
Information Sciences 261 (2014) 1–31
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Reinforcement learning algorithms with function
approximation: Recent advances and applications
0020-0255/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2013.08.037

⇑ Corresponding author. Tel.: +86 731 84574980.
E-mail addresses: xuxin_mail@263.net, xinxu@nudt.edu.cn (X. Xu).
Xin Xu ⇑, Lei Zuo, Zhenhua Huang
College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, PR China
a r t i c l e i n f o

Article history:
Received 19 June 2012
Received in revised form 30 June 2013
Accepted 17 August 2013
Available online 5 September 2013

Keywords:
Reinforcement learning
Function approximation
Approximate dynamic programming
Learning control
Generalization
a b s t r a c t

In recent years, the research on reinforcement learning (RL) has focused on function
approximation in learning prediction and control of Markov decision processes (MDPs).
The usage of function approximation techniques in RL will be essential to deal with MDPs
with large or continuous state and action spaces. In this paper, a comprehensive survey is
given on recent developments in RL algorithms with function approximation. From a the-
oretical point of view, the convergence and feature representation of RL algorithms are
analyzed. From an empirical aspect, the performance of different RL algorithms was eval-
uated and compared in several benchmark learning prediction and learning control tasks.
The applications of RL with function approximation are also discussed. At last, future works
on RL with function approximation are suggested.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Reinforcement learning (RL) is a machine learning framework for solving sequential decision problems that can be mod-
eled as Markov Decision Processes (MDPs). In recent years, RL has been widely studied not only in the machine learning and
neural network community but also in operations research and control theory [28,70,71,93,111,120,134,141]. In reinforce-
ment learning, the learning agent interacts with an initially unknown environment and modifies its action policies to
maximize its cumulative payoffs. Thus, RL provides an efficient framework to solve learning control problems which are dif-
ficult or even impossible for supervised learning and traditional dynamic programming (DP) methods. The aim of dynamic
programming is to compute optimal policies given a perfect model of the environment as an MDP. Classical DP algorithms
have some limitations both due to their assumption of a perfect model and due to their great computational costs. In fact, RL
methods can be viewed as adaptive DP or approximate DP, with less computation and without assuming a perfect model of
the environment [111]. From the perspective of automatic control, the DP/RL framework comprises a nonlinear and stochas-
tic optimal control problem [29]. Moreover, RL is an important way for adaptive optimal control [18,112]. In the research of
human brain, RL has been studied as an important mechanism for human learning [113,137–139]. From the viewpoint of
artificial intelligence, RL is a basic mechanism for an agent to optimize its behavior in an uncertain environment
[28,121,135,140]. Fig. 1 illustrates the main components of the RL problem, where an agent receives the state and reward
information at time t, takes action at to make the environment’s state change to next state st+1 with a reward rt+1. The
learning objective is to find an action policy to optimize the long-term expected total or average reward from the
environment.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2013.08.037&domain=pdf
http://dx.doi.org/10.1016/j.ins.2013.08.037
mailto:xuxin_mail@263.net
mailto:xinxu@nudt.edu.cn
http://dx.doi.org/10.1016/j.ins.2013.08.037
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

Fig. 1. The RL problem.

2 X. Xu et al. / Information Sciences 261 (2014) 1–31
Function approximation has been a traditional topic in the research of machine learning. In earlier works, researchers
mainly focused on function approximation techniques for supervised learning problems which can be formulated as a
regression task [28]. For a regression task, the training samples are in the form of input–output pairs (xi,yi), i = 1, 2, . . . , n.
The regression problem can be stated as: given a training data set D = f(yi; ti), i = 1, 2, . . . , n, of input vectors yi and associated
targets ti, the goal is to find a function g(y) which approximates the relation inherited between the data set points and it can
be used to infer the output t for a new input data point y. Generally, a regression algorithm has a loss function L(t;g(y)),
which describes how the estimated function deviated from the true one. Many forms for the loss function have been pro-
posed in the literature: e.g. linear, quadratic loss function, exponential, etc. [72].

To compute the optimal or near-optimal policies of MDPs, RL algorithms usually estimate the value functions of MDPs by
observing data generated from state transitions. However, since no explicit teacher signals can be obtained in RL, the estimation
of value functions is different from the function regression problem in supervised learning. In earlier research of RL, tabular
algorithms were popularly studied, such as tabular Q-learning and tabular Sarsa-learning. In tabular RL algorithms, value func-
tions are represented and estimated in tabular forms for each state or state-action pair. But in many real-world applications, a
learning controller has to deal with MDPs with large or continuous state and action spaces. In such cases, earlier RL algorithms
such as Q-learning and Sarsa-learning usually converge slowly when tabular representations of value functions are used. Since
function approximation is essential to realize the generalization ability of learning machines, function approximation and gen-
eralization methods for RL have received more and more research interests in recent years [14,31,44,45,114,124,125,133,153].
Currently, there are three main categories of research work on RL methods with function approximation, i.e., policy search [9],
value function approximation (VFA) [11], and actor–critic methods [13,16]. Among these three classes of approximate RL meth-
ods, the actor–critic algorithms, viewed as a hybrid of VFA and policy search, have been shown to be more effective than VFA or
policy search in online learning control tasks with continuous spaces [95]. In an actor–critic learning control architecture, there
is an actor for policy learning and a critic for value function approximation or policy evaluation. The policy evaluation process in
the critic is also called learning prediction, which can be viewed as a sub-problem of RL.

In the past decade, the research works on RL with function approximation have been brought together with the approx-
imate dynamic programming (ADP) community [93,134], which is to compute near-optimal solutions to MDPs with large or
continuous spaces. One common objective of ADP and RL is to solve MDPs with large or continuous state and action spaces.
Thus, RL and ADP provide a very promising framework for learning control problems which are difficult or even impossible
for supervised learning and mathematical programming methods. Originally, RL methods mainly focused on learning control
problems in MDPs without model information while ADP methods usually approximate near-optimal solutions of MDPs
with some model information, which can be viewed as planning cases for sequential decision making. In this paper, we will
mainly focus on recent developments in RL algorithms with function approximation and related works on ADP algorithms
with function approximation will also be surveyed. Firstly, since learning prediction is an important sub-problem of RL, ma-
jor advances in learning prediction algorithms with function approximation are discussed. Specifically, we put more empha-
sis on the developments in temporal-difference (TD) learning theory and algorithms, which are basic mechanisms for value
function approximation. Secondly, learning control algorithms with function approximation are surveyed, where the main
focus is put on highly efficient RL algorithms with function approximation such as fitted-Q iteration, approximate policy iter-
ation, and adaptive critic designs (ACDs). The convergence of RL algorithms with different representations is analyzed from a
theoretical point of view. Furthermore, the performance of different RL algorithms was evaluated and compared in several
benchmark learning prediction and learning control tasks. The selected RL algorithms for performance comparisons have
been popularly studied in the literature and most of them are state-of-the-art RL approaches with function approximation.
The applications of RL will also be summarized by analyzing the advantages and disadvantages of different RL algorithms.

The rest of this paper is organized as follows. In Section 2, an overview on RL algorithms with function approximation for
learning prediction is given. The RL methods with function approximation for learning control in MDPs are introduced in
Section 3. Then, the theoretical results on the convergence of RL algorithms with function approximation are discussed in
Section 4. The performance of different RL algorithms with function approximation was evaluated and compared in Section 5.
In Section 6, the applications of RL are summarized, where the advantages and disadvantages of different algorithms are
highlighted. Section 7 discusses some open problems in function approximation of RL. In the end, Section 8 draws conclu-
sions and suggests future work.

X. Xu et al. / Information Sciences 261 (2014) 1–31 3
2. RL algorithms with function approximation for learning prediction

In RL, there are two basic tasks. One is called learning prediction and the other is called learning control. The goal of learn-
ing control is to estimate the optimal policy or optimal value function of an MDP without knowing its complete model.
Learning prediction aims to solve the policy evaluation problem of a stationary-policy MDP, which can also be viewed as
a Markov reward process, without prior model information and it can be regarded as a sub-problem of learning control. Fur-
thermore, in RL, learning prediction is different from that in supervised learning [14]. As pointed out by Sutton [111,114], the
prediction problems in supervised learning are single-step prediction problems while those in reinforcement learning are
multi-step prediction problems. To solve multi-step prediction problems, a learning system must predict outcomes that de-
pend on a future sequence of decisions [142]. Therefore, the theory and algorithms for multi-step learning prediction become
an important topic in RL and much research work has been done in the literature [114,124]. In this section, we will focus on
learning prediction methods with function approximation. At first, some introduction on the Markov reward process model
for learning prediction is given.

2.1. Markov reward process

Markov reward processes are popular stochastic models for sequential modeling and decision making. A Markov reward
process can be modeled as a tuple {X,R,P}, where X is the state space, R is the reward function, P is the state transition prob-
ability. Let {xtjt = 0, 1, 2, . . . ; xt 2 X} denote a state sequence generated by a Markov reward process. For each state transition
from xt to xt+1, a scalar reward rt is defined. The state transition probabilities satisfy the following property:
Pfxtþ1jxt ; xt�1; . . . ; x1; x0g ¼ Pfxtþ1jxtg ð1Þ
Let the trajectory generated by the Markov chain be denoted by {xtjt = 0, 1, 2, . . . , xt 2 X}.The dynamics of the Markov
chain can be described by a transition probability matrix P whose (i, j)th entry, denoted by pij, is the transition probability
for xt+1 = j given that xt = i. For each state transition from xt to xt+1, a scalar reward rt is defined. The expected average reward
or value starting from a state x is defined as:
qðxÞ ¼ lim
N!1

1
N

E
XN

t¼0

rtþ1

�����x0 ¼ x

" #
ð2Þ
For the discounted case, the value function of each state is defined as follows:
VðxÞ ¼ E
X1
t¼0

ctrtþ1

�����x0 ¼ x

()
ð3Þ
where 1 > c P 0 is a discount factor, and the expectation is with respect to the state transition probabilities.
Similarly, the state-action value function Q(x,a) is defined as the expected, discounted total rewards when taking action a

in state x:
Qðx; aÞ ¼ E
X1
t¼0

ctrtþ1

�����x0 ¼ x; a0 ¼ a

" #
ð4Þ
2.2. Monte-Carlo methods and tree-based batch RL

Since the state value is defined as the expectation of the stochastic rewards when the process starts from the state, a sim-
ple method of value estimation is to average over multiple independent runs of the process. This is one example of the so-
called Monte-Carlo method. Monte Carlo methods are ways of solving the reinforcement learning problem based on aver-
aging sample returns [111]. To ensure that well-defined returns are available, Monte Carlo methods are usually defined
for episodic tasks. It is assumed that experience is divided into episodes, and that all episodes eventually terminate no matter
what actions are selected. The value estimates and policies are only changed after the end of an episode. Monte Carlo meth-
ods are thus incremental in an episode-by-episode style, but not in a step-by-step style. Unfortunately, the variance of the
returns can be high, which makes convergence slow.

