As explained earlier, OpenSplice supports different approaches for
the former service; for instance, the rt-netwoking and the DDSI2E services handle the
inbound and outbound network communication by means of the creation of dedicated
receiver and transmitter threads per network channel, and the DDSI2 service uses one
receiver and one transmitter thread for the processing of the I/O operations associated
with user data.

The domain service implements the Wait-set and Listener mechanisms defined by the
standard to allow data samples to be processed in the context of an application thread
or middleware thread, respectively. Under this implementation, a listener thread is
spawned per Participant.

Finally, the OpenSplice implementation supports the Priority Inheritance synchro-
nization protocol through another proprietary extension of the standard. In this case,
this feature is configured per Domain.

7.4. Discussion

As in the analysis of the standards, the following discussion focuses on the mechanisms
provided by middleware implementations in terms of the management of processor and
network resources.

7.4.1. Managing Processor Resources. The support provided by each implementation in-
cluded in the analysis in relation to thread scheduling is quite diverse. The usual

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:32 H. Pérez and J. J. Gutiérrez

approach is to provide an interface to configure the scheduling parameters of applica-
tion threads and delegate their execution sequence to the scheduler provided by the
underlying operating system. In this case, the PolyORB-CORBA personality and TAO
provide an interface compliant with the RT-CORBA specification, whereas OpenSplice
supports a proprietary interface. In relation to PolyORB-DSA, it does not provide any
interface and delegates the configuration and scheduling to the Ada runtime. Further-
more, TAO also includes support for another scheduling policy—MIF—which is not
defined by the CORBA standard. Under this scheduling policy, middleware is respon-
sible for determining which thread among all those available within the application
should execute next.

In relation to the controlled execution of concurrent remote calls, the concurrency
patterns implemented in TAO and PolyORB can be used as a reference for a large
number of scenarios. However, the use of concurrency patterns based on the dynamic
creation of threads, such as Thread-per-Connection or Thread-Per-Session, should be
restricted to those situations where the creation of new threads does not jeopardize
the determinism of the whole system (e.g., through an admission test at runtime).
Moreover, other critical scenarios should also be considered; for example, in flexible
scheduling frameworks [Aldea et al. 2006; FRESCOR 2006] where threads execute
under contracts, middleware implementations should select a concurrency pattern that
minimizes the dynamic change of the scheduling parameters [Pérez and Gutiérrez
2009], as the cost of negotiating or changing contracts is very high.

In general, those concurrency patterns that prevent the dynamic change of schedul-
ing parameters and minimize context switches are used in hard real-time systems.
In this case, not all implementations analyzed can be configured to meet these re-
quirements. Thus, TAO allows the application to be configured to select the Leader &
Followers pattern that, when applied together with some RT-CORBA mechanisms (e.g.,
ThreadpoolLanes, Private Connections, and Priority-Banded Connections), provides a
set of threads to process the remote request while preserving the end-to-end prior-
ity assignment. However, even when PolyORB presents similar mechanisms to TAO,
this implementation does not allow this type of configuration, because, among other
reasons, it lacks support for some RT-CORBA facilities, such as Private Connections
and Priority-Banded Connections. In the case of OpenSplice, the use of Wait-sets along
with the concurrency pattern implemented in the rt-networking and DDSI2E services
allows the collaboration of application and middleware threads to process incoming
data samples while preserving end-to-end priority assignment.

Finally, TAO delegates the choice of the synchronization protocol to the underlying
operating system. Nevertheless, the POSIX real-time standard [The Open Group 1998]
does not dictate the use of any synchronization protocol by default, so middleware is
responsible for configuring or providing the necessary mechanisms to configure the
selected protocol. Furthermore, in the case of PolyORB, this aspect is delegated to the
Ada language; therefore, applications may configure the predefined Priority Ceiling
Protocol as long as the Real-Time Systems Annex is supported by the Ada compiler that
is being used. Last, OpenSplice explicitly supports the Priority Inheritance Protocol.

