
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013 2091

Phishing Detection: A Literature Survey
Mahmoud Khonji, Youssef Iraqi, Senior Member, IEEE, and Andrew Jones

Abstract—This article surveys the literature on the detection
of phishing attacks. Phishing attacks target vulnerabilities that
exist in systems due to the human factor. Many cyber attacks
are spread via mechanisms that exploit weaknesses found in end-
users, which makes users the weakest element in the security
chain. The phishing problem is broad and no single silver-bullet
solution exists to mitigate all the vulnerabilities effectively, thus
multiple techniques are often implemented to mitigate specific
attacks. This paper aims at surveying many of the recently
proposed phishing mitigation techniques. A high-level overview
of various categories of phishing mitigation techniques is also
presented, such as: detection, offensive defense, correction, and
prevention, which we belief is critical to present where the
phishing detection techniques fit in the overall mitigation process.

Index Terms—Phishing, social engineering, phishing detection,
security,email classification.

I. INTRODUCTION

PHISHING is a social engineering attack that aims at
exploiting the weakness found in system processes as

caused by system users. For example, a system can be
technically secure enough against password theft, however
unaware end users may leak their passwords if an attacker
asked them to update their passwords via a given Hypertext
Transfer Protocol (HTTP) link, which ultimately threatens the
overall security of the system.

Moreover, technical vulnerabilities (e.g. Domain Name Sys-
tem (DNS) cache poisoning) can be used by attackers to
construct far more persuading socially-engineered messages
(i.e. use of legitimate, but spoofed, domain names can be far
more persuading than using different domain names). This
makes phishing attacks a layered problem, and an effective
mitigation would require addressing issues at the technical
and human layers.

Since phishing attacks aim at exploiting weaknesses found
in humans (i.e. system end-users), it is difficult to mitigate
them. For example, as evaluated in [1], end-users failed
to detect 29% of phishing attacks even when trained with
the best performing user awareness program. On the other
hand, software phishing detection techniques are evaluated
against bulk phishing attacks, which makes their performance
practically unknown with regards to targeted forms of phishing
attacks. These limitations in phishing mitigation techniques
have practically resulted in security breaches against several
organizations including leading information security providers
[2], [3].

Due to the broad nature of the phishing problem, this
phishing detection survey begins by:

Manuscript received January 19, 2012; revised July 12, 2012 and December
5, 2012.

M. Khonji, Y. Iraqi, and A. Jones are with Khalifa University, UAE (e-mail:
{mkhonji, youssef.iraqi, andrew.jones}@ku.ac.ae).

Digital Object Identifier 10.1109/SURV.2013.032213.00009

• Defining the phishing problem. It is important to note that
the phishing definition in the literature is not consistent,
and thus a comparison of a number of definitions is
presented.

• Categorizing anti-phishing solutions from the perspective
of phishing campaign life-cycle. This presents the various
anti-phishing solution categories such as detection. It is
important to view the overall anti-phishing picture from
a high-level perspective before diving into a particular
technique, namely: phishing detection techniques (which
is the scope of this survey).

• Presenting evaluation metrics that are commonly used
in the phishing domain to evaluate the performance of
phishing detection techniques. This facilitates the com-
parison between the various phishing detection tech-
niques.

• Presenting a literature survey of anti-phishing detection
techniques, which incorporates software detection tech-
niques as well as user-awareness techniques that enhance
the detection process of phishing attacks.

• Presenting a comparison of the various proposed phishing
detection techniques in the literature.

This survey begins by defining the phishing problem in
Section II, presenting background and related works in Section
III, and an overview of phishing mitigation approaches in
Section IV which also presents the taxonomy of various
mitigation techniques, such as: detection, prevention, and
correction techniques. Subsequent sections in this survey will
then focus on phishing detection techniques, which include
detection techniques through user awareness, as presented
in Section VI, and a number of software techniques. The
software-based detection techniques are: blacklists in Section
VII, heuristic detection techniques in Section VIII, visual
similarity detection techniques in Section IX, and data mining
detection techniques in Section X. The evaluations of the
surveyed detection techniques are presented in Section XII,
followed by the lessons that we have learned in Section XIII.
The conclusion is drawn in Section XIV.

II. DEFINITION

The definition of phishing attacks is not consistent in the
literature, which is due to the fact that the phishing problem
is broad and incorporates varying scenarios. For example,
according to PhishTank1:

“Phishing is a fraudulent attempt, usually made
through email, to steal your personal information”

1A community-driven project that facilitates individuals to submit, verify,
track and share phishing URLs. The definition of phishing attacks by
PhishTank is available in http://www.phishtank.com/what is phishing.php.

1553-877X/13/$31.00 c© 2013 IEEE

2092 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

PhishTank’s definition holds true in a number of scenarios
which, roughly, cover the majority of phishing attacks (al-
though no accurate studies have been made to reliably quantify
this). However, the definition limits phishing attacks to stealing
personal information, which is not always the case.

For example, a socially engineered message can lure the
victim to install a Man in the Browser (MITB) malware
(e.g. in forms of web browser ActiveX components, plugins
or email attachments) which would in turn transfer money
to the attacker’s bank account, whenever the victim logs in
to perform his/her banking tasks, without the need to steal
the victim’s personal information. Thus we consider that
PhishTank’s definition is not broad enough to encompass the
whole phishing problem.

Another definition is provided by Colin Whittaker et. al.
[4]:

“We define a phishing page as any web page that,
without permission, alleges to act on behalf of a third
party with the intention of confusing viewers into
performing an action with which the viewer would
only trust a true agent of the third party”

The definition by Colin Whittaker et. al. aims to be broader
than PhishTank’s definition in a sense that attackers goals
are no longer restricted to stealing personal information from
victims. On the other hand, the definition still restricts phishing
attacks to ones that act on behalf of third parties, which is not
always true.

For example phishing attacks may communicate socially
engineered messages to lure victims into installing MITB
malware by attracting the victims to websites that are sup-
posed to deliver safe content (e.g. video streaming). Once
the malware (or crimeware as often named by Anti-Phishing
Working Group (APWG)2) is installed, it may log the victim’s
keystrokes to steal their passwords. Note that the attacker in
this scenario did not claim the identity of any third party
in the phishing process, but merely communicated messages
with links (or attachments) to lure victims to view videos or
multimedia content.

In order to address the limitations of the previous definitions
above, we consider phishing attacks as semantic attacks which
use electronic communication channels (such as E-Mails,
HTTP, SMS, VoIP, etc. . .) to communicate socially engineered
messages to persuade victims to perform certain actions (with-
out restricting the actions) for an attacker’s benefit (without
restricting the benefits). See Definition 1.

Definition 1: Phishing is a type of computer attack that
communicates socially engineered messages to humans via
electronic communication channels in order to persuade them
to perform certain actions for the attacker’s benefit.

For example, the performed action (which the attacker
persuades the victim to perform it) for a PayPal user is
submitting his/her login credentials to a fake website that
looks similar to PayPal. As a perquisite, this also implies that
the attack should create a need for the end-user to perform
such action, such as informing him that his/her account would

2A non-profit global pan-industrial and law enforcement association fo-
cused on eliminating the fraud, crime and identity theft that result from
phishing, pharming, malware and email spoofing.

be suspended unless he logs in to update certain pieces of
information [5].

III. BACKGROUND

A. History

According to APWG, the term phishing was coined in 1996
due to social engineering attacks against America On-line
(AOL) accounts by online scammers.

The term phishing comes from fishing in a sense that fishers
(i.e. attackers) use a bait (i.e. socially-engineered messages)
to fish (e.g. steal personal information of victims). However,
it should be noted that the theft of personal information is
mentioned here as an example, and that attackers are not
restricted by that as previously defined in Section II.

The origins of the ph replacement of the character f in
fishing is due to the fact that one of the earliest forms of
hacking was against telephone networks, which was named
Phone Phreaking. As a result, ph became a common hacking
character replacement of f.

According to APWG, stolen accounts via phishing attacks
were also used as a currency between hackers by 1997 to trade
hacking software in exchange of the stolen accounts.

Phishing attacks were historically started by stealing AOL
accounts, and over the years moved into attacking more
profitable targets, such as on-line banking and e-commerce
services.

Currently, phishing attacks do not only target system end-
users, but also technical employees at service providers, and
may deploy sophisticated techniques such as MITB attacks.

B. Phishing Motives

According to Weider D. et. al. [6], the primary motives
behind phishing attacks, from an attacker’s perspective, are:

• Financial gain: phishers can use stolen banking creden-
tials to their financial benefits.

• Identity hiding: instead of using stolen identities directly,
phishers might sell the identities to others whom might
be criminals seeking ways to hide their identities and
activities (e.g. purchase of goods).

• Fame and notoriety: phishers might attack victims for the
sake of peer recognition.

C. Importance

According to APWG, phishing attacks were in a raise
till August, 2009 when the all-time high of 40,621 unique3

phishing reports were submitted to APWG. The total number
of submitted unique phishing websites that were associated
with the 40,621 submitted reports in August, 2009 was 56,362.

As justified by APWG, the drop in phishing campaign
reports in the years 2010 and 2011 compared to that of the
year 2009 was due to the disappearance of the Avalanche
gang4 which, according to APWG’s 2nd half of 2010 report,
was responsible for 66.6% of world-wide phishing attacks in

3A single phishing campaign might be reported multiple times, thus it is
important to not consider the redundant reports.

4A phishing gang that is held responsible for many phishing campaigns as
reported by APWG.

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2093

18000

20000

22000

24000

26000

28000

30000

32000

34000

Jul Aug Sep Oct Nov Dec

N
um

be
ro

fr
ep

or
ts

Months

Fig. 1. Total number of submitted unique phishing reports in the second half
of 2011 to APWG. Source: [9]

the 2nd half of 2009 [7]. In the 1st half of the year 2011,
the total number of submitted phishing reports to APWG
was 26,402, which is 35% lower than that of the peak in
the year 2009 [8]. However, according to APWG, the drop
in phishing attacks was due to the switch in the activities
of the Avalanche gang from traditional phishing campaigns
into malware-based phishing campaigns. In other words, the
Avalanche gang did not stop phishing campaigns but rather
switched their tactics toward malware-based phishing attacks
(which still requires electronic communication channels and
social engineering techniques to deliver malware).

Among the various types of malware that are used in
phishing attacks, Trojan horses software seem to be in a
raise, and are the most popular type of malware deployed
by phishing attacks. According to APWG, Trojans software
contributed 72% of the total malware detected in the 1st half
of 2011, from the previous value of 55% in the 2nd half of
2010.

It is also important to note that although the number of
phishing attack reports dropped since the peak in 2009, the
number of phishing attack reports are still high ,compared
to that of the 2nd half of 2008 which faced an average of
28,916 unique reports, and ranged between 22,000 and 26,000
of unique reports each month in the 1st half of 2011.

On the other hand, the 2nd half of 2011 saw a raise in
phishing reports and websites, which seems to be correlated
with holidays season [9] as depicted in Figures 1 and 2.
Which is further amplified when knowing that each phishing
campaign can be sent to thousands or even millions of users
via electronic communication channels.

The year 2011 saw a number of notable spear phishing
attacks against well known security firms such as RSA [10]
and HB Gary [2], which resulted in further hacks against their
clients such as RSA’s client Lockheed Martin [3]. This shows
that the dangers of phishing attacks, or security vulnerabilities
due to the human factor, are not limited to the naivety of end-
users since technical engineers can also be victims.

Minimizing the impact of phishing attacks is extremely
important and adds great value to the overall security of an
organization.

32000

34000

36000

38000

40000

42000

44000

46000

48000

50000

Jul Aug Sep Oct Nov Dec

N
um

be
ro

fw
eb

si
te

s

Months

Fig. 2. Total number of known unique phishing websites in the second half
of 2011 according to APWG. Source: [9]

D. Challenges

Because the phishing problem takes advantage of human
ignorance or naivety with regards to their interaction with elec-
tronic communication channels (e.g. E-Mail, HTTP, etc. . .),
it is not an easy problem to permanently solve. All of the
proposed solutions attempt to minimize the impact of phishing
attacks.

From a high-level perspective, there are generally two
commonly suggested solutions to mitigate phishing attacks:

• User education; the human is educated in an attempt
to enhance his/her classification accuracy to correctly
identify phishing messages, and then apply proper actions
on the correctly classified phishing messages, such as
reporting attacks to system administrators.

• Software enhancement; the software is improved to better
classify phishing messages on behalf of the human, or
provide information in a more obvious way so that the
human would have less chance to ignore it.

The challenges with both of the approaches are:
• Non-technical people resist learning, and if they learn

they do not retain their knowledge permanently, and
thus training should be made continuous. Although some
researchers agree that user education is helpful [1], [11],
[12], a number of other researchers disagree [13], [14].
Stefan Gorling [13] says that:

“this is not only a question of knowledge, but
of utilizing this knowledge to regulate behavior.
And that the regulation of behavior is dependent on
many more aspects other than simply the amount of
education we have given to the user”

• Some software solutions, such as authentication and
security warnings, are still dependent on user behavior.
If users ignore security warnings, the solution can be
rendered useless.

• Phishing is a semantic attack that uses electronic com-
munication channels to deliver content with natural lan-
guages (e.g. Arabic, English, French, etc. . .) to persuade
victims to perform certain actions. The challenge here
is that computers have extreme difficulty in accurately
understanding the semantics of natural languages. A no-
table attempt is E-mail-Based Intrusion Detection System

2094 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

Fig. 3. The life-cycle of phishing campaigns from the perspective of anti-
phishing techniques.

(EBIDS) [15], which uses Natural Language Processing
(NLP) techniques to detect phishing attacks, however its
performance evaluation showed a phishing detection rate
of only 75%. In our opinion, this justifies why most
well-performing phishing classifiers do not rely on NLP
techniques.

IV. MITIGATION OF PHISHING ATTACKS: AN OVERVIEW

Due to the broad nature of the phishing problem, we find
important to visualize the life-cycle of the phishing attacks,
and based on that categorize anti-phishing solutions.

Based on our review of the literature, we depict a flowchart
describing the life-cycle of phishing campaigns from the
perspective of anti-phishing techniques, which is intended to
be the most comprehensive phishing solutions flowchart. See
Figure 3.

When a phishing campaign is started (e.g. by sending
phishing emails to users), the first protection line is detecting
the campaign. The detection techniques are broad and could
incorporate techniques used by service providers to detect
the attacks, end-user client software classification, and user
awareness programs. More details are in Section IV-A.

The ability to detect phishing campaigns can be enhanced
whenever a phishing campaign is detected by learning from
such experience. For example, by learning from previous
phishing campaigns, it is possible to enhance the detection of
future phishing campaigns. Such learning can be performed
by a human observer, or software (i.e. via a machine learning
algorithm).

Once the phishing attack is detected, a number of actions
could be applied against the campaign. According to our
review of the literature, the following categories of approaches
exist:

• Offensive defense — these approaches aim to attack
phishing campaigns to render them less effective. This
approach is particularly useful to protect users that have

submitted their personal details to attackers. More details
are in Section IV-B.

• Correction — correction approaches mainly focus on
taking down the phishing campaign. In case of phishing
websites, this is achieved by suspending the hosting
account or removing phishing files. More details are in
Section IV-C.

• Prevention — phishing prevention methods are defined
differently in the literature depending on the context. In
this survey, the context is attempting to prevent attackers
from starting phishing campaigns in the future. More
details are in Section IV-D.

However, if the phishing campaign is not detected (let it
be detected by a human or a software classifier), then none
of these actions can be applied. This emphasizes on the
importance of the detection phase.

A. Detection Approaches

In this survey, we consider any anti-phishing solution that
aims to identify or classify phishing attacks as detection
solutions. This includes:

• User training approaches — end-users can be educated
to better understand the nature of phishing attacks, which
ultimately leads them into correctly identifying phishing
and non-phishing messages. This is contrary to the cate-
gorization in [16] where user training was considered a
preventative approach. However, user training approaches
aim at enhancing the ability of end-users to detect
phishing attacks, and thus we categorize them under
“detection”. Further discussions on the human factor are
presented in Section VI.

• Software classification approaches — these mitigation
approaches aim at classifying phishing and legitimate
messages on behalf of the user in an attempt to bridge
the gap that is left due to the human error or ignorance.
This is an important gap to bridge as user-training is more
expensive than automated software classifiers, and user-
training may not be feasible in some scenarios (such as
when the user base is huge, e.g. PayPal, eBay, etc. . .).
Further discussions on software classification approaches
are presented in Sections VII, VIII, IX and X.

The performance of detection approaches can be enhanced
during the learning phase of a classifier (whether the classifier
is human or software). In the case of end-users, their classifi-
cation ability can be enhanced by improving their knowledge
of phishing attacks by learning individually through their
online experience, or by external training programs. In the
case of software classifiers, this can be achieved during the
learning phase of a Machine Learning-based classifier, or the
enhancement of detection rules in a rule-based system.

Detection techniques not only help in directly protecting
end-users from falling victims to phishing campaigns, but can
also help in enhancing phishing honeypots5 to isolate phishing
spam from non-phishing spam.

5Monitored network decoys that can be used to distract attackers from
attacking valuable resources, provide early warnings about new attack trends,
or enable in-depth analysis of the performed attacks.

