
54

A Survey on Server-Side Approaches to Securing Web Applications

XIAOWEI LI and YUAN XUE, Vanderbilt University

Web applications are one of the most prevalent platforms for information and service delivery over the
Internet today. As they are increasingly used for critical services, web applications have become a popular
and valuable target for security attacks. Although a large body of techniques have been developed to fortify
web applications and mitigate attacks launched against them, there has been little effort devoted to drawing
connections among these techniques and building the big picture of web application security research.

This article surveys the area of securing web applications from the server side, with the aim of sys-
tematizing the existing techniques into a big picture that promotes future research. We first present the
unique aspects of the web application development that cause inherent challenges in building secure web
applications. We then discuss three commonly seen security vulnerabilities within web applications: input
validation vulnerabilities, session management vulnerabilities, and application logic vulnerabilities, along
with attacks that exploit these vulnerabilities. We organize the existing techniques along two dimensions:
(1) the security vulnerabilities and attacks that they address and (2) the design objective and the phases
of a web application during which they can be carried out. These phases are secure construction of new
web applications, security analysis/testing of legacy web applications, and runtime protection of legacy web
applications. Finally, we summarize the lessons learned and discuss future research opportunities in this
area.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms: Security

Additional Key Words and Phrases: Web application security, input validation vulnerability, session man-
agement vulnerability, application logic vulnerability

ACM Reference Format:
Xiaowei Li and Yuan Xue. 2014. A survey on server-side approaches to securing web applications. ACM
Comput. Surv. 46, 4, Article 54 (March 2014), 29 pages.
DOI: http://dx.doi.org/10.1145/2541315

1. INTRODUCTION

The World Wide Web has evolved from a system that delivers static pages to a platform
that supports distributed applications, known as web applications, and has become one
of the most prevalent technologies for information and service delivery. The increasing
popularity of web application can be attributed to several factors, such as remote acces-
sibility, cross-platform compatibility, and fast development. Asynchronous JavaScript
and XML (AJAX) technology also enhances the user experience of web applications
with better interactiveness and responsiveness.

Authors’ addresses: X. Li, Department of Electrical Engineering and Computer Science, Vanderbilt Univer-
sity, 400 24th Ave. South, Nashville , TN 37203; Y. Xue, Department of Electrical Engineering and Computer
Science, Vanderbilt University, 400 24th Ave. South, Nashville, TN 37203. This work was supported by
NSF TRUST (the Team for Research in Ubiquitous Secure Technology) Science and Technology Center
(CCF-0424422).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/03-ART54 $15.00

DOI: http://dx.doi.org/10.1145/2541315

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

http://dx.doi.org/10.1145/2541315
http://dx.doi.org/10.1145/2541315

54:2 X. Li and Y. Xue

As web applications are increasingly used to deliver critical services, they become
a valuable target for security attacks. Many web applications interact with back-end
database systems, which may store sensitive information (e.g., financial, health). A
compromised web application could result in an enormous information breach, severe
financial losses, and ethical and legal consequences. A breach report from Verizon
[2010] shows that web applications are at the top in both the number of breaches and
the amount of data compromised.

The Web platform is a complex ecosystem composed of a large number of components
and technologies, including the HTTP protocol, web server and server-side application
development technologies (e.g., CGI, PHP, and ASP), and web browser and client-
side technologies (e.g., JavaScript and Flash). Web applications built and hosted upon
such a complex infrastructure enjoy a rapid and wide user adoption, thanks to the
rich features of these components. However, the inconsistencies among different tech-
nologies migrate the challenge of ensuring security to web application development.
Meanwhile, current web application development and testing frameworks offer limited
security support. As a result, web application development is an error-prone process,
and implementation of security measures requires substantial efforts. These efforts
could be unrealistic under time-to-market pressure, especially for people with insuffi-
cient security skills or awareness. As a result, a high percentage of web applications
deployed on the Internet are exposed to security vulnerabilities. According to a report
by the Web Application Security Consortium, 49% of the web applications reviewed
contain vulnerabilities considered high risk and more than 13% of the websites can
be compromised completely [WASS 2007]. A recent report [WhiteHat 2010] revealed
that more than 80% of the websites on the Internet have had at least one serious
vulnerability.

Motivated by the urgent need to secure web applications, a substantial amount
of research efforts have been devoted to this problem, developing a large number
of techniques for hardening web applications and mitigating attacks. Many of these
techniques make assumptions about the web technologies used in the application de-
velopment and only address one particular type of security flaw. Additionally, the
prototypes are usually implemented and evaluated on limited platforms. Practition-
ers often face a dilemma in selecting suitable techniques that meet their development
needs—whether a technique can be directly applied; and if not, whether several tech-
niques can be extended and/or combined. Thus, there is an urgent need to provide a
systematic framework for uncovering the connection between the existing techniques.
This survey marks an initial attempt toward such a framework.

In this article, we survey the state of the art in securing web applications, with a
focus on approaches that are deployed on the server side. In particular, this survey
covers the techniques that consider the following threat model: (1) the web applica-
tion itself is benign (i.e., not hosted or owned for malicious purposes) and hosted on
a trusted and hardened infrastructure (i.e., a trusted computing base, including OS,
web server, interpreter, etc.); and (2) the attacker is able to manipulate either the con-
tents or the sequence of web requests sent to the web application but cannot directly
compromise the infrastructure or the application code. Although this survey focuses
on server-side techniques for securing web applications, it also covers techniques re-
quiring collaboration between client and server. We note here that although browser
security Wang et al. [2009] and Tang et al. [2010] is also an essential component in
end-to-end web application security, research works on this topic usually have a dif-
ferent threat model, where web applications are considered as potentially malicious.
This survey does not include the research works on browser security so that it can
focus on the problem of building secure web applications and protecting vulnerable
ones.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:3

Fig. 1. Overview of web application.

Although there are several existing surveys in the web application security area, they
either focus on one particular type of attack (e.g., XSS [Garcı́a-Alfaro and Navarro-
Arribas 2009], SQL injection [Halfond et al. 2006]) or summarize one class of tech-
niques that can be applied (e.g., vulnerability analysis [Cova et al. 2007b], detection
[Garcia-Alfaro and Navarro-Arribas 2008]). To the best of our knowledge, this is the
first comprehensive survey covering a wide range of attacks—from input validation
attacks to application logic attacks—and three categories of server-side defense tech-
niques, including secure construction, vulnerability analysis and testing, and runtime
protection.

The structure of this survey is as follows. Section 2 describes how a web application
works and the unique characteristics of web application development. Section 3 de-
scribes three types of commonly seen security vulnerabilities within web applications,
as well as the attack vectors that exploit these vulnerabilities. Section 4 classifies ex-
isting research works into three categories: secure construction of new applications,
security analysis and testing of legacy applications, and runtime protection of legacy
applications, and present the state of the art systematically. Finally, Section 5 summa-
rizes this article by identifying several evolving trends in the area of web application
security and the new challenges that are expected ahead.

2. UNDERSTANDING UNIQUE CHARACTERISTICS OF WEB APPLICATIONS

Web application is a client-server application that is executed over the Web platform.
It is an integral part of today’s Web ecosystem that enables dynamic information and
service delivery. As shown in Figure 1, a web application consists of code on both the
server side and the client side. On the server side, a web application receives user
inputs via HTTP requests from the client (i.e., browser) and interacts with local file
systems, back-end databases, or other components for data access and information re-
trieval. Its outputs (i.e., HTML pages) are sent to the client through HTTP responses.
On the client side, HTML pages are rendered, and the client-side code (i.e., JavaScript)
embedded in the HTTP responses is executed by the web browser. The client-side code
can also communicate with the server-side code asynchronously without interfering
with the display of the existing HTML page via AJAX and dynamically update the
page. Currently, some programming libraries and frameworks (e.g., Rails and Django)
are developed to facilitate rapid application development. For example, most web de-
velopment frameworks provide session management functions, which developers can
directly leverage to manage the web sessions.

The execution model of web applications is radically different from traditional appli-
cations. The development of web applications also faces challenges that are not ordinar-
ily encountered in the development of traditional applications. First, in the open web
environment, user inputs are potentially dangerous and can never be trusted. Input

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:4 X. Li and Y. Xue

validation is an important part of a web application to identify and sanitize untrusted
user inputs. Although input validation is an essential function required by all types
of applications, its implementation in web applications is much more challenging due
to the unique features of web development technologies. Second, the communication
between the client and the web application is carried out through the stateless HTTP
protocol. As a result, multiple inputs from the same user will appear to be independent
users to the web application. The web application has to employ session management
in order to correlate the web requests from the same user into a web session. Finally, a
web application is usually implemented as a number of modules with URLs as their en-
try points. This allows a user to directly access the application modules in an arbitrary
order. Recently, AJAX applications provide users with a richer and more responsive
experience by moving part of the computation to the client side, which avoids unnec-
essary network round trips. Since the computing results from the client side can never
be trusted, additional validation of these results is required on the server side. These
unique features significantly complicate the logic implementation of a web application,
which needs to enforce the application’s control flow between the client and the server
and across different modules. These three aspects of web application development are
described in the following sections.

2.1. Input Validation

User inputs can never be trusted and need to be validated or sanitized before they can
be utilized by web applications. Usually, web developers employ sanitization routines
(i.e., sanitizers) to transform user inputs into trusted data by filtering or escaping
suspicious characters or constructs. Web applications allow developers to blend several
types of constructs in one file for runtime interpretation. For instance, a PHP file may
contain both static HTML tags and PHP statements, and an HTML page may embed
executable JavaScript code. The representation of application data and code via an
unstructured sequence of bytes is a unique feature of web application. While enhancing
the development efficiency, this unique feature complicates the input validation of
web applications, since developers have to anticipate the contexts where and how
user inputs are utilized that pose different sanitization requirements (i.e., context-
sensitive sanitization). For instance, applying the default HTML escaping sanitizer is
recommended for sanitizing the values inside HTML tags; however, this sanitizer is
insufficient for sanitizing values within URL attributes (such as src or href), since the
URI attribute of the script tag can embed malicious code [Samuel et al. 2011].

2.2. Session Management

Web applications adopt an abstraction of a web session to identify and correlate a
series of web requests from the same user during a certain period of time. A set of
session variables (or session data) is associated with a web session and can be used
by the application to record the conditions from the historical web requests that affect
the future execution of the web application (i.e., application session state). The session
variables can be maintained either at the client side (via a cookie, a hidden form, or
URL rewriting) or at the server side (in a file or using a database). In the latter case,
a unique identifier (session ID) is defined to index the explicit session variables stored
at the server side and issued to the client. Most web programming languages (e.g.,
PHP and JSP) and frameworks offer developers a collection of functions for managing
the web session. For example, in PHP, session_start() can be called to initialize a web
session, and a predefined global array $_SESSION can be employed to contain the
session variables. In either case, the client plays a vital role in maintaining the session
information.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:5

2.3. Logic Implementation

A web application’s logic is usually implemented through enforcing the control flow
of the application and protecting sensitive information and operations, which can be
achieved explicitly through security checks in the source code or implicitly through
the navigation paths presented to users (i.e., interface hiding). Explicit security checks
examine the application state, which is maintained by session variables and persis-
tent objects in the database, before sensitive information and operations can be ac-
cessed. However, interface hiding only allows accessible resources and operations to
be presented as web links exposed to users. Many web applications share common
components in their business logic. For instance, authentication and authorization are
the most common part of the control flow in many web applications through which
a web application restricts its sensitive information and privileged operations from
unauthorized users. A common practice is for developers to place authorization checks
on certain security critical variables before all sensitive information and operations.
These variables can include client-side cookies, session variables, and persistent ob-
jects in the database. In AJAX applications, the application functionality needs to be
split in such a way that all required security checks are performed on the server.