7.4.2. Managing Network Resources. As in the case of the distribution standards, the
implementations analyzed most often use general-purpose networks but incorporate
some extensions to assign priorities in the communication networks. Thus, both TAO
and OpenSplice provide an interface to define the scheduling parameters for the mes-
sage streams in a proprietary or standard way, respectively. PolyORB does not consider
in any case the use of scheduling parameters in the communication networks.

7.4.3. Comparative Summary. This section has discussed the mechanisms provided by
middleware implementations for the management of the processing resources (i.e.,

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:33

processors and communication networks). Although the main objective is to analyze the
capabilities of distribution standards for developing distributed real-time systems, the
analysis of implementations has allowed the lacks and needs of current specifications
to be identified.

In particular, the analysis of implementations has focused on the configuration mech-
anisms for threads and messages scheduling, as well as the concurrency patterns im-
plemented for processing the inbound and outbound data. Table II summarizes the
real-time features taken from the analysis of standards and integrates the solutions
provided by each implementation. Thus, as in the case of the distribution standards,
the implementations mostly support FPS and provide the required mechanisms for
establishing the scheduling parameters, either through a standard API (e.g., TAO and
PolyORB-CORBA), through a proprietary API (e.g., OpenSplice), or through the pro-
gramming language (e.g., Ada for PolyORB-DSA). However, there are scenarios where
the use of other policies, such as EDF or flexible scheduling based on contracts, could be
more appropriate [Liu and Layland 1973; Fohler and Buttazzo 2002]. In relation to com-
munications, the choice and configuration of a communication network may strongly
affect the temporal behavior of a distributed system. Furthermore, there are scenarios
where both networks and processors should be scheduled together with appropriate
techniques [Liu 2000; Sha et al. 2004]. The analysis shows that most implementations
use network scheduling based on fixed priorities over Ethernet technology, although
these networks do not yet meet hard real-time requirements [Vila-Carbó et al. 2008;
Pedreiras et al. 2003] except under very specific conditions [ARINC 2009].

The design and development of efficient concurrency patterns is a key factor in
the temporal behavior of implementations. In this case, it is worth noting the large
number of different concurrency patterns available in the implementations. TAO and
PolyORB can be configured to fit in a wide range of scenarios, but only TAO considers
the specific scenario in which avoiding the delay for the highest-priority invocation
is required (i.e., by avoiding the dynamic update of the scheduling parameters and
minimizing the context switches). OpenSplice decouples the I/O operations through the
networking service, but only the rt-networking and DDSI2E services allow transmitter
and receiver threads to be created per network channel to ensure an appropriate
handling of messages with different priorities.

Finally, TAO delegates the use of synchronization protocols to the operating system.
This is worthy of consideration because even the POSIX standard [The Open Group
1998], which can be considered a point of reference for real-time operating systems, does
not dictate the use of any protocol by default. In this case, OpenSplice and PolyORB
can be used as references, as they allow the configuration of synchronization protocols
explicitly or through the mechanisms provided by the Ada programming language,
respectively.

8. CONCLUSIONS

This survey has reported an analysis of distribution middleware options from the
viewpoint of their suitability for the development of real-time systems. Specifically, the
study has analyzed the RT-CORBA, Ada DSA, DDS, and Java DRTSJ standards, with
emphasis on the scheduling of processors and networks. In particular, their real-time
facilities were grouped into four categories (scheduling policies, setting of scheduling
parameters, concurrency patterns, and controlled access to shared resources). Based on
the previous analysis, we have isolated a set of features and objectives that all distribu-
tion standards for real-time systems and/or their implementations should incorporate:

—Control in the Processing of Remote Calls or Data: Regardless of the concurrency pat-
tern used, the determinism of the application can only be guaranteed by controlling

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:34 H. Pérez and J. J. Gutiérrez

Ta
bl

e
II.