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2095

(Section VI)

(Section VII)

(Section VIII)

(Section IX)

(Section X)

Fig. 4. An overview of phishing detection approaches.

It is also important to note that the detection of phishing
attacks is the starting point of the mitigation of phishing
attacks. As depicted in Figure 3, if a phishing campaign is
not detected, none of the other mitigation approaches can be
applicable. For example, all of the mitigation techniques, such
as correction, prevention and offensive defense depend on a
functional and accurate detection phase.

The primary focus of this survey is covering the detection
phase of phishing attacks. Figure 4 depicts an overview of
phishing detection techniques that are covered in the subse-
quent sections of this survey.

B. Offensive Defense Approaches

Offensive defense solutions aim to render phishing cam-
paigns useless for the attackers by disrupting the phishing
campaigns. This is often achieved by flooding phishing web-
sites with fake credentials so that the attacker would have a
difficult time to find the real credentials.

Two notable examples are:
• BogusBiter [17] — A browser toolbar that submits fake

information in HTML forms whenever a phishing website
is encountered. According to BogusBiter, the detection of
phishing websites is done by other tools. In other words,
instead of simply showing a warning message to the end-
user whenever a phishing website is visited, BogusBiter
also submits fake data into HTML forms of the visited
phishing website. Submitting fake data into the HTML
forms is intended to disrupt the corresponding phishing
campaigns, with the hope that such fake data may make
the attackers task of finding correct data (among the fake
data) more difficult. This is an attempt to save the stolen
credentials of other users that have been captured by the
phishing campaign by contaminating the captured results
with bogus data. However, the limitations are:

– Toolbars need to be installed on a wide enough user
base to render this effective.

– If the user base is wide enough, BogusBiter may
cause Denial of Service (DOS) floods against servers
that host legitimate shared hosted websites as well,
simply because one of the shared web-hosts may
have a phishing content.

– Increased bandwidth demand.
– Non-standard HTML forms are not detected by

BogusBiter.
– The empirical effectiveness of this solution is not

accurately measured.
• Humboldt [18] — Similar to BogusBiter, except that

BogusBiter relies on submissions from end-user clients,
while Humboldt relies on distributed and dedicated
clients over the Internet instead of end-user toolbars that
may visit phishing sites, in addition to a mechanism to
avoid causing DOS floods against servers. This can make
Humboldt more effective against phishing websites due to
the more frequent submission of data to phishing pages.
The limitations are:

– Increased bandwidth demand.
– Non-standard HTML forms are not detected by

Humboldt.
– The empirical effectiveness of this solution is not

accurately measured.
Although offensive defense approaches can theoretically

make the attackers task more difficult in finding a victim’s
personal information, it is not known how difficult it really
becomes. For example, a phisher might simply set up a script
to test the credentials in a loop, and by using anonymous
web surfing techniques attackers sessions will be difficult to
track by the target web server. In other words, the actual
returned security value of offensive defense approaches are
not accurately evaluated and can be questioned.

C. Correction Approaches

Once a phishing campaign is detected, the correction pro-
cess can begin. In the case of phishing attacks, correction is
the act of taking the phishing resources down. This is often
achieved by reporting attacks to Service Providers.

Phishing campaigns often rely on resources, such as:
• Websites — could be a shared web host owned by

the phisher, a legitimate website with phishing content
uploaded to it, or a number of infected end-user work-
stations in a botnet6.

• E-mail messages — could be sent from a variety of
sources, such as: free E-mail Service Provider (ESP)
(e.g. Gmail, Hotmail, etc. . .), open Simple Mail Transfer
Protocol (SMTP) relays or infected end-user machines
that are part of a botnet.

• Social Networking services — web 2.0 services, such
as Facebook and Twitter, can be used to deliver socially
engineered messages to persuade victims to reveal their
passwords.

• Public Switched Telephone Network (PSTN) and Voice
over IP (VoIP) — similar to other forms of phishing
attacks, attackers attempt to persuade victims to perform
actions. However, the difference is that attackers attempt
to exploit spoken dialogues in order to collect data (as
opposed to clicking on links). Moreover, due to the way
VoIP protocols (e.g. Session Initiation Protocol (SIP))

6A botnet is a number of infected computers controlled by attackers for
malicious use.

2096 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

function, and the way many VoIP provider systems are
configured, spoofing Caller IDs are used by attackers as
tools to increase their persuasion [19].

In order to correct such behavior, responsible parties (e.g.
service providers) attempt to take the resources down. For
example:

• Removal of phishing content from websites, or suspen-
sion of hosting services.

• Suspension of email accounts, SMTP relays, VoIP ser-
vices

• Trace back and shutdown of botnets.
This also extends to the shutdown of firms that frequently

provide services to phishing attackers.
The shutdown process can be initiated by organizations that

provide brand protection services to their clients, which may
include banking and financial companies that are possible
victims of phishing attacks. When phishing campaigns are
identified, they can be reported to their hosting Internet
and web hosting service providers for immediate shutdown.
Depending on the country where phishers and phishing cam-
paigns exist, the penalties and procedures can differ.

D. Prevention Approaches

The “prevention” of phishing attacks can be confusing, as
it can mean different things depending on its context:

• Prevention of users from falling victim — in this case,
phishing detection techniques will also be considered
prevention techniques. However, this is not the context we
refer to when “prevention” is mentioned in this survey.

• Prevention of attackers from starting phishing campaigns
— in this case, law suits and penalties against attackers
by Law Enforcement Agencies (LEAs) are considered as
prevention techniques.

In this survey, whenever the keyword “prevention” is men-
tioned, it refers to the second previous item which is minimiz-
ing the possibility of attackers starting phishing campaigns via
LEA.

Usually, LEA may take a number of weeks to complete
their investigation and response procedures. Thus, it is com-
mon to apply prevention techniques after all other mitigation
techniques, which is due to the expensive nature of LEA
investigations that makes them consume a relatively large
period of time.

Once the sources of the phishing attacks are traced, LEA
can then file law suits which in turn may issue penalties such
as: imprisonment, fines and forfeiture of equipments used to
convey the attacks.

V. EVALUATION METRICS

Since the subsequent sections in this survey will compare a
number of detection techniques, we find it useful to introduce
the evaluation metrics used in the phishing literature.

In any binary classification problem, where the goal is to de-
tect phishing instances in a dataset with a mixture of phishing
and legitimate instances, only four classification possibilities
exist. See the confusion matrix presented in Table I for details,
where NP→P is the number of phishing instances that are

TABLE I
CLASSIFICATION CONFUSION MATRIX

Classified as phishing Classified as legitimate
Is phishing NP→P NP→L

Is legitimate NL→P NL→L

correctly classified as phishing, NL→P is the number of
legitimate instances that are incorrectly classified as phishing,
NP→L is the number of phishing instances that are incorrectly
classified as legitimate, and NL→L is the number of legitimate
instances that are correctly classified as legitimate.

Based on our review of the literature, the following are the
most commonly used evaluation metrics:

• True Positive (TP) rate — measures the rate of correctly
detected phishing attacks in relation to all existing phish-
ing attacks. See Equation (1) for details.

• False Positive (FP) rate — measures the rate of legiti-
mate instances that are incorrectly detected as phishing
attacks in relation to all existing legitimate instances. See
Equation (2) for details.

• True Negative (TN) rate — measures the rate of correctly
detected legitimate instances in relation to all existing
legitimate instances. See Equation (3) for details.

• False Negative (FN) rate — measures the rate of phish-
ing attacks that are incorrectly detected as legitimate in
relation to all existing phishing attacks. See Equation (4)
for details.

• Precision (P) — measures the rate of correctly detected
phishing attacks in relation to all instances that were
detected as phishing. See Equation (5) for details.

• Recall (R) — equivalent to TP. See Equation (6) for
details.

• f1 score — Is the harmonic mean between P and R. See
Equation (7) for details.

• Accuracy (ACC) — measures the overall rate of cor-
rectly detected phishing and legitimate instances in rela-
tion to all instances. See Equation (8) for details.

• Weighted Error (WErr) — measures the overall weighted
rate of incorrectly detected phishing and legitimate in-
stances in relation to all instances. See Equation (9) for
details.

TP =
NP→P

NP→P +NP→L
(1)

FP =
NL→P

NL→L +NL→P
(2)

TN =
NL→L

NL→L +NL→P
(3)

FN =
NP→L

NP→P +NP→L
(4)

P =
NP→P

NL→P +NP→P
(5)

R = TP (6)

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2097

f1 =
2PR

P +R
(7)

ACC =
NL→L +NP→P

NL→L +NL→P +NP→L +NP→P
(8)

WErr = 1− λ ·NL→L +NP→P

λ ·NL→L + λ ·NL→P +NP→L +NP→P
(9)

where λ weights the importance of legitimate instances as
used previously in [16]. For example, if λ = 9, then WErr

penalizes the misclassification of legitimate instances 9 times
more than the misclassification of phishing instances.

VI. DETECTION OF PHISHING ATTACKS: THE HUMAN
FACTOR

Since phishing attacks attempt to take advantage of the
inexperienced users, an obvious solution is educating the
users, which would in turn reduce their susceptibility to
falling victims of phishing attacks. A number of user training
approaches have been proposed throughout the past years.

The human factor is broad. Simply educating end-users
alone does not necessarily regulate their behavior [13]. This
section will present and discuss some of the work contributed
in the field of user training in relation to phishing attacks.

A. Phishing Victims

Julie S. Downs et al. [20] surveyed 232 computer users to
study what are the criteria that can predict the susceptibility
of a user to fall victims for phishing emails. The survey was
formed in a role play where each user was expected to analyze
emails as well as answering a number of questions. The
outcome of the study was that those who had a good knowl-
edge about the definition of “phishing” were significantly less
likely to fall for phishing emails, while knowledge about other
areas, such as cookies, spyware and viruses did not help in
reducing vulnerability to phishing emails. Interestingly, the
survey showed that knowledge about negative consequences
(e.g. credit card theft) did not help in reducing vulnerability
to phishing emails. The study concluded that user educational
messages should focus on educating users about phishing
attacks rather than warning them about the dangers of negative
consequences.

Another study that confirms the study in [20] was made
by Huajun Huang et. al. [21], which concluded that the
primary reasons that lead technology users to fall as victims
for phishing attacks are:

• Users ignore passive warnings (e.g. toolbar indicators).
• A large number of users cannot differentiate between

phishing and legitimate sites, even if they are told that
their ability is being tested.

A demographic study made by Steve Shen et. al. [1] shows
a number of indirect characteristics that correlate between
victims and their susceptibility to phishing attacks. According
to their study, gender and age strongly correlate with phishing
susceptibility. They conclude that:

• Females tend to click on email links more often than
males.

• People between 18 and 25 years old were much more
likely to fall victim to phishing attacks than other age
groups.

This was justified to be caused by a lack of sufficient
technical knowledge and experience, which further confirms
[20] and [21].

B. User-Phishing Interaction Model

Xun Don et. al [5] described the first visual user-phishing
interaction model. The model describes user interaction from
the decision making point of view; which starts the moment a
user sees phishing content, and ends when all user actions are
completed (see Figure 5). The goal is assisting the process of
mitigating phishing attacks by firstly understanding how users
interact with phishing content.

Inputs to the decision making process are:
• External information: could be anything learned through

the User Interface (UI) (Web/mail client and their con-
tent), or expert advice. The phisher only has control over
what is presented by the UI. Usually, the user does not
ask for expert advice unless he is in doubt (i.e. if a user
is convinced that a phishing site is legitimate, he might
not ask for expert advice in the first place).

• Knowledge and context: the user’s current understanding
of the world, which is built over time (e.g. news, past
experience).

• Expectation: users have expectations based on their un-
derstanding and the outcome of their actions.

During the decision making process, two types of decisions
can be made, which are:

• Planning a series of actions to be taken.
• Deciding on the next action in sequence to be taken. This

is influenced by the outcome resulting from the previous
action.

The first action is often done consciously, while the sub-
sequent actions are done sub-consciously. As a result, the
outcome of the first action affects user’s ability in detecting
phishing attacks in subsequent actions.

A phishing example that takes advantage of the above
behavior is, an email that presents a non-existent Uniform
Resource Locator (URL) pointing to a legitimate website,
followed by a backup URL pointing to a phishing site. The
first action a victim could take is clicking on the primary
legitimate URL to view (say) an e-card (as claimed by the
phisher), which obviously would result in a 404 page not
found error. The second action would be clicking the backup
link pointing to a phishing site. Since the phishing site was
visited as a second action by the victim user, he would have a
lower probability to detect inconsistencies in the backup URL.

Each of the two types of decisions mentioned above, follow
the following steps:

• Construction of perception: constructed through the con-
text where the user reads (say) an email message. Such
as, senders/recipients, conversation cause, or suggested
actions by the email. In legitimate messages, there are no
inconsistencies between the reality and message claims
(e.g. senders are the real senders whom they claim to be,

2098 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

Fig. 5. Overview of the interaction between end-users and phishing content. Source: [5].

and suggested actions by email content does what it says).
However, in phishing messages there are inconsistencies
(e.g. if the sender’s ID is spoofed, or the message’s
content claims to fix a problem while attempting, in
reality, to obtain personal information). If the end-user
discovers inconsistencies in a given phishing message,
the phishing attack would then fail to persuade the end-
user.

• Generation of possible solutions: users usually find solu-
tions through available resources. However, with phishing
emails, the user is not requested to generate a possible
solution in the first place, as the phisher already suggests
a solution to the user. For example, if the phishing
email content presents a problem, such as account expiry,
it will also present a solution, such as activating the
account through logging in a URL from which expiry
is prevented.

• Generation of assessment criteria: different users have
different criteria that reflects how they view the world,
their emotional state, personal preferences, etc. . . . As the
paper claims, most phishing attempts do not take into
account such details, but rely on generic common-sense
criteria instead; for example: an attacker might place a
tick box labeled “Secure login” to meet a security criteria
most users require. Phishing attacks aim to match user
criteria as much as possible.

As stated earlier, phishers can only modify the decision pro-
cess of users through providing external information through
the UI. The user interface provides two data sets (see Figure
6):

• Meta data: such as URL presented in web browser
address bars, or email addresses.

• Content data: such as site or email content.

Phishing attacks succeed if a phishing attack convinces the
user that both meta data and content data are legitimate.

Users may use meta data to decide whether an email
message is legitimate. Phishers may also spoof meta data in
order to further trick the users. As stated in [5], the solution to
meta-data integrity problem is not through user education or
awareness as it is very difficult for users to validate whether

}
Fig. 6. User Interface (UI) components.

the source IP address is legitimate in case the domain name
was spoofed. Users should not be expected to validate the
meta-data as it is rather a system design or implementation
problem.

On the other hand, through social engineering, phishers
create convincing and legitimate-looking content data. A
common solution to this is user awareness.

C. Service Policies

Although different methods have been developed to deliver
warnings and notifications to end-users, them having a knowl-
edge of phishing is required to render warnings or notifications
useful.

Users should be made aware of various types of social
engineering attacks, and a low level of awareness would
result in exposing user’s credentials irrespective of software or
hardware protection layers. A relatively common solution is
educating users via periodic messages (Emails, SMS, etc. . .).

Organizations should have strict policies against the distri-
bution of confidential data over email, Short Message Service
(SMS), or VoIP, coupled with user awareness programs (e.g.
periodic educational messages) to ensure that users are aware
of the policies. Users that are made aware of this have a higher
chance of detecting inconsistencies within a phishing message

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2099

Fig. 7. IE displaying a passive warning page against a suspected unsafe site.
Source: http://www.itwriting.com/

if the content data, for example, asked for confidential infor-
mation.

Service providers should also strictly enforce their policies
against illicit use of their services. Many hosting providers
take services down in cases where they are abused. As
researched by T. Moore, and R. Clayton in [22], service take-
down is increasingly common in the way security problems
are handled.

Users should also be aware of the environment that they
interact with. e.g. mail and web clients display meta data,
which users need to use to validate content data; e.g. Thun-
derbird displays notifications if a mail signature is not valid.
Ignoring warnings, such as X.509 certificate verification fail-
ure messages, could lead users into permanently trusting illicit
certificates. If the trusted certificate was caused by a Man in
the Middle (MITM) attack, then such behavior could break
the trust model of Public Key Infrastructure (PKI), making
Hypertext Transfer Protocol Secure (HTTPS) or Secure/Mul-
tipurpose Internet Mail Extensions (S/MIME) the same as their
insecure counterparts.

User education should be coupled with clear IT policies
as well as applied practices. Otherwise, the policy could
reverse the educational message. For example, an IT policy
that warns about the dangers of HTTPS sites with invalid
X.509 certificates, while publishing local sites with self-signed
certificates (such as the default setup of MS Outlook Web
Access), could lead into an implied message that the security
policies and warnings are not of great importance. Ultimately,
this leads to the spread of habits opposing the actual intentions
of security policies.

Another challenge is the widespread use of computers
in environments other than the workplace, where proper IT
policies do not exist. Frequent misuse of technology could
lead end users into considering ignoring security warnings as
the norm, which might gradually be taken into their workplace
as well.