3. UNDERSTANDING WEB APPLICATION VULNERABILITIES AND ATTACKS

In general, there are three types of security vulnerabilities within web applications
at different levels: input validation vulnerability at the single request level, session
management vulnerability at the session level, and application logic vulnerability at
the level of the whole application. In what follows, we describe the three types of
vulnerabilities and the common attacks that exploit them.

3.1. Input Validation Vulnerabilities

A common security practice is input data validation, since user input data cannot be
trusted. Data validation is the process of ensuring that a program operates on clean,
correct, and useful input data. When inputs are not sufficiently or correctly validated,
attackers are able to craft malformed inputs, which can alter program executions and
gain unauthorized access to resources. Input validation vulnerability is a long-lived
problem in software security. Incorrect or insufficient input validation could invite a
variety of attacks, such as buffer overflow attacks and code injection attacks.

Web applications may contain a wide range of input validation vulnerabilities. Since
the entire web request, including request headers and payload data, is under the com-
plete control of users, a web application has to ensure that user inputs are processed
and utilized in a secure way during the execution. Web applications with input vali-
dation vulnerabilities are susceptible to a class of attacks usually referred to as script
injections, dataflow attacks, or input validation attacks. This type of attack usually em-
beds malicious scripts within web requests with the goal of injecting them into trusted
web contents composed by the web application. As a result, the structural integrity of
the web application output is violated. Thus, input validation attacks can manifest as
both malformed input and output of the application.

These attacks can be generally categorized by the locations where malicious scripts
get executed. For example, directory traversal attacks aim to access unauthorized
directories within the local file system by embedding “../” (dot dot slash) characters.
OS/command injections happen when the operating system executes malicious shell
commands injected through web requests. Currently, input validation attacks are seen
as the most dangerous and popular attacks against web application security, which
manifest as the top 2 security risks (i.e., injections, cross-site scripting [XSS]) from
OWASP top-10 security risks [OWASP Top 10 2013].

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:6 X. Li and Y. Xue

In what follows, we review two most popular injection attacks, namely SQL injection
and XSS. Most defense techniques against input validation attacks focus on these two
attacks.

3.1.1. SQL Injection. A web application is vulnerable to SQL injection attacks when
malicious content can flow into SQL queries without being fully sanitized, which al-
lows the attacker to trigger malicious SQL operations by injecting SQL keywords or
operators. For example, the attacker can append a separate SQL query to the existing
query, causing the application to drop the entire table or manipulate the return result.
Malicious SQL statements can be introduced into a vulnerable application using many
different input mechanisms [Halfond et al. 2006], including user inputs, cookies, and
server variables. A special case of SQL injection is second-order SQL injection, where
the attacker stores the malicious content into the database and triggers its execution
at a later time. Second-order SQL injection is much more difficult to identify and can
bypass insufficient sanitization functions. SQL injections can lead to authentication
bypass, information disclosure, and other problems. More details can be found in the
survey entirely dedicated to SQL injections [Halfond et al. 2006].

3.1.2. Cross-Site Scripting. A web application is vulnerable to XSS attacks when mali-
cious contents can flow into web responses without being fully sanitized, which allows
the attacker to execute malicious scripts in victims’ browsers, since the web browser
trusts the contents returned by the web application under the same-origin policy. Com-
mon consequences of XSS attacks include disclosure of users’ sensitive information,
such as cookie details and credit card information. XSS also frequently serves as the
first step that enables more sophisticated attacks (e.g., the notorious MySpace Samy
worm [MySpace 2005]). There are several variants of XSS attacks based on how the ma-
licious scripts are injected. Reflected XSS is launched when the victim clicks a crafted
web link, which echoes back the XSS payload through the web application and enables
its execution. Persistent (second-order) XSS happens when the malicious scripts are
sent to the application back-end database as, for example, forum posts and comments,
and stored for a period of time. The malicious scripts are triggered by the victim later
when he visits a web page that contains the scripts. DOM-based XSS occurs when the
malicious scripts are injected into the client-side JavaScript code for execution, even
without sending to the server side. It is worth noting that DOM-based XSS is extremely
difficult to handle using only server-side defenses. This does not cover all types of XSS,
as there are others left unmentioned (e.g., content-sniffing XSS [Barth et al. 2009] and
CSS-based XSS).

3.2. Session Management Vulnerabilities

Session management is essential for a web application to keep track of user inputs
and maintain application states. Within the OWASP top-10 security risks [OWASP
Top 10 2013], three are related to session management vulnerabilities: (1) Broken
Authentication and Session Management, (2) Cross-Site Request Forgery (CSRF), and
(3) Insufficient Transport Layer Protection.

In web application development, session management is accomplished through the
collaboration between the client and the server. A common approach is that the server
sends the client a unique identifier (i.e., a session ID) upon successful user authen-
tication, through which the server recognizes the client on subsequent requests and
indexes his session variables stored at the server side. Since session ID is the only proof
of the client’s identity, its confidentiality, integrity, and authenticity need to be ensured
to avoid session hijacking. First, the session ID should be random for each client’s visit
and expire after a short period of inactivity. Weak session identifier generation allows
attackers to hijack the victim’s web sessions by predicting his session ID. Second,

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:7

transmission of the session ID should always be protected by a secure transport layer
protocol (i.e., over SSL). Otherwise, attackers are able to sniff the session ID and
hijack the session. Third, the client needs to make sure that his session ID is provided
by the server and is unique. Adopting a session ID from an external source opens up
a vulnerability to session fixation, where attackers can set the session ID to a value
that is known to them.

Securing the session ID alone is not sufficient for secure session management. Ses-
sion hijacking can also be achieved through malicious web requests that are associated
with a valid session ID. CSRF is a popular attack of this type, where attackers trick
the victim into sending crafted web requests on their behalf. The vulnerable web ap-
plication cannot differentiate if the incoming web requests are malicious, since they
are associated with valid session information. For example, attackers may forge a web
request that instructs a vulnerable banking website to transfer the victim’s money to
his account. Login CSRF [Gmail CSRF Security Flaw 2007], on the other hand, tricks
the victim into logging in to a target website using the attacker’s credential through
a forged request. This attack allows the attacker to harvest the information about the
victim’s activities under the attacker’s account.

3.3. Application Logic Vulnerabilities

The decentralized structure of web applications poses significant challenges to the im-
plementation of business logic. First, since web application modules can be accessed
directly through their URLs, interface hiding mechanism has been commonly used as a
measure for access control in web applications. However, this mechanism alone, which
follows the principle of “security by obscurity,” is not sufficient to enforce the control
flow of a web application. Attackers can easily exploit hidden links to access unautho-
rized information or operations. Second, explicit security checks have to be placed by
developers manually before all sensitive operations. Since it is difficult to anticipate all
possible execution paths leading to sensitive operations, which are dispersed through-
out the web application, it is very likely that security checks are missing on certain
paths, allowing attackers to access sensitive operations. Third, developers usually send
redirection headers to users when security checks fail. However, under certain circum-
stances, redirection headers do not stop the application execution, which allows the
attacker to trigger sensitive operations even though the check fails. This vulnerability
is also referred to as Execution After Redirect (EAR) [Doupé et al. 2011]. In AJAX
applications, the application functionality is split between the client and the server.
Since the computation results at the client side can be manipulated by malicious users,
security checks need to be replicated at the server side to validate the results from the
client side. Inconsistent or missing validation at the server side may allow attackers
to tamper with the application business logic.

Application logic vulnerabilities highly depend on the intended functionality of a web
application. For example, a vulnerable e-commerce website may have a specific logic
vulnerability that allows attackers to apply the same coupon multiple times to reduce
prices. Despite the heterogeneous application functionalities, there are several types
of logic flaws that correspond to common business logic patterns in many applications.
One common type is access control vulnerability, which allows attackers to access
unauthorized sensitive information or operations. Another type is workflow violation,
which allows attackers to violate the intended steps within business workflows. For
example, a vulnerable e-commerce website may allow attackers to bypass the tax
calculation step during the checkout procedure.

Attacks that target application logic vulnerabilities are generally referred to as logic
attacks or state violation attacks. Depending on how attacks are launched, they can
be given several other terms. Forceful browsing [Sun et al. 2011] is one attack vector,

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:8 X. Li and Y. Xue

where attackers directly point to hidden but predictable web links to access sensitive
information. Parameter tampering [Bisht et al. 2010a] is launched by manipulating
certain values in web requests to exploit application logic.

Since logic attacks are idiosyncratic to their specific targets and manifest as syntac-
tically valid web requests, it is desirable to understand the application logic in order to
identify the malicious intentions behind those requests, which makes them extremely
challenging to be detected and mitigated. Three of the top-10 security risks for web
applications [OWASP Top 10 2013] can be attributed to application logic vulnerabil-
ities (i.e., Missing Functional Access Control, Insecure Direct Object Reference, and
Unvalidated Redirects and Forwards).

4. CATEGORIZING EXISTING TECHNIQUES

A large number of techniques have been proposed to secure web applications. These
techniques can be carried out during different phases of a web application’s life cycle
from development, review, and auditing to deployment. They usually have different
design objectives depending on the phase of defense. Based on these objectives, we
categorize these techniques into the following three classes.

(1) Secure Construction of New Web Applications: This class of techniques aims to
construct secure web applications, ensuring that no potential vulnerabilities are intro-
duced during the web application development. These techniques are usually carried
out through the design of new web programming languages or frameworks that are
built with security mechanisms, which root out certain types of vulnerabilities. Al-
though applicable to the development of new web applications, these techniques are
not suitable for fixing vulnerable legacy applications due to the huge amount of rede-
velopment effort that is required.

(2) Security Analysis/Testing of Legacy Web Applications: This class of techniques
aims to identify vulnerabilities within web applications through program analysis (usu-
ally referred to as vulnerability analysis1) and testing techniques. Additional efforts
have to be devoted to fix the identified vulnerabilities and retrofit the applications,
either manually or automatically. They are usually designed to handle a specific pro-
gramming language or framework and therefore cannot be easily extended to another.
A key challenge for this class of techniques is the trade-off between completeness
and correctness of vulnerability discovery. Static analysis, which examines application
source code without execution, tends to be more complete in vulnerability discovery
than dynamic analysis (including testing), which observes the application behavior
through execution. On the other hand, static analysis is also more likely to introduce
more false alerts, whereas dynamic analysis typically can guarantee the correctness
of the identified vulnerabilities through its capability of generating concrete attack
vectors.

(3) Runtime Protection of Legacy Web Applications: This class of techniques aims to
harden and protect potentially vulnerable web applications against external exploits
by building a runtime environment that supports its secure execution. They usually
either (a) place safeguards (e.g., HTTP proxy) that separate the web application from
other components (e.g., the browser, the database) in the Web ecosystem or (b) instru-
ment the infrastructure components (e.g., language runtime, web browser) to monitor
its runtime behavior and identify/quarantine potential exploits. These techniques are
usually scalable to handle a large number of web applications, even with different
languages or platforms, with a cost of performance overhead due to instrumentation.