Let Rt denote the total rewards following each state xt. Since the real state value is the expected total rewards after the
state, the learning target vt = Rt is an unbiased estimate of V (xt). Thus, the following gradient-descent rule of Monte Carlo
state-value prediction will converge to a locally optimal solution [111].
~htþ1 ¼~ht þ atðRt � bV ðxt ;~htÞÞ@ bV=@~ht ð5Þ
In batch mode, it can be computed by approximating the action value function called Q-function based on a set of four-tuples
(xt,at,rt,xt+1) where xt denotes the system state at time t, at the control action taken, rt the immediate reward obtained and
xt+1 the successive state, and by using the control policy from this Q-function. The Q-function approximation can be esti-

4 X. Xu et al. / Information Sciences 261 (2014) 1–31
mated from the limit of a sequence of (batch mode) supervised learning problems. Based on this idea, the use of several clas-
sical tree-based supervised learning methods (CART, Kd-tree, tree bagging) has been studied [45,125].

2.3. TD learning algorithms with linear function approximation

As a class of multi-step learning prediction methods, temporal-difference (TD) learning [114] was studied and applied in
the early research of machine learning, including the well-known checkers-playing program [79,100]. In 1988, Sutton pre-
sented the first formal description of temporal-difference methods and the TD (k) algorithm [114]. Convergence results were
established for tabular temporal-difference learning algorithms where the cardinality of tunable parameters is the same as
that of the state space [35,61,114,136]. Since many real-world applications have large or continuous state space, value func-
tion approximation (VFA) methods need to be studied in those cases.

Consider a general linear function approximator with a fixed basis function vector
/ðxÞ ¼ ð/1ðxÞ;/2ðxÞ; . . . ;/nðxÞÞ
T ð6Þ
The approximated value function is given by
bV tðxÞ ¼ /TðxÞ~ht ð7Þ
The corresponding incremental weight update rule of linear TD (k) is
~htþ1 ¼~ht þ atðrt þ c/Tðxtþ1Þ~ht � /TðxtÞ~htÞ~ztþ1 ð8Þ
where the eligibility trace vector~ztðxtÞ ¼ ðz1tðxtÞ; z2tðxtÞ; . . . ; zntðxtÞÞT is defined as
~ztþ1 ¼ ck~zt þ /ðxtÞ ð9Þ
In [124], the above linear TD (k) algorithm is proved to converge with probability 1 under certain assumptions and the
limit of convergence~h� is also derived, which satisfies the following equation.
E0½AðXtÞ�~h� � E0½bðXtÞ� ¼ 0 ð10Þ
where Xt = (xt,xt+1,zt+1) (t = 1, 2, . . .) form a Markov process, E0[�] denotes the expectation with respect to the unique invariant
distribution of {Xt}, and A(Xt) and b(Xt) are defined as
AðXtÞ ¼~ztð/TðxtÞ � c/Tðxtþ1ÞÞ ð11Þ
bðXtÞ ¼~ztrt ð12Þ
The solution of Eq. (10) is called the fixed-point solution of linear TD learning. To improve the efficiency of linear TD (k)
algorithms, least-squares methods were used with the linear fixed-point TD (0) algorithm, and the LS-TD (0) and RLS-TD (0)
algorithms were proposed in [27]. In LS-TD (0) and RLS-TD (0), the following quadratic objective function was defined.
J ¼
XT�1

t¼1

rt � /t � c/tþ1

� �T~h
h i2

ð13Þ
By employing the instrumental variables approach [109], the least-squares fixed-point solution of (13) is given as
~hLS�TDð0Þ ¼
XT

t¼1

ð/tð/t � c/tþ1Þ
TÞ

 !�1 XT

t¼1

/trt

 !
ð14Þ
where /t is the instrumental variable chosen to be uncorrelated with the input and output noises.
In RLS-TD (0), recursive least-squares methods are used to decrease the computational burden of LS-TD (0). The convergence

(with probability one) of LS-TD (0) and RLS-TD (0) was proved for periodic and absorbing Markov chains under certain assump-
tions [27]. In [23], LS-TD (k) was proposed by solving (10) directly and the model-based property of LS-TD (k) was also analyzed.
However, for LS-TD (k), the computation per time-step is O(K3), i.e., the cubic order of the state feature number. Therefore the
computation required by LS-TD (k) increases very fast when K increases, which is undesirable for online learning.

In [142], Xu et al. proposed the RLS-TD (k) algorithm and it was shown that the RLS-TD (k) algorithm is superior to con-
ventional TD (k) algorithms in data efficiency and it also eliminates the design problem of the step sizes in linear TD (k) algo-
rithms. The weight update rules of RLS-TD (k) are given by
Ktþ1 ¼ Pt~zt=ðlþ ð/TðxtÞ � c/Tðxtþ1ÞÞPt~ztÞ ð15Þ

h
*

tþ1 ¼ h
*

t þ Ktþ1ðrt � ð/TðxtÞ � c/Tðxtþ1ÞÞh
*

tÞ ð16Þ

Ptþ1 ¼
1
l
½Pt � Pt~zt½lþ ð/TðxtÞ � c/Tðxtþ1ÞÞPt~zt �

�1ð/TðxtÞ � c/Tðxtþ1ÞÞPt� ð17Þ
where for the standard RLS-TD (k) algorithm, l = 1; for the general forgetting factor RLS-TD (k) case, 0 < l 6 1.

X. Xu et al. / Information Sciences 261 (2014) 1–31 5
In order to improve robustness and efficiency, Geramifard et al. [54] proposed an incremental version of LSTD, called iLS-
TD, which computes the matrix A(xt) and vector b(Xt) with one dimension of the parameter vector being updated in each
time step.

As analyzed in [54], the fixed-point (FP) solution for (10) minimizes the projected Bellman residual:
Fig. 2.
evaluat
J ¼min
w
kPTpðbV Þ � bVkq ð18Þ
where P = U(UTU)�1UT is the projection operator determined by the feature vector.
U ¼ ½~/ðx1Þ; ~/ðx2Þ; . . . ; ~/ðxnÞ�

T
; V̂ ¼ UW is the vector of approximated value functions for all the finite states, Tp is the Bell-

man operator defined by TpðV̂Þ ¼ Rp þ PpV̂ ; Pp is the state transition matrix.
Another approach is to minimize the Bellman residual (BR). This technique computes a solution by minimizing the mag-

nitude of the Bellman residual, where the errors for each state are weighted according to distribution q:
min
w
kTpðbV Þ � bVkq ¼min

w
kRp þ cPpUw�Uwkq ð19Þ
The least-squares solution is to minimize kABRw � bBRkq where:
ABR ¼ UTðI � cPpÞT DqðI � cPpÞU;

bBR ¼ UTðI � cPpÞT DqRp:
ð20Þ
In [64], by including the norm of the Bellman residual in their objective functions, hybrid algorithms were proposed to
protect against large residual vectors. They also have the flexibility of finding solutions that are almost fixed points but have
more desirable properties (smaller Bellman residuals).
min
w

b TpðbV Þ � bV��� ���2

q
þ ð1� bÞ

Y
q
ðTpðbV Þ � bV Þ�����

�����
2

q

24 35 ð21Þ
Each approximate policy evaluation algorithm uses the Bellman equation in different ways to compute a value function.
There is an intuitive geometric perspective to the algorithms when using linear function approximation. As discussed in [64],
the Bellman equation with linear function approximation has three components: bV , Tp bV and PTp bV . These components geo-
metrically form a triangle where bV and PTp bV reside in the space [U] spanned by U while Tp bV is, in general, outside this
space. This is illustrated in the leftmost triangle of Fig. 2.

The three-dimensional space in Fig. 2 is the space of exact value functions while the two-dimensional plane represents
the space of approximate value functions in [U]. The angle between subspace [U] and the vector PTp bV � bV is denoted as h.
The BR and FP solutions minimize the length of different sides of the triangle. The second triangle in Fig. 2 shows the BR
solution, which minimizes the length of Tp bV � bV . The third (degenerative) triangle shows the FP solution, which minimizes
the length of PTp bV � bV . This length is 0 which means hFP = 90�. The fourth triangle shows the hybrid solution in [64], which
minimizes a combination of the lengths of the two sides. In general, hH lies between hBR and 90�. The hybrid solution allows
for controlling the shape of this triangle.

2.4. Kernel-based TD learning

Kernel methods or kernel machines [101] were popularly studied to realize nonlinear and non-parametric versions of
conventional supervised or unsupervised machine learning algorithms. The main idea behind kernel machines is that inner
products in a high-dimensional feature space can be represented by a Mercer kernel function so that conventional learning
algorithms in linear spaces may be transformed to nonlinear algorithms without explicitly computing the inner products in
high-dimensional feature spaces. This idea, which is usually called the ‘‘kernel trick’’, has been widely applied in various ker-
nel-based supervised and unsupervised learning problems. In supervised learning, the most popular kernel machines include
support vector machines (SVMs) and the Gaussian process model for regression, which have been applied to many classifi-
cation and regression problems [101,102,128]. In unsupervised learning, kernel principal component analysis (KPCA) and
kernel independent component analysis have also been studied by many researchers [8,101].
ˆ()T Vπ

Φ V̂ w= Φ

θ ˆT Vπ∏
BRθ FPθ

Hθ

The triangle on the left shows the general form of the Bellman equation. The other three triangles correspond to the different approximate policy
ion algorithms where the bold lines indicate what is being optimized [64].

6 X. Xu et al. / Information Sciences 261 (2014) 1–31
According to the Mercer Theorem [128], there exists a Hilbert space H and a mapping / from X to H such that
kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi ð22Þ
where h�, �i is the inner product in H. Although the dimension of H may be infinite and the nonlinear mapping is usually un-
known, all the computation in the feature space can still be performed if it is in the form of inner products.