The psychological aspect of the phishing problem is broad,
and plays a major role on the end user behavior. Due to the

Fig. 8. FireFox displaying an active warning page against a suspected unsafe
site.

generic nature of the challenge, a highly predictable solution
remains difficult to achieve, if not impossible by today’s scien-
tific advancements in understanding human mental functions
and behavior.

D. Passive and Active Warnings

User interfaces can show security warnings based on trig-
gered actions, such as viewing phishing web pages, as com-
monly deployed by many web browsers. There are generally
two ways of presenting the warnings to the end user:

• Passive warnings — the warning does not block the
content-area and enables the user to view both the content
and the warning as in the snapshot depicted in Figure 7.

• Active warnings — the warning blocks the content-data,
which prohibits the user from viewing the content-data
while the warning is displayed as in the snapshot depicted
in Figure 8.

According to a study conducted by Egelman et. al. [23],
passive warnings are ineffective. Only 13% of the participants
heeded to passive browser warnings, while 79% of the partic-
ipants heeded for active warnings.

Similarly, toolbars have mostly followed passive warnings
expressed by notification icons, which justifies the failure of
security toolbars to properly notify end-users of phishing risks.
According to a study conducted by Min Wu et. al [24], users
failed to heed toolbar passive warnings.

Both of the studies, [23] and [24], concluded that active
warnings are superior to passive ones. Users do not heed
warnings unless they are forced to by blocking the content-
data portion of the UI to display a clear warning message.

E. Educational Notices

E-services, such as e-banking, often communicate periodic
educational messages to warn their clients of potential phish-
ing threats. The messages are often delivered via SMS’s and
e-mails.

2100 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

According to a study conducted by Kumaraguru et. al. [11],
periodic security notices are ineffective and, although they
may improve the knowledge of end-users, the periodic notices
fail to change their behavior.

Alternatively, Kumaraguru et. al. [11] proposes and eval-
uates the design of an alternative periodic method to send
educational notices, that are embedded into the daily activity
of the end-users. The study shows that embedded training
systems are more effective than periodic security notices (89%
of participants who were trained by the periodic notices were
victims for testing phishing emails, while 30% of participants
who were trained by comics embedded training messages were
victims of testing phishing emails). The evaluation in [11]
also compared multiple approaches in educating users, such
as text, annotated figure and comics. The study concluded that
embedded comics were the most effective approach.

The proposed system functions as follows:

• The e-mail administrator prepares a number of fake
phishing emails.

• The phishing emails are communicated to the victims.
No warnings are shown at this stage.

• Once the victim interacts with a phishing email, such as
by clicking on a phishing link, the user is then shown
a security warning teaching him the risks of phishing
attacks.

The advantage of this embedded training method is that it
teaches the end-user in the most receptive moment — which
is when he falls as a victim for a fake phishing attack.

Kumaraguru et. al. [11] then concluded with a number of
design principles that should be followed to enhance user
educational notices:

• Training messages to be embedded into the daily activity
of the user, without the need to read external sources (e.g.
other websites or SMS).

• The warning message should clearly and concisely ex-
plain the causes; warning messages can fail if they have
too much of textual data.

• The warning message should clearly and concisely ex-
plain proper actions to be taken by the end-user to
enhance his/her security.

• The warning should not be delayed, but be shown im-
mediately following the moment when the user falls as
victim and clicks on an email link.

• The fake phishing messages used for training purposes
should mimic closely phishing messages in the wild.

• Enhancing the security warning text with story-based
comics enhances readability.

However, the drawbacks of the proposed embedded training
system are:

• The system requires a human administrator to craft the
messages. This adds delay and increases the maintenance
cost of the solution.

• The crafted phishing emails by the administrator are
limited by the administrator’s understanding of phishing
attacks. If the administrator is unaware of latest trends in
phishing emails, his/her crafted phishing attacks might be
less effective.

In other words, a highly important parameter to the pro-
posed method is the administrator who is tasked to create
phishing-like messages, and the proposed solution’s perfor-
mance is heavily based on the performance of the adminis-
trator whom in turn is a variable as not all administrators are
equivalent.

VII. PHISHING DETECTION BY BLACKLISTS

Blacklists are frequently updated lists of previously detected
phishing URLs, Internet Protocol (IP) addresses or keywords.
Whitelists, on the other hand, are the opposite, and could be
used to reduce FP rates. Blacklists do not provide protection
against zero-hour phishing attacks as a site needs to be
previously detected first in order to be blacklisted. However,
blacklists generally have lower FP rates than heuristics [25].

As studied in [25], blacklists are found to be ineffective
against zero-hour phishing attacks, and were able to detect
only 20% of them. The study [25] also shows that 47% to
83% of phishing URL were blacklisted after 12 hours. This
delay is a significant issue as 63% of phishing campaigns end
within the first 2 hours.

A. Google Safe Browsing API

Google Safe Browsing API enables client applications to
validate whether a given URL exists in blacklists that are con-
stantly updated by Google [26]. Although the protocol is still
experimental, it is used by Google Chrome and Mozilla Fire-
fox. The current implementation of the protocol is provided by
Google, and only consists of two blacklists named goog-phish-
shavar and goog-malware-shavar, for phishing and malware
respectively. However the protocol itself is agnostic to the list
type as well as to the provider of the list.

The API requires client applications to communicate with
providers through HTTP while adhering to syntax specified
in Protocolv2Spec [27], which is the second version of the
protocol; the first version faced scalability and efficiency
issues that are also outlined in [27]. Notable changes in the
second version are:

• Version 2 of the protocol divides the URL data into
chunks and allows partial updates. Such partial updates
were not available in version 1 of the protocol.

• Version 2 of the protocol does not always send full 256-
bit hashes of blacklisted URLs to web browsers, instead
it initially sends a list of 32-bit truncated forms of the
hashes. However, if a visited URL had a hash such that
its 32-bit truncated form matched any of those in the
truncated URLs hash list, then the browser will download
all complete 256-bit hashes that have the same first 32-
bits as that of the suspect URL. This allows saving
bandwidth when transmitting the URLs hash blacklist,
specially when knowing that most visited URLs are
legitimate in the common case (i.e. the no-match:match
ratio is high in reality), and that the first 32-bits are still
sufficient (for most cases) to yield mismatches between
different URLs. In other words, the 256-bit URL hashes
are only sent to resolve possible hash collisions with
regards to the first 32-bits of the hashes (i.e. to avoid false
positives due to hash collisions). Version 1 of the protocol

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2101

Algorithm 1 Protocolv2Spec phishing detection in pseudo-
code

1: Hf ← sha256(URL)
2: Ht ← truncate(Hf , 32)
3: if Ht ∈ Hl then
4: for Hr ← queryProvider(Ht) do
5: if Hf = Hr then
6: warnPhishing(URL)
7: end if
8: end for
9: end if

did not support such use of truncated hashes, and always
sent the full 256-bits (which resulted in inefficient use of
bandwidth). More details are presented in the background
section in Protocolv2Spec [27].

The client application downloads lists from providers, and
maintains its freshness by incremental updates that contain
additive and subtractive chunks. The protocol follows a pull
model that requires the client to connect to the server at certain
integer time intervals measured in minutes (tm). To reduce the
server load as the number of clients increases, the following
mechanism is followed by the client applications:

1) The first update occurs after 0 to 5 minutes following
client start. tm ← rand(0, 5).

2) tm would then be set explicitly by the server for
subsequent updates. Otherwise, the client would assume
tm ← rand(15, 45).

In case of error or timeout:
1) tm ← 1.
2) If an error or timeout was returned, then tm ←

30(rand(0, 1) + 1).
3) If an error or timeout was also returned, then tm ← 2tm.

4) Step 3 is repeated until tm = 480. The client then fixes
the interval at 480 minutes until the server responds.

Since Version 2 of the protocol distributes the first 32-bit
of every SHA-256 hash, the client has to apply Algorithm 1
in order to handle possible hash collisions with regards to the
first 32-bit segments of the hashes.

where Hf is a full SHA-256 hash of the candidate URL
as calculated locally by the browser, Ht is a truncated first
32-bit of Hf , Hl is a truncated local hash list, and Hr is the
full SHA-256 hashes set as returned from the remote server.

In other words, the client software has a downloaded list
of truncated hashes of phishing URL. The hash of suspect
URLs are calculated, truncated and then compared against
the locally available blacklist. In a case where a match is
found, the browser then sends a query to the blacklist provider
(Google in this case) to retrieve full hash entries that match
the truncated hash. If the non-truncated hash of the suspect
URL is found in the returned list, the URL is classified as
phishing, or legitimate if otherwise.

Based on our understanding of the protocol’s specifications,
the use of truncated hashes is mainly to reduce download size,
which eventually leads into faster distribution of blacklists into
client software.

B. DNS-Based Blacklist

DNS-based Blacklist (DNSBL) providers use the standard
DNS protocol. Due to its use of the standard DNS specifi-
cation, any standard compliant DNS server could act as a
DNSBL. However, since the number of listed entries is large, a
server that is not optimized for handling large amounts of DNS
A or TXT Resource Records (RRs) may face performance
and resource strains. rbldnsd7 is a fast DNS server, designed
specifically to handle large RR suited for DNSBL duties.

When a Message Transfer Agent (MTA) establishes an in-
bound SMTP connection, it can verify whether the connecting
source is listed in phishing blacklists8, by sending a DNS A
RR query to a DNSBL server on the connecting IP address.
For example, if the source IP address of the SMTP connection
is 86.96.226.20, and assuming that the DNSBL server is dnsbl-
2.uceprotect.net, then a DNS A RR query should be sent for
20.226.96.86.dnsbl-2.uceprotect.net to a DNS server; which is
the reverse form of the suspect IP address appended by the
DNSBL domain name. If the DNSBL server found an entry,
then it would mean that the IP address is blacklisted.

Listing 1 presents the output of a DNS A RR query to a
DNSBL server with the program host executed in a Unix
machine. The output indicates that there exists a DNS A
RR entry, which means that the respective IP address (i.e.
86.96.226.20) is blacklisted.

Listing 1. A RR Response from a DNSBL server using host.
1 user@local# host −t A 20.226.96.86.dnsbl−3.uceprotect . net
2 20.226.96.86.dnsbl−3.uceprotect . net A 127.0.0.2

Depending on the DNSBL server, the blacklisting cause
could be queried via DNS TXT RR query.

Listing 2 presents the output of a DNS TXT RR query to
a DNSBL server with the program host executed in a Unix
machine. The output indicates that there exists a DNS TXT
RR entry, which explains the reasons that caused the respective
IP address to be blacklisted.

Listing 2. TXT RR Response from a DNSBL server using host.
1 user@local# host −t TXT 20.226.96.86.dnsbl−3.uceprotect . net
2 20.226.96.86.dnsbl−3.uceprotect . net TXT ”Your ISP Emirates−
3 Internet /AS5384 is Uceprotect−Level3 listed for hosting a
4 total of 4969 abusers . See:
5 http : / /www.uceprotect . net / rblcheck .php?ipr=86.96.226.

However, if no DNS A RR is found, it would be considered
by the MTA as an indication that the source IP address of the
SMTP connection is not blacklisted.

Listing 3 presents the output of a DNS TXT RR query to
a DNSBL server with the program host executed in a Unix
machine. The output indicates that no DNS A RR exists with
regards to the IP address 1.1.1.1, which means that the IP
address is not blacklisted.

Listing 3. DNS A RR query response, regarding an unlisted IP address.
1 user@local# host −t A 1.1.1.1.dnsbl−3.uceprotect . net
2 1.1.1.1.dnsbl−3.uceprotect . net does not exist

7http://www.corpit.ru/mjt/rbldnsd.html
8Phishing blacklists could be combined with SPAM blacklists.

2102 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

C. PhishNet: Predictive Blacklisting

Any changes to a Phishing URL would result in no match.
PhishNet [28] addresses the exact match limitation found in
blacklists.

To solve this, PhishNet processes blacklisted URLs (par-
ents) and produces multiple variations of the same URL
(children) via 5 different URL variation heuristics, which are
listed below:

• Replace Top Level Domains (TLD): Each URL will fork
into 3,210 variations, each with a different TLD.

• Directory structure similarity: If multiple Phishing URLs
have similar directory structures with minor variations,
multiple children URLs will be created to assemble
differences across all the attack URLs that have similar
directory structures. For example:

– http://www.abc.com/online/ebay.html.
– and http://www.xyz.com/online.paypal.com.

would result into forking the following children URLs:
– http://www.xyz.com/online/ebay.html.
– and http://www.abc.com/online.paypal.com.

• IP address equivalence: URLs with similar directory
structure but different domain names are considered as
a match if they point to the same IP address.

• Query string substitution: Similar to “directory structure
similarity” except that it forks multiple variations of a
URL with different query strings. For example:

– http://www.abc.com/online/ebay.php?ABC.
– and http://www.abc.com/online.paypal.com?XYZ.

would result into forking the following children URLs:
– http://www.abc.com/online/ebay.php?XYZ.
– and http://www.abc.com/online.paypal.com?ABC.

• Brand name equivalence: Multiple children URLs with
same URL, but with different brand names. For example
http://www.abc.com/online/paypal.html, would also fork
http://www.abc.com/online/ebay.html as a child (since
they are often attacked).

The heuristics above are designed such that the URL varia-
tions (as made by the attackers) are detected. For example, the
brand name equivalence heuristic aims at detecting a common
URL alteration that was performed by a phishing gang, namely
RockPhish, as mentioned in [28].

Many of the forked children URLs may not exist or may
be innocent irrelevant pages. So in order to filter/remove non-
existent children URLs, the following tests are performed:

• DNS query: does the domain name exist?
• TCP connect: is the resolved name running a HTTP

server?
• HTTP header response: does the page exist? (HTTP

200/202 == found).
• Content similarity: is the content similar to parent Phish-

ing attack? If the page is different, it might be an innocent
page. An external tool9 was used to measure the content
similarity.

9The content similarity tool is “Similar Page Checker” as made available
by webconfs via http://www.webconfs.com/similar-page-checker.php.

D. Automated Individual White-List

Automated Individual White-List (AIWL) [29] maintains a
whitelist of features describing trusted Login User Interfaces
(LUIs) where the user submitted his/her credentials. Every
LUI will cause a warning except if trusted. Once a LUI is
trusted, its features will be stored locally in a whitelist.

There are two primary components of AIWL, namely:
• Whitelist — a list of trusted LUIs. Its objective is sup-

pressing warnings with regards to LUIs that are trusted.
In order to detect whether a suspect LUI is trusted, the
LUI is represented as a feature vector and then compared
against those feature vectors in the whitelist. If the LUI
features of a suspect page do not match all of the features
in any whitelisted LUI, the suspect page is assumed to
be untrusted and warnings are presented to the end-user.
Such features that uniquely identify LUIs are:

– URL address of the trusted LUI.
– IP addresses that correspond to the trusted LUI.

Since a DNS A Resource Record can be mapped to
more than one IP address (e.g. for reasons related
to load balancing), multiple IP addresses can be
mapped to a single LUI.

– The hash of the X.509 certificate that is associated
with the trusted LUI.

– The Document Object Model (DOM) path of user-
name and password input fields of the trusted LUI.
For example, if the input field username exists in
a form named loginform, which is in turn in a
frame named mainframe, then it will be represented
as mainframe/loginform/username. In other words,
username and password input fields are identified as
a directory structure. The objective of this structure
is detecting phishing attacks that use iframe tags to
present login forms of legitimate websites. For exam-
ple, an attacker could construct a phishing page that
presents another page (e.g. PayPal) via the iframe
HTML tag, and then monitors user’s interaction with
the page via JavaScript. Identifying username and
password fields in a directory structure based on
DOM helps in detecting differences between input
fields that are presented normally in their original
website, and those that are presented in iframe
HTML tags.

• Automated whitelist maintainer — a classifier that de-
cides whether a suspect LUI to be installed in the
whitelist. The merit of the whitelist maintainer is that
if an end-user logs in successfully for enough amount
of times via a given LUI, then that LUI is trusted (and
thus whitelisted). This means that the automated whitelist
maintainer requires a mechanism from which it is able to
decide whether a login was successful. Once the classifier
decides whether a login was successful, it needs to keep
track of number of successful logins per suspect LUI,
and whitelist it if number of successful login attempts
exceed a given threshold (a pre-defined parameter). The
input to this classifier is features vector that describes the
content of a suspect LUI (what is not in the whitelist),
and the output is a label that decides whether to trust the

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2103

LUI. The features that are used by the classifier to decide
whether a login is successful are:

– A binary feature that describes whether the suspect
page is in the browser history. Legitimate sites are
likely to exist in the history as they have previously
been visited.

– A binary feature that describes whether the redi-
rected page, following a login attempt, has a pass-
word field. The merit behind this feature is that suc-
cessful login attempts often result in the redirection
to another page that does not have password input
field.

– A binary feature that describes whether the redi-
rected page, following a login attempt, has a number
of links that exceeds a pre-defined threshold. The
merit behind this feature is that when a login fails,
the user is often redirected to a page with the login
form again, which does not have as many links as
the main page after a successful login.

– A binary feature that describes whether the redi-
rected page after the login attempt has a username
equal to the same username that was supplied in the
login process. If a username is seen again in a form,
it would be considered as login failure (since some
forms keep the username in the retry form). On the
other hand, if the username is not seen in any form
following a login attempt, it would be considered as
successful login.