In the following sections, we survey a number of techniques that have been proposed
recent years. We organize these techniques along two dimensions. The first dimension

1A previous survey [Cova et al. 2007b] specifically focuses on vulnerability analysis.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:9

Fig. 2. Summary of existing techniques.

is the security vulnerabilities that they address and the attacks that they aim to defeat;
the second dimension is the design objectives that they bear and the phases during
which they can be carried out. For each technique, we briefly review its design and
comment on its unique strengths and limitations. We also discuss open issues that
remain underaddressed in each area. Figure 2 shows a summary of techniques covered
in this survey.

4.1. Addressing Input Validation Vulnerabilities

The root cause for input validation vulnerabilities is that untrusted user inputs flow
into trusted web contents without being sufficiently and correctly sanitized, resulting

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:10 X. Li and Y. Xue

in an instance of insecure information flow. The information flow specification can be
applied to address input validation vulnerabilities. This specification is instantiated
for web applications as follows. First, all user inputs are marked as tainted at entry
points (i.e., sources) of a web application. Then, the tainted inputs are propagated
throughout the application through program statements (e.g., assignment) or functions
(i.e., propagators). Before the tainted inputs can reach security-sensitive operation
points (i.e., sinks), where they are utilized by the application (e.g., for composing SQL
queries or Web responses), they have to be sanitized correctly to become untainted and
safe for use.

Two techniques have to be carried out to enforce information flow specification. First,
in untrusted data separation, untrusted user inputs have to be reliably separated
and identified from the trusted web contents before they can be utilized by the web
application. In practice, this can be achieved through a number of techniques, such
as security-typed languages, strong typing, and taint tracking. Second, in untrusted
data handling, untrusted user inputs have to be handled and processed by the web
application in a secure way, ensuring that the structural integrity of the web contents
is preserved. In practice, there are two general approaches to handling user inputs.
One is to apply sanitization routines (i.e., sanitizers) over user inputs so that they can
be trusted and utilized by the web application. Some techniques regard sanitizers as a
black box and focus on data separation and tracking, whereas others specifically look
into the sanitization functions and focus on the design of context-sensitive sanitization.
The other approach is to quarantine or directly drop suspicious user inputs based on
certain security policies. This approach is free of sanitization and therefore circumvents
all of the complexities and challenges imposed by context-sensitive sanitization.

4.1.1. Secure Construction of New Web Applications. Security-typed language annotates
information flows with specific labels and enforces security policies associated with
different flows at both compile time (i.e., static checking) and runtime (i.e., dynamic
checking). Servlet Information Flow (SIF) [Chong et al. 2007a] is a web application
framework based on the security-typed language Jif [Myers et al. n.d.], which extends
Java with information flow control and access control. SIF is able to label user input,
track the information flow, and enforce the annotated security policies on user inputs
at both compile time and runtime. Whereas SIF is applicable to web applications
whose functionality is mainly implemented as server-side code, its parallel work Swift
[Chong et al. 2007b] considers web applications with client-side code. Swift framework
automatically and securely partitions Jif source code into server-side and client-side
code and enforces end-to-end information flow policies over code at both sides. SIF and
Swift can be used for building secure web applications that are free of input validation
vulnerabilities, as long as the security policies associated with the information flow
of untrusted user inputs are specified correctly. These two frameworks can also be
used to enforce other security policies that are relevant with application logic (e.g.,
authorization), which is covered in Section 4.3.1.

Robertson and Vigna [2009] propose a strongly typed web development framework to
build robust web applications against XSS and SQL injections. Developers specify the
intended web document and SQL structure in a strongly typed language Haskell, in
order to reliably separate untrusted user inputs from trusted static web contents.
User inputs are passed through specific sanitization routines, depending on their
types/contexts (e.g., a html tag or an attribute), to ensure the structure integrity of
the web documents and SQL queries. As a purely server-side approach, this frame-
work cannot handle client-side DOM-based XSS.

Besides newly developed frameworks, existing frameworks are appended with addi-
tional security mechanisms to assist developers in building secure web applications.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:11

To defend against SQL injections, Prepared Statement [Fisk 2004] (or Parameterized
Queries) and SQL DOM [McClure and Krüger 2005] are recommended for writing SQL
query statements, where untrusted user inputs are filled into the place holders within
the explicitly specified structure of SQL queries so that their structural integrity is
enforced by interpreters.

Similarly, to eliminate XSS opportunities, HTML template systems (e.g., Google
CTemplate) and some development frameworks (e.g., Django) force developers to sep-
arate user data from HTML structure explicitly and apply sanitization functions auto-
matically when user inputs are embedded into web responses. These greatly facilitate
the secure development of web applications by freeing developers from writing complex
and error-prone sanitizers on their own.

All of the preceding techniques aim at identifying and separating untrusted user in-
puts so that sanitization routines can be applied. In order to root out input validation
vulnerabilities, developers also need to ensure the correctness of each individual saniti-
zation routine and apply them in a context-sensitive manner. Currently, the adoption of
web development frameworks, which provide automatic context-sensitive sanitization
functions, greatly reduces this challenging and error-prone task. However, they are not
perfect, as a recent study [Weinberger et al. 2011] shows that input validation vulner-
abilities can still arise even after those auto-sanitization functions are utilized. The
reason for this is that there exists a large gap between the sanitization requirements
for web application development and the actual capabilities provided by those frame-
works. For example, web application frameworks have limited expressiveness of con-
texts and therefore cannot provide accurate context-sensitive sanitization. To address
this challenge, Samuel et al. [2011] build a reliable context-sensitive autosanitization
engine into web template systems based on type qualifiers. Hooimeijer et al. [2011]
present BEK, a new language that enables the development of sanitizer functions for
web applications and, more importantly, precise reasoning about the correctness of
sanitizers.

4.1.2. Security Analysis/Testing of Legacy Web Applications. Since legacy web applications
require developers to identify user inputs and write sanitization functions manually,
two types of defects can be introduced: (1) missing sanitization and (2) faulty saniti-
zation. Both taint analysis and testing can be employed to identify input validation
vulnerabilities resulting from the preceding error-prone procedure.

Taint analysis aims to identify insecure information flows where user inputs are
propagated and flow into sinks within web applications. To perform taint analysis, the
set of sources, propagators, sinks, and sanitizers have to be manually specified and
modeled, requiring human expertise. In order to identify missing sanitization, sanitiz-
ers are usually modeled as a black-box function, which takes the untrusted user inputs
and outputs the trusted data. As a result, this technique is inadequate for examining
faulty sanitization. Taint analysis usually involves complex and language-specific pro-
gram analysis techniques to reliably taint and track user inputs. The analysis accuracy
is greatly impacted by their capability of handling specific language features, especially
when it comes to dynamic scripting languages.

Static taint analysis examines the application source code without execution and is
usually employed for identifying missing sanitization. Several program analysis tech-
niques, such as dataflow analysis, pointer analysis, and string analysis, can be applied.
Static taint analysis can conservatively identify all possible insecure information flow
but has limited capability of modeling the dynamic features of scripting languages
(e.g., code inclusion, object-oriented code). Complex alias analysis has to be employed,
causing static taint analysis to be inherently inaccurate, and possibly introducing false
positives.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:12 X. Li and Y. Xue

Huang et al. [2004] propose WebSSARI, a tool that applies static analysis into iden-
tifying vulnerabilities within web applications. The tool employs flow-sensitive, in-
traprocedural analysis based on a lattice model. They extend the PHP language with
two type-states, namely tainted and untainted, and track each variable’s type-state.
In addition, runtime sanitization functions are inserted into the locations where the
tainted data reach the sinks to automatically harden the vulnerable web application.
WebSSARI does not support a number of language features, such as recursive functions
and array elements.

Xie and Aiken [2006] perform a bottom-up analysis of basic blocks, procedures, and
the whole program to find SQL injection vulnerabilities. Their technique employs sym-
bolic execution to automatically derive the set of variables that need to be sanitized
before utilized by functions. Their static analysis is also limited to a certain set of
language features.

Pixy [Jovanovic et al. 2006b; 2006c] is an open-source tool that performs interproce-
dural flow-sensitive data flow analysis over PHP web applications. Pixy first constructs
a control-flow graph for each function. Then, it performs precise alias and literal anal-
ysis on the intermediate nodes. Pixy is the first to apply alias analysis to scripting
languages, which greatly improves the analysis precision.

Wassermann and Su [2007, 2008] propose string-taint analysis, which enhances
Minamide’s string analysis [Minamide 2005] with taint support. Their technique labels
and tracks untrusted substrings from user inputs, ensuring that no untrusted scripts
can be included in SQL queries and generated HTML pages. Their technique not
only addresses missing sanitization but also faulty sanitization performed over user
inputs.

Instead of analyzing PHP web applications, Livshits and Lam [2005] apply precise
context-sensitive (but flow-insensitive) points-to analysis into analyzing the bytecode
of Java web applications based on binary decision diagrams. In particular, they use
a high-level declarative language Program Query Language (PQL) for specifying the
information flow policy and automating the information flow analysis. This is different
from traditional techniques based on type declaration or program assertions.

Dynamic taint analysis tracks the information flow of user inputs during runtime
execution through instrumentation and can be used for identifying both missing and
faulty sanitization. Compared to static taint analysis, dynamic taint analysis does not
require complex code analysis and can better handle dynamic features of scripting
languages, thus improving the analysis precision (i.e., fewer false positives). However,
it inherits the limitation of dynamic analysis, which cannot guarantee the completeness
of the analysis. Subtle vulnerabilities might be missed when the application execution
space is not fully explored. Since dynamic tainting is usually employed for runtime
monitoring, we will review the existing works using this technique in Section 4.1.3.

Hybrid taint analysis combines the strengths of static and dynamic analysis to im-
prove the analysis precision. Saner [Balzarotti et al. 2008] first analyzes the correctness
of both built-in and custom sanitization routines in PHP web applications and demon-
strates that faulty sanitization can introduce numerous subtle flaws. Saner applies
conservative static string analysis to model how user inputs are sanitized, then feeds
a large set of malicious inputs into suspicious sanitization routines to identify weak or
incorrect sanitization functions.

Lam et al. [2008] present a holistic technique, which combines static taint analysis,
model checking, dynamic taint tracking, and runtime detection. In particular, they de-
veloped a model checker Query-based Event Director (QED) for J2EE web applications
to improve the accuracy of static taint analysis by systematically exploring the appli-
cation space and verifying the information flow specification. QED can also generate

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:13

concrete attack vectors to prove the correctness of analysis without false positives and
facilitate the correction of application flaws.

Testing tries to construct input vectors that expose input validation vulnerabilities
within web applications. Usually both benign and malformed user inputs are fed into
web applications to check whether the structure of the outputs can be successfully
tampered by the intentionally malicious inputs. Since testing is a dynamic analysis
technique, it is challenging to generate test inputs that can completely explore the
application space and discover all potential vulnerabilities. Some subtle vulnerabilities,
such as faulty sanitization, are extremely difficult to uncover without the knowledge
of application internal design details (e.g., how the user input is encoded).