R
ea

l-T
im

e
C

ap
ab

ili
tie

s
of

M
id

dl
ew

ar
e

Im
pl

em
en

ta
tio

ns

P
ro

ce
ss

or
R

es
ou

rc
es

N
et

w
or

k
R

es
ou

rc
es

M
id

dl
ew

ar
e

S
ch

ed
u

li
n

g
po

li
ci

es

S
et

ti
n

g
of

sc
h

ed
u

li
n

g
pa

ra
m

et
er

s
C

on
cu

rr
en

cy
pa

tt
er

n
S

yn
ch

ro
.

pr
ot

oc
ol

s
S

ch
ed

u
li

n
g

po
li

ci
es

S
et

ti
n

g
of

sc
h

ed
u

li
n

g
pa

ra
m

et
er

s

T
A

O
F

P
S

M
IF

C
li

en
t

pr
op

ag
at

ed
S

er
ve

r
de

cl
ar

ed
P

ri
or

it
y_

T
ra

n
sf

.

R
ea

ct
iv

e
T

h
re

ad
pe

r
co

n
n

ec
ti

on
T

h
re

ad
po

ol

R
T

O
S

de
pe

n
de

n
t

F
P

S
ov

er
IP

P
ro

pi
et

ar
y

ex
te

n
si

on

P
ol

yO
R

B

F
P

S
N

on
pr

ee
m

pt
ab

le
R

ou
n

d-
ro

bi
n

w
it

h
in

pr
io

ri
ti

es
E

D
F

C
li

en
t

pr
op

ag
at

ed
S

er
ve

r
de

cl
ar

ed

N
o_

ta
sk

in
g

T
h

re
ad

pe
r

re
qu

es
t

T
h

re
ad

pe
r

se
ss

io
n

T
h

re
ad

po
ol

P
ri

or
it

y
ce

il
in

g
N

ot
de

fi
n

ed
N

ot
de

fi
n

ed

O
pe

n
S

pl
ic

e
F

P
S

R
ou

n
d-

ro
bi

n
w

it
h

in
pr

io
ri

ti
es

P
ro

pr
ie

ta
ry

ex
te

n
si

on

T
h

re
ad

po
ol

D
ed

ic
at

ed
th

re
ad

s
pe

r
ch

an
n

el
(r

t-
n

et
w

or
ki

n
g

/d
ds

i2
e)

P
ri

or
it

y
in

h
er

it
an

ce
F

P
S

ov
er

IP
T

ra
n

sp
or

t
pr

io
ri

ty

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

A Survey on Standards for Real-Time Distribution Middleware 49:35

the scheduling parameters, even for threads created internally by middleware. This
would avoid potential unbounded priority inversions.

—Enabling Free Assignment of Scheduling Parameters: Scheduling parameters should
be assignable without restrictions throughout the chain of entities that compose the
distributed system in order to maximize the schedulability of the system.

—Support for Different Scheduling Policies: Although the fixed priority scheduling pol-
icy is the most popular and widespread today, there are scenarios where the use
of other policies, such as EDF or flexible scheduling based on contracts, could be
more appropriate. Therefore, it would be desirable that real-time distribution stan-
dards can provide homogeneous support for the configuration of different scheduling
policies.

—Bound the Effect of Priority Inversion: Middleware should provide sufficient support
to guarantee the predictability of the distributed system. On the one hand, by provid-
ing mechanisms to facilitate the configuration of synchronization protocols in access
to critical sections and, on the other hand, by ensuring a maximum size for network
messages.

—Documentation of the Overhead Introduced by Implementations: In the analysis of a
distributed real-time application, practitioners should be able to consider and evalu-
ate each entity involved in the system, even those created internally by middleware
(e.g., the internal threads for I/O management or the network messages belonging
to metatraffic). The role and influence of these built-in entities must be clearly spec-
ified by the implementation, as these entities can increase the response times of the
system by consuming processor and/or network resources. Therefore, distribution
standards should include it as implementation requirements.

—Enabling Timing Analysis of the Complete Application: Although middleware is exe-
cuted in the processor, the temporal behavior of the networks has a strong influence
on the overall response times. Moreover, in many cases, both networks and proces-
sors should be scheduled together with appropriate techniques; therefore, middle-
ware should have the ability to specify the scheduling parameters of both processing
resources.