– A binary feature that describes whether a user keeps
browsing a given web site for a time period that
exceeds a pre-defined threshold. The merit of this
feature is that phishing web pages are often dealt
with very quickly and that the user is likely to close
the web page following his login attempt, while
legitimate websites are more likely to be browsed
by the user following a successful login attempt for
an extended time period.

In order for the automated whitelist maintainer to make
decisions based on the features described earlier, Ye Cao
et. al. propose the use of a Naive Bayes classifier that is
given a set of feature vectors that correspond to successful
and failure login attempts. Based on such feature vectors,
the Naive Bayes classifier constructs a model that is able
to generate probabilities associated with regards to future
test login attempts. If the probability exceeds a pre-defined
threshold, then the login is predicted to be successful.

As stated earlier, once a login attempt in a LUI is predicted
to be successful, the automated whitelist maintainer needs also
to track the frequency of successful login attempts via the
same LUI. If the frequency of such successful attempts exceed
a threshold, then the LUI is stored in the local whitelist and
the LUI is deemed safe.

VIII. PHISHING DETECTION BY HEURISTICS

Software could be installed on the client or server side to
inspect payloads of various protocols via different algorithms.
Protocols could be HTTP, SMTP or any arbitrary protocol.
Algorithms could be any mechanism to detect or prevent

phishing attacks. Phishing heuristics are characteristics that
are found to exist in phishing attacks in reality, however
the characteristics are not guaranteed to always exist in such
attacks. If a set of general heuristic tests are identified, it can
be possible to detect zero-hour phishing attacks (i.e. attacks
that were not seen previously), which is an advantage against
blacklists (since blacklists require exact matches, the exact
attacks need to be observed first in order to blacklist them).
However, such generalized heuristics also run the risk of
misclassifying legitimate content (e.g. legitimate emails or
websites).

Currently, major web browsers and mail clients are built
with phishing protection mechanisms, such as heuristic tests
that aim at detecting phishing attacks. The clients include
Mozilla FireFox, Internet Explorer, Mozilla Thunderbird and
MS Outlook. Also, phishing detection heuristics could be
included in Anti Viruses, similar to ClamAV10.

A. SpoofGuard

SpoofGuard [30], a web browser plug-in developed by
Stanford University, detects HTTP(S)-based phishing attempts
as a web browser toolbar, by weighting certain anomalies
found in the HTML content against a defined threshold value.

Listing 4 shows samples of HTML heuristically detectable
by SpoofGuard.

Listing 4. Sample of heuristic phishing detection based on content.
1 /∗ Anchor’s href attribute is a URI similar to a
2 white−listed URL. In this case , www.gmail.com. ∗/
3 Click Here
4

5 /∗ Anchor’s href attribute contains a cloaked URL.
6 See RFC2396, Section 3.2.2. ∗/
7 Click Here
8

9 /∗ Anchor’s text attribute is a URL different than the URL
10 supplied by href attribute . ∗/
11 www.gmail.com
12

13 /∗ Although password fields are harmless themselves ,
14 some phishing detection heuristics (such as SpoofGuard)
15 assign password fields specific values to increase
16 level of caution as they might be abused to mimic login
17 forms. If the accumulated number for a content exceeded
18 a predefined threshold , the content could be reported
19 suspected . ∗/
20 <input type=”password” />

B. Collaborative Intrusion Detection

Many phishing detection and prevention mechanisms are
based on finding the source IP address of the attacker.

Fast-flux [31], on the other hand, enables attackers to
frequently change their IP addresses. By having a sufficient
number of infected hosts (usually home users), hosts can
behave as front-end proxies for phishing websites. Multiple
front-end proxies relay the traffic back to a main phishing site
to fetch the content from (also known as mothership).

Load balancing is achieved by means of low Time to live
(TTL) DNS A RR, which enables a quicker change of mapped

10www.clamav.net

2104 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

IP addresses than if higher TTL values were used. Low TTL
also helps in reducing the downtime when dead front-end
proxies are removed. The DNS A RR are updated by the
attacker through a fixed DNS NS RR.

Although fast-flux has a fixed NS record pointing to the
attacker’s real IP address, double fast-flux complicates the task
further by relaying DNS RR update to front-ends as well.

A proposed solution to this is through the use of Collabora-
tive Intrusion Detection System (CIDS) to exchange phishing-
related data among a number of Intrusion Detection Systems
(IDSs).

The distributed system should be installed globally. Each
local CIDS should monitor its local DNS cache, and list DNS
zones with a high number of DNS A RR that are combined
with low TTL values. The list of IP addresses and domains
are sent to global CIDS for further analysis. Each recipient
CIDS would in turn have to monitor connections of reported
IP addresses (which are infected home users in most cases).

By monitoring the inbound and outbound connections of
suspected source IP, it should be possible to find the mother-
ship that is distributing the original phishing content to other
front-end proxies.

The proposed mechanism counts the number of connections
to the front-end proxies (infected hosts), and distributes such
numbers to global CIDS. If the threshold reaches a certain
number, it would then be assumed that it is a connection to
the mothership (since the mothership has one-to-many con-
nections, it is assumed to have a high number of accumulated
connections globally).

This proposed solution has not been implemented yet due
to difficulty in studying fast-flux or double fast-flux attacks
due to their unrepeated nature so far.

It also faces challenges in determining which connection
is toward the mothership. Connection count is not a definitive
criteria since many phishing networks could also be connected
to other legitimate networks (such as Internet Relay Chat
(IRC) or game networks), from which they initially appeared.
Thus, doing a simple connection count could lead into false
positives.

C. PhishGuard: A Browser Plug-in

The work in [32] bases its protection against phishing on the
idea that phishing websites do not often verify user credentials,
but merely store them for later use by the phisher.

The authors in [32] acknowledge that, in the future, phishing
sites would be more sophisticated and pipe (or tunnel) their
output from legitimate sites, acting as a man in the middle
attack, which would in turn result in proper success or failure
login warnings (as communication is simply piped back and
forth). However, the paper states that such use is not common
yet, and mainly focuses its detection on non-piped phishing
attempts.

PhishGuard’s implementation in [32] is a proof of concept
that only detects phishing attacks based on testing HTTP
Digest authentications. However, integrating other authentica-
tion mechanisms, such as through HTML form submission,
is possible. PhishGuard follows the following steps to test a
suspected page.

1) The user visits a page.
2) If the visited page sends an authentication request,

and if the user submitted the authentication form, then
PhishGuard starts its testing procedures.

3) PhishGuard would send the same user ID, followed by a
random password that does not match the real password,
for random n times.

4) If the page responded with HTTP 200 OK message, then
it would mean the page is a phishing site, and is simply
returning fake authentication success messages.

5) If the page responded with HTTP 401 Unauthorized
message, then it could possibly mean:

• The site is a phishing site that blindly responds with
failure authentication messages.

• The site is a legitimate site.
6) To distinguish between the two possibilities above,

PhishGuard would send real credentials to the website
for the n+ 1 time.

7) If the page responded with a HTTP 200 OK message
following the login request when the real credentials
were used, then the site passes the test and is deemed
legitimate.

8) If the page responded with a HTTP 401 Unauthorized
message, then it could possibly mean:

• The web site is a phishing site that blindly responds
with failure authentication messages. In this case
the login credentials of the user were submitted
to the phisher. Clearly, the technique is only able
to prevent password theft for a subset of phishing
websites.

• The user submitted the wrong password.
9) To ensure that the submitted password is not a wrong

password mistyped by the user, PhishGuard stores pass-
word hashes in a file and verifies future login requests
against it:

• If the hash of the entered password matches any
entry in the file, then PhishGuard concludes that the
password was correct, and the site was a phishing
website.

• If no match was found, then PhishGuard would
conclude the supplied password is wrong, and the
user is then alerted to correct his/her password.

D. Phishwish: A Stateless Phishing Filter Using Minimal
Rules

The work in [33] proposes 11 heuristic rules to determine
whether an incoming email is a phishing message. The pro-
posed solution aims toward providing:

• Better protection against zero-hour attacks than blacklists.
• A solution that requires relatively minimal resources

(11 rules), which is far lower than number of rules in
SpamAssassin11; at the time of writing the paper [33]
SpamAssassin used 795 rules.

• Minimum false positives.

11A free open source software project that aims at detecting spamming
email messages, which also incorporates the detection of phishing emails.
The project’s website can be accessed via http://spamassassin.apache.org/

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2105

The proposed rules fall under:
• Analysis performed on URL that fall within the email’s

body.
• Analysis performed on email headers.
The proposed rules are (where positive indicates phishi-

ness):
• Rule 1: If a URL is a login page that is not a business’s

real login page, the result is positive. The paper specifies
that this is analyzed based on data returned from search
engines.

• Rule 2: If the email is formatted as HTML, and an
included URL uses Transport Layer Security (TLS) while
the actual Hypertext Reference (HREF) attribute does not
use TLS, then the result is positive.

• Rule 3: If the host-name portion of a URL is an IP
address, the result is positive.

• Rule 4: If a URL mentions an organization’s name (e.g.
PayPal) in a URL path but not in the domain name, the
result is positive.

• Rule 5: If URL’s displayed domain does not match the
domain name as specified in HREF attribute, the result
is positive.

• Rule 6: If the received SMTP header does not include
the organization’s domain name, the result is positive.

• Rule 7: If inconsistencies are found in a non-image
URL’s domain portion, the result is positive.

• Rule 8: If inconsistencies are found in Whois records of
non-image URL’s domain portion, the result is positive.

• Rule 9: If inconsistencies are found in image URL’s
domain portion, the result is positive.

• Rule 10: If inconsistencies are found in Whois records
of image URL’s domain portion, the result is positive.

• Rule 11: If the page is not accessible, the result is
positive.

The weighted mean of all of the 11 rules is then considered
as the email score, which is then used to predict a class for
the email according to a threshold. For example, if the score
of a given e-mail is ≥ 50% then it is predicted to be phishing,
or legitimate if otherwise.

For example, if a suspect email is being analyzed by
Phishwish, the first step is applying the rules from 1 to 11.
If a particular rule is not applicable, it is excluded from the
calculation of the weighted mean (by setting the multiplier of
the rule to zero, which is set to 1 if otherwise). In other words,
if an email message does not contain URLs, relevant rules will
not be applicable and excluded from the calculation of the
weighted mean. For sake of simplifying this example, we will
assume that the outcome from the 11 rules above for this ex-
ample suspect email are: 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, and N/A for
the rules 1-11 respectively. In order to calculate the weighted
mean, we will assume that all of the rule outcomes are given
an equivalent weight of 1 (note that weights other than 1 can
be chosen as well). To calculate a score of this suspect email,
the outcome of the following equation should be calculated as
follows: 1·1+1·1+1·1+1·1+1·1+1·1+1·0+1·0+1·0+1·0

1+1+1+1+1+1+1+1+1+1 = 0.6. Since
the outcome of the equation is ≥ 50%, the suspect email is
assumed to be a phishing email. Note how the inapplicable
rule (i.e. N/A) was excluded from both the nominator and the

denominator as its multiplier was set to 0 (although we did not
present the rule multiplier for visual clarity, each rule’s weight
is also multiplied by either 1 or 0 depending on whether the
rule is applicable or not respectively).

E. CANTINA: A Content-Based Approach

CANTINA [34] is an Internet Explorer toolbar that decides
whether a visited page is a phishing page by analyzing its
content. CANTINA uses Term Frequency-Inverse Document
Frequency (TF-IDF), search engines and some heuristics to
reduce false positives. The following procedures are performed
by CANTINA to detect phishing websites:

1) TF-IDF of each term on a suspected web page is
calculated.

2) Top 5 terms with highest TF-IDF values are taken to
represent the document (Named lexical signature in
[35]).

3) Submit the 5 terms into a search
engine (e.g. Google search query:
http://www.google.ae/search?q=t1, t2, t3, t4, t5,), and
store domain names of the first returned n entries.

4) If the suspected domain name is found within the n
number of returned results, then the site is legitimate.

TF-IDF of a given term i in document j is the product of
TF and IDF values of the same term i. Equations (10) and
(11) present how TF and IDF are calculated respectively.

TFij =
ni,j∑k

m=1 nm,j

(10)

where ni,j is the frequency of the term i in document j, nm,j

is the frequency of the term m in document j, and k is total
number of terms in document j.

IDFi = log
|D|
|Di| (11)

where |D| is the cardinality of all documents available in a
given corpus, and |Di| is the cardinality of documents with
the term i in the same corpus. According to the authors in
[34], the corpus used to calculate IDFi in the study is the
British National Corpus (BNC)12.

Thus, TF-IDF values for each term i is calculated by
Equation (12).

TFIDFi,j = TFi,j · IDFi (12)

For example, in order to calculate the TF-IDF of the term
“bank”, the following steps are performed:

1) Assuming that the term “bank” appeared 5 times in a
suspect document, and that total number of words in the
same document is 500, then TF = 5/500 = 0.01.

2) Assuming that the term “bank” appeared in 10,000
documents as counted against a corpus of 1,000,000
documents, then IDF = log(1, 000, 000/10, 000) = 2.

3) Finally, TFIDF = TF · IDF = 0.01 · 2 = 0.02.
To reduce false positives, the following heuristics are used:
• Domain age — if older than 12 months then it is likely

to be legitimate.

12http://www.natcorp.ox.ac.uk/.

2106 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

• Suspicious page URI — if contains - or @ then it is a
phishing website.

• Suspicious link in content — if contains - or @ then it
is a phishing website.

• Dots in URI — if contains more than 5 dots then it is a
phishing website.

• Forms — if HTML forms exist, then it’s likely to be a
phishing website.

• TF-IDF — whether a page is suspected phishing based
on CANTINA’s document classification, which is based
on TF-IDF.

Each of the heuristics are given values based on experiments
conducted by the authors, and the state of each page is
calculated by (13):

S = f(
∑

wi · hi) (13)

Where hi is each heuristic’s result, wi is the weight of
each heuristic accordingly and f is a threshold function that
returns 1 and −1 to represent legitimate and phishing sites
respectively.

F. A Phishing Sites Blacklist Generator

The authors in [36] proposes a mechanism to build black-
lists dynamically through the use of search engines, such as
Google. The proposed work detects phishing sites, and then
stores them in a database.

The evaluation data set is composed of 500 legitimate
websites as randomly chosen from Google search results when
given random search keywords13, and 30 phishing websites as
collected from PIRT14.

The proposed heuristics in [36] are:
1) Extract company name from the suspected URL.
2) Search for the extracted company name in Google, and

return the first 10 results.
3) If the suspected URL belongs to the first 10 returned

Google results, then the page is legitimate.
4) If the suspected URL does not belong to the first 10

returned Google results, then the suspected URL is
classified as phishing.

5) If the suspected URL is classified as phishing, it will be
saved in a database.

When the above heuristic test was applied against the
legitimate websites, only 45 out of the 500 websites were
misclassified as phishing websites (i.e. 9% FP rate), and when
the test was applied against the phishing websites, all of them
were correctly classified as phishing (i.e. 100% TP rate).

The authors acknowledge that this process introduces ad-
ditional delay in the Internet browsing experience, thus they
suggest placing the blacklist generator in a mail server, where
all URLs in all messages are analyzed by the blacklist genera-
tor on the mail server. This enables the mail server to process
the URLs before the users request them and if the outcome
of the blacklist generator is cached, the delay on the user side
can be reduced noticeably.

13Ten keywords were chosen randomly from a pool of 150,000 dictionary
words, and the top 50 best ranked websites were taken as legitimate website
samples.

14Phishing Incident Reporting and Termination.

As claimed by the authors, the choice of email server is de-
sirable since email messages are the most popular mechanism
for spreading links to phishing sites.

IX. PHISHING DETECTION BY VISUAL SIMILARITY

This section outlines a number of proposed solutions that
attempt to detect phishing attacks based on their visual ap-
pearance, as opposed to analyzing the underlying source code
or network-level information.

A. Classification with Discriminative Keypoint Features

Unlike other anti-phishing mechanisms, the proposed solu-
tion in [37] approaches phishing detection based on the content
presentation, instead of content code. In other words, this
phishing detection mechanism is agnostic to the underlying
code or technology that renders the final visual output to
the users eyes. For example, a phishing site that mimics a
legitimate site by displaying similar content using img HTML
tags (instead of other Hypertext Markup Language (HTML)
tags that can be used to render similar visual output) might
bypass anti-phishing mechanisms that base their detection on
the HTML content, as image contents are invisible to them.
Such phishing attempts are expected, by this proposal, to be
detected.

This proposed solution requires the web browser to take a
snapshot of every suspected site. The snapshot is then matched
against a whitelist of protected websites that are likely to
be targeted by phishers (e.g. PayPal, Amazon, eBay, banks
websites, etc. . .).

Once the snapshot of the suspected site is taken, RGB
channels are converted into a Grayscale channel by averaging
Red, Green and Blue values.

The resultant Grayscale image is analyzed to find key
features or salient points. The mechanism used to detect salient
points is through detection of corners. This proposal uses
the Harris-Laplace algorithm to detect corners in an image.
The advantage of Harris-Laplace algorithm is its accuracy in
conditions of different resolutions and rotations.