Black-box testing/scanning tools, including both open-source (e.g., Spike, Burp) and
commercial (e.g., IBM AppScan) products, are particularly attractive and useful when
the application source code is unavailable. These tools usually first crawl the web
application under test to identify all possible entry points for injection, then feed the
application with test inputs that are randomly generated from a library of known attack
patterns, and at last evaluate web responses to determine whether vulnerabilities
exist. WAVES [Huang et al. 2003] is among the earliest testing frameworks to assess
the security of a web application by injecting XSS and SQL injection attack vectors.
Mcallister et al. [2008] utilize recorded user sessions to demonstrate that guided and
stateful fuzzing can improve the scanner’s performance.

Two recent surveys [Doupé et al. 2010; Bau et al. 2010] on black-box scanners demon-
strate that black-box scanners are struggling with the issue of deep crawling, which
is the practice of exploring the web application completely to reach more vulnerability
injection points for fuzzing. Deep crawling is very important for the discovery of certain
subtle flaws, such as second-order input validation vulnerabilities.

To improve the performance of current black-box scanners, Doupé et al. [2012] pro-
pose to incrementally build an internal state machine during crawling. This inferred
state machine is utilized to drive and fuzz the web application. Their technique takes
into account the application state changes and is therefore able to discover more subtle
vulnerabilities that are hidden behind specific application states.

Traditional fuzzing can be enhanced with program analysis techniques to achieve
better coverage and efficiency. For example, Martin and Lam [2008] apply model check-
ing to explore the web application and generating attack vectors. Static analysis is used
to prune infeasible execution paths in order to avoid state explosion and enhance input
generation efficiency.

ARDILLA [Kiezun et al. 2009] improves input generation efficiency by symbolically
tracking sample inputs through execution and only mutating those whose parameters
flow into sensitive sinks. In particular, it is capable of tracking tainted data through a
database, allowing it to precisely identify second-order XSS vulnerabilities.

FLAX [Saxena et al. 2010a] is a taint-enhanced black-box fuzzing technique that
targets at client-side input validation vulnerabilities within JavaScript code and DOM-
based XSS attacks. In particular, it applies dynamic taint analysis to extract knowledge
about the sinks within JavaScript code and then uses it to prune the input mutation
space and direct effective fuzzing.

Kudzu [Saxena et al. 2010b] is another automated vulnerability analysis/testing tool
for discovering client-side input validation vulnerabilities. Different from FLAX, which
relies on an external manually developed test harness to explore the path space, Kudzu
automatically generates a test suite that explores the execution space. Specifically,
Kudzu uses dynamic symbolic execution of JavaScript to explore the value space of a
program and employs automatic Graphical User Interface (GUI) exploration to cover
its event space. The symbolic execution engine used in Kudzu is based on a newly

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:14 X. Li and Y. Xue

defined constraint language and its constraint solver in order to provide rich support
for reasoning about the operations of JavaScript applications.

4.1.3. Runtime Protection of Legacy Web Applications. In general, there are two ap-
proaches to protecting vulnerable web applications from input validation attacks
at runtime. One approach requires examining the internals of a web application
by tracking and processing (e.g., sanitizing or quarantining) untrusted user inputs,
which we refer to as taint-based protection. The other approach observes the external
behavior of a web application by evaluating incoming web requests and outgoing web
responses, to detect and stop input validation attacks, which we refer to as taint-free
protection.

Taint-based protection usually requires instrumentation of either the application
source code or the infrastructure components (e.g., interpreter, system library). As
a result, this approach may negatively affect an application’s runtime performance
and stability. Taint mode is first introduced into Perl by extending its interpreter
to support dynamic taint tracking and ensure that no external data can be used
by critical functions. Nguyen-tuong et al. [2005] modify the PHP interpreter to pre-
cisely taint and track user inputs at the granularity of characters. At runtime, un-
trusted user inputs are sanitized by explicitly calling a new function instrumented
into the application. Haldar et al. [2005] instrument the Java system class bytecode
to extend Java with taint tracking support. Chin and Wagner [2009] implement ef-
ficient character-level tainting via instrumentation of Java library classes and Java
Servlet.

Taint tracking can also be achieved without the instrumentation of language runtime
or libraries. SQLRand [Boyd and Keromytis 2004] follows the idea of instruction-set
randomization [Kc et al. 2003] and separates untrusted user inputs from the SQL
static structure by randomizing SQL keywords with secret keys. In this way, attackers
cannot inject SQL keywords to tamper the SQL query structure. This method requires
an additional SQL proxy to manage the randomization keys, translate “encrypted” SQL
queries, and drop malformed ones at runtime.

CSSE [Pietraszek et al. 2005] assigns metadata to user inputs and modifies original
operations and functions to preserve the metadata while processing user inputs. CSSE
performs context-aware string evaluation to ensure no tainted user inputs can be
injected into static web contents, including literals, SQL keywords, and operators.

SQLCheck [Su and Wassermann 2006] taints untrusted user inputs with surround-
ing special brackets (e.g., “[” and “]”) and propagates bracketed user inputs throughout
the application. SQL queries are dropped if any bracketed user data spans an SQL
keyword, indicating an SQL injection attack.

Halfond et al. [2006b] propose “positive tainting”, which taints and tracks trusted
strings generated by the application instead of untrusted user inputs (i.e., negative
tainting). Positive tainting is more conservative and accurate, since the size of the
trusted dataset tends to be much smaller than that of untrusted data.

ScriptGuard [Saxena et al. 2011] also employs positive taint tracking for context-
sensitive sanitization. It does this through instrumenting the contexts into the web
application and tracking the trusted web contents. ScriptGuard detects and repairs
the incorrect placement of sanitizers, which are linked to two instances of input val-
idation flaws for ASP.NET applications: (1) context-mismatched sanitization and (2)
inconsistent multiple sanitization. It also leverages a training phase for inferring the
correct sanitizer of different contexts at runtime and automatically repairs those bro-
ken sanitization functions. One feature of ScriptGard is that it requires no changes
to web browsers or to server-side source code. Instead, it uses binary rewriting of
server code to embed a browser model that determines the appropriate browser parsing

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:15

context when HTML is output by the web application. ScriptGard can serve both as a
testing aid to developers as well as a runtime mitigation technique.

Sekar [2009] proposes a black-box taint inference technique to avoid the overhead
introduced by deep instrumentation. First, events that traverse across different com-
ponents/libraries are intercepted, from which dataflows are identified via approximate
string matching. Then, dataflows that contain untrusted user data are evaluated over
a set of syntax-aware and taint-aware policies. This technique faces challenges when
complex operations are performed over user input, in which case dataflows may not be
identifiable.

To defend against XSS attacks, pure server-side protection is not adequate. First, the
malicious scripts are executed in the browser, and the runtime behavior of the appli-
cation in the browser cannot be fully anticipated from the server side. Second, subtle
differences exist between browsers, which can be exploited to evade server-side defense.
Finally, in the client-side XSS, such as DOM-based XSS, the malicious scripts are never
sent to the server side, making the server-side approach inapplicable. Therefore, the
collaboration between the server and the client is desirable to effectively mitigate XSS.
The server side has the complete knowledge of what contents are legitimate and allowed
and can help the client identify untrusted data more accurately. The untrusted data
can then be handled within the browser. This collaborative approach usually requires
changes to the web infrastructure, especially modification of the browser, hindering its
adoption.

BEEP [Jim et al. 2007] embeds a whitelist of known-safe scripts into each web
page and instructs the instrumented web browser to filter the suspicious scripts. The
whitelist approach is similar to positive tainting, where untrusted data can be easily
identified. BEEP also protects the whitelist from tampering using script key [Markham
2006]. Obviously, the effectiveness of the static whitelist is limited, especially for han-
dling dynamically constructed scripts. BEEP cannot handle client-side XSS.

Nonespaces [Gundy and Chen 2009] associates elements and attributes of HTML
documents with different permissions through a modified web template engine. The
permissions are specified in a policy file and protected by different randomized names-
paces. HTML documents are verified against the policy file at a proxy to determine
whether they should be forwarded to browsers or get dropped. Noncespaces encodes
the structure of web documents at a much finer granularity than BEEP [Jim et al.
2007]. Similar to BEEP, Noncespaces cannot handle client-side XSS.

DSI [Nadji et al. 2009] enforces the structure integrity of web documents through
parser-level isolation of untrusted data in the browser based on a server-specified policy.
Specifically, at the server side, web pages are instrumented so that all sections that
may potentially contain user inputs are surrounded with randomized delimiters. At the
client side, the static document structure can be robustly interpreted by the modified
browser, where suspicious user data is tracked and monitored during execution. This
technique can handle client-side XSS effectively.

BLUEPRINT [Ter Louw and Venkatakrishnan 2009] is designed to address the
problem of browser inconsistencies in parsing web contents, which can be exploited
to launch XSS attacks. At the server side, context representations of user inputs are
embedded within web pages. At the client side, web pages are parsed by an external
script library, which strips the parsing functionality from the browser and moves it to
the server side.

Content Security Policy (CSP) [Stamm et al. 2010] requires developers to specify
a special HTTP header (X-Content-Security-Policy) within web responses, which in-
structs the browser only to load and execute scripts from a whitelist of sources. To
date, CSP has been adopted by a number of websites (e.g., Twitter) and mainstream
browsers (e.g., Chrome, Firefox) for mitigating injection attacks. There are two major

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:16 X. Li and Y. Xue

reasons behind its wide adoption. First, CSP provides fine-granularity control over
the web contents so that a variety of attacks, including DOM-based XSS and JSON-
based XSS, can be defeated. Second, CSP is backward compatible and enables easy and
smooth transition in the infrastructure level.

Taint-free protection examines either incoming web requests or outgoing web re-
sponses to detect injection attacks. Two types of security models, negative and positive,
can be employed. A negative security model encodes attack patterns as signatures and
is usually employed by web application firewalls (e.g., ModSecurity, Imperva), which
monitor HTTP traffic between web applications and users, identifying known attacks.
This model is accurate and efficient within its detection range but cannot handle
zero-day attacks. It also requires expertise to develop and update attack signatures
constantly.

On the other hand, a positive model characterizes patterns of normal behaviors for a
web application, including web requests, responses, and SQL queries, identifying the
deviations from normal patterns as potential attacks. This model can handle unknown
attacks. Its detection performance closely depends on the accuracy of normal patterns.

Positive security policy can be manually specified by experts. For example, Scott and
Sharp [2002] propose a security gateway that examines HTTP requests in terms of fea-
tures such as parameter length and special characters, based upon a developer-specified
security policy. Their system can be viewed as an additional layer of input validation.

Normal patterns can also be extracted from the application source code. AMNESIA
[Halfond and Orso 2005] extracts the structure of legitimate SQL queries from PHP
code, based on a Non-Deterministic Finite Automata (NDFA) model. However, the
model accuracy is bounded by the flow-insensitive static analysis. It might miss certain
attacks when the tampered SQL queries match a legitimate query on a different path.

CANDID [Bandhakavi et al. 2007] employs dynamic analysis to extract an accurate
structure of SQL queries by feeding benign candidate inputs into the application. The
application is instrumented at each query generation point with a shadow query, which
captures the legitimate structure and is compared with the runtime generated ones.
Dynamic analysis can monitor the execution paths, allowing for more complete and
accurate modeling. Vulnerable query generation statements can also be retrofitted by
prepared statements automatically [Bisht et al. 2010b].

Using similar techniques in CANDID, XSS-Guard [Bisht and Venkatakrishnan 2008]
generates a shadow page to capture a web application’s intent for each web response,
containing only the authorized and expected scripts. Any differences between the real
constructed page and the shadow page indicate potential script injections.