Kernel-based reinforcement learning (KBRL) computes a value function offline by generalizing value function updates
from a given sample of transitions over an instance-based representation [86]. KBRL is noteworthy for its theoretical guar-
antee of convergence to the optimal value function as its sample size increases, under appropriate assumptions, but it does
not answer the exploration question of how to efficiently gather the data online. To realize efficient and convergent TD learn-
ing with kernels, Xu et al. [144] presented a class of kernel-based least-squares TD learning algorithms with eligibilities,
which is called KLS-TD (k). The idea of KLS-TD (k) is to make use of Mercer kernel functions to implement least-squares
TD learning in a high-dimensional nonlinear feature space produced by a kernel-based feature mapping. Thus, compared
to conventional linear TD (k) and LS-TD (k) algorithms, better performance of approximation accuracy can be obtained for
KLS-TD (k) in nonlinear VFA problems.

Let
AT ¼
XN

t¼1

~kðxtÞ½~kTðxtÞ � c~kTðxtþ1Þ� ð23Þ

bT ¼
XN

t¼1

~kðxtÞrt ð24Þ
where ~kðxÞ is a kernel-based feature vector, N is the total number of samples.
Then, the kernel-based least-squares fixed-point solution to the TD learning problem is as follows:
~a ¼ A�1
T bT ð25Þ
To improve the generalization ability and reduce the computational complexity of kernel machines, in [144], the ALD-
based sparsification procedure was introduced for regularizing the kernel machines. After collecting a set of data samples
and initialize a dictionary with the first sample, ALD-based sparsification mainly includes two steps. The first step is to com-
pute the following optimization solutions
Dt ¼min
c

X
xj2Dt

cj/ðxjÞ � /ðxtÞ

������
������

2

ð26Þ
Due to the kernel trick, after substituting [22] into (26), we can obtain
Dt ¼min
c
fcT Kt�1c � 2cT kt�1ðxtÞ þ kttg ð27Þ
where [Kt�1]i,j = k(xi,xj), xi (i = 1, 2, . . . , d(t � 1)) are the elements in the dictionary, d(t � 1) is the length of the data dictionary,
kt�1(xt) = [k(x1,xt), k(x2,xt), . . . , k(xd(t�1),xt)]T, c = [c1, c2, . . . , cd]T and ktt = k(xt, xt).

The second step of ALD-based sparsification is to update the data dictionary by comparing Dt with a predefined threshold
l. If Dt < l, the dictionary is unchanged, otherwise, xt is added to the dictionary, i.e., Dt = Dt�1 [xt.

2.5. Gradient TD

The computational complexity of least-squares TD methods will be larger than that of TD (k). Two recent algorithms were
proposed by Sutton et al. [115,116], which overcome the instability issue, converge to the TD (k) solutions in the on-policy
case, and yet the computational costs are almost the same as TD (k).

Define the temporal difference at time t as dtþ1ðhÞ ¼ rtþ1 þ cV̂ðxtþ1Þ � V̂ðxtÞ, where V̂ðxtÞ ¼ /T
t ðhÞwt . Rewrite J defined in

(18) in the following form:
JðhÞ ¼ E½dtþ1ðhÞ/t �
T E /t/

T
t

� ��1
E½dtþ1ðhÞ/t� ð28Þ
In GTD2 [115], the update of ht is based on the negative stochastic gradient of J defined in (28) assuming that wt � w(ht),
while wt is updated so that for any fixed h, wt would converge almost surely to w(h):
htþ1 ¼ ht þ at /t � c/0tþ1

� �
/T

t wt ;

wtþ1 ¼ wt þ bt dtþ1ðhtÞ � /T
t wt

� �
/t:

ð29Þ
In TDC (‘‘temporal difference learning with corrections’’), the gradient is [115]
rhJðhÞ ¼ �2ðE½dtþ1ðhÞ/t� � cE /0tþ1/
T
t

� �
wðhÞÞ ð30Þ
Leaving the update wt unchanged, the update rules in TDC are as follows:

X. Xu et al. / Information Sciences 261 (2014) 1–31 7
htþ1 ¼ ht þ at dtþ1ðhtÞ/t � c/0tþ1/
T
t wt

� �
;

wtþ1 ¼ wt þ bt dtþ1ðhtÞ � /T
t wt

� �
/t :

ð31Þ
In TDC, the update of wt should have larger step-sizes than the update of ht:at = o(bt). Thus, TDC is a class of the so-called
two-timescale stochastic approximation algorithms [20,21,120]. It was proved that when the above condition as well as the
standard RM conditions are also satisfied by both step-size sequences, ht ? h holds almost surely [115]. The algorithms can
also be extended to use eligibility traces [73,120].
2.6. Learning prediction with Gaussian Processes [43,96]

Gaussian Processes (GPs) have been widely studied for classification and regression. Based on a probabilistic generative
model, GP methods can generate a full posterior distribution rather than a point estimate as in non-Bayesian methods. In
[43], the use of GPs for solving the RL problem of value estimation was introduced. Since GPs belong to the family of kernel
machines, they bring in RL the high, and quickly growing representational flexibility of kernel based representations. In [96],
Rasmussen and Kuss used Gaussian process (GP) models for two distinct purposes: first to model the dynamics of the system
and secondly to use GP for representing the value function.

In analogy to GP regression, Engel et al. [43] imposed a Gaussian prior over value function, i.e., V � N(0,k(�, �)), which
means that V is a GP for which, E(V(x)) = 0 and E(V(x)V(x0)) = k(x,x0) for all x, x0 2 X. The form of the function k should reflect
the prior knowledge on the similarity of states in the domain at hand. The following generative model for the sequence of
rewards corresponding to the trajectory {x1, x2, . . . , xt} was proposed in [43]:
Rðxi; xiþ1Þ ¼ VðxiÞ � cVðxiþ1Þ þ NðxiÞ ð32Þ
where N is a white Gaussian noise process, i.e., N � N(0,R) with R(x, x0) = r0(x)2d(x � x0), where d denotes the Dirac delta
function. For a finite state sequence of length t, the (finite dimensional) random processes are defined as follows:
Rt ¼ ðRðx1Þ; . . . ;RðxtÞÞT ;
Vt ¼ ðVðx1Þ; . . . ;VðxtÞÞT ;
Nt ¼ ðNðx1Þ; . . . ;NðxtÞÞT ;

ð33Þ
and the vector and matrices are (respectively) defined as
ktðxÞ ¼ ðkðx1; xÞ; . . . ; kðxt ; xÞÞT ;
Kt ¼ ½ktðx1Þ; . . . ; ktðxtÞ�;
Rt ¼ diag r2

0; . . . ;r2
0

� �
;

ð34Þ
where diag (�) denotes a diagonal matrix whose diagonal is the argument vector. Using these definitions one can obtain
Nt

Vt

� 	
� N

0
0

� 	
;

Rt 0
0 Kt

 ��

: ð35Þ
Defining the (t � 1) � t matrix
Ht ¼

1 �c 0 . . . 0
0 1 �c . . . 0

..

. ..
.

0 0 . . . 1 �c

266664
377775; ð36Þ
Eq. (32) can be states as
Rt�1 ¼ HtVt þ Nt�1: ð37Þ
Using standard results on jointly Gaussian random variables, the following relation can be obtained [43]
Rt�1

VðxÞ

� 	
� N

0
0

� 	
;

HtKtH
T
t þ Rt�1 HtktðxÞ

ktðxÞT HT
t kðx; xÞ

" #()
;

and the posterior distribution of the value at some point x, conditioned on the observed sequence of rewards
r
*

t�1 ¼ ðr1; . . . ; rt�1ÞT is given by [43]
ðVðxÞjRt�1 ¼ r
*

t � 1Þ � Nfv̂ tðxÞ;ptðxÞg; ð38Þ

8 X. Xu et al. / Information Sciences 261 (2014) 1–31
where
v̂ tðxÞ ¼ ktðxÞT HT
t Q t r

*

t � 1;

ptðxÞ ¼ kxx-ktðxÞT HT
t Q tHtktðxÞ;

ð39Þ
with Q t ¼ HtKtH
T
t þ Rt�1

� ��1
, and kxx = k(x,x).

Both the probabilistic generative model and the corresponding Gaussian Process Temporal Differences (GPTD) algorithm
proposed in [43] have two problems to be considered. First, the original model is strictly correct only if the state transitions
of the underlying MDP are deterministic, and if the rewards are corrupted by white Gaussian noise. While the second
assumption is relatively innocuous, the first is a serious handicap to the applicability of the GPTD model to general MDPs.
Secondly, the GPTD algorithm just addresses the value estimation problem. To solve learning control problems, it should
be combined with API methods or other actor–critic methods.

3. RL algorithms with function approximation for learning control in MDPs

The learning control problem in MDPs is to approximate the optimal value function or optimal policy without knowing
the MDP model as a priori. Until recently, the three main categories of approximate RL methods for learning control have
included value function approximation (VFA) [11], policy search [17], and actor–critic methods [69,19,71]. Unlike VFA-based
methods, actor–critic algorithms approximate the value functions and policies of an MDP separately to encourage the real-
ization of generalization in MDPs with large or continuous spaces. Many recent studies of actor–critic methods have focused
on adaptive critic designs (ACDs), which usually require an approximated model of the plant dynamics. In addition, rela-
tional reinforcement learning (RRL) has been studied for learning control in domains that exhibit structural properties
and in which different kinds of related objects exist. In this section, we will introduce the MDP model and traditional dy-
namic programming methods at first. Then, we will put our focus on approximate RL methods for learning control, including
VFA methods, policy gradient methods, approximate policy iteration, actor–critic methods, and relational RL. Moreover,
some discussions on the relationship between planning and learning will also be given.

3.1. MDP

A Markov decision process is denoted as a tuple {X,A,R,P}, where X is the state space, A is the action space, P is the state
transition probability and R is the reward function. When referring to a policy p, we use p(ajx) to denote the probability of
selecting action a in state x by p. A deterministic policy directly maps states to actions, denoted as:
at ¼ pðxtÞ t P 0 ð40Þ
When the actions at (t P 0) satisfy (40), policy p is followed in the MDP M. A stochastic stationary policy p is said to be
followed in the MDP M if at � p(ajxt),t P 0.

The objective of a learning controller is to estimate the optimal policy p⁄ satisfying:
Jp� ¼max
p

Jp ¼max
p

Ep
X1
t¼0

ctrtþ1

" #
ð41Þ
or
Jp� ¼max
p

lim
N!1

1
N

Ep
XN

t¼0

rtþ1

" #
ð42Þ
where 0 < c < 1 is the discount factor and rt is the reward at time-step t, Ep[�] stands for the expectation with respect to the
policy p and the state transition probabilities, and Jp is the averaged or expected total discounted reward along the state tra-
jectories by following policy p. In this paper, Jp is also called the performance value of policy p.