Although distribution standards play a central role in the current development of
distributed real-time systems, they usually provide limited support for the real-time
configuration of applications. Future advances in the research directions indicated
in this survey should help resolve the key open issues identified, such as the real-
time mechanisms to bound the effect of priority inversion, the support for different
scheduling policies, or the free assignment of any of the scheduling parameters involved
in a remote call (i.e., the parameters related to user-defined and built-in schedulable
entities for both processors and communication networks).

Regarding high-integrity systems, traditionally this kind of system does not consider
the use of distribution standards, because they were not designed with safety-critical
systems in mind, and some of their features are hard to certify. This opens up an
important research field to apply communication middleware based on distribution
standards in, for example, ARINC partitioned systems.

ACKNOWLEDGMENTS

The authors want to thank the anonymous reviewers for their many detailed comments that have allowed
the article to be enhanced significantly.

REFERENCES

M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M. Drake, G. Fohler, P. Gai, M. González Harbour,
G. Guidi, J. J. Gutiérrez, T. Lennvall, G. Lipari, J. M. Martı́nez, J. L. Medina, J. C. P. Gutiérrez, and M.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

49:36 H. Pérez and J. J. Gutiérrez

Trimarchi. 2006. FSF: A real-time scheduling architecture framework. In Proceedings of the IEEE Real
Time Technology and Applications Symposium. 113–124.

Altran Praxis. 2011. SPARK—the SPADE Ada Kernel (including RavenSPARK), Edition 7.2.
M. Amoretti, S. Caselli, and M. Reggiani. 2006. Designing distributed, component-based systems for indus-

trial robotic applications. In Industrial Robotics: Programming, Simulation and Applications, Low Kin
Huat (Ed.). ISBN: 3-86611-286-6, InTech, DOI:10.5772/4892.

J. S. Anderson and E. D. Jensen. 2006. Distributed real-time specification for Java: A status report (digest).
In Proceedings of the 4th International Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES’06). ACM, New York, NY, 3–9.

ARINC. ARINC Specification 653p1. 2006. Avionics application software standard interface (ARINC-653).
ARINC. ARINC Specification 664p7. 2009. Aircraft data network, part 7—Avionics Full Duplex Switched

Ethernet (AFDX) network.
N. Audsley and A. Wellings. 2001. Issues with using Ravenscar and the Ada Distributed Systems Annex for

high-integrity systems. Ada Letters XXI, 33–39.
T. P. Baker, 1991. Stack-based scheduling for realtime processes. Real-Time Systems 3, 67–99.
J. Bard and V. J. Kovarik. 2007. Software Defined Radio: The Software Communications Architecture. Wiley-

Blackwell. ISBN: 0-47086-518-0.
P. Basanta-Val, M. Garcı́a-Valls, and I. Estévez-Ayres. 2010. An architecture for distributed real-time Java

based on RMI and RTSJ. In Proceedings of the IEEE Conference on Emerging Technologies and Factory
Automation (ETFA). 1–8.

G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon, T. Fitzpatrick,
L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski. 2001. The design and implementation of
open ORB 2. In IEEE Distributed Systems Online, Vol. 2.

G. Bollella and J. Gosling. 2000. The real-time specification for Java. IEEE Computer 33, 6, 47–54.
J. L. Campos, J. J. Gutiérrez, and M. G. Harbour. 2004. The chance for Ada to support distribution and

real-time in embedded systems. In Reliable Software Technologies—Ada-Europe 2004, A. Llamosı́ and
A. Strohmeier (Eds.). Lecture Notes in Computer Science, Vol. 3063. Springer, 91–105.

J. L. Campos, J. J. Gutiérrez, and M. G. Harbour. 2006. Interchangeable scheduling policies in real-time
middleware for distribution. In Proceedings of the 11th Ada-Europe International Conference on Reliable
Software Technologies. Lecture Notes in Computer Science, Vol. 4006. Springer, 227–240.