Normal patterns can be automatically inferred by observing HTTP traffic during
a training phase. This technique is usually referred to as anomaly detection. The as-
sumption for anomaly detection is that the resulting behaviors of attacks would deviate
from the web application’s normal attack-free behaviors sufficiently. The key challenge
is how to establish accurate and sensitive normal models so that false positives and
false negatives can be minimized.

Kruegel and Vigna [2003] and Krugel et al. [2005] are among the first that ap-
ply anomaly detection into detecting web-based attacks. They derive multiple statis-
tical models to characterize different features of normal web requests, such as at-
tribute length, character distribution, and attribute order. In the detection phase,
a decision is made by taking into account all of the features of incoming web re-
quests based on the statistical models. To further reduce false positives, anomalies are
grouped into attack categories [Robertson et al. 2006]. Further research [Maggi et al.
2009] addressed the concept drift phenomenon in real-world applications. Valeur et al.
[2005] extract a similar set of features from normal SQL queries for detecting SQL
injections.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:17

Several other works characterize normal web requests by transforming them into
a set of tokens and extracting features of web requests at the token level. Ingham
et al. [2007] employ deterministic finite automata, whereas Song et al. [2009] use a
mixture of Markov chains based on n-gram transitions. A comparative study [Ingham
and Inoue 2007] shows that token-based algorithms tend to be more accurate than
character-based algorithms, since they are able to capture higher-level structure of
web requests than individual characters.

XSSDS [Johns et al. 2008] proposes two techniques for detecting two types of XSS at-
tacks. Reflected XSS attacks can be detected by matching incoming data with outgoing
scripts within web responses. Stored XSS attacks can be detected by establishing a set
of legitimate scripts during the training phase and identifying unobserved suspicious
outgoing scripts.

Scholte et al. [2012] add an additional layer of external validation over HTTP re-
quests to stop XSS and SQL injection attacks. They combine machine learning and
static analysis to deduce the type (e.g., URL, integer, token) of HTTP request param-
eters and apply type-specific validators to identify potential attacks. The performance
of their technique is largely limited by the expressiveness of their types.

We note here there are also a number of pure client-side defenses against XSS attacks,
such as IE8 XSS filter [Ross 2008], Firefox NoScript plugin [NoScript], Noxes [Kirda
et al. 2006], BrowserShield [Reis et al. 2006], CoreScript [Yu et al. 2007], and NoMoXSS
[Nentwich et al. 2007]. These focus on client-side approaches and are therefore beyond
the scope of this survey.

4.1.4. Summary. Although a substantial amount of efforts have been devoted to ad-
dressing input validation vulnerabilities and attacks, several open issues are still
not sufficiently addressed, and XSS remains the most popular web attack nowadays.
First, web application development frameworks have been increasingly adopted for
developing new applications. These often provide autosanitization features and force
developers to follow certain defensive programming practices (e.g., using Prepared
Statements), eliminating a large portion of potential vulnerabilities and escalating
the bar for attackers. However, as a recent study [Weinberger et al. 2011] shows,
they still cannot meet all of the requirements posed by modern web applications. De-
signing and reasoning context-sensitive sanitization routines still require substantial
work.

Second, the identification of input validation vulnerabilities from legacy web appli-
cations is still challenging. Although taint-based techniques have been demonstrated
to be very effective, they cannot be directly applied to a large number of newly de-
veloped web applications. In particular, they cannot handle the dynamic and complex
features of scripting languages (e.g., object-oriented code) very well and tend to result
in false positives. In addition, web applications usually involve several technologies,
languages, or components, which makes it even harder to track user information flow
and identify subtle second-order attacks.

Black-box testing is a promising alternative, since it is independent of application
languages and platforms. However, recent studies [Doupé et al. 2010; Bau et al. 2010]
show that most current black-box scanners are still far from perfect. They have limited
capabilities in several areas, such as detecting second-order vulnerabilities, handling
active contents (e.g., flash, Java Applet), and deep crawling of the application for high
coverage.

To address these issues, one single technique tends to be insufficient. We have seen
an increasing number of works that combine two or more techniques to achieve better
performance, such as hybrid taint analysis [Balzarotti et al. 2008], string taint analysis
[Wassermann and Su 2007, 2008], and taint-enhanced fuzzing [Kiezun et al. 2009].

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:18 X. Li and Y. Xue

Another alternative is to apply one technique in a novel way, such as positive tainting
[Halfond et al. 2006b] or black-box inference [Sekar 2009]. The question of how to
combine existing techniques in a creative way to address the limitations of single
techniques is an interesting research direction.

4.2. Addressing Session Management Vulnerabilities

Compared to input validation vulnerabilities and application logic vulnerabilities,
which are very challenging to tackle and remain a subject of active research, the tech-
niques that address session management vulnerabilities are relatively mature. Many
defense mechanisms for session management vulnerabilities have been successfully
adopted by web application frameworks for constructing applications. Here, we briefly
review some key techniques and tools.

4.2.1. Secure Construction of New Web Applications. To ensure the confidentiality, in-
tegrity, and authenticity of session ID and thus avoid session hijacking, several pro-
gramming practices are recommended [Johnston 2004; Palmer 2008]. First, a crypto-
graphically strong random number generation algorithm needs to be used to generate a
unique session ID for an authenticated user in order to keep the session ID random and
unpredictable. Second, an automatic logout should be forced after a reasonably short
period of inactivity. Third, transmission of the session ID should always be protected
by a secure transport layer protocol to avoid traffic sniffing and information disclosure.
When cookies are used to carry the session ID, their SECURE attribute should be
set as a defensive practice to avoid accidental transmission of sensitive information
over non-SSL protocols. Note that cookies may also be stolen through XSS, which is
originated from the input validation vulnerabilities within the web application. The
security measures against XSS have been extensively discussed in Section 4.1. To foil
session fixation attacks, a web application should never trust the value of a session
ID that is provided by a client. Instead, it should always create a unique session ID
after a user is successfully authenticated and overwrite the session ID presented by
the client with its own. Many web application development frameworks (e.g., Django,
Rails 2) provide security features for session management. For example, Rails provides
several functions to defend against session fixation attacks, including strong session
ID generation function, session ID autoexpiration, and reissuance for each visit. It also
supports convenient configuration of the SSL connection [Rail].

To defend against CSRF attacks, a secret validation token is commonly used (e.g.,
Jovanovic et al. [2006a]). Each HTTP request contains a “secret validation token” for
the server to determine whether the request comes from an authorized user. This secret
validation token should only be known to the server and the client, and hard to guess
by attackers. If the validation token is missing from a request or it does not match
the expected value, the server should reject the request. There are multiple methods
for generating this token. For instance, the server can generate a random nonce for
the user upon its first visit. For every subsequent request, the server validates the
token. This nonce can be either independent of the session ID or bound to the session
ID [Sheridan 2008; Jovanovic et al. 2006a]. This binding can be maintained either
through a server-side state table or using the HMAC of the session identifier as a
CSRF token, as implemented in the Ruby on Rails framework. Using secret validation
tokens to protect against login CSRF [Gmail CSRF Security Flaw 2007], a “pre-session”
is first created to bind the secret token before user login. Then, it transitions to a real
session after successful user authentication. Other CSRF defense techniques include
the use of HTTP Referrer header, which can be used to differentiate the requests
coming from the same-site from cross-site requests. For AJAX applications, setting
and validating custom HTTP headers using XMLHttpRequest can be applied to defend

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:19

against CSRF. To address the privacy concerns that are associated with the usage of
Referrer header, Barth et al. [2008] propose to include an “Origin” header with POST
requests, which carries the domain value of the URL of the requests. By checking this
value, the application ensures that the received requests are not forged by attackers.
This technique requires the modification of browsers, which may limit its adoption.
There are also several client-side defenses against CSRF, such as RequestRodeo [Johns
and Winter 2006] and BEAP [Mao et al. 2009], which are beyond the scope of this survey.

4.2.2. Summary. Session management is fundamental to the authentication and access
control of a web application, as it identifies the same user across multiple web requests.
Although the techniques to address session management vulnerabilities are relatively
mature compared with other vulnerabilities, such vulnerabilities are still prevalent
and remain one of the top security threats [OWASP Top 10 2013], largely due to the
wide existence of legacy systems and the integration with those systems. Even for
the construction of new secure web applications, it still requires consistent efforts
from developers to follow secure coding practices to build robust session management
mechanisms.

4.3. Addressing Logic Vulnerabilities

As opposed to input validation vulnerabilities that originate from insecure informa-
tion flow, logic vulnerabilities are multifaceted without a single root cause. Existing
works that address logic vulnerabilities have followed two directions: (1) targeting
special types of vulnerabilities that are associated with common application func-
tionalities, such as authentication or access control, and (2) aiming at general logic
vulnerabilities that can depend on the functionalities of each application (referred to
as application-specific logic vulnerabilities hereinafter). In this case, the application’s
intended functionality (i.e., specification) is required to tackle the logic vulnerabilities.
Such a specification can be explicitly specified by developers during software develop-
ment. In the absence of such a specification, which is commonly seen in practice, it must
be inferred from the application implementation. Application specification inference is
challenging, since a general method must be able to handle a number of heterogeneous
web applications and platforms to minimize manual effort involved.

4.3.1. Secure Construction of New Web Applications. To enforce authorization policies in
web applications, existing works have adopted an information flow model to prohibit
sensitive information from flowing to unauthorized principals. Consider how the in-
formation flow model has been applied to prevent untrusted user inputs from flowing
into trusted web contents to address input validation vulnerabilities. SIF [Chong et al.
2007a] and Swift [Chong et al. 2007b], which use security-typed language Jif to track
the information flow, provide a unified framework, which can enforce both input vali-
dation policies and authorization policies.

SELinks [Corcoran et al. 2009] is a programming framework extending the LINKS
web programming language with FABLE [Swamy et al. 2008], a type system for defin-
ing and enforcing custom, label-based security policies. Similar to Jif, each type of
sensitive data in Fable is annotated with a security label. However, unlike Jif, the
semantics of this label are user defined, and programmers can define the interpreta-
tion of labels in special enforcement functions that are separated from the rest of the
program. FABLE can be used to define and enforce a wide range of policies, includ-
ing access control, data provenance, and information flow policies, whereas Jif only
supports information flow policy.

RESIN [Yip et al. 2009] is a system that allows programmers to specify application-
level dataflow assertions using policy objects and define dataflow boundaries using filter
objects. RESIN operates within a language runtime (e.g, Python or PHP interpreter).

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:20 X. Li and Y. Xue

It tracks application data as it flows through the application, checks dataflow asser-
tions on every executed path, and invokes filter objects when data cross a dataflow
boundary, such as writing to a network or a file. A variety of vulnerabilities can be
mitigated using RESIN, including script injections or missing access control checks.
Compared to SIF [Chong et al. 2007a] and SELinks [Corcoran et al. 2009], RESIN
allows programmers to reuse the application’s existing code and thus avoids the
large amount of annotations and instrumentations required by security-typed lan-
guages. However, RESIN cannot track implicit dataflow, such as program control
flow or data structure layout, which is the capability available through security-typed
languages.