For the case of average rewards, the relative value function is defined as:
eV pðxÞ ¼
X1
t¼0

E½rt � qpjx0 ¼ x� ð43Þ
where
qp ¼ lim
N!1

1
N

Ep
XN

t¼0

rt

" #
ð44Þ
For the discounted case, the state value function for a stationary policy p and the optimal state value function for the opti-
mal policy p⁄ are defined as follows:

X. Xu et al. / Information Sciences 261 (2014) 1–31 9
VpðxÞ ¼ Ep
X1
t¼0

ctrtþ1

�����x0 ¼ x

" #
ð45Þ

V�ðxÞ ¼ Ep� X1
t¼0

ctrtþ1

�����x0 ¼ x

" #
ð46Þ
According to the theory of dynamic programming [18], the optimal value function satisfies the following Bellman
equation
V�ðxÞ ¼max
a
½Rðx; aÞ þ cE½V�ðx0Þ�� ð47Þ
where R(x,a) is the expected reward received after taking action a in state x.
The state-action value function under policy p is defined as
Qpðx; aÞ ¼ Ep
X1
t¼0

ctrtþ1

�����x0 ¼ x; a0 ¼ a

" #
ð48Þ
The optimal state-action value function is
Q �ðx; aÞ ¼max
p

Qpðx; aÞ ð49Þ
When Q⁄(x,a) is obtained, the optimal policy is easy to be computed by
p�ðxÞ ¼ arg max
a

Q �ðx; aÞ ð50Þ
3.2. Planning and dynamic programming [120]

Define the Bellman optimality operator, T⁄: R ? R, by
ðT�VÞðxÞ ¼ max
a2A

Rðx; aÞ þ c
X
y2X

Pðx; a; yÞVðyÞ
()

; x 2 X ð51Þ
By making use of the operator T⁄, Eq. (47) can be re-written as
T�V� ¼ V� ð52Þ
If 0 < c < 1, then T⁄ is a maximum-norm contraction, and the fixed-point equation T⁄V = V has a unique solution [120]. The
above property is the basic principle for the value iteration and policy iteration algorithms.

In value iteration, the value functions are updated as
Vkþ1 ¼ T�Vk; k P 0; ð53Þ
where V0 is arbitrary.
Value iteration can also be applied to action-value functions, where the update rule is
Q kþ1 ¼ T�Q k; k P 0; ð54Þ
which converges to Q⁄ at a geometric rate. The idea is that once Vk (or Qk) is close to V⁄ (resp., Q⁄), a policy that is greedy with
respect to Vk (resp., Qk) will be near-optimal [120]. Fix an action-value function Q and let p be a greedy policy w.r.t Q. The
following relation holds [108,120]:
VpðxÞP V�ðxÞ � 2
1� c

kQ � Q �k1
a2A

; x 2 X ð55Þ
The main procedures in policy iteration include the following steps [120]. Fix an arbitrary initial policy p0. At iteration
k > 0, compute the action-value function for policy pk (called policy evaluation). Next, define pk+1 as a greedy policy with
respect to the action-value function (called policy improvement). After k iterations, policy iteration generates a policy not
worse than the greedy policy w.r.t. to the value function computed using k iterations of value iteration if the same initial
value function is used. Nevertheless, the computational cost of a single step in policy iteration is much higher than that
of one update in value iteration [120].

3.3. VFA for learning control

In previous work of value function approximation in RL, a class of approximated gradient descent method is commonly
used, which can be called the direct gradient method [11] and has the following form.
Dh ¼ at ½rðx; aÞ þ cbQ ðx0; h; a0Þ � bQ ðx; h; aÞ� @ bQ ðx; h; aÞ
@h

ð56Þ

10 X. Xu et al. / Information Sciences 261 (2014) 1–31
where bQ (x,h,a) is the estimated action value function, (x,a) and (x0,a0) are two successive state-action pairs and h is the
weight vector.

Since the above direct gradient learning rule is not based on any objective function of approximation errors, convergence
results cannot be obtained by the well-known stochastic gradient descent theory. For direct gradient Sarsa-learning, when
linear function approximators are used and the policy is stationary, it is equivalent to linear TD (0) learning algorithm and
has been proved to converge [107]. But for general cases with nonstationary policies, both direct gradient Q-learning and
Sarsa-learning algorithms have been shown to be unable to converge to any policy for simple MDPs and simple function
approximators [11,124].

In [11], the following objective function is chosen to compute the residual gradient for MDPs with stationary policies.
J ¼ 1
2

X
x

E rðx; aÞ þ c
X
pðx0 Þ

Qðx0; a0Þ � Qðx; aÞ
" #2

ð57Þ
where p(x0) is a stationary policy which does not change over time. Although the residual gradient learning algorithm has
been proved to converge to a local minimum of the objective function (57), it cannot guarantee the convergence of value
function approximation when the policy changes in order to approximate the optimal policy of an MDP because the above
residual gradient rule is only for the case of stationary policies.

Fitted Q-iteration [45] is to approximate the optimal action-value function Q(x,a) and mimics value iteration. Since com-
puting the Bellman operator applied to the last iterate at any point involves evaluating a high-dimensional integral, a Monte-
Carlo approximation can be used together with a regression procedure. For this purpose, a set of samples D is generated:
D ¼ x1; a1;R1; x01

� �
; . . . ; xN; xN;RN; x0N

� �� �
. Here, Rt ; x0t are the reward and the next-state when action at is chosen in state

xt : x0t � Pð�jxt ; atÞ. For the sake of simplicity, it is assumed that the actions are generated by some fixed stochastic stationary
policy p: at � p(�jxt) and {xt} is an i.i.d. sequence. The regularized fitting procedure Fitted-Q studied in [5] is penalized least-
squares:
Qkþ1 ¼ arg min
Q2FM

1
Mk

XNkþMk�1

i¼Nk

Ri þ cmax
a02A

Q k x0i; a
0� �
� Qðxi; aiÞ

 �2

þ kPenðQÞ ð58Þ
where in the kth iteration, samples are used with index Nk + Mk = Nk+1 � 1 > i P Nk, Pen(Q) is a penalty term.

3.4. Relational reinforcement learning

Relational reinforcement learning (RRL) is to solve learning control problems that have structural properties and there are
multiple related objects. In this kind of environment, most traditional reinforcement learning techniques may have low
efficiency.

To estimate an action-value function or Q-function, RRL algorithms usually use incremental relational regression to make
use of the relational property of the samples [51]. The estimated Q-function is then used to select subsequent actions. Three
regression algorithms [40,41,50] have been developed in a general RRL framework: the TG algorithm, which incrementally
builds first order regression trees, an instance based algorithm called RIB and a kernel based algorithm KBR that uses Gauss-
ian processes as the regression technique.

Tree based regression. As discussed in [51], RRL-TG [40] uses an incremental first-order regression tree algorithm to con-
struct the Q-function. However, the performance of the algorithm is greatly influenced by the order of sample representation
and more training episodes may be needed to find a good policy [39,50].

Instance based regression. RRL-RIB [41] realizes the generalization ability via regression based on relational instances. The
instance based regression has robust performance but a first-order distance needs to be defined [51].

Kernel based regression. RRL-KBR [50] uses Gaussian processes as the regression technique. Gaussian processes require a
positive definite covariance function to be defined between the example descriptions. Because of the use of relational rep-
resentations in the RRL system, kernels for structured data have to be used to fulfill this task. Possible candidates here are the
convolution kernel [57] or kernels defined on graphs [51]. Since Gaussian processes are a class of Bayesian techniques, the
KBR algorithm offers more than just a basic prediction of the Q-value of a new example. It can also give the expected accu-
racy of this estimate, which can be used to guide exploration.

3.5. Approximate policy iteration

As a popular method studied in operations research, policy iteration (PI) can also be viewed as a class of actor–critic learn-
ing algorithms since in PI, the value functions and the policies are approximated separately, which correspond to the critic
and the actor, respectively [144]. In [69], based on the work of least-squares temporal difference learning methods in [27],
the least-squares policy iteration (LSPI) algorithm was proposed. In LSPI, the data efficiency of least-squares temporal differ-
ence learning, i.e. the LS-TD (k) algorithm, is employed and it offers an off-policy RL method with better properties in con-
vergence, stability, and sample complexity than previous RL algorithms.

Approximate policy iteration (API) is closely related to the actor–critic learning control architecture of RL, which can be
depicted in the following Fig. 3.

Fig. 3. Approximate policy iteration and actor–critic learning [111].

X. Xu et al. / Information Sciences 261 (2014) 1–31 11
In Fig. 3, approximate policy iteration is implemented in an actor–critic learning control architecture. The critic and the
actor perform the procedures of policy evaluation and policy improvement, respectively. Policy evaluation usually makes use
of TD learning algorithms to estimate the value functions Qp[t] without any model information of the underlying MDPs. Based
on the estimation of Qp[t], the policy improvement in the actor produces a greedy policy p[t + 1] over Qp[t] as
p½t þ 1� ¼ arg max
a

Qp½t�ðx; aÞ ð59Þ
Thus, the greedy policy Qp[t+1] is a deterministic policy and when the value function Qp[t] approximates p[t] very well,
p[t + 1] will be at least as good as p[t] if not better. This iteration process is repeated until there is no change between
the policies p[t] and p[t + 1]. After the convergence of policy iteration, the optimal policy may be obtained, usually within
a very few iterations. However, the convergence of policy iteration greatly relies on the approximation precision of the real
value functions of policies. If the value functions are exactly represented, e.g., in cases of tabular state spaces, or the approx-
imation errors are small enough to be neglected, the convergence and the performance of policy iteration will be very sat-
isfactory. Thus the success of approximate policy iteration will mainly depend on the performance of TD learning algorithms
for policy evaluation. In [144], Xu et al. presented a new kernel-based TD-learning algorithm, i.e. the KLSTD-Q algorithm, for
kernel-based least-squares policy iteration (KLSPI).