A. Corsaro and D. C. Schmidt. 2012. The data distribution service—the communication middleware fabric for
scalable and extensible systems-of-systems. In System of Systems, Dr. Adrian V. Gheorghe (Ed.). ISBN:
978-953-51-0101-7, InTech, DOI:10.5772/30322.

R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM
Computing Surveys 43, 4, 35:1–35:44.

A. Dubey, G. Karsai, and N. Mahadevan. 2011. A component model for hard real-time systems: CCM
with ARINC-653. Software: Practice and Experience (SPE) 41, 12, 1517–1550. DOI:10.1002/spe.1083.
http://dx.doi.org/10.1002/spe.1083

M. Felser. 2001. Ethernet TCP/IP in automation: A short introduction to real-time requirements. In Pro-
ceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation,
Vol. 2. 501–504.

G. Fohler and G. C. Buttazzo. 2002. Introduction to the Special Issue on Flexible Scheduling, Vol. 22. Springer
Netherlands. 10.1023/A:1013489610047.

A. Foster and S. Aslam-Mir. 2005. Practical experiences using the OMG’s Extensible Transport Frame-
work (ETF) under a real-time Corba ORB to implement QoS sensitive custom transports for SDR. In
Proceedings of the SDR Technical Conference and Product Exposition.

E. Freeman, S. Hupfer, and K. Arnold. 1999. JavaSpaces: Principles, Patterns, and Practice. Addison-Wesley,
Reading, MA.

FRESCOR. Framework for Real-Time Embedded Systems Based on COntRacts. 2006. Project Web page.
Retrieved September 2013 from http://www.frescor.org

M. Gillen, J. Loyall, K. Z. Haigh, R. Walsh, C. Partridge, G. Lauer, and T. Strayer. 2012. Information dissem-
ination in disadvantaged wireless communications using a data dissemination service and content data
network. In Proceedings of the SPIE Conference on Defense Transformation and Net-Centric Systems,
Vol. 8405.

A. Gokhale, K. Balasubramanian, A. S. Krishna, J. Balasubramanian, G. Edwards, G. Deng, E. Tukay,
J. Parsons, and D. C. Schmidt. 2008. Model driven middleware: A new paradigm for developing dis-
tributed real-time and embedded systems. Science of Computer Programming 73, 1, 39–58.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http://dx.doi.org/10.1002/spe.1083
http://www.frescor.org

A Survey on Standards for Real-Time Distribution Middleware 49:37

C. Grelck, J. Julku, and F. Penczek. 2012. Distributed S-Net: Cluster and grid computing without the hassle.
In Proceedings of the 12th IEEE /ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). 410–418.

J. J. Gutiérrez and M. Harbour. 1999. Prioritizing remote procedure calls in Ada distributed systems. Ada
Letters XIX, 67–72.

J. J. Gutiérrez and M. Harbour. 2001. Towards a real-time distributed systems annex in Ada. Ada Letters
XXI, 62–66.

M. T. Higuera-Toledano. 2012. Adaptive distributed embedded and real-time Java systems based on RTSJ. In
Proceedings of the 15th IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW). 164–171.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. 2008. From the prototype to the final embedded system using
the Ocarina AADL toolsuite. ACM Transactions in Embedded Computing Systems 7, 4, 1–25.

IEEE: The Institute of Electrical and Electronics Engineers STD 802.1D. 2004. Media Access Control (MAC)
bridges. http://www.ieee802.org/1/pages/802.1D.html

IEEE: The Institute of Electrical and Electronics Engineers STD 802.1Q. 2006. Virtual bridged local area
networks. Annex G. http://www.ieee802.org/1/pages/802.1Q.html

IEEE: The Institute of Electrical and Electronics Engineers STD 802.1Qbb. 2011. Priority-based flow-control.
http://www.ieee802.org/1/pages/802.1bb.html

ISO/IEC. 2006. Taft, S. T., Duff, R. A., Brukardt, R., Ploedereder, E., and Leroy, P. 2006. Ada 2005 Reference
Manual. Language and Standard Libraries—International Standard ISO/IEC 8652 (E) with Technical
Corrigendum 1 and Amendment 1. Lecture Notes in Computer Science, Vol. 4348. Springer.