In addition to information flow models, the principle of least privilege and privilege
separation have also been applied to facilitate constructions of web applications that
minimize the side effects of an attack. Capsules [Krishnamurthy et al. 2010] is a
web development framework based on an object-capability language Joe-E [Mettler
et al. 2010] for enforcing isolation and facilitating the practice of the principle of least
privilege. A web application is partitioned into isolated components, each of which
is given a limited set of explicitly specified privileges. This technique minimizes the
damages caused by vulnerable components, especially from third-party programs, and
facilitates security reviews and verification. However, it cannot guarantee that each
application component is free of vulnerabilities.

4.3.2. Security Analysis/Testing of Legacy Web Applications. Logic vulnerabilities within a
legacy web application originate from the discrepancies between its intended function-
alities (i.e., specification) and its implementation. Once the specification of an applica-
tion is defined, the existence of logic vulnerabilities can be identified.

UrFlow [Chlipala 2010] is able to statically verify a variety of security policies,
including both information flow and access control policies, within database-backed
web applications. UrFlow requires developers to specify policies in the form of SQL
queries and employs symbolic execution and theorem proving to automatically verify
whether the program behaviors conform to those policies.

Rubyx [Chaudhuri and Foster 2010] is a symbolic execution framework for Ruby-
on-Rails web applications. Rubyx allows developers to specify security policies using
a set of programming interfaces and verifies those policies automatically. Rubyx is
able to identify input validation vulnerabilities, CSRF, insufficient authentication, and
application-specific logic flaws, depending on the security policies defined.

When application specifications are not provided by the developers, they have to be
first inferred from the implementations. There are two general approaches for spec-
ification inference: (1) static analysis, which extracts the logic specification from the
application’s source code, and (2) dynamic analysis, which generates the specification
by observing the application’s runtime behavior.

Static Analysis
Sun et al. [2011] perform role-specific analysis of PHP web applications for identifying
access control vulnerabilities. They first specify a set of roles with total order. Next,
sitemaps are constructed for different roles in a web application based on explicit
navigation links. By comparing per-role sitemaps, privileged pages can be identified.
Finally, they analyze whether direct access to privileged pages from unauthorized roles
is allowed, indicating missing access control checks.

RoleCast [Son et al. 2011] also tries to identify missing access control checks in PHP
web applications. In RoleCast, roles are defined based on the common functionality and
security logic. The set of user roles are inferred from the partitions of the file contexts on
which security sensitive events are control dependent. Within a role, RoleCast identifies

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:21

security-critical variables and performs role-specific consistency analysis over security-
critical variables to find the missing security checks.

Doupé et al. [2011] address EAR, a particular type of logic vulnerability where an
application continues execution after developer-intended redirection, resulting in vio-
lation of intended control flow and unauthorized execution. In particular, they present
a static analysis technique to identify such vulnerabilities within Ruby-on-Rails web
applications. They extract the control flow graph from the application source code and
identify the control flow paths, which lead to privileged code after redirection routines,
as potential vulnerabilities.

MiMoSA [Balzarotti et al. 2007] identifies workflow violations that are introduced by
unintended navigation paths among multiple modules, in addition to dataflow attacks
that exploit the input validation vulnerabilities. MiMoSA infers a workflow graph of an
application as a specification through two steps. The first step is intramodule analysis
(a module is a PHP file in their analysis), which extracts a “state view” of each module
by determining its sinks and state conditions before and after the sinks. The second
step is intermodule analysis, which links the individual state views to construct the
workflow graph of the entire application. Then, they apply model checking over the
workflow graph to identify unintended navigation paths.

Dynamic/Hybrid Analysis
Waler [Felmetsger et al. 2010] can automatically discover application-specific logic
flaws. First, Waler extracts value-based invariants for session variables and function
parameters by observing normal executions and uses them as the logic specification.
Model checking techniques are then applied to identify possible violations of inferred
invariants. They also filter spurious invariants by analyzing the program control paths
and capturing the relationship between session variables and database objects.

Whereas Waler focuses on the analysis of server-side code, NoTamper [Bisht et al.
2010a] aims at detecting parameter tampering opportunities behind web forms within
AJAX applications. Such vulnerabilities are caused by the inconsistencies between the
client-side and server-side validation. NoTamper extracts the constraints over param-
eters within forms from the client-side JavaScript code and generates malicious input
vectors by negating those constraints. The web responses triggered by both benign and
malicious inputs are examined to determine whether forms are vulnerable to param-
eter tampering. The black-box technique used by NoTamper may produce both false
positives and false negatives. WAPTEC [Bisht et al. 2011] enhances NoTamper by ap-
plying white-box analysis to the server-side code to reduce false positives and identify
the vulnerabilities that NoTamper fails to discover.

LogicScope [Li and Xue 2013] presents a source-code free approach for discovering
logic vulnerabilities through examining web responses. It formulates the logic vul-
nerabilities as the discrepancies between the intended state machine and the actual
implementation state machine. However, LogicScope cannot identify logic flaws (e.g.,
EAR) that tamper with the integrity of the database, since the effects of the malicious
inputs are not reflected through web responses.

4.3.3. Runtime Protection of Legacy Web Applications. CLAMP [Parno et al. 2009] addresses
access control vulnerabilities that can be exploited by a variety of attacks, including
logic attacks, SQL injections, and even web server compromises, and protects sensitive
user data by isolating application components running on behalf of different users
through virtualization. CLAMP assigns a virtual web server instance to each user’s
web session so that the user can only access his own data. However, CLAMP cannot be
applied to applications with shared data among users. In addition, CLAMP requires a
small amount of changes to the application code.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:22 X. Li and Y. Xue

Nemesis [Dalton et al. 2009] addresses a wide range of authentication bypass and ac-
cess control vulnerabilities in legacy web applications. It uses a shadow authentication
system to infer successful user authentication without depending on the potentially
vulnerable authentication mechanism in the application. It employs dynamic informa-
tion flow tracking techniques to track the flow of user credentials through the appli-
cation’s language runtime. The authentication information is further combined with
programmer-supplied access control rules to ensure that only properly authenticated
users are granted access to any privileged resources or data. Nemesis does not require
changes to the application code but requests that the application developers provide an-
notation information for verifying the authentication credentials and explicitly specify
access control policies.

Swaddler [Cova et al. 2007a] applies anomaly detection techniques for the discov-
ery of state violation attacks. In particular, Swaddler establishes statistical models of
session variables for each program block during its normal execution, which indicate
the application state when that program block is executed. At runtime, this set of sta-
tistical models are evaluated to determine whether the application state is legitimate
when the current program block is executed. As opposed to Nemesis and CLAMP, which
focus on certain types of common logic vulnerabilities (e.g., authentication, access con-
trol), Swaddler provides a unified approach for a wide range of application-specific logic
vulnerabilities.

BLOCK [Li and Xue 2011] is a black-box approach for inferring the application
specification and detecting state violation attacks. It observes the interactions between
the clients and the application, and extracts a set of invariants from web requests,
responses, and session variables. Then, web requests and responses are evaluated
at runtime against the inferred invariants to detect state violation attacks. Similar to
Swaddler, BLOCK can address a wide range of application-specific logic vulnerabilities.
Whereas Swaddler requires source code instrumentation, BLOCK is independent of the
application’s source code and programming platform.

SENTINEL [Li et al. 2012] is also a black-box system for detecting logic attacks. It
focuses on detecting malicious SQL queries that are triggered at inappropriate appli-
cation states toward the database. In particular, SENTINEL captures the relationship
between the SQL queries and the session variables by extracting a set of invariants
during normal executions. SQL queries are then evaluated at runtime against these
inferred invariants.

Besides the vulnerabilities that are embedded in the server-side code, recent works
[Guha et al. 2009; Vikram et al. 2009] also tackle the logic vulnerabilities within
the client-side code for AJAX applications. Guha et al. [2009] extracts a control-
flow graph of URLs from the client-side HTML and JavaScript code as the client
specification using static analysis. This graph is then used in a reverse proxy to
monitor client behaviors and detect malicious activities against server-side web
applications.

Ripley [Vikram et al. 2009] detects malicious user behaviors within AJAX appli-
cations by leveraging replicated execution. Essentially, the client-side computation is
emulated on a trusted server, where each client-side event is transferred to and exe-
cuted as the replica of the client. The discrepancies between the execution results are
flagged as exploits.

4.3.4. Summary. Securing web applications from logic flaws and attacks still remains
an underexplored area. Only a limited number of techniques are proposed. Most of them
only address a specific type of application logic vulnerabilities, such as authentication
and access control vulnerabilities [Doupé et al. 2011; Sun et al. 2011; Son et al. 2011;
Parno et al. 2009; Dalton et al. 2009], or inconsistencies between client and server

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

A Survey on Server-Side Approaches to Securing Web Applications 54:23

validations [Bisht et al. 2010a, 2011]. The fundamental difficulty in tackling general
logic flaws is the absence of application logic specification. The absence of a general
and automatic mechanism for characterizing the application logic is one of the inherent
reasons for the inability of most application scanners and firewalls to handle logic flaws
and attacks [Doupé et al. 2010; Bau et al. 2010].

Several recent works try to develop a general and systematic method for automat-
ically inferring the specifications for web applications, which in turn facilitates au-
tomatic and sound verification of application logic. One of the key observations of
these works [Balzarotti et al. 2007; Felmetsger et al. 2010; Cova et al. 2007a; Li and
Xue 2011; Li et al. 2012] is that the application’s intended behavior is usually re-
vealed under its normal execution, when users follow the navigation paths. In Guha
et al. [2009], similar assumption is made for well-behaved clients, where they are
expected by the server to invoke the URLs in a particular sequence with particular
arguments.

In order to infer the application logic, one class of methods leverages the program
source code [Cova et al. 2007a; Felmetsger et al. 2010]. As a result, the inferred specifi-
cation highly depends on how the application is structured and implemented (e.g., the
definition of a program function or block). The accuracy of the inferred specification is
also affected by its capability of handling language details. Another class of methods
infers the application specification by observing and characterizing the application’s
external behavior [Li and Xue 2011; Li et al. 2012]. The noisy information observed
from the external behaviors may lead to an inaccurate specification through these
methods.

5. CONCLUSION

This article provides a comprehensive survey of recent research results in server-side
approaches to securing web applications, first describing unique characteristics of web
application development, then illustrating three types of vulnerabilities and attacks
and focus on discussing three major classes of existing server-side approaches. The
article also points out open issues that still need to be addressed.

Web applications have been evolving extraordinarily fast with new programming
models and technologies. This results in an ever-changing landscape for web applica-
tion security with new challenges, which requires substantial and sustained efforts
from security researchers. Several major companies [Google; Facebook] have intro-
duced bounty programs to reward finding new vulnerabilities within their websites.
Next, we outline several evolving trends and also point out some pioneering works
in this area. First, an increasing amount of application code and logic is moving to
the client side, which brings new security challenges. Since the client-side code is ex-
posed, attackers are able to gain more knowledge about the application and therefore
are more likely to compromise the server-side application state. Several works have
been trying to address this problem [Chong et al. 2007a; Saxena et al. 2010a; Guha
et al. 2009; Vikram et al. 2009; Bisht et al. 2010a, 2011]. Second, the business logic of
web applications is becoming more and more complex, further complicating the task of
building secure web applications without logic vulnerabilities. For example, when mul-
tiple web applications are integrated through APIs, their interactions may expose logic
vulnerabilities [Wang et al. 2011]. Third, an increasing number of web applications are
embedding third-party programs or extensions (e.g., iGoogle gadgets, Facebook games).
To automatically verify the security of third-party applications and securely integrate
them is nontrivial [Krishnamurthy et al. 2010]. Last but not least, new types of at-
tacks are always emerging, such as the HTTP parameter pollution attack [Balduzzi et
al. 2011], requiring security professionals to quickly react, otherwise putting a huge
number of web applications at risk.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

54:24 X. Li and Y. Xue

ACKNOWLEDGMENTS

This work was supported by NSF TRUST (the Team for Research in Ubiquitous Secure Technology) Sci-
ence and Technology Center (CCF-0424422). We specially thank Professor Dinghao Wu, Trey Reece, and
anonymous reviewers for providing valuable suggestions and comments in improving the article.