In [76]. by modeling the state space topology using a graph, two Laplacian operators are introduced for the basis construc-
tion and the representation policy iteration (RPI) algorithm was proposed. For some excellent spectral properties of the
Laplacian operators, basis functions which can also be termed as proto-value functions are learned automatically by spectral
analysis from the two operators. Let G = (V,E,W) denote an undirected or directed graph with vertices V, edges E and weight
matrix W whose entry wij means the weight on edge (i, j) 2 E. Samples obtained from a sub-sampling step construct the ver-
tices of the graph and edges combine them by the weights. An undirected or directed graph can be constructed by connecting
two temporally successive states with a unit cost edge in discrete state space or using a local distance measure such as k-
nearest neighbor (knn) to connect states in continuous spaces. From the constructed graph, the combinatorial or normalized
Laplacian operator, is used to form the suite of PVFs by computing the smoothest eigenvectors corresponding to the smallest
eigenvalues of the graph Laplacian. In order to obtain basis functions which have good performance, an appropriate Lapla-
cian operator O of the graph G should be selected. In RPI, by using the PVFs to approximate the value function, the least-
squared policy iteration algorithm (LSPI) [69] is used to find a near-optimal policy p.

3.6. Policy gradient methods

Policy gradient methods are a type of RL techniques that rely upon optimizing parameterized policies with respect to the
expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems in tra-
ditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem
resulting from uncertain state information and the complexity arising from continuous states and actions.

The literature on policy gradient methods has yielded a variety of estimation methods over the last years. The most prom-
inent approaches are finite-difference and likelihood ratio methods, called REINFORCE in reinforcement learning. In the pol-
icy gradient approach, the policy parameters are updated approximately proportional to the gradient:
Dh � a
@q
@h

ð60Þ

12 X. Xu et al. / Information Sciences 261 (2014) 1–31
In contrast with the full observability mandated by the MDP model, a partially observable Markov decision process allows
for optimal decision making in environments which are only partially observable to the agent [17]. A partially observable
Markov decision process can be defined as a tuple {S,A,W,T,O,R} in which S is a set of states, A is a set of actions, W is a
set of observations, T is a transition function defined as T: S � A � S ? [0,1], O is an observation function defined as
O:S � A �W ? [0,1] and R is a reward function defined as R:S � A � S ? R. Due to the partial observability, there is a need
for memory when considering optimal decision-making in a POMDP. Usually, we can transform the POMDP to a belief-state
MDP in which the agent summarizes all information about its past using a belief vector b(s). However, computing value func-
tions over a continuous belief space is computationally expensive. As policy gradient methods do not require the estimation
of a belief state, they can be more easily applied in partially observable Markov decision process.

The GPOMDP algorithm was presented in [17] for generating a biased estimate of the gradient of the average reward in
POMDPs. The main advantages of GPOMDP are that it requires storage of only twice the number of policy parameters, and
only uses one free parameter. One recent advance in policy gradient RL is called the natural policy gradients (NPG). The NPG
approach was originally proposed in [65], which was inspired by Amari’s natural gradient algorithms in supervised learning
contexts [4]. In [65], a Riemannian metric is defined to measure the effects of changes on an action probability distribution
p(x;a;h) by a small incremental vector Dh in the current policy p(x;a;h) as
Dpðs;aÞ½hkhþ Dh� 	 DhT FðhÞDh ð61Þ
where
FðhÞ 	
X
x2S

dpðxÞ
X
a2A

pðx; a; hÞ½rh ln pða; x; hÞrh ln pða; x; hÞT � ð62Þ
The update rule of policy parameters with Kakade’s NPG [65] is
h :¼ hþ aFðhÞ�1rhgðhÞ ð63Þ
where a is a sufficiently small step-size parameter.
Recently, many studies have empirically demonstrated that natural policy gradients significantly outperformed ordinary

policy gradients in terms of their convergence rates as in [10,55,65,92,99].

3.7. ACDs for learning control

The actor–critic algorithms, viewed as a hybrid of VFA and policy search, have been shown to be more effective than stan-
dard VFA or policy search in continuous online learning tasks [95]. In an actor–critic learning control architecture, there is an
actor for policy learning and a critic for VFA or policy evaluation. One pioneering work on RL algorithms using the actor–critic
architecture was published in [16]. Recently, there are increasing research interests on actor–critic methods for RL, where
adaptive critic designs (ACDs) [13,19,71,90,129] were widely studied as an important class of learning control methods
for nonlinear dynamical systems. ACDs can be categorized as the following major groups: heuristic dynamic programming
(HDP), dual heuristic programming (DHP), globalized dual heuristic programming (GDHP), and their action dependent (AD)
versions [95]. Among these ACD architectures, DHP is the most popular one which has been proven to be more efficient than
HDP [129].

As discussed in [148], in all ACDs, there are a critic and an actor in the learning control structure. However, there are some
variations in the critic for different ACD methods. Different ACD structures can be distinguished from three aspects in the
critic training process, i.e., the inputs of the critic, the outputs of the critic, and the requirements for a plant model in the
training process of the critic. For the first aspect, the plant states are usually used as the inputs of the critic network; while
in action dependent structures, the critic also receives the action outputs from the actor. For the second aspect, the critic
outputs can be either the approximated value function or its derivatives. For example, in the HDP structure, the critic approx-
imates the value function V(xt). In the DHP structure, it approximates k(t), which is defined as the gradient of V(xt); and in
GDHP, it approximates both, V(xt) and its gradient. For the third aspect, the plant model can be either used or unused during
the learning process of the critic. Usually, to approximate the value function V(xt) alone, the plant model may not be used,
e.g., in HDP. It is necessary to use some information in the plant model to approximate the derivative of V(xt) such as in DHP.

In the critic, TD (k) learning algorithms with neural networks [95] are popularly employed to approximate the value func-
tions or their derivatives. Based on the outputs of the critic, policy gradient methods can be used to train the actor:
Dht ¼
@VðxtÞ
@at

@at

@ht
ð64Þ
where at is the action output of the actor, and ht is the weight vector of the actor.
In [148], a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods to the critic

learning of ACD algorithms. The kernel ACDs’ framework is shown in Fig. 4. The sparsification method based on the approx-
imate linear dependence (ALD) analysis is used to sparsify the kernel machines when approximating the action value func-
tions or their derivatives. Using the regularized kernel machines, two kernel ACD algorithms, i.e., Kernel HDP (KHDP) and
Kernel DHP (KDHP), are proposed to realize efficient online learning control.

Fig. 4. Learning control structure of kernel ACDs [148].

X. Xu et al. / Information Sciences 261 (2014) 1–31 13
To realize online learning in the critic, the following update rules based on the kernel RLS-TD (0) algorithm is used in the
critic of KHDP.
btþ1 ¼ Pt
~kðstÞ=ðlþ ð~kTðstÞ � c~kTðstþ1ÞÞPt

~kðstÞÞ
~atþ1 ¼ ~at þ btþ1ðrt � ð~kTðstÞ � c~kTðstþ1ÞÞ~atÞ

Ptþ1 ¼
1
l

Pt �
Pt~ztð~kTðstÞ � c~kTðstþ1ÞÞPt

lþ ð~kTðstÞ � c~kTðstþ1ÞÞPt
~kðstÞ

h i
24 35

eQ ðsÞ ¼Xt

i¼1

aikðs; siÞ

ð29Þ
where s, si are the combined features of state-action pairs (x, a),~kðstÞ ¼ ðkðs1; stÞ; kðs2; stÞ; . . . ; kðsT ; stÞÞT is the sparsified kernel
feature vector, bt is the step size in the critic, l(0 < l 6 1) is the forgetting factor, P0 = dI, d is a positive number, and I is the
identity matrix.

Recently, there are also increasing research interests on ACD or ADP for feedback control systems. Bradtke et al. [25] pre-
sented a Q-learning policy iteration method to solve the linear quadratic optimal control problem online without knowledge
of the system dynamics. Al-Tamimi et al. [2] applied Q-learning to find a control that meets a given L2 gain without knowing
the system dynamics matrices. Note that all these results including Al-Tamimi et al. [2] seek to find an optimal control that
minimizes a quadratic cost functional of the I/O data set. Also, they use pseudo-inverse or least-squares techniques to esti-
mate solutions to a set of vector–matrix equations. In [3], adaptive critic designs corresponding to HDP and DHP were pro-
posed to solve online the discrete-time zero-sum game with continuous state and action spaces appearing in H-1 optimal
control.

3.8. Model-based planning and learning

Planning is an off-line method, and it improves the policy without direct interactions with the environment. The DYNA
structure [111] combines knowledge from planning on imaginary experience with that from learning over the real instances.
The key idea is to maintain a world model from real interactions with the environment, and apply the world model to gen-
erate (i.e., simulate) virtual experience.

Planning and learning in DYNA interleave and reinforce each other: at each time step, planning starts from the learned
parameters; and the improved parameters after planning are passed back for learning. Planning helps learning in that it pro-
vides better parameters for learning and decision making. In turn, we get improved experience that helps refine the world
model and thereby also improve planning [111]. In DYNA, we can use various learning algorithms for learning and planning
such as linear TD methods [119] and least-squares TD [23].

The overall architecture of Dyna agents is shown in Fig. 5. The left part is the basic interaction between the agent and the
environment, which is used to generate real experience. The arrow on the left of the figure is the direct RL update using real
experience to improve the value function and the policy [111]. The right part includes model-based simulation and learning.
The model is learned from real experience and is used to generate simulated experience.

Fig. 5. The DYNA architecture for planning and learning [111].

14 X. Xu et al. / Information Sciences 261 (2014) 1–31
Typically, the same reinforcement learning method can be used both for learning from real experience and for planning
from simulated experience, as in Dyna-Q [111]. As indicated in [111], the reinforcement learning method is thus the common
solution method for both learning and planning.
3.9. Approximate RL for averaged reward problems

In the average reward case, algorithms such as R-Learning [103], Relaxed-SMART [52] have been proposed. All these algo-
rithms use some form of value iteration without function approximation. Relaxed-SMART has been proven to converge in
[52]. In [56], based on the average reward optimality criterion, a hierarchical reinforcement learning (HRL) framework
was proposed, where two formulations of HRL was investigated based on the average reward Semi-MDP model, both for dis-
crete-time and continuous-time. However, most of the above works did not study the function approximation problem in
averaged reward RL. In [19], actor–critic reinforcement learning algorithms utilizing linear function approximation were
proposed for average reward MDPs and convergence results were established based on two-timescale stochastic
approximations.
4. Feature representation and convergence of RL algorithms with function approximation

The convergence of RL/ADP algorithms with different feature representations has been studied in the past decades. Exist-
ing theoretical results mainly include three aspects. One aspect is the convergence of linear TD algorithms for learning pre-
diction problems. The second aspect is the convergence and performance error bounds of approximate policy iteration
algorithms with linear or kernel feature representations. The third aspect is convergence analysis of ACDs using two-time-
scale stochastic approximations. We will introduce the main results in the following discussions.
4.1. Convergence of TD learning with different representations

The convergence of TD (k) learning algorithms is determined by the representations of states and the form of function
approximators. Sutton [114] and Dayan [34] proved tabular TD algorithms converge in the mean, and Dayan and Sejnowski
[35] proved TD (k) converges with probability 1 when it was applied to absorbing Markov chains.