Each Harris-Laplacian corner (or salient point) found in
the snapshot is then described by a 48-dimensional vector,
as specified by Contrast Context Histograms (CCH) [38],
which is simply based on the relative contrast values of pixels
surrounding the Harris-Laplacian corner. Pixels surrounding
corners are ones that fall under the coverage of a defined log-
polar grid, centered by the detected corner. 24 sub-regions
exist in the polar grid. Each sub-region includes the number
of pixels. The difference between the contrast values of each
of these pixels against the Harris-Laplacian corner’s contrast
value is calculated. As a result, each sub-region would have a
number of positive and negative pixels, which represent their
difference against the corner. Positive and negative numbers
would be separately accumulated on per-sub-region basis. For
example, a sub-region that has +1, +5, -10, -7, +32, -2 pixels,
would be accumulated into +38, -19.

CCH descriptors (CCH(pc)) of corners or salient points
(pc) are described by their surrounding relative positive and
negative contrast values within each sub-region in the polar

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2107

grid, which results in a 48-dimensional vector (24× 2 = 48).
See Equation (14).

CCH(pc) = {p1+, p1−, p2+, p2−, . . . , p24+, p24−} (14)

where p1 to p24 represent sub-regions 1 to 24 respectively,
and pn+, pn− represent positive and negative relative contrast
values against pc in sub-region n.

Matching salient points is based on calculating the Eu-
clidean distance between salient points found on a suspected
site, against salient points found on protected whitelisted sites.
The distance ratio would determine whether a match for a
salient point exists. Ratio equal to 1 would mean perfect match
for a particular salient point, while 0 would mean a perfect
mismatch.

Practically, achieving 1 or 0 ratios is not realistic. Thus, a
threshold of 0.6 was used in experiments of this proposal to
identify matches.

Salient points matching, alone, might trigger high false
positive rates. For example, websites that publish the logos of
VeriSign or Anti-Hacker might falsely be detected as phishing
attacks.

To solve the above problem, locations of salient points is
taken into account, through the use of k-means clustering
algorithm.

Once k-means clusters converge, salient points would be
grouped into 4 clusters15, which are in turn used as a mech-
anism to indicate the relative location of salient points. For
example, a salient point that’s expected to be in the header,
would be matched against a similar location on the opposite
grayscale snapshot.

A suspect site is considered visually matched against a
whitelisted CCH if the number of salient point matches within
a k-means cluster is more than 50% of the total number of
unmatched salient points in the same cluster. The suspect site
is therefore considered legitimate if its URL matches that of
the whitelisted CCH entry, or phishing if otherwise.

In other words, the visual appearance of a particular page is
allowed to be accessed by trusted URLs only, and if another
suspect URL contains content that is visually identical to that
of another website while having a different URL then the
suspect URL will be considered a phishing website.

B. Visual Similarity-based Detection without Victim Site In-
formation

The goal of the work in [39] is detecting phishing sites
based on visual similarity without the need of whitelisting
pictures of all legitimate websites, and is based on the fact
that most phishing websites aim at being visually similar to
their target websites (e.g. PayPal phishing websites aim to
look visually similar to the legitimate PayPal website in order
to maximize their chances of persuading more victims).

To achieve the above objectives, the following steps are
performed:

1) A list of previously known legitimate WL and phishing
WP websites are processed to function as baseline for
the classifier. Each of the sites are processed and stored

15Assuming k = 4.

Algorithm 2 Phising website detection based on visual simi-
larity

if imgSeek
(
img(Ws), img({WL,WP ,WU})

)
then

Wb ← bestMatch(Ws)
if domain(Ws) = domain(Wb) then
return(Cl)

else
return(Cp)

end if
else
store({img(Ws), domain(Ws), Cu})

end if

in a database that presents each website by the following
elements:

• A label (legitimate/phishing) that determines the
class of the website.

• A screen-shot of the website as rendered by a web
browser.

• The domain name of the website.
2) Each suspect website’s (Ws) screen-shot (as rendered

by a web browser) is taken and then used to find
other websites in the database that have similar visual
appearance. The visual similarity search is performed
by imgSeek16, which returns a number that reflects how
similar an input image is compared to other images
in the database. Using a threshold function, a crisp
classification decision can be made.

3) Based on the outcomes of imgSeek, Algorithm (2) is
executed.

4) To reduce false positives, a whitelist of domain names
is used.

In Algorithm (2), img is a function that returns the image
of its input website, imgSeek is a function that accepts two
arguments and returns true when a match is found for the
image passed as its first argument against a list of images
passed as its second argument, WU is a set of websites that
are classified as “unknown”, bestMatch is a function that
returns the best matching website according to imgSeek’s
visual similarity, Cl is the classification label for legitimate
websites, Cp is the classification label for phishing websites,
Cu is the classification label for unknown websites, and store
is a function that stores its input vector in the websites
database.

The motive behind storing previously-unseen websites with
a classification label of “unknown” is to enable browsers to
expand their database of trusted websites as the end-user keeps
browsing more web pages. If a user browses a website with a
unique visual appearance, it will be assumed to be a website
that was never previously browsed. Storing the features vector
of this website (i.e. its domain name, screen-shot and its
classification label) will insure that subsequent visual matches
against this website is considered suspicious.

For example, if an end-user browses PayPal for the 1st

time, and if PayPal’s features vector is not stored in the local

16A collection of opensource image similarity tools. More details can be
found in http://www.imgseek.net/

2108 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

database, then it will be stored as an unknown website. In
a later time, other websites (i.e. a websites with different
domain names than PayPal’s) are considered phishing websites
if their screen-shot is visually similar to PayPal’s recently
stored features vector.

X. PHISHING DETECTION BY DATA MINING

Techniques that are described in this section consider the
detection of phishing attacks as a document classification or
clustering problem, where models are constructed by taking
advantage of Machine Learning and clustering algorithms,
such as k-Nearest Neighbors (k-NN), C4.5, Support Vector
Machines (SVM), k-means and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN).

For example, k-NN stores training instances in memory
which are represented as multi-dimensional vectors, where
each vector component represents the extracted value from
a particular feature (e.g. number of URLs in an email mes-
sage). The classification task is then performed by similarly
processing testing instances, and calculating the distance (e.g.
euclidean distance) between the testing instance and the other
training instances. When K = 3, the classes of the 3
nearest neighbors (as obtained during the training phase) are
considered. When the task is classification, majority voting
can be used to determine the class of the testing instance.

Algorithms such as C4.5 and SVM follow a different
approach where they generalize a classification model (as
opposed to k-NN, which does not generalize a model). For
example, C4.5 constructs a decision tree that should be generic
enough to correctly classify unseen instances. The decision
tree is composed of nodes with splitting branches. The
splitting is generally performed to maximize the conditional
Information Gain after the split. On the other hand, SVM aims
at finding an effective separation plane in a vector space by
analyzing the training instances. The separation plane should
be generic enough so that it should still be able to separate
unseen instances.

However, clustering algorithms such as k-means and DB-
SCAN partition instances in an unsupervised manner (i.e.
knowing the class label is not required to construct the
clusters). k-means algorithm aims at constructing k partitions
by randomly setting k initial partition centers, followed by
iteratively assigning instances to a partition with the smallest
distance (e.g. euclidean distance) towards its center, and then
updating the partition center to be the mean of the instances
in the same partition. This iterative process is repeated until
the clusters converge. On the other hand, DBSCAN is able to
partition the data based on the density (i.e. using a distance
function measure, such as euclidean distance) of the instances.
Contrary to k-means, DBSCAN does not need to know
beforehand the number of partitions that should be found,
which is achieved by the concept of density reachability.

A. Automatic Detection of Phishing Target from Phishing
Webpage

Gang Liu et al. [40] suggest that it is possible to detect
phishing websites and their targets by finding similar websites
to suspect pages. If a suspect website has similar websites to

it with a different domain name, then the suspect website is
assumed to be a phishing website, and the most similar website
to the suspect website is assumed to be the targeted website.
For example, if Paypal is found to be the most similar website
to a suspect website, then the suspect website is assumed to
be a phishing website that targets PayPal. This is based on
the assumption that phishing websites attempt to be similar
to their target websites in order to maximize the deception of
their victims.

The evaluation data set is composed of 8,745 phishing web-
sites collected from PhishTank, and 1,000 legitimate websites
collected from Random Yahoo! Link, a website that returns
random URLs of other websites.

In order to detect phishing websites and their targets, the
proposed technique processes a suspect website Ws as follows:

1) Ws is expanded into multiple other similar websites by:
• Extracting URLs of other websites WD =
{d1, . . . , d|WD |} that are directly linked in the
HTML body of Ws.

• Extracting keywords KS = {k1, . . . , k|KS|} (e.g.
keywords found in meta-tag, title, organization
name, body) from Ws, and then submitting key-
words in the KS set to a search engine to find a set
of other websites WI = {i1, . . . , i|WI |} which are
considered to be indirectly associated with Ws.

2) The following features are extracted from each website
in the sets WD and WI :

• Link relationship LR — counts the total number
of forward links NLWs→Pagej from Ws to Pagej ,
where Pagej is the jth page in WD ∪ WI , and
then normalizes it by the total number of links NL
in Ws as in Equation (15). This feature returns a
normalized number from 0 (when there is no linking
relationship) to 1 (when there is a perfect linking
relationship).

• Ranking relationship RR — keywords found in the
set KS are submitted to a search engine to return
a ranked list of websites. This list is used to assign
ranks for domain names of websites in the sets
WD and WI . The ranks are then normalized as
in Equation (16). This feature returns a normalized
number from 0 (when the domain of Pagej is not
returned in the ranked list) to 1 (when the domain
of Pagej is returned as the 1st in the ranked list).

• Text similarity relationship TS — the cosine sim-
ilarity between term vectors x and y which are
extracted from the websites Ws and Pagej respec-
tively, as presented in Equation (17). Since the term
vectors were constructed by TF-IDF, and since TF-
IDF can not be negative, then the returned value of
this feature ranges from 0 (no similarity) to 1 (exact
similarity).

• Layout similarity relationship LS — the number
of visually similar blocks between Ws and Pagej ,
normalized by the total number of blocks in Ws as
presented in Equation (18). This feature returns a
normalized number from 0 (for no layout similarity
between the pages) to 1 (for exact layout match).

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2109

3) Following the feature extraction phase, each website
Pagej is represented as four dimensional vector Vj =
{LR,RR, TS, LS}. The suspect website Ws is pre-
sented as Vs = {1, 1, 1, 1} as it is assumed to make
an identical match to itself. The closer the vector Vj is
to Vs, the more likely that Ws is a phishing website and
that Pagej is a targeted website.

4) In order to detect the similarity between Ws and Pagej ,
the authors used DBSCAN to test whether a density-
based cluster can be formed around the vector Vs. The
best DBSCAN parameters were found to be Eps17 =
0.11 and MinPts18 = 4.

LR =
NLWs→Pagej

NL
(15)

RR =
NR− (NRKS→Pagej − 1)

NR
(16)

where NR is total number of ranked websites, and
NRKS→Pagej is the rank of the domain name of Pagej when
keywords KS are submitted as a search engine query.

TS =
x · y
||x||||y|| (17)

LS =
NBWs ∩NBPagej

NBWs

(18)

where NBWs is total number of blocks in Ws, and NBPagej

is total number of blocks in Pagej .

B. Detecting DNS-poisoning-based phishing attacks from
their network performance characteristics

Kim, H. et al. [41] propose a mechanism to detect DNS-
poisoning attacks (which could potentially be used to direct
users to phishing websites) by analyzing network-level charac-
teristics of end-users communications. The collected data was
composed of 10,000 routing information items, 50% of which
were towards phishing websites (websites URLs obtained from
PhishTank), and the remaining 50% were destined towards
legitimate servers.

The routing information of the network datagrams were
extracted as follows:

• The existence of a firewall before the accessed service.
• The mean Round-Trip Time (RTT) towards the accessed

service.
• The standard deviation of RTT.
• The hop count between the end-user network and the

accessed service.
The evaluation data set was composed of routing infor-

mation that represent 10,000 websites, with 1:1 phishing to
legitimate website ratio. The data set was constructed by
collecting routing information for 5,000 instances for 50
highly targeted websites (10 instance per website), and 5,000
phishing instances (100 instance per website).

17The length of the vector diameter. This is used to search for number of
other vectors that may fall within this diameter.

18The minimum number of other vectors that should exist within the Eps
region in order to consider the vector as density reachable.

As preliminary analysis, it was found that only 19% of the
phishing websites were behind firewalls, while 79% of the
legitimate websites were behind firewalls. The authors justified
this by the fact that phishing websites are hosted in less secure
shared web hosts than their legitimate counterparts, which
enabled attackers to illegally host their phishing websites.

The authors then processed the extracted routing informa-
tion by a number of learning algorithms, such as SVM and k-
NN. Their findings showed that the best performing classifier
was k-NN with k = 1.

As a future work, the authors suggest the addition of more
features, such as the RTT between the end-user’s network and
every layer 3 hop in the path towards the target service.

C. Textual and Visual Content-Based Anti-Phishing: A
Bayesian Approach

Haijun Zhang et al. [42] propose a technique that guesses
a class label for suspect websites by analyzing their textual
and visual contents. Similar to [40], the basic idea is detecting
websites that are similar to known legitimate websites. If such
condition is met (i.e. a website is detected to be similar to a
legitimate website, such as PayPal), then the suspect website
is assumed to be a phishing website.

The evaluation data set is composed of 10,272 legitimate
URLs as collected from Google, a set19 of phishing URLs
as collected from PhishTank, and 8 protected20 websites as
follows:

• https://signin.ebay.com
• https://www.paypal.com/c2
• https://ssl.rapidshare.com/premiumzone.html
• http://www.hsbc.co.uk/1/2/HSBCINTEGRATION/
• https://login.yahoo.com
• https://www.mybank.alliance-leicester.co.uk/index.asp
• https://www.optuszoo.com.au/login
• https://steamcommunity.com
The authors proposed a number of techniques, and the most

effective technique was composed of the following:
• A naive Bayesian model that returns a normalized number

reflecting how likely the textual content of a suspect
website is phishing (or legitimate).

• An image processing technique that compares the vi-
sual characteristics of a suspect website against that
of legitimate websites. The intuition is similar to the
naive Bayesian model with the exception of processing
visual appearance of the website as opposed to its textual
content.

• A method to combine the above techniques to return a
final classification label.

The naive Bayesian model returns a normalized number
that reflects how likely a suspect website is to be a phishing
website. In order to achieve this, the following computations
are made:

19The paper [42] does not state how many were the phishing URLs.
However, based on our analysis of PhishTank’s URL’s blacklist between Jun
15 2010 and March 18 2012, the number of phishing URLs in PhishTank
ranged from 2,306 to 9,826.

20A protected website is a website that no other website should mimic its
identity.

2110 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

• The human readable text is extracted from the web-
sites (for both training and testing phases), words are
stemmed21, and stop words are removed. This results in
a set of keywords Kj = {k1, . . . , k|Kj|} for each website
j.

• The posterior probability of website j being a phishing
website is calculated by Equation (19). P (Phishing) is
total number of phishing instances in the training set,
divided by the total number of instances in the same train-
ing set. However, since calculating P (Kj |Phishing) is
difficult22, P (Kj|Phishing) is measured as in Equation
(20) which follows the naive assumption that words in
natural languages occur independently from each other.
Similarly, P (Kj) is calculated by following the same
naive assumption of words independence as presented in
Equation (21).

• In order to guess a crisp class label for the suspect
website, a threshold function is applied on the returned
output from P (Phishing|Kj).

P (Phishing|Kj) =
P (Kj|Phishing)P (Phishing)

P (Kj)
(19)

P (Kj|Phishing) =

|Kj |∏
i=1

P (ki|Phishing) (20)

P (Kj) = P (Kj |Phishing) + P (Kj|Legitimate) (21)

The visual similarity technique functions as proposed pre-
viously in [43], which takes snapshots of websites as rendered
by a web browser (Internet Explorer in their case), transforms
them to 100 x 100 pixels images, generates a features vector,
and then returns a normalized number that reflects the simi-
larity between the images. The returned normalized number
is 1 when the images are identical, or 0 when they are not.
In order to guess a crisp class label for the suspect website, a
threshold function is applied on the returned number.

In order to combine the returned normalized numbers from
both naive Bayesian and the visual similarity techniques, the
authors divided the returned interval [0, 1] into bins (or
partitions of sub-intervals) [B0, B1], . . . , [Bi−1, Bi] and then
measured the probability of each technique being correct
given that the returned normalized number falls within a
particular bin. For example, P (TextC |Bi) is the probability
that the output from the textual analysis by the naive Bayesian
technique TextC is correct, given that the returned value falls
in the bin Bi. Similarly, P (V isualC |Bi) is the probability
that the output from the visual analysis technique V isualC is
correct, given that the returned value falls in the bin Bi.

If P (TextC |Bi) ≥ P (V isualC|Bi) then the output from
the naive Bayesian technique is used for guessing a class label
for the suspect website j (ignoring the returned value from
the visual analysis technique). However, if P (TextC |Bi) <
P (V isualC |Bi) is the case, then the output from the visual
analysis technique is used to guess a class label for the suspect
website j.

21In order to reduce number of unique words in the training database.
22Due to the extremely complex semantic relationship between words in

natural languages (i.e. words in Kj).