REFERENCES

MySpace. 2005. MySpace Samy Worm. http://namb.la/popular/tech.html.
Marco Balduzzi, Carmen Torrano Gimenez, Davide Balzarotti, and Engin Kirda. 2011. Automated discovery

of parameter pollution vulnerabilities in web applications. In NDSS’11: Proceedings of the 8th Annual
Network and Distributed System Security Symposium.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. 2008. Saner: Composing static and dynamic analysis to validate sanitization in web
applications. In Oakland’08: Proceedings of the 29th IEEE Symposium on Security and Privacy. 387–401.

Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger, and Giovanni Vigna. 2007. Multi-module vulnerabil-
ity analysis of web-based applications. In CCS’07: Proceedings of the 14th ACM Conference on Computer
and Communications Security. 25–35.

Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. 2007. CANDID: Preventing
SQL injection attacks using dynamic candidate evaluations. In CCS’07: Proceedings of the 14th ACM
Conference on Computer and Communications Security. 12–24.

Adam Barth, Juan Caballero, and Dawn Song. 2009. Secure content sniffing for web browsers, or how to
stop papers from reviewing themselves. In Oakland’09: Proceedings of the 30th IEEE Symposium on
Security and Privacy. 360–371.

Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust defenses for cross-site request forgery.
In CCS’08: Proceedings of the 15th ACM Conference on Computer and Communications Security.
75–88.

Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the art: Automated black-box web
application vulnerability testing. In Oakland’10: Proceedings of the 31st IEEE Symposium on Security
and Privacy. 332–345.

Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V. N. Venkatakrishnan. 2010a.
NoTamper: Automatic blackbox detection of parameter tampering opportunities in web applications. In
CCS’10: Proceedings of the 17th ACM Conference on Computer and Communications Security.

Prithvi Bisht, A. Prasad Sistla, and V. N. Venkatakrishnan. 2010b. Automatically Preparing Safe SQL
Queries. In FC’10: Proceedings of the 14th International Conference on Financial Cryptography and
Data Security.

Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan. 2011. WAPTEC: Whitebox
analysis of web applications for parameter tampering exploit construction. In CCS’11: Proceedings of
the 18th ACM Conference on Computer and Communications Security. 575–586.

Prithvi Bisht and V. N. Venkatakrishnan. 2008. XSS-GUARD: Precise dynamic prevention of cross-site
scripting attacks. In DIMVA’08: Proceedings of the 5th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment.

Stephen W. Boyd and Angelos D. Keromytis. 2004. SQLrand: Preventing SQL injection attacks. In ACNS’04:
Proceedings of the 2nd Applied Cryptography and Network Security Conference. 292–302.

Avik Chaudhuri and Jeffrey S. Foster. 2010. Symbolic security analysis of ruby-on-rails web applications. In
CCS’10: Proceedings of the 17th ACM Conference on Computer and Communications Security.

Erika Chin and David Wagner. 2009. Efficient character-level taint tracking for Java. In Proceedings of the
2009 ACM Workshop on Secure Web Services (SWS’09). 3–12.

Adam Chlipala. 2010. Static checking of dynamically-varying security policies in database-backed appli-
cations. In OSDI’10: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation.

Stephen Chong, K. Vikram, and Andrew C. Myers. 2007a. SIF: Enforcing confidentiality and integrity in
web applications. In USENIX’07: Proceedings of the 16th Conference on USENIX Security Symposium.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng. 2007b.
Secure web applications via automatic partitioning. In SOSP’07: Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles. 31–44.

Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. 2009. Cross-tier, label-based security enforcement
for web applications. In SIGMOD’09: Proceedings of the 35th SIGMOD International Conference on
Management of Data. 269–282.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

http://namb.la/popular/tech.html

A Survey on Server-Side Approaches to Securing Web Applications 54:25

Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna. 2007a. Swaddler: An approach for
the anomaly-based detection of state violations in web applications. In RAID’07: Proceedings of the 10th
International Symposium on Recent Advances in Intrusion Detection. 63–86.

Marco Cova, Viktoria Felmetsger, and Giovanni Vigna. 2007b. Vulnerability analysis of web applications. In
Testing and Analysis of Web Services, L. Baresi and E. Dinitto (Eds.). Springer.

Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. 2009. Nemesis: Preventing authentication and
access control vulnerabilities in web applications. In USENIX’09: Proceedings of the 18th Conference on
USENIX Security Symposium. 267–282.

Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna. 2011. Fear the EAR: Discovering and
mitigating execution after redirect vulnerabilities. In CCS’11: Proceedings of the 18th ACM Conference
on Computer and Communications Security.

Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. 2012. Enemy of the state:
A state-aware black-box vulnerability scanner. In USENIX’12: Proceedings of the USENIX Security
Symposium. Bellevue, WA.

Adam Doupé, Marco Cova, and Giovanni Vigna. 2010. Why Johnny can’t pentest: An analysis of black-box
web vulnerability scanners. In DIMVA’10: Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment.

Facebook. Facebook Bounty Program. https://www.facebook.com/whitehat.
Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. 2010. Toward automated

detection of logic vulnerabilities in web applications. In USENIX’10: Proceedings of the 19th USENIX
Security Symposium.

Harrison Fisk. 2004. Prepared Statements. http://en.wikipedia.org/wiki/Prepared_statement.
Joaquin Garcia-Alfaro and Guillermo Navarro-Arribas. 2008. A survey on detection techniques to prevent

cross-site scripting attacks on current web applications. In CRITIS’07: Proceedings of the Second Inter-
national Conference on Critical Information Infrastructures Security. 287–298.

Joaquı́n Garcı́a-Alfaro and Guillermo Navarro-Arribas. 2009. A survey on cross-site scripting attacks. CoRR:
Computing Research Repository. http://arxiv.org/abs/0905.4850.

Gmail CSRF Security Flaw. 2007. http://ajaxian.com/archives/gmail-csrf-security-flaw.
Google. Google Bounty Program. http://www.google.com/about/appsecurity/reward-program/.
Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. 2009. Using static analysis for Ajax intrusion

detection. In WWW’09: Proceedings of the 18th International Conference on World Wide Web. 561–
570.

Matthew Van Gundy and Hao Chen. 2009. Noncespaces: Using randomization to enforce information flow
tracking and thwart XSS attacks. In NDSS’09: Proceedings of the 16th Annual Network and Distributed
System Security Symposium.

Vivek Haldar, Deepak Chandra, and Michael Franz. 2005. Dynamic taint propagation for Java. In ACSAC’05:
Proceedings of the 21st Annual Computer Security Applications Conference. 303–311.

William G. J. Halfond and Alessandro Orso. 2005. AMNESIA: Analysis and Monitoring for NEutralizing
SQL-Injection Attacks. In ASE’05: Proceedings of the 20th IEEE and ACM International Conference on
Automated Software Engineering.

William G. J. Halfond, Jeremy Viegas, and Alessandro Orso. 2006a. A cassification of SQL-injection attacks
and countermeasures. In Proceedings of the International Symposium on Secure Software Engineering.

William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006b. Using positive tainting and
syntax-aware evaluation to counter SQL injection attacks. In SIGSOFT’06/FSE-14: Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 175–
185.

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast
and precise sanitizer analysis with BEK. In Proceedings of the 20th USENIX Conference on Security
(SEC’11).

Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. 2003. Web application security
assessment by fault injection and behavior monitoring. In WWW’03: Proceedings of the 12th International
Conference on World Wide Web. 148–159.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo. 2004. Securing
web application code by static analysis and runtime protection. In WWW’04: Proceedings of the 13th
International Conference on World Wide Web. 40–52.

Kenneth L. Ingham and Hajime Inoue. 2007. Comparing anomaly detection techniques for HTTP. In
RAID’07: Proceedings of the 10th International Conference on Recent Advances in Intrusion Detection. 42–
62.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

https://www.facebook.com/whitehat
http://en.wikipedia.org/wiki/Prepared_statement
http://arxiv.org/abs/0905.4850
http://ajaxian.com/archives/gmail-csrf-security-flaw
http://www.google.com/about/appsecurity/reward-program/

54:26 X. Li and Y. Xue

Kenneth L. Ingham, Anil Somayaji, John Burge, and Stephanie Forrest. 2007. Learning DFA representations
of HTTP for protecting web applications. Computer Networks 51, 1239–1255.

Trevor Jim, Nikhil Swamy, and Michael Hicks. 2007. Defeating script injection attacks with browser-enforced
embedded policies. In WWW’07: Proceedings of the 16th International Conference on World Wide Web.
601–610.

Martin Johns, Bjorn Engelmann, and Joachim Posegga. 2008. XSSDS: Server-side detection of cross-site
scripting attacks. In ACSAC’08: Proceedings of the 24th Annual Computer Security Applications Confer-
ence. 335–344.

Paul Johnston. 2004. Authentication and Session Management on the Web. http://www.sans.org/reading_
room/whitepapers/webservers/authent ication-session-management-web_1545.

Martin Johns and Justus Winter. 2006. RequestRodeo: Client-side protection against session riding. In
OWASP AppSec Europe.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006a. Preventing Cross Site Request Forgery
Attacks. In SecureComm’06: 2nd International Conference on Security and Privacy in Communication
Networks. 1–10.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006b. Pixy: A Static Analysis Tool for Detecting
Web Application Vulnerabilities. In Oakland’06: Proceedings of the 27th IEEE Symposium on Security
and Privacy. 258–263.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006c. Precise Alias Analysis for Syntactic De-
tection of Web Application Vulnerabilities. ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security.

Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003. Countering code-injection attacks with
instruction-set randomization. In CCS’03: Proceedings of the 10th ACM Conference on Computer and
Communications Security. 272–280.

Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. 2009. Automatic creation of SQL
injection and cross-site scripting attacks. In ICSE’09: Proceedings of the 31st International Conference
on Software Engineering. 199–209.

Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. 2006. Noxes: A client-side solution
for mitigating cross-site scripting attacks. In SAC’06: Proceedings of the 2006 ACM Symposium on
Applied Computing. 330–337.

Akshay Krishnamurthy, Adrian Mettler, and David Wagner. 2010. Fine-grained privilege separation for web
applications. In WWW’10: Proceedings of the 19th International Conference on World Wide Web. 551–
560.

Christopher Kruegel and Giovanni Vigna. 2003. Anomaly detection of web-based attacks. In CCS’03: Pro-
ceedings of the 10th ACM Conference on Computer and Communication Security. 251–261.

Christopher Kruegel, Giovanni Vigna, and William Robertson. 2005. A multi-model approach to the detection
of web-based attacks. Computer Networks 48, 5 (August 2005), 717–738.

Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley. 2008. Securing web applications with
static and dynamic information flow tracking. In PEPM’08: Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation. 3–12.