According to Watkins and Dayan [136], Jaakkola, Jordan, and Singh [61], and Tsitsiklis [123], the TD (0) learning rule can
be viewed as a special case of Q-learning, so the convergence proofs for Q-learning can be extended to the case of the TD (0)
learning rule with tabular representation [27]. Bradtke [26] extended Tsitsiklis’ proof to show that on-line use of TD (0) with
a linear function approximator converges to V with probability 1.

In order to use function approximation with RL in a safe way, some theoretical and empirical results were obtained in
[22,122].

In [124], TD learning algorithms with linear function approximation was proved to converge with probability 1 under cer-
tain assumptions. In [27], Bradtke and Barto considered the asymptotic performance of LSTD when used on-line to approx-
imate the value functions of absorbing and ergodic Markov chains. Under standard assumptions on the samples, it was
proved that LSTD (k) (and its recursive variants) converges almost surely to the solution of the projected fix-point equation
if this solution exists [120]. The above property was proved k = 0 by Bradtke and Barto [27], and for k > 0 by Xu et al. [130]
and Nedic and Bertsekas [83].

Sutton et al. proved that GTD2 and TDC both converge with linear function approximation in a general setting that in-
cludes both on-policy and off-policy learning [115]. Both algorithms have time and memory complexity that is linear in
the number of features used in the function approximation, and both are significantly faster. Moreover, the TDC algorithm
appears to be comparable in speed to conventional linear TD in on-policy problems [115].

X. Xu et al. / Information Sciences 261 (2014) 1–31 15
4.2. Convergence of approximate policy iteration

Since exact representation and methods are impractical for large state and action space [69]. Approximate Policy Iteration
(API) methods are popularly studied to deal with such cases. A convergence result of API can be given in terms of the infinity
norm, as follows. If the policy evaluation error kbQ p̂m � Q p̂mk1 is upper-bounded by e at every iteration k P 0, and if policy
improvements are exact, then policy iteration eventually produces policies with a performance error bound as follows
[18,28]:
lim sup
m!1

kbQ p̂m � Q �k1 6
2c

ð1� cÞ2
� e ð65Þ
Where, Q⁄ is the optimal Q-function which corresponds to the optimal performance. If approximate policy improvements are
performed, a similar bound holds. The result is given by the following theorem.

Theorem 1. [[28,69]]Let p̂0; p̂1; p̂2; . . . ; p̂m be the sequence of policies generated by an approximate policy-iteration algorithm
and let bQ p̂0 ; bQ p̂1 ; bQ p̂2 ; . . . ; bQ p̂m be the corresponding approximate value functions. Let e and d be positive scalars that bound the
error in all approximations (over all iterations) to value functions and policies respectively. If
8m ¼ 0;1;2 . . . ; k bQ p̂m � Q p̂mk1 6 e;
and
8m ¼ 0;1;2 . . . ; kT p̂mþ1
bQ p̂m � T�Q

p̂mk1 6 d:
where T⁄ is the Bellman optimality operator defined as
ðT�QÞðs; aÞ ¼ Rðs; aÞ þ c
X
s02S

Pðs; a; s0Þmax
a02A

Qðs0; a0Þ:
Then, this sequence eventually produces policies whose performance is at most a constant multiple of e and d away from the
optimal performance:
lim sup
m!1

kbQ p̂m � Q �k1 6
dþ 2ce
ð1� cÞ2

: ð66Þ
In [144], it was analyzed that the convergence of KLSPI is determined by three factors. One is the convergence of the ALD-
based kernel sparsification process. Second is the approximate error of KLSTD-Q and the third one is the convergence of
approximate policy iteration based on approximate policy evaluation and greedy policy improvement. The convergence the-
orem of KLSPI can be stated as follows:
Theorem 2. [144] If the initial data samples {(xi,ai, ri,xi+1,ai+1)} are generated by an MDP using a stationary initial policy, the
policies produced by the KLSPI algorithm will at least converge to an area of policy space having suboptimal performance bounds
determined by the approximation error of KLSTD-Q. Furthermore, if the approximation error becomes zero, KLSPI will converge to
the optimal policy of the MDP.

These results show that approximate policy iteration is a fundamentally sound algorithm. As discussed in [144], the rela-
tionship between LSPI and KLSPI can be summarized in two aspects. On one hand, the KLSPI algorithm can be viewed as a
substantial extension of LSPI by introducing kernel-based features that are constructed by an ALD-based kernel sparsification
procedure. This extension from manually selected features of LSPI to automatically constructed features eliminates one of
the main obstacles to successful applications of LSPI. On the other hand, by using KLSTD-Q, the policy evaluation in KLSPI
can efficiently approximate the state-action value functions with high precision; therefore, the convergence as well as the
policy optimality of KLPSI is better guaranteed than LSPI.

4.3. Convergence of ACDs [19,148]

According to the recent theoretical results in [68,19], the convergence of ACDs can be ensured based on two-timescale
stochastic approximations, where the critic needs to implement a faster recursion than the actor. In [148], a novel framework
of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To regularize kernel
machines for approximating the value functions or their derivatives, a sparsification method based on the approximately
linear dependence (ALD) analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, i.e., Kernel
HDP (KHDP) and Kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically.
Because of the representation learning and nonlinear approximation ability of sparse kernel machines, KHDP and KDHP
can obtain much better performance than previous HDP and DHP methods with manually designed neural networks. Sim-
ulation and experimental results on two nonlinear control problems, i.e., a continuous-action inverted pendulum problem
and a ball and plate control problem, demonstrate the effectiveness of the proposed Kernel ACD methods.

16 X. Xu et al. / Information Sciences 261 (2014) 1–31
In Kernel ACDs, by making use of the kernel-based features, which are in a form of linear basis functions, the RLS-TD algo-
rithm [142] is used to approximate the value functions or their derivatives with improved data efficiency and stability. As
shown in [143], the kernel-based LS-TD algorithm is superior to conventional linear or nonlinear TD algorithms in terms
of fast convergence rates. Therefore, with faster learning in the critic, Kernel ACDs can have better performance than previ-
ous ACDs in terms of convergence rates.

Similar to the analysis in [19], the update rules in ACDs can be modeled as a general setting of two-timescale stochastic
approximations:
Xtþ1 ¼ Xt þ bt f ðXt ;YtÞ þ N1
tþ1

� �
; ð67Þ

Ytþ1 ¼ Yt þ ct gðXt; YtÞ þ N2
tþ1

� �
; ð68Þ
where f, g are Lipschitz continuous functions and N1
tþ1

n o
; N2

tþ1

n o
are martingale difference sequences with respect to the field
E Ni
tþ1

��� ���2
jFt

 �
6 D1 1þ Xtk k2 þ kYtk2

� �
; i ¼ 1;2; t P 0 ð69Þ
for some constant D1 <1.
In KHDP and KDHP, the learning rules in the critic use recursive least-squares methods and the step-sizes are adaptively

determined by online computation rules. When the update in the critic is a faster recursion than the update in the actor, the
weights in the critic have uniformly higher increments as compared to the weights in the actor.

To analyze the convergence of Kernel ACDs based on two-timescale stochastic approximations, the following ODEs (Or-
dinary Differential Equations) can be considered:
_X ¼ f ðXðtÞ;YÞ ð70Þ
where Assumptions (A1)–(A3) hold:

(A1) suptkXtk, suptkYtk <1.
(A2) _X ¼ f ðXðtÞ;YÞ has a globally asymptotically stable equilibrium l(Y), where l(�) is a Lipschitz continuous function.
(A3) _Y ¼ gðlðYðtÞÞ;YðtÞÞ has a globally asymptotically stable equilibrium Y⁄.

In [19], Bhatnagar et al. presented the main convergence result for two-timescale stochastic approximations:

Theorem 3. Under Assumptions (A1)–(A3), the updates in (67) and (68) converge asymptotically to the equilibrium, i.e.,
(Xt,Yt) ? (l(Y⁄), Y⁄) as t ?1, with probability one.

In KHDP and KDHP, by appropriately selecting the actor’s step sizes, it can be expected that the update in the critic is a
faster recursion than the update in the actor and the weights in the critic have uniformly higher increments as compared to
the weights in the actor. In [19], when the update in the critic is a faster recursion than the actor, it was proved that a class of
actor–critic algorithms with linear function approximators will converge almost surely to a small neighborhood of a local
minimum of the averaged reward J. In Kernel ACDs, by making use of kernel-based features and the RLS-TD algorithm in
the critic, the updates in the critic can be a faster recursion than the actor. Thus, it will be more beneficial to ensure the con-
vergence of the online learning process. In Section 4, extensive performance tests and comparisons were conducted and it
was shown that Kernel ACDs have much better performance than conventional ACDs both in terms of convergence speed
and in terms of the quality of the final policies.

5. Performance comparisons of RL algorithms with function approximation

In this section, some empirical results to compare different RL/ADP methods are shown and the performance of these
algorithms is analyzed. The performance comparisons include three parts. The first part is to show the performance compar-
isons among typical learning prediction algorithms with linear function approximation such as GTD, TDC and GTD2. The sec-
ond part is to compare different approximate policy iteration algorithms, which belong to batch learning algorithms, using
some benchmark learning control problems. The third part is to compare the performance of online learning control algo-
rithms with different feature representations. In the performance comparisons, typical RL algorithms with function approx-
imation were tested so that the comparisonal results will be useful to guide practitioners in selecting appropriate RL
algorithms for their applications.

5.1. Performance evaluation of different learning prediction algorithms [115,142,143]

In [115], the convergence rate of GTD2 and TDC was compared with that of GTD and conventional TD on four small prob-
lems—three random-walk problems and a Boyan-chain problem. All of these problems are episodic, undiscounted, and in-
volved only on-policy training with a fixed policy. In the following, the empirical results obtained in [115] will be shown
together with other comparison results of least-squares TD algorithms.