D. Detecting Phishing Emails Using Hybrid Features

The work in [44] proposes the evaluations of multiple
features (using different methods) in a document (hence the
name hybrid) to decide whether a document contains phishing
attempts.

Once each document j is evaluated against multiple features
F = {f1, . . . , fn} where n is the total number of features,
each document is represented as a multi-dimensional vector
Dj = (f1,j, f2,j , f3,j, . . . , fn,j).

Each element in the document’s vector Dj is a value
that represents the outcome of a feature evaluation against
document j normalized to the range [0,1]. Some features
return binary values, such as whether a form exists in a docu-
ment, while other features may return numbers of blacklisted
word matches in a document which could be numbered in a
hundreds. The features evaluation output is normalized since
different features result numbers in different ranges.

Information Gain (IG) is then used to select a features subset
that is, hopefully, more effective in enabling Machine Learning
(ML) algorithms to construct accurate classification models
while reducing the quantity of the features.

Once a feature set is chosen via IG, multiple learning
algorithms are used (e.g. C4.5, Random Forests (RF), SVM)
to construct classification models. Each classification model is
evaluated and the most accurate model is then used to classify
email messages.

E. Large-Scale Automatic Classification of Pages

The authors in [4] describe an anti-phishing solution im-
plemented by Google to rapidly and promptly classify pages
while maintaining low false positives. Once the classification
is done, the result is aggregated into a blacklist that is
published through Google Safe Browsing API (which is used
by Firefox, Google Chrome, and Apple Safari).

It addresses a delay problem in human-driven phishing
classification such as what PhishTank does, which (as claimed
and referenced in the paper) took PhishTank 50 hours (as the
median) in order to verify a phishing URL in June 2009.
Google’s approach significantly reduces human involvement
in order to provide blacklists more promptly.

The proposed classifier operates as follows:
• GMail users manually classify unwanted emails as Junk.
• Google considers URLs that fall within Junk emails as

candidates only if the same was submitted by a number
of users (to reduce abuse).

• Candidate URLs are processed for feature extraction.
Examples of URL features are:

– Whether hostname is an IP address.
– Number of subdomains (e.g. 5 subdomains are more

common in Phishing URLs than legitimate).
– Whether a path contains certain tokens. Some tokens

are more common in Phishing URLs than legitimate
(e.g. trademarks of victim sites).

• Candidate URLs are sent to processes that extract features
from page content. The content is obtained from Google’s
cache, which is built by their web crawler. Examples of
features are:

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2111

– Whether password fields are included.
– Highest TF-IDF terms.
– The extent of linking objects to other domains (i.e.

some Phishing sites use images from victim sites
directly instead of copying them to their temporarily
hosted Phishing campaign site).

• A classifier (which is an ad ministered machine learner
classifier) then uses the resultant output of extracted
features. The outcome is scaled from 1.0 to 0.0 (0.0
being highly phishing, while 1.0 being highly legitimate).
Practically, as tested by Google, the results were mostly at
the two extreme ends, which makes classification clearer.
The same classifier is also run against pages visited by
Google crawlers to detect more Phishing attacks.

• The above classifier learns as it classifies more docu-
ments.

F. Bayesian Anti-Phishing Toolbar (B-APT)

The work in [45] proposed a FireFox toolbar that uses:
• Bayesian classification to decide whether a web page is a

phishing page. This is achieved by statistically analyzing
keywords (or tokens23) in a web page. For example, if
a token appeared 10 times in phishing websites, and 90
times in legitimate websites (according to the training
set), then the token is considered to be 90% legitimate
or 10% phishing. The probability that each website is
phishing or legitimate is dependent on the probability of
the token components, which need to be combined in
order to represent the overall probability of the page.

• A whitelist to reduce false positives.
• A recommendation system.
• A new user interface that increases the chance of proper

user reaction.
B-APT uses Bogofilter24 for its Bayesian classifier imple-

mentation, which follows a naive assumption that tokens are
independent of each other (i.e. probability that token 1 exists
is not influenced by existence of token 2), which is inaccurate
as keywords in natural languages are dependent on each other.
However, this naive assumption simplifies the implementation
and reduces computational cost.

Bayesian filters are initially trained by sample documents.
Document samples are manually grouped as phishing or
legitimate in order to allow the learner to weight tokens
more accurately. For example, if word W1 appeared 20 times
in sampled phishing documents, while 2 times in sampled
legitimate documents, it would then mean that a site that has
W1 word is likely to be a phishing site.

A whitelist is used by B-APT to reduce false positives. This
is due to the fact that phishing sites are very close to authentic
ones, and comparing site tokens against Bayesian classifiers
may lead to high false positives. If a requested URL is found
in the whitelist, it would be allowed to be viewed without
warnings.

Whitelists are stored in (Company name, URL) tuples. If
the requested URL exists in the whitelist, it would be viewed

23A token could be a word, hostname, IP address, etc. . .
24An open source Bayesian spam classifier.

without warnings. However, if a URL does not exist in a
whitelist, but matched some tokens in an existing tuple in the
whitelist, the whitelist would return a list of matched URLs.
The recommendation system would instead hint to the user
whether he wanted to visit the returned URL list (which is
legitimate as it is already whitelisted).

If a phishing site is detected, the toolbar places a gray
overlay over the page, in addition to a red warning message
on top of the overlay and a pop-up window.

G. Natural-Language Processing for Intrusion Detection

Allen Stone in [15] proposes the use of Natural Language
Processing (NLP) for intrusion detection systems, which also
detects Phishing attacks. The IDS is capable of detecting
pattern matches, however its uniqueness is when it detects
messages based on their semantics. The system is named
EBIDS, and its operation overview is as follows:

1) Message bodies are extracted and sent to a detection
mechanism.

2) The detection mechanism relies on OntoSem to catego-
rize the message — the component that deploys NLP
techniques.

3) The IDS signatures are based on literal string matches
against OntoSem’s output.

4) Based on the matches, an email is classified as either
phishing or legitimate.

EBIDS uses four sets of signature rules, namely:
• Account compromise — a rule that is expected to detect

phishing attacks formed as email messages that semanti-
cally claim the victim’s account is compromised.

• Account change — a rule that is expected to detect phish-
ing attacks formed as email messages that semantically
claim the victim’s account is modified.

• Financial opportunity — a rule that is expected to detect
Phishing attacks formed as email messages that seman-
tically claim financial opportunities, such as monetary
gains.

• Opportunity — a rule that is expected to detect Phishing
attacks formed as email messages that semantically claim
opportunities that do not strictly refer to monetary gains,
such as free vacations.

H. Model-Based Features
Andre Bergholz et. al. in [46] proposed a novel ML phishing

email classifier based on basic features, external features,
model-based features and image processing. The features are
described below:

• Basic features — essentially heuristic features, such as
whether an email’s content is HTML, or whether it
contains JavaScript.

• External features — used to receive email classification
output from another classifier. The paper [46] used Spa-
mAssassin class predictions output as input to the SVM
classifier. In other words, this classifier makes decisions
based on its own heuristics as well as output from other
classifiers to further enhance its prediction accuracy.

• Model-based features — namely Dynamic Markov Chain
(DMC) feature and Latent Class-Topic Model (CLTOM)
feature (more details later).

2112 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

• Image processing — used to detect hidden salting
attempts. For example, phishers might insert human-
unreadable text into a message in order to confuse
classifiers. Image processing techniques are used here to
detect how the text appears to the human eye, rather than
how it appears to the machine.

The DMC features basically use Markov Chains to estimate
the probability of a message originating from a class by
analyzing email’s text sequences on a bit by bit basis. In order
for the DMC model to be constructed, a training phase would
be required.

The CLTOM features attempt to find words that when they
co-occur, they indicate the class of an email. For example,
if words click and account co-existed in a single message,
then the message is likely to be phishing. Similar to DMC, a
CLTOM model requires a training phase.

Using the features above, each input email is converted into
a multi dimensional vector, where the vector elements are
values returned by the features described above. The vector is
then processed via SVM to construct a classification model.
The constructed SVM classification model is then used to
predict classes of unclassified input emails.

In other words, there are two training phases:
• a training phase to construct DMC and CLTOM feature

models (and thus the name model-based features),
• and once the DMC and CLTOM models are constructed,

another training phase is required to construct the parent
SVM classification model.

I. R-Boost: A Classifier Ensemble

Authors in [47] were able to raise the recall rate of phishing
email classification by proposing a novel boosting technique.

The authors used combinations of C5.0, k-NN with k = 3
and 4, and SVM. The used ensembling technique is major-
ity voting. For example, all individual learners return their
guessed class for an input test instance, and the majority
class would be assumed to be the final class returned by the
ensemble. Since majority voting is used, the authors selected
an odd number of learners in order to avoid ties during the
voting process (3 learners in this case).

To represent the input email instances as feature vectors,
the authors used only five simple numerical heuristic features
to speed up the classification task. The features are:

• IP address: a binary feature that is 1 if an IP address is
found in a suspect email.

• HTML: a binary feature that is set to 1 if the email is
written in HTML.

• Script: a binary feature that is set to 1 if the email
contains JavaScript code.

• Number of URLs: A numeric feature that represents the
total number of links found in a suspect email.

• Maximum number of periods in a URL: the highest
number of periods/dots found in a URL in a suspect
email.

Following the training phase, a number of classification
models are created:

• C5.0.
• k-NN where k = 3.
• k-NN where k = 4.

• SVM.
The classifiers, k-NN where k = 3 and 4, and SVM are

then combined by majority voting to form an ensemble.
In order to classify email messages, the following steps are

performed:
1) Input email messages are processed in order to be

represented as five dimensional feature vectors.
2) Each features vector is passed as input to the C5.0

classification model, where the model outputs a label
(e.g. either phishing or legitimate).

3) If the C5.0 model outputs “phishing” as the class label,
then the email is considered to be phishing.

4) However, if the C5.0 model returned “legitimate” as the
class label, then the corresponding input features vector
is passed to the ensemble to re-evaluate its class. The
ensemble returns either “phishing” or “legitimate” for
the instances that were classified as “legitimate” by the
parent C5.0 model.

The motive behind this technique is enhancing the recall rate
of the classifier (i.e. the rate of correctly classified phishing
instances out of all existing phishing instances).

XI. EVALUATIONS OF HUMAN TRAINING APPROACHES

Not all user training materials have, necessarily, the same
effect. This section presents an evaluation of different educa-
tional materials as conducted by Steve Sheng et al. [1]:

• Popular training materials — three materials, namely:
Microsoft Online safety [48], OnGuardOnline phishing
tips [49], and National Consumer League Fraud tips [50].

• Anti-Phishing Phil — an educational interactive game
created by Carnegie Mellon University (CMU) and
commercialized by Wombat25 that is playable via web
browsers [51].

• PhishGuru Cartoon — PhishGuru is a training system
embedded into mail systems, which attempts to teach
users at the “most teachable moment”, which is once the
user falls victim of a phishing attack by (for example)
clicking on a link in a test phishing email. The phishing
emails are simulated and expected to be generated by the
system administrators [11]. However, this study only uses
the educational interventions, which are cartoon images
to train the users; that is, PhishGuru Cartoon in this study
is essentially PhishGuru without the embedded training
part [1].

• Anti-Phish Phil with PhishGuru Cartoon — simply both
of the user training materials combined.

The evaluation of the above user training materials was
made online, with a total number of 1001 participants. The
evaluation was formatted as a role play where participants
were given scenarios of email messages and questions to
answer.

There were the following groups of participants:
• Control — participants in this group are not given any

educational materials.
• Popular training — participants in this group are only

given popular training materials described above.

25http://www.wombatsecurity.com/

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2113

TABLE II
EVALUATION RESULTS OF USER TRAINING APPROACHES.

FN TN
Training approach 1st

role
play

2nd

role
play

1st
role
play

2nd

role
play

Control 50% 47% 70% 74%
Popular training 46% 26% 67% 61%
Anti-Phish Phil 46% 29% 73% 73%

PhishGuru 47% 31% 70% 64%
PhishGuru + Anti-Phish Phil 47% 26% 68% 59%

Fig. 9. Data diagram identifying data parts analyzed by email phishing
detection techniques.

• Anti-Phish Phill — participants in this group are only
given Anti-Phish Phill as their training material.

• PhishGuru — participants in this group are only given
PhishGuru as their training material.

• Combined — participants in this group are given two
educational materials, namely: Anti-Phish Phill and
PhishGuru.

Each of the participating groups had to complete two role
plays:

• 1st role play — none of the participating groups above
are given any training materials.

• 2nd role play — all of the participating groups are given
their respective training materials, with the exception of
the control members which are not trained.

The participants were randomly assigned to either the
Control (no training) group, or the training groups (one of the
listed groups above). The reactions of the participants were
then recorded to assess the effectiveness of the user training
materials.

The study concluded that user training approaches are
promising. Virtually all user training approaches increased
TP rate. However, the study paid attention to an important
point which is that most of the user training materials have
also decreased the TN rate; in other words, some users did
not react to some legitimate emails as their training materials
scared them off. See Table II for details.

Table II shows that all training solutions decrease FN by
39.79% in average (good), and that all of them decrease TN
by 7.69% in average (bad) except for Anti-Phish Phill which
did not reduce the TN rate.

Fig. 10. Data diagram identifying data parts analyzed by HTTP website
phishing detection techniques.

Interestingly, Table II also shows that the participants in
the untrained group (i.e. control) were able to achieve a lower
FN rate in the 2nd role play despite the fact that they were
not given any training. The untrained participants were also
the only group that increased the TN rate in the 2nd role
play. However, these differences were considered statistically
insignificant according to the evaluation’s authors [1].

Generally speaking, with user awareness approaches, the
aim is to educate the user to be better aware of the technology
which he or she is dealing with. Another way of looking at
user training is that it follows a more “machine-centric” ap-
proach where we expect users to adapt to how the technology
is functioning. On the other hand, enhancing software classi-
fiers follows an opposite (human-centric) approach where the
software is modified to filter unwanted phishing emails on
behalf of the user.

Stefan Gorling [13] argues that security is (practically) a
secondary goal, while productivity is the primary, and since
users are already busy doing their own work (which could
be a non-technical job) expecting them to get educated about
technology (or phishing attacks) will not work as it will hit
the maximum cognition limits of the users who are already
busy with other tasks.

From the system usability perspective, in the article [14],
Gerry Gaffney argues that there is no such thing as a “stupid
user” but a bad system usability design instead, and the latter
being the fault of the designer. The article says that if system
users are stupid, then we should design systems accordingly
for stupid users.

XII. EVALUATIONS OF SOFTWARE PHISHING DETECTION
TECHNIQUES

Analyzed data parts by phishing detection techniques are
depicted in Figures 9 and 10, which are used in Table III to
compare the detection techniques as they are evaluated in the
literature. This implies the use of different data sets, and that
the results are not directly comparable. However, since the
evaluation samples are taken from the same population (i.e.
phishing and legitimate websites and emails in the Internet),
the differences should not be significant. The rates FP and
FN are measured as presented in Section V.

2114 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

Table III presents generic approaches (e.g. blacklists,
whitelists, heuristics, Machine Learning) used by the phishing
detection, and their detection rates in terms of FP and FN .
The table also indicates whether the presented techniques
require access to resources over the Internet in order to
function. It can be observed that the majority of the techniques
do not rely on the resources over the Internet in order to
perform classification decisions (six out of the twenty surveyed
techniques require access to the Internet for performing such
classification decisions). We believe that this is reflected due
to the fact that accessing resources over the Internet can be
expensive, and could form a potential bottleneck. It should
be also noted that among the techniques that require Internet
access include CIDS (which was not implemented [52]; also
reflects the associated difficulty with such distributed system
over the Internet), and two techniques that are related to
Google [4], [34] (which is a scenario where accessing search
engine rankings is not necessarily over the Internet since the
results are cached and analyzed as part of Google’s internal
infrastructure).

Blacklists are able to achieve low FP rates. However,
blacklists have been evaluated to be ineffective against zero-
hour attacks, as they only detect 20% of phishing attacks at
hour zero [25].

On the other hand, heuristics are effective against zero-hour
attacks, however they need to be manually modified to adapt
to future phishing trends and they tend to cause high FP rates.
As presented in Table III, all techniques that used blacklists
combined with heuristics, such as PhishNet and PhishWish
have generally high FP rates. For example, PhishNet and
PhishWish have 5% and 8.3% FP rates respectively, which
is caused by the heuristic tests of the detection techniques
respectively.

Similar to rule-based heuristics, Machine Learning-based
classifiers are able to detect zero-hour phishing attacks in addi-
tion to superior adaption to future phishing characteristics. The
adaption to changes in phishing trends can be achieved through
reinforcement learning or simply repeating the learning phase
periodically to construct a newer model with better adaption
to current phishing attack characteristics.

The best performing anti-phishing email classifiers used
Machine Learning techniques, namely those by Andre
Bergholz et. al. [46] and Fergus Toolan et. al. [47]. Contrary
to heuristics, Machine Learning techniques were also able
to achieve low FP rates. For example, Andre Berghol’z
model-based email classifier and Google’s large scale website
classifiers achieved 0% FP rates. Fergus Toolan’s R-Boost
achieved 1.3% FP rate, however it should be noted that the
aim of the R-Boost technique is to minimize the FN rate only,
which the technique reached by achieving an FN rate of 0%.