Xiaowei Li and Yuan Xue. 2011. BLOCK: A black-box approach for detection of state violation attacks
towards web applications. In ACSAC’11: Proceedings of the 27th Annual Computer Security Applications
Conference.

Xiaowei Li and Yuan Xue. 2013. LogicScope: Automatic discovery of logic vulnerabilities within web ap-
plications. In ASIACCS’13: Proceedings of the 8th ACM Symposium on Information, Computer and
Communications Security.

Xiaowei Li, Wei Yan, and Yuan Xue. 2012. SENTINEL: Securing database from logic flaws in web applica-
tions. In CODASPY’12: Proceedings of the 2nd ACM Conference on Data and Application Security and
Privacy. 25–36.

V. Benjamin Livshits and Monica S. Lam. 2005. Finding security vulnerabilities in Java applications with
static analysis. In USENIX’05: Proceedings of the 14th Conference on USENIX Security Symposium. 18.

Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna. 2009. Protecting a moving
target: Addressing web application concept drift. In RAID’09: Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection. 21–40.

Ziqing Mao, Ninghui Li, and Ian Molloy. 2009. Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In FC’09: Proceedings of the 13th International Conference on Financial
Cryptography and Data Security. 238–255.

Gervase Markham. 2006. Content Restrictions. http://www.gerv.net/security/content-restrictions/.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

http://www.sans.org/readingroom/whitepapers/webservers/authent ication-session-management-web1545
http://www.sans.org/readingroom/whitepapers/webservers/authent ication-session-management-web1545
http://www.gerv.net/security/content-restrictions/

A Survey on Server-Side Approaches to Securing Web Applications 54:27

Michael Martin and Monica S. Lam. 2008. Automatic generation of XSS and SQL injection attacks with
goal-directed model checking. In USENIX’08: Proceedings of the 17th Conference on USENIX Security
Symposium. 31–43.

Sean Mcallister, Engin Kirda, and Christopher Kruegel. 2008. Leveraging user interactions for in-depth
testing of web applications. In RAID’08: Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection. 191–210.

Russell A. McClure and Ingolf H. Krüger. 2005. SQL DOM: Compile time checking of dynamic SQL state-
ments. In ICSE’05: Proceedings of the 27th International Conference on Software Engineering. 88–96.

Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A security-oriented subset of Java. In NDSS’10:
Proceedings of the 17th Annual Network and Distributed System Security Symposium. 357–374.

Yasuhiko Minamide. 2005. Static approximation of dynamically generated web pages. In WWW’05: Proceed-
ings of the 14th International Conference on World Wide Web. 432–441.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. n.d. Jif: Java
Information Flow. http://www.cs.cornell.edu/jif.

Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document structure integrity: A robust basis for cross-
site scripting defense. In NDSS’09: Proceedings of the 16th Annual Network and Distributed System
Security Symposium.

Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2007. Cross-
site scripting prevention with dynamic data tainting and static analysis. In NDSS’07: Proceedings of the
14th Network and Distributed System Security Symposium.

Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans. 2005. Automati-
cally hardening web applications using precise tainting. In Proceedings of the 20th IFIP International
Information Security Conference. 372–382.

NoScript. NoScript Features: Anti-XSS Protection. http://noscript.net/.
OWASP Top 10. 2013. Open Web Application Security Project Top Ten Security Risk (Feburary 2013).

http://www.owasp.org/index.php/Top_10_2013
Chris Palmer. 2008. Secure Session Management with Cookies for Web Applications. https://www.

isecpartners.com/media/12009/web-session-management.pdf.
Bryan Parno, Jonathan M. McCune, Dan Wendlandt, David G. Andersen, and Adrian Perrig. 2009. CLAMP:

Practical prevention of large-scale data leaks. In Oakland’09: Proceedings of the 30th IEEE Symposium
on Security and Privacy.

Tadeusz Pietraszek and Chris Vanden Berghe. 2005. Defending against injection attacks through context-
sensitive string evaluation. In RAID’05: Proceedings of the 8th International Symposium on Recent
Advances in Intrusion Detection.

Rails. Ruby-on-Rails Security Guide. http://guides.rubyonrails.org/security.html.
Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. 2006. BrowserShield:

Vulnerability-driven filtering of dynamic HTML. In OSDI’06: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation. 61–74.

William Robertson and Giovanni Vigna. 2009. Static enforcement of web application integrity through
strong typing. In USENIX’09: Proceedings of the 18th Conference on USENIX Security Symposium. 283–
298.

William Robertson, Giovanni Vigna, Christopher Kruegel, and Richard Kemmerer. 2006. Using general-
ization and characterization techniques in the anomaly-based detection of web attacks. In NDSS’06:
Proceedings of the 13th Network and Distributed System Security Symposium.

David Ross. 2008. IE 8 XSS Filter Architecture. http://blogs.technet.com/swi/archive/2008/08/19/ie-8-xss-filter
-architecture-implementation.aspx.

Mike Samuel, Prateek Saxena, and Dawn Song. 2011. Context-sensitive auto-sanitization in web templating
languages using type qualifiers. In CCS’11: Proceedings of the 18th ACM Conference on Computer and
Communications Security. 587–600.

Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010a. FLAX: Systematic discovery
of client-side validation vulnerabilities in rich web applications. In NDSS’10: Proceedings of the 17th
Annual Network and Distributed System Security Symposium.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. 2010b.
A Symbolic Execution Framework for JavaScript. In SP’10: Proceedings of the 2010 IEEE Symposium
on Security and Privacy. 513–528.

Prateek Saxena, David Molnar, and Benjamin Livshits. 2011. SCRIPTGUARD: Automatic context-sensitive
sanitization for large-scale legacy web applications. In CCS’11: Proceedings of the 18th ACM Conference
on Computer and Communications Security. 601–614.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

http://www.cs.cornell.edu/jif
http://noscript.net/
http://www.owasp.org/index.php/Top_10_2013
https://www.isecpartners.com/media/12009/web-session-management.pdf
https://www.isecpartners.com/media/12009/web-session-management.pdf
http://guides.rubyonrails.org/security.html
http://blogs.technet.com/swi/archive/2008/08/19/ie-8-xss-filter ignorespaces -architecture-implementation.aspx
http://blogs.technet.com/swi/archive/2008/08/19/ie-8-xss-filter ignorespaces -architecture-implementation.aspx

54:28 X. Li and Y. Xue

Theodoor Scholte, William Robertson, Davide Balzarotti, and Engin Kirda. 2012. Preventing input validation
vulnerabilities in web applications through automated type analysis. In COMPSAC’12: Proceedings of
the IEEE 36th Annual Computer Software and Applications Conference.

David Scott and Richard Sharp. 2002. Abstracting application-level web security. In WWW’02: Proceedings
of the 11th International Conference on World Wide Web. 396–407.

R. Sekar. 2009. An efficient black-box technique for defeating web application attacks. In NDSS’09: Proceed-
ings of the 16th Annual Network and Distributed System Security Symposium.

Eric Sheridan. 2008. OWASP CSRFGuard Project. http://www.owasp.org/index.php/CSRF_Guard.
Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2011. RoleCast: Finding missing security checks

when you do not know what checks are. In OOPSLA’11: Proceedings of the 26th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. 1069–
1084.

Yingbo Song, Angelos D. Keromytis, and Salvatore J. Stolfo. 2009. Spectrogram: A mixture-of-Markov-chains
model for anomaly detection in web traffic. In NDSS’09: Proceedings of the 16th Annual Network and
Distributed System Security Symposium.

Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the web with content security policy.
In Proceedings of the 19th International Conference on World Wide Web(WWW’10). 921–930.

Zhendong Su and Gary Wassermann. 2006. The essence of command injection attacks in web applications.
In POPL’06: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. 372–382.

Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static detection of access control vulnerabilities in web
applications. In USENIX’11: Proceedings of the 20th USENIX Security Symposium.

Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. 2008. Fable: A language for enforcing user-defined
security policies. In Oakland’08: Proceedings of the 29th IEEE Symposium on Security and Privacy.
369–383.

Shuo Tang, Haohui Mai, and Samuel T. King. 2010. Trust and protection in the Illinois browser operating
system. In OSDI’10: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation. 1–8.

Mike Ter Louw and V. N. Venkatakrishnan. 2009. Blueprint: Precise browser-neutral prevention of cross-site
scripting attacks. In Oakland’09: Proceedings of the 30th IEEE Symposium on Security and Privacy.

Fredrik Valeur, Darren Mutz, and Giovanni Vigna. 2005. A learning-based approach to the detection of
SQL attacks. In DIMVA’05: Proceedings of the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment. 123–140.

Verizon. 2010. Verizon 2010 Data Breach Investigations Report. http://www.verizonbusiness.com/resources/
reports/rp_2010-data-breach-report_en_xg.pdf.

K. Vikram, Abhishek Prateek, and Benjamin Livshits. 2009. Ripley: Automatically securing web 2.0 appli-
cations through replicated execution. In CCS’09: Proceedings of the 16th ACM Conference on Computer
and Communications Security. 173–186.

Helen J. Wang, Chris Grier, Alexander Moshchuk, Samuel T. King, Piali Choudhury, and Herman Venter.
2009. The multi-principal OS construction of the gazelle web browser. In USENIX’09: Proceedings of the
18th Conference on USENIX Security Symposium. 417–432.

Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. 2011. How to shop for free online—security analysis
of cashier-as-a-service based web stores. In Oakland’11: Proceedings of the 32nd IEEE Symposium on
Security and Privacy.

WASS. 2007. 2007 Web Application Security Statistics. http://projects.webappsec.org/w/page/13246989/
WebApplication/SecurityStatistics.

Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web applications for injection vul-
nerabilities. In PLDI’07: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation. 32–41.

Gary Wassermann and Zhendong Su. 2008. Static detection of cross-site scripting vulnerabilities. In ICSE’08:
Proceedings of the ACM/IEEE 30th International Conference on Software Engineering.

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard Shin, and Dawn Song. 2011.
A systematic analysis of XSS sanitization in web application frameworks. In ESORICS’11: Proceedings
of the 16th European Symposium on Research in Computer Security.

WhiteHat. 2010. WhiteHat Website Security Statistic Report 2010. https://www.whitehatsec.com/resource/
stats.html.

Yichen Xie and Alex Aiken. 2006. Static detection of security vulnerabilities in scripting languages. In
USENIX’06: Proceedings of the 15th Conference on USENIX Security Symposium.

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

http://www.owasp.org/index.php/CSRF_Guard
http://www.verizonbusiness.com/resources/reports/rp2010-data-b reach-reportenxg.pdf
http://www.verizonbusiness.com/resources/reports/rp2010-data-b reach-reportenxg.pdf
http://projects.webappsec.org/w/page/13246989/WebApplication/Se curityStatistics
http://projects.webappsec.org/w/page/13246989/WebApplication/Se curityStatistics
https://www.whitehatsec.com/resource/stats.html
https://www.whitehatsec.com/resource/stats.html

A Survey on Server-Side Approaches to Securing Web Applications 54:29

Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. 2009. Improving application security
with data flow assertions. In SOSP’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. 291–304.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. 2007. JavaScript instrumentation for browser
security. In POPL’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 237–249.

Received March 2012; revised June 2013; accepted October 2013

ACM Computing Surveys, Vol. 46, No. 4, Article 54, Publication date: March 2014.