X. Xu et al. / Information Sciences 261 (2014) 1–31 17
As introduced in [115], the random-walk problems are based on the standard Markov chain [111,114] with a linear
arrangement of five states plus two absorbing terminal states at each end. Episodes begin in the center state of the five states,
then transit randomly with equal probabilities to a neighboring state until a terminal state is reached. The rewards are zero
everywhere except on transition into the right terminal state, upon which the reward is +1. Three versions of this problem
were considered, with different feature representations. For detailed settings of the parameters and features, please refer to
[115].

In [115], GTD, GTD2, TDC and TD were applied to these problems with a range of constant values for their step-size
parameters. The parameter was varied over a wide range of values, in powers of 2. For the GTD, GTD2 and TDC algorithms,
the ratio g = b/a takes values from the set {1/4,1/2,1,2} for the random-walk problems; one lower power of two was added
for the Boyan-chain problem. The initial parameter vectors, h0 and w0, were set to 0 for all the algorithms. Each algorithm and
parameter setting was run for 100–500 episodes for different problems, where the square root of the mean-square projected
Bellman error (MSPBE) were computed after each episode, then averaged over 100 independent runs [115]. The results are
show in Fig. 6.

As seen in Fig. 6, all the algorithms are similar in terms of their dependence and sensitivity to the step sizes. Overall, GTD
learned the slowest, followed after a significant margin by GTD2, followed by TDC and TD. TDC and TD performed similarly,
with the extra flexibility provided by b sometimes allowing TDC to perform slightly better [115].

In [142], the performance of TD (k) and RLS-TD (k) was compared in a finite-state absorbing Markov chain called the Hop-
World problem [23]. As shown in Fig. 7, the Hop-World problem is a 13-state Markov chain with an absorbing state.

In Fig. 7, state 12 is the initial state for each trajectory and state 0 is the absorbing state. Each non-absorbing state has two
possible state transitions with transition probability 0.5. Each state transition has reward �3 except the transition from state
1 to state 0 which has a reward of �2. Thus, the true value function for state i(0 6 i 6 12) is �2i.

To apply linear temporal-difference algorithms to the value function prediction problem, a set of four-element state fea-
tures or basis functions is chosen, as shown in Fig. 7. The state features of states 12,8,4 and 0 are, respectively, [1], [0,1,0,0],
[0,0,1,0], [0,0,0,1] and the state features of other states are obtained by linearly interpolating between these. From Fig. 8, it
can be concluded that by making use of RLS methods, RLS-TD (k) can obtain much better performance than conventional
linear TD (k) algorithms and eliminates the design problem of the step-size schedules.

5.2. Performance comparisons among API algorithms

The first experiment comparing the performance of LSPI and KLSPI is a 20-state chain problem which is a problematic
MDP noted in [69]. The MDP consists of a chain with 20 states (numbered from 1 to 20) and a simplified example with 4
states is shown in Fig. 9. For each state, there are two actions available, i.e., ‘‘left’’ (L) and ‘‘right’’ (R). Each action succeeds
with probability 0.9, changing the state in the intended direction, and fails with probability 0.1, changing the state in the
opposite direction. The two boundaries of the chain are dead-ends. For the 4-state problem in Fig. 9, the reward vector over
states is (0,+1,+1,0) and the discount factor is set to 0.9. It is clear that the optimal policy is RRLL.

In [69], LSPI was tested on the same problem. However, for the 20-state problem, careful selection of linear basis func-
tions is required since the state space is larger than the 4-state problem. The 20-state problem has the same dynamics as the
Fig. 6. Empirical results on the four small problems—three versions of the 5-state random walk plus the 14-state Boyan chain. In each of the four panels, the
right subpanel shows a learning curve at best parameter values, and the left subpanel shows a parameter study plotting the average height of the learning
curve for each algorithm, for various g = b/a, as a function of a [115].

18 X. Xu et al. / Information Sciences 261 (2014) 1–31
4-state problem except that a reward of +1 given only at the boundaries (states 1 and 20). The optimal policy in this case is to
go left in states 1–10 and right in states 11–20.

In the following, the experimental setup is the same as the experiments for LSPI in [69]. For the LSPI algorithm, a poly-
nomial of degree 4 was used to approximate the value function for each of the two actions, giving a block of 5 basis functions
per action. The two algorithms use a single set of samples collected from a single episode in which actions were chosen uni-
formly at random for 5000 steps. The performance is evaluated by the iterations for convergence as well as the ultimate pol-
icies after convergence. Figs. 10 and 11 show the improved policy after each iteration of KLSPI and LSPI, respectively. From
Figs. 10 and 11, it is illustrated that although both algorithms converge to the optimal policy, KLSPI converges to the optimal
policy only after 3 iterations while LSPI converges to the optimal policy after 7 iterations. In fact, KLSPI finds the optimal
policy only after 2 iterations and then it stabilize in the optimal policy. Thus, compared with LSPI, KLSPI is much more effi-
cient in convergence rates and little work is required on feature selection. In KLSPI, we use a RBF (Radius Basis Function)
kernel function and the unique parameter to be selected is the width r of RBF. In the experiments, the RBF width is selected
as r = 0.4, which was simply tuned using a one-dimensional search process. The other parameter for KLSPI is the precision
threshold l of ALD-based kernel sparsification procedure. In all the following experiments, l is equal to 0.001.

The convergence of KLSPI is mainly due to the powerful nonlinear approximation and generalization ability of the kernel-
based policy evaluation using KLSTD-Q. This can be illustrated in the following Figs. 12–15, where the approximated value
functions in each iteration as well as the exact values are plotted for both KLSPI and LSPI. In Fig. 12, it is shown that by using
KLSTD-Q, KLSPI can approximate the exact state-action value functions with high precision so that it converges to the opti-
mal policy in fewer iterations. In Fig. 13, it can be seen that there are relatively larger approximation errors in LSPI using
Fig. 7. The hop-world problem.

Fig. 8. Performance comparison between RLS-TD (k) and TD (k) [142]. 1, 2, 3—TD (0.3) with different step-size parameters; 4—RLS-TD (0.3) with initial
variance matrix P0 = 500I.

Fig. 9. The 4-state problematic MDP [69].

X. Xu et al. / Information Sciences 261 (2014) 1–31 19
LSTD-Q with manually selected linear basis functions, especially in the first 4 iterations. As the errors become smaller, LSPI
also converges to the optimal policy but more iterations are needed.

In the experiments, the state-action pairs of the 20-state MDP have a total number of 40 since there are two actions avail-
able for each state, and every state-action pair was originally represented as a two-dimensional vector [xt,at], where the ele-
ments were normalized by a positive constant, i.e., xt 2 {1/20, 2/20, . . . , 20/20} and at 2 {0.1,0.2}. After the kernel
sparsification process, a kernel-based feature vector, which has the dimension of 21, was automatically obtained from the
5000 training samples. Although the feature dimension of KLSPI (d = 17) is larger than that of LSPI (d = 10), they are both
compact representations of the original state-action space (d = 40) and the increase of computational costs in KLSPI is not
significant when compared with the benefits of better approximation accuracy and better convergence behavior. Moreover,
the features in KLSPI are automatically produced and optimized by the kernel sparsification procedure. Figs. 14 and 15 make
comparisons of the state value functions V(x) approximated by KLSPI and LSPI. It is also clearly shown that KLSPI can approx-
imate the true state value functions with smaller errors and converge within fewer iterations than LSPI.

The performance of three API algorithms, LSPI, KLSPI and RPI was compared in the mountain-car problem [111] in the
following experiment. The objective of the mountain-car task is to drive an underpowered car up a steep mountain road
as quickly as possible, as suggested by the diagram in Fig. 16. The difficulty is that gravity is stronger than the car’s engine,
and even at full throttle the car cannot accelerate up the steep slope. The only solution is that the car must oscillate on the
slope to build up enough momentum.

The reward is �1 on all time steps until the car moves past its goal position at the top of the mountain, which ends the
episode. The state space includes the position and velocity of the car. There are three candidate actions: full throttle forward
(+1), full throttle reverse (�1), and zero throttle (0). The car moves according to a simplified physics. Its position, xt, and
velocity, _xt , are updated by
Fig. 10.
The sub
the rea

Fig. 11.
subplot
reader
_xtþ1 ¼ bound½ _xt þ 0:001at þ�0:0025 cosð3xtÞ�
xtþ1 ¼ bound½xt þ _xtþ1�

�
ð71Þ
The improved policy of KLSPI after each iteration (R action – dark/red shade; L action – light/blue shade; KLSPI – top stripe; exact – bottom stripe).
plots are: Top left–Iteration 1, Down Left–Iteration 3, Top right—Iteration 2 [69]. (For interpretation of the references to color in this figure legend,

der is referred to the web version of this article.)

The improved policy of LSPI after each iteration (R action – dark/red shade; L action – light/blue shade; LSPI – top stripe; exact – bottom stripe). The
s are: Top left–Iteration 1, Down Left–Iteration 7, Others—Iterations 2–6 [69]. (For interpretation of the references to color in this figure legend, the
is referred to the web version of this article.)

Fig. 12. The state-action value function Q(x,p(x)) of the policy being evaluated in each iteration (KLSPI approximation – solid line; exact values – dotted
line). The subplots are: Top left–Iteration 1, Down Left–Iteration 3, Top right—Iteration 2.

Fig. 13. The state-action value function Q(x,p(x)) of the policy being evaluated in each iteration (LSPI approximation – solid line; exact values – dotted line).
The subplots are: Top left–Iteration 1, Down Left–Iteration 7, Others—Iteration 2–6.

Fig. 14. The state value function V(x) of the policy being evaluated in each iteration (KLSPI approximation – solid line; exact values – dotted line). The
subplots are: Top left–Iteration 1, Down Left–Iteration 3, Top right—Iteration 2 [69].

20 X. Xu et al. / Information Sciences 261 (2014) 1–31
where the bound operation enforces �1.2 6 xt+1 6 0.5 and �0:07 6 _xtþ1 6 0:07. When xt+1 reaches the left bound, _xtþ1 is reset
to 0. When it reaches the right bound, the goal is reached and the episode is terminated. In our experiments we allow a max-
imum of 300 steps, after which the task is terminated without success. For performance in the mountain-car domain is mea-
sured by the number of steps, lower numbers indicate better performance. Table 1 summarizes the range of parameters over
which the algorithms are tested in the mountain-car domain. The results for the following experiments are averaged over 10
runs.