ISO/IEC. 2012. Ada 2012 Reference Manual. Language and Standard Libraries—International Standard
ISO/IEC 8652:2012(E).

E. D. Jensen, C. D. Locke, and H. Tokuda. 1985. A time-driven scheduling model for real-time systems. In
Proceedings of IEEE Real-Time Systems Symposium. 112–122.

Y. Kermarrec. 1999. CORBA vs. Ada 95 DSA: A programmer’s view. Ada Letters XIX, 39–46.
K. H. Kim. 2000. Object-oriented real-time distributed programming and support middleware. In Proceedings

of the 7th International Conference on Parallel and Distributed Systems (ICPADS). IEEE Computer
Society, Washington, DC, 10–20.

R. Klefstad, D. C. Schmidt, and C. O’Ryan. 2002. Towards highly configurable real-time object request bro-
kers. In Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). 437–447.

H. Kopetz. 2011. Real-Time Systems: Design Principles for Distributed Embedded Applications (2nd ed.,
XVIII). Springer.

S. Lankes, A. Jabs, and T. Bemmerl. 2003. Integration of a CAN-based connection-oriented communica-
tion model into real-time Corba. In Proceedings of the 17th International Symposium on Parallel and
Distributed Processing (IPDPS). IEEE Computer Society, Washington DC, 121–129.

J. W. S. Liu. 2000. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ.
C. L. Liu and J. W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time envi-

ronment. Journal of the ACM 20, 46–61.
T. Losert, W. Huber, K. Hendling, and M. Jandl 2004. An extensible transport framework for Corba with

emphasis on real-time capabilities. In Proceedings of the 2nd IEEE International Conference on Compu-
tational Cybernetics (ICCC). 155–161.

A. K. Mok. 1983. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment.
Ph.D. Dissertation. Massachusetts Institute of Technology.

MultiPARTES. Multi-Cores Partitioning for Trusted Embedded Systems (2011–2014). Project Web page.
Retrieved September 2013 from http://www.multipartes.eu

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. 2010. S4: Distributed stream computing platform. In
Proceedings of the IEEE International Conference on Data Mining (ICDM). 170–177.

K. Nichols, S. Blake, F. Baker, and D. Black. 1998. Definition of the differentiated services field (DS field) in
the Ipv4 and Ipv6 headers.

OMG. 2004. Extensible transport framework.
OMG. 2005. Realtime Corba Specification. v1.2. http://www.omg.org/spec/RT/1.2/
OMG. 2007. Data Distribution Service for Real-Time Systems. v1.2. http://www.omg.org/spec/DDS/1.2/
OMG. 2009. The Real-Time Publish-Subscribe Wire Protocol. DDS interoperability wire protocol specifica-

tion. v2.1. http://www.omg.org/spec/DDSI/2.1/
OMG. 2011. Corba Core Specification. v3.2. http://www.omg.org/spec/CORBA/3.2/

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http://www.ieee802.org/1/pages/802.1D.html
http://www.ieee802.org/1/pages/802.1Q.html
http://www.ieee802.org/1/pages/802.1bb.html
http://www.multipartes.eu
http://www.omg.org/spec/RT/1.2/
http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDSI/2.1/
http://www.omg.org/spec/CORBA/3.2/

49:38 H. Pérez and J. J. Gutiérrez

OMG. 2012. Extensible and Dynamic Topic Types for DDS. v1.0. http://www.omg.org/spec/DDS-XTypes/1.0/
C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and . J. Parsons. 2000. The design and performance of a

pluggable protocols framework for real-time distributed object computing middleware. In Proceedings of
the IFIP/ACM International Conference on Distributed Systems Platforms. Springer-Verlag, New York,
372–395.

L. Pautet and S. Tardieu. 2000. Glade: A framework for building large object-oriented real-time distributed
systems. In Proceedings of ISORC. 244–251.