Natural Language Processing (NLP) techniques are rarely
found in the phishing mitigation literature, which — to the
best our knowledge — to be due to lack of sufficient maturity
in NLP techniques with regards to correctly understanding the
semantics of messages written in natural languages that also
may contain typos. Email and web browsing are critical tasks
and software techniques still finds it extremely challenging
to correctly understand the semantics of natural languages.

Moreover, many email messages can have typos, which further
complicates the job of NLP techniques. An example of an
NLP-based anti-phishing technique is EBDIS [15] with an FP
rate of 1.9%, and an FN rate of 25% which is not as accurate
as the competition. However, although NLP techniques —
alone — do not achieve competing FP and FN rates, their
addition to other techniques (e.g. ML) can be promising.

Existing visual similarity-based phishing detection tech-
niques heavily rely on use of blacklists or whitelists of website
snapshot salient point descriptors. Conceptually, they are still
blacklists or whitelists and require frequent updates. However,
blacklists of website snapshot salient points are able to address
zero-hour attacks, while URL blacklists can not. On the other
hand, visual similarity-based detection techniques assume
that phishing websites are always similar to the websites of
targeted brands (e.g. PayPal phishing websites look similar
to PayPal’s legitimate website), which might not be always
true. To assess their true effectiveness, it would be necessary
to empirically measure the susceptibility of end-users to fall
victims for phishing websites that are not very similar to
their targeted brands. Until such demographic study is made,
the effectiveness of visual similarity techniques might not be
accurately known, but rather assumed.

XIII. LEARNED LESSONS

This section presents our view on the various phishing
detection approaches that are presented in the survey.

A. User education and awareness

Since phishing is a social engineering attack, an obvious
solution can be educating the end-user. However, as discussed
in [13] education and user awareness — alone — are not
enough, and that what is needed is regulating the behavior of
end-users instead.

Various incidents, such as the one described in [2], have
shown that even security providers themselves have fallen
victims for phishing attacks. Although phishing seems to be a
simple attack that exploits the naivety of end-users, it is able
to persuade security-aware engineers as well.

This indicates the possibility that systems’ complexities are
raising beyond the cognition limits of many humans, and
that simply educating them is not enough. A more promising
solution could be enhancing the system usability via:

• Better user interfaces. It is visible to us that the software
industry is moving towards this direction. For example,
older versions of web browsers used passive warnings,
while recent ones moved to active warnings. A security
warning should be active (i.e. blocks the content) and
should visually hint the user of risks even without reading
its content (since most end-users do not read warning
messages [23]).

• Enhancing the behavior of the systems, so that the harm-
ful messages are automatically detected and quarantined
on behalf of the end-user. For example, blacklists, heuris-
tic rules and ML techniques can be used to automatically
filter harmful content from end-users. Such features are
currently implemented in web browsers, email clients and
server-side filters.

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2115

TABLE III: Classification performance of phishing detection techniques
as evaluated in the literature.

Detection Technique B
la

ck
lis

ts

W
hi

te
lis

ts

H
eu

ri
st

ic
s

V
is

ua
l

Si
m

ila
ri

ty

M
ac

hi
ne

L
ea

rn
in

g

N
et

w
or

k
C

om
m

un
ic

at
io

n

Fa
ls

e
Po

si
tiv

es

Fa
ls

e
N

eg
at

iv
es

PhishNet [28] 5% 3%
Comments: Expands blacklisted URLs (parents) and produces multiple variations of the
same URL (children) via heuristics, thus it analyzes data parts only. However, this can
significantly increase the size of the expanded blacklist, which increase bandwidth demands.
Reducing bandwidth demand also reduces the time needed to exchange the blacklists, which
is one of the key objectives of Google Safe Browsing API [26]. Moreover, a FP rate of 5%
is considered too high for practical daily use.

AIWL [29] 0% 0%
Comments: Classification accuracy is highly dependent on the individual user. If the user
trains his/her own browser incorrectly, the whitelist will be constructed incorrectly too. For
this reason, a number of other solutions (such as [4]) use a collaborative approach where a
centralized model is constructed instead. Analyzes data parts and .

SpoofGuard [30] 38% [53] 9% [53]
Comments: Too high FP rate. Its advantage is being able to detect zero-hour phishing attacks.
Analyzes data parts and

CIDS [52] – –
Comments: CIDS was not evaluated nor implemented due to difficulties associated with
reproducing double fast-flux bot networks. Analyzes data parts , , , , and .
The technique requires data communication over the network (i.e. in order for the various IDS
devices to collaborate), which can be a limiting performance factor of the system under certain
network conditions.

PhishGuard [32] – –
Comments: Uses heuristic tests and can be effective against zero-hour attacks. However, no
performance evaluation was presented in [32]. Analyzes data parts and .

PhishCatch [54] 1% 20%
Comments: The solution lacks easy adaption to phishing pattern changes as it is dependent
on hard-coded rules that are the result of manual analysis of phishing emails by humans.
Moreover, relative to other proposed works in the literature, a 20% FN rate is too high for
the 1% FP . Analyzes data parts and .

PhishWish [33] 8.3% 2.5%
Comments: High FP rate. Lacks adaptability as phishing patterns change. This is due to the
fact that the proposed solution is hard-coded with the 11 rules. A solution to this issue might
be periodical update of the rules, or use of ML technique to periodically construct classification
models. Analyzes data parts and

CANTINA [34] 3% 11%
Comments: The solution results in sending additional Hypertext Transfer Protocol (HTTP)
GET requests to query search engines over the network, which adds delay in the browsing
experience from the end-user perspective. An FP rate of 3% is generally considered too high
by researchers, such as Colin Whittaker et. al. [4]. Analyzes data parts and .

A phishing sites blacklist generator
[36]

9% 0%

2116 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

TABLE III: Classification performance of phishing detection techniques
as evaluated in the literature.

Detection Technique B
la

ck
lis

ts

W
hi

te
lis

ts

H
eu

ri
st

ic
s

V
is

ua
l

Si
m

ila
ri

ty

M
ac

hi
ne

L
ea

rn
in

g

N
et

w
or

k
C

om
m

un
ic

at
io

n

Fa
ls

e
Po

si
tiv

es

Fa
ls

e
N

eg
at

iv
es

Comments: Although the FN rate is low, the FP rate is too high. However, the approach
can be promising as an individual heuristic feature in a more complete classifier to reduce the
FP rate. Analyzes data parts and . The technique requires data communication over
the network (for the querying search engines), which can be a limiting performance factor of
the system under certain network conditions.

Fighting phishing with discrimina-
tive keypoint features of webpages
[37]

< 0.1% < 0.1%

Comments: The evaluation shows accurate detection rates. However, since whitelists are used,
the FN rate could increase as new websites are visited. Another drawback is that the whitelists
size can be large due to storing 48-dimensional CCH descriptors for each salient point (Harris
corner) found in a websites snapshot, which may impose additional network load. Moreover,
use of image processing on end-user web client software might introduce noticeable delay.
Analyzes data parts and .

Visual similarity-based phishing
detection without victim site infor-
mation [39]

17.4% 8.3%

Comments: Too high FP rate. Use of image processing on end-user web client can impose
a noticeable delay in the browsing experience. Analyzes data parts and .

Automatic Detection of Phishing
Target from Phishing Webpage
[40]

3.4% 8.56%

Comments: Uses a clustering technique (i.e. DBSCAN) to detect whether a page is similar
to a protected page (e.g. login pages of highly targeted websites, such as PayPal’s), based on
the assumption that phishing pages mimic their targets. Analyzes data parts and . The
technique requires data communication over the network (e.g. for querying search engines to
find indirectly similar pages and their rank), which can be a limiting performance factor of
the system under specific network conditions.

Detecting DNS-poisoning-based
phishing attacks from their network
performance characteristics [41]

0.7% 0.6%

Comments: Detects DNS spoofing attacks based on the network performance characteristics of
legitimate and phishing traffic. Analyzes the data part . The advantages are that FP and FN
rates are low, however it should be noted that the aim is to only detect DNS spoofing attacks
(i.e. not all phishing attacks in general), which is implies that it should be used with other
phishing detection techniques in order to enhance the overall detection. The technique requires
access to the network (e.g. to measure round trip times), which can limit the performance of
the system under busy network conditions.

Textual and Visual Content-Based
Anti-Phishing: A Bayesian Ap-
proach [42]

0-0.02% 0-1.95%

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2117

TABLE III: Classification performance of phishing detection techniques
as evaluated in the literature.

Detection Technique B
la

ck
lis

ts

W
hi

te
lis

ts

H
eu

ri
st

ic
s

V
is

ua
l

Si
m

ila
ri

ty

M
ac

hi
ne

L
ea

rn
in

g

N
et

w
or

k
C

om
m

un
ic

at
io

n

Fa
ls

e
Po

si
tiv

es

Fa
ls

e
N

eg
at

iv
es

Comments: Uses an ensembling technique to combine visual and textual classification models
by using a Bayesian model to detect whether a page is visually and textually similar to a
protected page (e.g. login pages of highly targeted websites, such as PayPal’s), based on the
assumption that phishing pages mimic their targets. Analyzes data parts and ..

Large-scale automatic classifica-
tion of pages [4]

0% [53] 16-30% [53]

Comments: Google Safe Browsing API [26] is used to publish the results as a blacklist.
However, since blacklists were used, the performance against zero-hour attacks is poor (i.e.
it had the worst FN rate). Analyzes data parts , and . The technique requires
data communication over the network (e.g. for querying website ranks), this can affect the
performance of the system under certain network conditions.

B-APT [45] 3% 0%
Comments: Use of naive Bayesian filters is successful for spam classification, its use for
phishing website classification can result in high level of classification errors. This is due to
the fact that many phishing websites use the same words as their legitimate counterparts. For
this reason, B-APT used an extensive whitelist to further minimize the FP rate. Although an
FP rate of 3% is considered high for practical use, the actual B-APT’s FP rate (without the
extensive whitelist) is even higher. Analyzes the data part .

EBDIS [15] 1.9% 25%
Comments: Too high FN rate. Use of OntoSem increased the run time execution. Analyzes
the data part .

Detecting phishing emails using
hybrid features [44]

– –

Comments: The evaluation presented in [44] used 10-fold cross-validation and measured the
classification model’s performance using ACC only, which resulted in 99.27% (the average
accuracy of all of the 10 folds). Although this number might seem good, it lacks enough details
to know the TN and FN rates. This is specifically important to know as the evaluation data set
was composed of 613,048 phishing and 46,525 legitimate emails. In other words, if ZeroR26

is used as a classifier the prediction accuracy will be 613, 048÷ (613, 048+ 46, 525)× 100 =
92.95%. This raises the question how well does the proposed model perform given that ZeroR
performs similarly on the same dataset, and to answer it we may need more performance
evaluation metrics such as TN and FN rates.

Model-based features [46] 0% 1%
Comments: According to the surveyed literature, this is the most accurate publicly known
email phishing detection technique. Low FP and FN rates with the ability to detect zero-
hour attacks (since no blacklists are used). However, use of image processing and model-based
features may increase the run time and space complexity of the classifier. Analyzes data parts

and .

R-Boost [47] 1.4% 0%

26ZeroR is a simple classifier that ignores all features and predicts that every tested instance to belong to the class of the majority instances. For example,
if the majority are legitimate emails, it will predict that all tested instances are legitimate. ZeroR is often used as the baseline to measure how well a classifier
is performing.

2118 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

TABLE III: Classification performance of phishing detection techniques
as evaluated in the literature.

Detection Technique B
la

ck
lis

ts

W
hi

te
lis

ts

H
eu

ri
st

ic
s

V
is

ua
l

Si
m

ila
ri

ty

M
ac

hi
ne

L
ea

rn
in

g

N
et

w
or

k
C

om
m

un
ic

at
io

n

Fa
ls

e
Po

si
tiv

es

Fa
ls

e
N

eg
at

iv
es

Comments: According to the surveyed literature, this is the 2nd most accurate publicly known
email phishing detection technique by using only 5 simple heuristic features. However, its FP
rate is somewhat high and its use of multiple classification models in its ensemble may also
increase the run time and space complexity of the proposed solution (especially as one of the
ensemble classifiers is a lazy learner; k-NN). Analyzes data parts and .

The ideal phishing mitigation direction seems to us to be
debatable so far, which could be due to the short history
depth of information technology in general. However, in our
opinion, systems are in reality moving towards adapting to
their end-users (as opposed to having end-users adapting to
their systems).

B. Blacklists

Blacklists are effective when minimal FP rates are re-
quired, which is achieved due to the way blacklists are
constructed (e.g. many of them involve human administration,
such as PhishTank).

Blacklists also have the advantage of requiring low re-
sources on the host machine. This elevates the need of
extensively analyzing the content of websites and emails.

However, blacklists are known to be behind the line when
the objective is mitigation of zero-hour phishing attacks. It
is critical to mitigate against zero-hour phishing attacks since
most of the phishing campaigns are short-lived [25].

The primary reason behind blacklists inability to mitigate
zero-hour phishing campaigns is due to the following factors:

• The time spent to blacklist a resource (e.g. phishing
URLs) — a phishing campaign’s URL or IP address
should be detected first prior to its addition to the
blacklist. Blacklist providers, such as PhishTank, rely on
humans to vote on phishing URLs. According Phish-
Tank’s statistics27, the median detection time is 2 hours.
This is a significant delay as 63% of phishing campaigns
end within the first 2 hours as well [25].

• The time spent to propagate an updated blacklist to end-
user clients — For example, according to Google Safe
Browsing API v2, the browser should synchronize its
blacklist after 0–5 minutes (chosen randomly) after its
startup, and then the browser should keep updating it
periodically as specified by the blacklist server. This can
leave a 5 minutes gap following the browser startup, and
an arbitrary amount of time as specified by the blacklist
server. This also includes delay caused by network and
application service providers, specially with DNS-Based

Blacklists (DNSBLs) as they send DNS queries for each
suspect resource (e.g. IP address).

It should also be noted that DNSBLs can result in excessive
queries with heavily loaded servers (e.g. email servers). The
excessive DNS queries can in turn trigger flood mitigation
techniques in intermediate DNS servers, which in turn can
result in further delay.

Due to the limitations above, we suggest that blacklists
— alone — should not be used whenever possible, and be
combined with other techniques that can possibly mitigate
zero-hour attacks. However, due to the low FP rate of
blacklists, they can be combined with other techniques without
causing significant raise in FP rate.

C. Heuristic tests and visual similarity

Unlike blacklists, heuristic tests are able to constantly detect
phishing campaigns including zero-hour attacks [25]. How-
ever, they tend to have higher FP rates [25] than blacklists,
which — in our opinion — is caused due to the following:

• The complicated nature of adversarial attacks makes it
hard for humans to manually construct heuristic tests that
mitigate the attacks without causing FP .

• Techniques used by phishing campaigns evolve with time,
and thus heuristic tests require to be continuously up-
dated. Although this periodic update is less frequent than
blacklists’, it is more expensive as it requires classifier
designers to analyze the data and generalize tests that
mitigate the phishing attacks.

Heuristic tests address the zero-hour gap that is left by
blacklists, however they often increase FP rates. This raise
in FP is undesired as it can hinder end-user productivity.

Techniques that rely on visual similarity in the literature
achieved similar characteristics (i.e. higher FP rates than
blacklists). However, they also require taking snapshots of
how websites visually appear in web browsers, and storing the
snapshots or the descriptors of extracted salient points in the
snapshots. This can raise the computational cost of techniques
that rely on visual similarities for a number of reasons:

27https://www.phishtank.com/stats

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2119

• In order to take a snapshot of an analyzed website, its
content should be rendered first (i.e. similar to Internet
Explorer and FireFox). This requires parsing the HTML,
Cascading Style Sheets (CSS), and JavaScript codes, as
well as Flash and Java objects, which will add an arbitrary
amount of processing time depending on the website’s
content.

• Storing information that describes images can be expen-
sive. For example, storing snapshots (or descriptors of
snapshots) of websites may require more space than sim-
ply storing their URL, which is the case with techniques
that are presented in this survey.

According to the surveyed literature, heuristics and visual
similarity tests tend to have higher computational cost, asso-
ciated with higher FP rates than blacklists. However, they
could prove to be effective additions in larger classifiers. For
example, a classifier that takes advantage of various techniques
as its input to output a more reliable classification label.

D. Machine Learning-based classifiers

Similar to heuristic tests, ML-based techniques can mitigate
zero-hour phishing attacks, which makes them advantageous
when compared with blacklists. Interestingly, ML techniques
are also capable of constructing their own classification models
by analyzing large sets of data. This elevates the need of
manually creating heuristic tests as ML algorithms are able
to find their own models. In other words, ML techniques have
the following advantages over heuristic tests:

• Despite the complicated nature of adversarial attacks, it
is possible to construct effective classification models
when large data set samples are available, without the
need of manually analyzing data to discover complex
relationships.

• As phishing campaigns evolve, ML classifiers can au-
tomatically evolve via reinforcement learning. Alterna-
tively, it is also possible to periodically construct newer
classification models by simply retraining the learner with
updated sample data sets.