P. Pedreiras, R. Leite, and L. Almeida. 2003. Characterizing the real-time behavior of prioritized Switched-
Ethernet. In Proceedings of the 2nd Workshop on Real-Time LANs in the Internet Age (RTLIA).

S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. Henia, R. Racu, R. Ernst, and M. G.
Harbour. 2007. Influence of different system abstractions on the performance analysis of distributed
real-time systems. In Proceedings of the 7th ACM & IEEE International Conference on Embedded
Software (EMSOFT’07). ACM, New York, NY, 193–202.

H. Pérez and J. J. Gutiérrez. 2009. Experience in integrating interchangeable scheduling policies into a
distribution middleware for Ada. In Proceedings of the ACM SIGAda Annual International Conference
on Ada and Related Technologies, ACM, New York, 73–78.

H. Pérez and J. J. Gutiérrez. 2012. On the schedulability of a data-centric real-time distribution middleware.
Computer Standards and Interfaces 34, 1, 203–211.

H. Pérez and J. J. Gutiérrez. 2013. Experience with the integration of distribution middleware into parti-
tioned systems. In Proceedings of the 17th Ada-Europe International Conference on Reliable Software
Technologies. Lecture Notes in Computer Science, Vol. 7896. Springer, 1–16.

H. Pérez, J. J. Gutiérrez, and M. Harbour. 2012. Adapting the end-to-end flow model for distributed Ada to
the Ravenscar profile. Ada Letters 33, 1, 53–63.

H. Pérez, J. J. Gutiérrez, D. Sangorrı́n, and M. Harbour. 2008. Real-time distribution middleware from the
Ada perspective. In Proceedings of the 13th Ada-Europe International Conference on Reliable Software
Technologies, F. Kordon and T. Vardanega (Eds.). Lecture Notes in Computer Science, Vol. 5026. Springer,
268–281.

M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J. Hugues. 2010. The TASTE toolset: Turning hu-
man designed heterogeneous systems into computer built homogeneous software. In Proceedings of the
European Congress on Embedded Real-Time Software (ERTS’10). Toulouse, France.

I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt. 2001. Evaluating and optimizing thread pool strate-
gies for real-time CORBA. In Proceedings of the 2001 ACM SIGPLAN Workshop on Optimization of
Middleware and Distributed Systems. ACM, New York, NY, 214–222.

R. Rekik and S. Hasnaoui. 2009. Application of a can bus transport for DDS middleware. In Proceedings
of the 2nd International Conference on the Applications of Digital Information and Web Technologies
(ICADIWT). 766–771.

R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz. 2009.
MUSIC: Middleware support for self-adaptation in ubiquitous and service-oriented environments. In
Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, Vol. 5525. Springer-
Verlag, Berlin, Heidelberg, 164–182.

M. Ryll and S Ratchev. 2008. Application of the data distribution service for flexible manufacturing automa-
tion. International Journal of Aerospace and Mechanical Engineering 2, 3, 193–200.

D. C. Schmidt. 1998. Evaluating architectures for multithreaded object request brokers. Communications of
the ACM 41, 10, 54–60.

D. C. Schmidt. 2005. TAO Developer’s Guide: Building a Standard in Performance. Object Computing, Inc.
D. C. Schmidt, A. Corsaro, and H. V. Hag. 2008. Addressing the challenges of tactical information manage-

ment in net-centric systems with DDS. Journal of Defense Software Engineering, 24–29.
D. C. Schmidt and C. D. Cranor. 1996. Pattern Languages of Program Design 2. Addison-Wesley Longman,

Boston, MA, 437–459.
D. C. Schmidt, D. L. Levine, and S. Mungee. 1998. The design of the TAO real-time object request broker.

Computer Communications 21, 4, 294–324.
D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale. 2001. Software architectures for reducing pri-

ority inversion and non-determinism in real-time object request brokers. Journal of Real-Time Systems
21, 2, 77–125.

L. Sha, T. Abdelzaher, K. Arzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. Mok. 2004. Real time scheduling theory: A historical perspective. Journal of Real-Time Systems 28,
2–3, 101–155. DOI:10.1023/B:TIME.0000045315.61234.1e.

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http://www.omg.org/spec/DDS-XTypes/1.0/

A Survey on Standards for Real-Time Distribution Middleware 49:39

L. Sha, R. Rajkumar, and J. P. Lehoczky. 1990. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers 39, 9, 1175–1185.

Sun Microsystems. 2000. JSR-50: Distributed Real-Time Specification. http://jcp.org/en/jsr/detail?id=50
Sun Microsystems. 2002. JavaTM Message Service Specification. v1.1. http://www.oracle.com/technetwork/

java/docs-136352.html
Sun Microsystems. 2004. Java Remote Method Invocation (RMI). http://www.oracle.com/technetwork/java/

javase/tech/index-jsp-136424.html
Sun Microsystems. 2012. Distributed Real-Time Specification (Early draft) http://jcp.org/en/egc/download

/drtsj.pdf?id=50&fileId=5028
D. Tejera, A. Alonso, and M. A. de Miguel. 2007. RMI-HRT: Remote method invocation—hard real time.

In Proceedings of the 5th International Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES’07). ACM, New York, NY, 113–120.

The Open Group. 1997. DCE: Remote Procedure Calls. v1.2.2. https://www2.opengroup.org/ogsys/jsp/
publications/PublicationDetails.jsp?catalogno=t151x

The Open Group. 1998. POSIX .13 IEEE Std. 1003.13-1998. Information Technology—Standardized Appli-
cation Environment Profile—POSIX Realtime Application Support (AEP). DOI:10.1109/IEEESTD.1999.
90558

The Open Group. 2010. Safety Critical Specification for Java. Draft Version 0.78. http://jcp.org/en/jsr/detail?id
=302

S. Urueña and J. Zamorano. 2007. Building high-integrity distributed systems with Ravenscar restrictions.
Ada Letters XXVII 2, 29–36.

T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. 2004. PolyORB: A schizophrenic middleware to build
versatile reliable distributed applications. In Proceedings of Ada-Europe (2004-05-04), A. Llamosı́ and
A. Strohmeier (Eds.). Lecture Notes in Computer Science, Vol. 3063. Springer, 106–119.

J. Vila-Carbó, J. Tur-Masanet, and E. Hernández-Orallo. 2008. An evaluation of Switched Ethernet and
Linux traffic control for real-time transmission. In Proceedings of the ETFA, 400–407.

C. Zhang and V. Tsaoussidis. 2001. TCP-real: Improving real-time capabilities of TCP over heterogeneous
networks. In Proceedings of the 11th International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV’01). ACM, New York, NY, 189–198.

Received October 2012; revised January 2013; accepted September 2013

ACM Computing Surveys, Vol. 46, No. 4, Article 49, Publication date: March 2014.

http:sol;sol;jcp.orgsol;ensol;jsrsol;detailquest;id=50
http:sol;sol;www.oracle.comsol;technetworksol;javasol;docs-136352.html
http:sol;sol;www.oracle.comsol;technetworksol;javasol;docs-136352.html
http:sol;sol;www.oracle.comsol;technetworksol;javasol;javasesol;techsol;index-jsp-136424.html
http:sol;sol;www.oracle.comsol;technetworksol;javasol;javasesol;techsol;index-jsp-136424.html
http:sol;sol;jcp.orgsol;ensol;egcsol;downloadsol;drtsj.pdfquest;id=50amp;fileId=5028
http:sol;sol;jcp.orgsol;ensol;egcsol;downloadsol;drtsj.pdfquest;id=50amp;fileId=5028
https:sol;sol;www2.opengroup.orgsol;ogsyssol;jspsol;publicationssol;PublicationDetails.jspquest;catalognoequals;t151x
https:sol;sol;www2.opengroup.orgsol;ogsyssol;jspsol;publicationssol;PublicationDetails.jspquest;catalognoequals;t151x
http:sol;sol;jcp.orgsol;ensol;jsrsol;detailquest;id=302
http:sol;sol;jcp.orgsol;ensol;jsrsol;detailquest;id=302