ML-based anti-phishing classifiers in the literature, such as
those presented in [4], [46], have shown that it is possible
to achieve less than 1% FP , and more than 99% TP rates.
According to the surveyed literature, ML-based classifiers
are the only classifiers that achieved such high classification
accuracy while maintaining their ability to detect zero-hour
phishing attacks.

XIV. CONCLUSION

User education or training is an attempt to increase the
technical awareness level of users to reduce their susceptibility
to phishing attacks.

It is generally assumed that the addition of user education
materials compliments technical solutions (e.g. classifiers).
However, the human factor is broad and education alone may
not guarantee a positive behavioral response.

As shown in the previous sections, most of the educational
materials were also associated with a decrease in the TN rate,
with an exception of only one educational material, namely:

Anti-Phish Phil. This shows that the addition of user training
approaches is not always the right answer.

Essentially, this is an area of debate, and experts argue that
user education might not be the answer [13], [14].

User education materials can complement software solu-
tions. However it should also be noted that none of the existing
studies empirically show enough evidence that user education
can practically complement software solutions. This is due
to the fact that all of the publicly available user education
studies have evaluated educational materials independently
from software solutions.

The study in [1] concludes that Anti-Phish Phil training ma-
terial reduced FN rate from 46% to 29%, which is not enough
evidence to assume that it would also complement software
solutions that, for example, achieve a FN rate of less than 1%.
The un-answered question is: what is the percentage of overlap
between the classification performed by end-users following
a user training phase, and the classification performed by a
software classifier? If the overlap is 100%, then the addition
of user training can be redundant and will not be worth the
added cost and complexity. However, if the overlap is less
than 100%, then they can be complementary to each other —
however, such a study is not available in the public literature.

This survey reviewed a number of anti-phishing software
techniques. Some of the important aspects in measuring phish-
ing solutions are:

• Detection accuracy with regards to zero-hour phishing
attacks. This is due to the fact that phishing websites are
mostly short-lived and detection at hour zero is critical.

• Low false positives. A system with high false positives
might cause more harm than good. Moreover, end-users
will get into the habit of ignoring security warnings if
the classifier is often mistaken.

Generally, software detection solutions are:

• Blacklists.
• Rule-based heuristics.
• Visual similarity.
• Machine Learning-based classifiers.

The findings in Section XII show that the use of Machine
Learning techniques is promising as they have led to the most
effective phishing classifiers in the publicly known literature.
The Machine Learning-based detection techniques achieved
high classification accuracy for analyzing similar data parts to
those of rule-based heuristic techniques.

As a future work in this field, it would be beneficial to
conduct a study that:

• measures the effect of the addition of user training
from the perspective of correcting software classification
mistakes.

• analyzes the phishing detection techniques from the per-
spective of their computational cost and energy consump-
tion.

APPENDIX

Table IV lists symbols and their meanings as used in this
survey.

2120 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

TABLE IV
SYMBOLS LIST

Symbol Description
NP→P Number of phishing instances that are clas-

sified as phishing
NP→L Number of phishing instances that are clas-

sified as legitimate
NL→L Number of legitimate instances that are clas-

sified as legitimate
NL→P Number of legitimate instances that are clas-

sified as phishing
TP True Positive rate
FP False Positive rate
TN True Negative rate
FN False Negative rate
R Recall rate
P Precision rate
f1 f1 score, the harmonic mean of P and R

ACC Classification accuracy
WErr Weight error rate according to weight λ
TFij Term Frequency for for term i in document

j
IDF i Inverse Document Frequency for term i

TFIDFij TF-IDF for term i in document j
CCH(pc) CCH descriptor for salient point pc in an

image
Ws Suspect website
WL A set of legitimate websites
WP A set of phishing websites
WU A set of websites with unknown classes
WD A set of websites that are directly linked to

Ws

WI A set of websites that are indirectly linked
to Ws

KS A set of keywords that are extracted from
Ws

Kj A set of keywords that are extracted from
website j

Vs A features vector that represents Ws

ACKNOWLEDGMENT

This research is partially supported by Buhooth28. The
authors would also like to thank the anonymous reviewers
for their valuable comments.

REFERENCES

[1] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and J. Downs,
“Who falls for phish?: a demographic analysis of phishing susceptibility
and effectiveness of interventions,” in Proceedings of the 28th interna-
tional conference on Human factors in computing systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 373–382.

[2] B. Krebs, “HBGary Federal hacked by Anonymous,”
http://krebsonsecurity.com/2011/02/hbgary-federal-hacked-by-anonymous/,
2011, accessed December 2011.

[3] B. Schneier, “Lockheed Martin hack linked to RSA’s SecurID breach,”
http://www.schneier.com/blog/archives/2011/05/lockheed martin.html,
2011, accessed December 2011.

[4] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifi-
cation of phishing pages,” in NDSS ’10, 2010.

[5] X. Dong, J. Clark, and J. Jacob, “Modelling user-phishing interaction,”
in Human System Interactions, 2008 Conference on, may 2008, pp. 627
–632.

[6] W. D. Yu, S. Nargundkar, and N. Tiruthani, “A phishing vulnerability
analysis of web based systems,” in Proceedings of the 13th IEEE Sym-
posium on Computers and Communications (ISCC 2008). Marrakech,
Morocco: IEEE, July 2008, pp. 326–331.

[7] Anti-Phishing Working Group (APWG), “Phish-
ing activity trends report — second half 2010,”
http://apwg.org/reports/apwg report h2 2010.pdf, 2010, accessed
December 2011.

28http://www.buhooth.ae/

[8] Anti-Phishing Working Group (APWG), “Phish-
ing activity trends report — first half 2011,”
http://apwg.org/reports/apwg trends report h1 2011.pdf, 2011,
accessed December 2011.

[9] Anti-Phishing Working Group (APWG), “Phish-
ing activity trends report — second half 2011,”
http://apwg.org/reports/apwg trends report h2 2011.pdf, 2011,
accessed July 2012.

[10] B. Schneier, “Details of the RSA hack,”
http://www.schneier.com/blog/archives/2011/08/details of the.html,
2011, accessed December 2011.

[11] P. Kumaraguru, Y. Rhee, A. Acquisti, L. F. Cranor, J. Hong, and
E. Nunge, “Protecting people from phishing: the design and evaluation
of an embedded training email system,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, ser. CHI ’07. New
York, NY, USA: ACM, 2007, pp. 905–914.

[12] A. Alnajim and M. Munro, “An anti-phishing approach that uses training
intervention for phishing websites detection,” in Proceedings of the
2009 Sixth International Conference on Information Technology: New
Generations. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 405–410.

[13] S. Gorling, “The Myth of User Education,” Proceedings of the 16th
Virus Bulletin International Conference, 2006.

[14] G. Gaffney, “The myth of the stupid user,”
http://www.infodesign.com.au/articles/themythofthestupiduser, accessed
March 2011.

[15] A. Stone, “Natural-language processing for intrusion detection,” Com-
puter, vol. 40, no. 12, pp. 103 –105, dec. 2007.

[16] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of
machine learning techniques for phishing detection,” in Proceedings
of the anti-phishing working groups 2nd annual eCrime researchers
summit, ser. eCrime ’07. New York, NY, USA: ACM, 2007, pp. 60–
69.

[17] C. Yue and H. Wang, “Anti-phishing in offense and defense,” in Com-
puter Security Applications Conference, 2008. ACSAC 2008. Annual,
8-12 2008, pp. 345 –354.

[18] P. Knickerbocker, D. Yu, and J. Li, “Humboldt: A distributed phishing
disruption system,” in eCrime Researchers Summit, 2009, pp. 1–12.

[19] L. James, Phishing Exposed. Syngress Publishing, 2005.
[20] J. S. Downs, M. Holbrook, and L. F. Cranor, “Behavioral response to

phishing risk,” in Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit, ser. eCrime ’07. New York, NY,
USA: ACM, 2007, pp. 37–44.

[21] H. Huang, J. Tan, and L. Liu, “Countermeasure techniques for deceptive
phishing attack,” in International Conference on New Trends in Infor-
mation and Service Science, 2009. NISS ’09, 2009, pp. 636 – 641.

[22] T. Moore and R. Clayton, “Examining the impact of website take-down
on phishing,” in eCrime ’07: Proceedings of the anti-phishing working
groups 2nd annual eCrime researchers summit. New York, NY, USA:
ACM, 2007, pp. 1–13.

[23] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings,”
in Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, ser. CHI ’08. New York, NY, USA:
ACM, 2008, pp. 1065–1074.

[24] M. Wu, R. C. Miller, and S. L. Garfinkel, “Do security toolbars actually
prevent phishing attacks?” in Proceedings of the SIGCHI conference on
Human Factors in computing systems, ser. CHI ’06, New York, NY,
USA, 2006, pp. 601–610.

[25] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, and C. Zhang,
“An empirical analysis of phishing blacklists,” in Proceedings of the 6th
Conference in Email and Anti-Spam, ser. CEAS’09, Mountain view, CA,
July 2009.

[26] Google, “Google safe browsing API,”
http://code.google.com/apis/safebrowsing/ , accessed Oct 2011.

[27] Google, “Protocolv2Spec,” http://code.google.com/p/google-safe-
browsing/ wiki/Protocolv2Spec, accessed Oct 2011.

[28] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “Phishnet:
predictive blacklisting to detect phishing attacks,” in INFOCOM’10:
Proceedings of the 29th conference on Information communications.
Piscataway, NJ, USA: IEEE Press, 2010, pp. 346–350.

[29] Y. Cao, W. Han, and Y. Le, “Anti-phishing based on automated individ-
ual white-list,” in DIM ’08: Proceedings of the 4th ACM workshop on
Digital identity management. New York, NY, USA: ACM, 2008, pp.
51–60.

[30] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell, “Client-side
defense against web-based identity theft,” in NDSS. The Internet
Society, 2004.

KHONJI et al.:PHISHING DETECTION: A LITERATURE SURVEY 2121

[31] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
Detecting Fast-Flux Service Networks,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2008.

[32] P. Likarish, D. Dunbar, and T. E. Hansen, “Phishguard: A browser
plug-in for protection from phishing,” in 2nd International Conference
on Internet Multimedia Services Architecture and Applications, 2008.
IMSAA 2008, 2008, pp. 1 – 6.

[33] D. L. Cook, V. K. Gurbani, and M. Daniluk, “Phishwish: A stateless
phishing filter using minimal rules,” in Financial Cryptography and
Data Security, G. Tsudik, Ed. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 182–186.

[34] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web, ser. WWW ’07. New
York, NY, USA: ACM, 2007, pp. 639–648.

[35] T. A. Phelps and R. Wilensky, “Robust Hyperlinks and Locations,” D-
Lib Magazine, vol. 6, no. 7/8, Jul. 2000.

[36] M. Sharifi and S. H. Siadati, “A phishing sites blacklist generator,”
in Proceedings of the 2008 IEEE/ACS International Conference on
Computer Systems and Applications, ser. AICCSA ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 840–843.

[37] K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen, “Fighting
phishing with discriminative keypoint features,” Internet Computing,
IEEE, vol. 13, no. 3, pp. 56 –63, may-june 2009.

[38] C.-R. Huang, C.-S. Chen, and P.-C. Chung, “Contrast context histogram-
an efficient discriminating local descriptor for object recognition and
image matching,” Pattern Recogn., vol. 41, pp. 3071–3077, October
2008.

[39] M. Hara, A. Yamada, and Y. Miyake, “Visual similarity-based phishing
detection without victim site information,” in IEEE Symposium on
Computational Intelligence in Cyber Security, 2009. CICS ’09, 2009,
pp. 30 – 36.

[40] G. Liu, B. Qiu, and L. Wenyin, “Automatic detection of phishing target
from phishing webpage,” in Pattern Recognition (ICPR), 2010 20th
International Conference on, aug. 2010, pp. 4153 –4156.

[41] H. Kim and J. Huh, “Detecting dns-poisoning-based phishing attacks
from their network performance characteristics,” Electronics Letters,
vol. 47, no. 11, pp. 656 –658, 26 2011.

[42] H. Zhang, G. Liu, T. Chow, and W. Liu, “Textual and visual content-
based anti-phishing: A bayesian approach,” IEEE Transactions on
Neural Networks, vol. 22, no. 10, pp. 1532 –1546, oct. 2011.

[43] A. Y. Fu, L. Wenyin, and X. Deng, “Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (emd),”
IEEE Trans. Dependable Secur. Comput., vol. 3, no. 4, pp. 301–311,
Oct. 2006.

[44] L. Ma, B. Ofoghi, P. Watters, and S. Brown, “Detecting phishing
emails using hybrid features,” in Proceedings of the 2009 Symposia
and Workshops on Ubiquitous, Autonomic and Trusted Computing, ser.
UIC-ATC ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 493–497.

[45] P. Likarish, D. Dunbar, and T. E. Hansen, “B-apt: Bayesian anti-phishing
toolbar,” in IEEE International Conference on Communications, 2008.
ICC ’08, 2008, pp. 1745 – 1749.

[46] A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, and S. Strobel,
“New filtering approaches for phishing email,” J. Comput. Secur.,
vol. 18, pp. 7–35, January 2010.

[47] F. Toolan and J. Carthy, “Phishing detection using classifier ensembles,”
in eCrime Researchers Summit, 2009. eCRIME ’09., 20 2009-oct. 21
2009, pp. 1 –9.

[48] “How to recognize phishing email messages or links,”
http://www.microsoft.com/security/online-privacy/phishing-symptoms.aspx,
accessed March 2011.

[49] “How not to get hooked by a phishing scam,”
http://www.onguardonline.gov/topics/phishing.aspx, accessed March
2011.

[50] “Avoiding getting hooked by phishers,”
http://www.fraud.org/tips/internet/phishing.htm, accessed March
2011.

[51] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor,
J. Hong, and E. Nunge, “Anti-phishing phil: the design and evaluation
of a game that teaches people not to fall for phish,” in Proceedings of
the 3rd symposium on Usable privacy and security, ser. SOUPS ’07.
New York, NY, USA: ACM, 2007, pp. 88–99.

[52] C. V. Zhou, C. Leckie, S. Karunasekera, and T. Peng, “A self-healing,
self-protecting collaborative intrusion detection architecture to trace-
back fast-flux phishing domains,” in NOMS Workshops 2008. IEEE

Network Operations and Management Symposium Workshops, 2008,
2008, pp. 321 – 327.

[53] L. Cranor, S. Egelman, J. Hong, and Y. Zhang, “Phind-
ing phish: An evaluation of anti-phishing toolbars,”
www.cylab.cmu.edu/files/cmucylab06018.pdf, 2006, accessed Oct
2011.

[54] W. D. Yu, S. Nargundkar, and N. Tiruthani, “Phishcatch – a phishing
detection tool,” in 33rd Annual IEEE International on Computer Soft-
ware and Applications Conference, 2009. COMPSAC ’09, 2009, pp. 451
– 456.

Mahmoud Khonji Held network and system en-
gineering positions in the industry prior to joining
Khalifa University where he received MSc by Re-
search in mitigation of phishing attacks, in 2012. He
received Bachelors in Computer Networking with
distinction with highest honor from Higher Colleges
of Technology, UAE, and an appreciation certifi-
cate for academic excellence. His research interests
include: security usability, spam classification, au-
thorship detection, machine learning and computer
networking.

Youssef Iraqi received his M.Sc. and Ph.D. degrees
in Computer Science from the University of Mon-
treal, Canada, in 2000 and 2003 respectively. He is
currently an Associate Professor in the Department
of Computer Engineering at Khalifa University,
UAE. Before joining Khalifa University, Dr. Iraqi
was the chair of the Computer Science Department
at Dhofar University, Oman for four years. From
2004 to 2005 he was a Research Assistant Professor
in the School of Computer Science at the University
of Waterloo, Canada. Before that he was a Research

Assistant at the Computer Science Research Institute of Montreal, Canada.
Dr. Iraqi has published more than 70 research papers in international journals
and refereed conference proceedings. In 2008, he received the IEEE Com-
munications Society Fred W. Ellersick prize. Dr. Iraqi is a senior member of
the IEEE.

Andrew Jones After 25 years service with the
British Army’s Intelligence Corps during which he
was awarded an MBE, he became a manager and
a researcher and analyst in the area of Information
Warfare and computer crime at a defence research
establishment. In 2002, he left the defense environ-
ment to take up a post as a principal lecturer at the
University of Glamorgan in the subjects of Network
Security and Computer Crime and as a researcher
on the Threats to Information Systems and Com-
puter Forensics. He developed and managed a well

equipped Computer Forensics Laboratory and took the lead on a large number
of computer investigations and data recovery tasks.

In January 2005 he joined the Security Research Center at BT where he
became a Chief Researcher and the head of information security research.
During his time at BT he managed a number of research projects and led a
series of projects into residual data on second hand media. He is currently
the Program Chair for the MSc. in Information Security at Khalifa University
of Science, Technology and Research in Sharjah, UAE, and holds posts as
an adjunct professor at Edith Cowan University in Perth and the University
of South Australia in Adelaide, Australia. He holds a Ph.D. in the area of
threats to information systems. He has written five books on topics including
Information Warfare, Risk management and Digital forensics and Cyber
Crime and is currently writing a book on digital forensic procedures and
practices.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