In the implementation of LSPI, RBF basis functions are used and the width is set as 0.5. In the implementation of KLSPI,
RBF kernel functions are used and the width parameter for RBF kernel is selected as 0.5. The threshold parameter for ALD-
based sparsification is set as 0.1. The simulation experiments were conducted for several independent runs with random ini-
tial policies. For every run of KLSPI, the learning control process of KLSPI consists of eight iterations. The results are shown in
Fig. 17.

As shown in Fig. 17, LSPI learned the slowest, followed after a significant margin by KLSPI, followed by RPI. KLSPI and RPI
performed similarly, despite the different feature representations. The results also indicate that the feature representation

Fig. 15. The state value function V(x) of the policy being evaluated in each iteration (LSPI approximation – solid line; exact values – dotted line). The
subplots are: Top left–Iteration 1, Down Left–Iteration 7, Others—Iterations 2–6 [69].

X. Xu et al. / Information Sciences 261 (2014) 1–31 21
can influence the convergence of the API algorithms. Suitable representation can make the method convergent and converge
fast.
5.3. Performance comparisons of ACDs [148]

In the following, simulation studies will be conducted on the inverted pendulum problem to compare the performance of
different ACDs algorithms. In simulation, the performance of Kernel ACDs is compared with ACDs under different conditions
and parameter settings [148]. The inverted pendulum problem requires balancing a pendulum of unknown mass and length
by applying force to the cart to which the pendulum is attached to, as shown in Fig. 18.

The aim of the learning controller is to balance the pole as long as possible and make the angle variations of the pendulum
be as small as possible. The dynamics equations are assumed to be unknown or only partially known for the learning con-
troller. For HDP and KHDP, the reward r is always 0 before the pole angle or the position of the cart exceeds the boundary
conditions, i.e., if jhj 6 12�, jxj 6 1.2m, r(t) = 0; else r(t) = � 1. For DHP and KDHP, a differentiable reward function is defined as
r(t) = 0.5(x2 + h2). The simulation time-step is 0.02 s. A learning controller is regarded to be successful when its final policy
can balance the pole for at least 10,000 time steps. A trail starts from an initial state near the equilibrium and ends when the
controller balances the pole for 10,000 time steps or the pole angle or the position of the cart exceeds the boundary
conditions.

The performance of Kernel ACDs and conventional ACDs was compared under different parameter settings including the
variations of actor learning rates, the cart mass, and the pole length. We use two performance measures to evaluate the
learning efficiency of different learning control methods. One is the successful rate of a learning controller, which is defined
as the percentage of successful learning trials that can learn a policy to balance the pole for at least 10,000 time steps. The
other is the averaged number of trials that are needed to learn a successful policy. The averaged number of trials was com-
puted by running the learning control process for 10 independent runs. For each independent run, the maximum number of
learning trials is 100. For KHDP and KDHP, 40 trials of samples were collected by a random policy to construct the dictionary
of kernel features. The threshold parameter for the ALD analysis is set as l = 0.001. The results are shown in Fig. 19.

As shown in Fig. 19, the performance of KDHP and KHDP is much better than DHP and HDP, respectively. In Fig. 19(a), the
successful rates of KDHP are all 100 percent under different settings of actor learning rates. While the performance of DHP
and HDP is greatly influenced by the actor learning rates. It was observed that KHDP has higher successful rates than HDP
Goal

Mountain-Car

Fig. 16. The mountain-car.

Table 1
Parameter values for different algorithms.

Parameter LSPI KLSPI RPI

Discount factor 0.99 0.99 0.99
Episodes [0:30:300] [0:30:300] [0:30:300]
Max steps 300 300 300
Max iterations 10 10 10
Epsilon 10�5 10�5 10�5

Delta / 0.1 /
Width of kernel / 0.5 /
The width of RBF 0.5 / /
The width for Gauss distance / / 0.5

0 30 60 90 120 150 180 210 240 270 300
100

120

140

160

180

200

220

240

260

280

300

Number of training episodes

N
um

be
r o

f s
te

ps
 to

 th
e

go
al

LSPI

KLSPI

RPI

Fig. 17. Performance comparisons between LSPI, KLSPI and RPI in the mountain-car domain.

Fig. 18. The inverted pendulum.

22 X. Xu et al. / Information Sciences 261 (2014) 1–31
and it is also less sensitive to the variations of actor learning rates. In Fig. 19(a), it is illustrated that KDHP has the best per-
formance (100 percent successful rates) under different dynamics changes of the plant including the variations of the cart
mass and the pole length. The performance of KHDP is also much more robust than HDP and DHP. In Fig. 19(b), it is shown
that KDHP needs the minimum averaged number of trials for learning a successful control policy, which means that KDHP
converges faster than other learning control algorithms. Compared with HDP, KHDP converges to a good control policy much

X. Xu et al. / Information Sciences 261 (2014) 1–31 23
faster. However, compared with KHDP and HDP, DHP needs smaller number of trials to balance the pole successfully. This is
mainly due to that DHP makes use of some model information to estimate the policy gradient, which will greatly reduce the
variance of policy gradients and increase the convergence speed of ACDs.
6. Applications of RL and ADP with function approximation

In recent years, RL has been applied in many fields, such as computer games, robotics, industrial systems, power systems
and so on. A majority of the applications are listed in Table 2.

6.1. Computer games

RL has been applied in learning how to play games for many years. The first application of RL to a complex non-trivial task
was learning the game of Backgammon [121]. Tesauro discussed a number of important practical issues and examined these
issues in the case of applying the TD (k) to learning the game of Backgammon from the outcome of self-play. It is found that,
after training with zero knowledge built in, the agent can play the game at a fairly strong intermediate level of performance.
Tetris is a popular video game played on a two-dimensional grid. Bertsekas and Tsitsiklis has applied the TD-based policy
0.05 0.1 0.2 0.3 0.5
0

0.5

1

actor module learning rate

su
cc

es
sf

ul
 ra

te

1.0 1.1 1.21 1.331 1.464
0

0.5

1

cart mass/kg

su
cc

es
sf

ul
 ra

te

0.5 0.55 0.605 0.666 0.732
0

0.5

1

pole length/m

su
cc

es
sf

ul
 ra

te

KDHP KHDP DHP HDP

(a) Performance comparisons in terms of successful rates

1 2 3 4 5
0

50

100

actor module learning rate

av
er

ag
e

tri
al

s

1.0 1.1 1.21 1.331 1.464
0

50

100

cart mass/kg

av
er

ag
e

tri
al

s

0.5 0.55 0.605 0.666 0.732
0

50

100

pole length/m

av
er

ag
e

tri
al

s

KDHP KHDP DHP HDP

(b) Performance comparisons in terms of average trials

Fig. 19. Performance comparisons between K-ACDs and ACDs under different parameter settings [148].

24 X. Xu et al. / Information Sciences 261 (2014) 1–31
iteration method to the Tetris and obtained quite good performance [18]. In [105], a reinforcement learning approach based
on linear evaluation function and large numbers of binary features was applied to the game of Go. McPartland and Gallagher
investigated the tabular Sarsa (k) RL algorithm applied to a purpose built first person shooter (FPS) game [78]. The experi-
mental results indicated that RL can be used in a generalized way to control a combination of tasks in FPS bots such as nav-
igation, item collection, and combat.
6.2. Industrial and financial systems

A wide range of successful applications in industrial and financial systems can be addressed, such as packet routing [24],
job scheduling [153], elevator dispatching [32] and stock trading [85] to name a few. Recently, more applications to indus-
trial and financial systems have appeared. Auctions is a primary pricing mechanism in market components of a deregulated
power industry. Nanduri and Das [82] presented a non-zero sum stochastic game theoretic model and a RL-based auction
method that allow assessment of market power in DA markets. Shimokawa et al. applied RL to detect the most suitable
learning model of the human decision-making process in financial investment tasks [104].
Table 2
Typical applications of RL/ADP algorithms. (‘‘D’’ stands for ‘‘Discrete’’, ‘‘C’’ stands for ‘‘Continuous’’).

Application domain State/Action
spaces

RL/ADP methods Ref.

Computer Games Backgammon D/D TD (k) with neural network Tesauro [121]
Tetris D/D Optimistic policy iteration Bertsekas and Tsitsiklis [18]
Go D/D TD (0) with linear features Silver et al. [105]
First person shooter D/D Sarsa (k) McPartland and Gallagher

[78]
Industrial and Financial systems Packet routing D/D Q-routing Boyan and Littman [24]

Job-shop scheduling D/D TD (k) with neural network Zhang and Dietterich [153]
Elevator dispatching C/D Q-learning with neural network Crites and Barto [32]
Predicting investment
behavior

C/C TD-learning Shimokawa et al. [104]

Vehicle control and Robotics
applications

Autonomous helicopter
control

C/C Policy Search Bagnell and Schneider [9]

Autonomous helicopter
control

C/D PEGASUS Ng [84]

Fast quadrupedal
locomotion

C/D Parameterized policy Kohl and Stone [67]

Robot soccer keepaway C/D Sarsa (k) with tile coding Stone et al. [110]
Car driving C/D Neural Fitted Q Iteration (NFQ) Riedmiller et al. [98]
Motor skills C/C Policy gradient Peters and Schaal [91]
Robot soccer C/D Neural fitted value/policy

iteration
Riedmiller et al. [97]

Robot navigation D/D Q-learning with state abstraction Jaradat et al. [62]
Traffic Systems Traffic signal control D/D Q-learning with neural networks Abdulhai et al. [1]

Urban traffic signal
control

D/D Q-learning Balaji et al. [12]

Traffic signal control D/D Q-learning with linear FA Prashanth and Bhatnagar
[94]

Communication networks and
Cognitive Radio

Dynamic channel
allocation

D/D TD (0) with linear FA Singh and Bertsekas [14]

Aggregated interference
control

D/D Q-learning with neural networks Serrano and Giupponi [49]

Anomaly detection in
computers

D/D TD learning with linear FA Xu [145]

Repeated power control
game

D/D Linear Bush-Mosteller
reinforcement scheme

Zhou et al. [154]

Power Systems Power systems stability
control

C/D Model-based Q-learning Ernst et al. [46]

Constrained load flow
problem

D/D Q-learning with state abstraction Vlachogiannis and
Hatziargyriou [130]

Static compensator
controller

C/C Action-dependent HDP Mohagheghi et al. [81]

Automatic generation
control

D/D Q (k) with state abstraction Yu et al. [151]

Computer Vision Image retrieval D/D Tabular Q-learning Yin et al. [150]
Automatic target
recognition

D/D HDP and DHP with neural
networks

Iftekharuddin [60]

X. Xu et al. / Information Sciences 261 (2014) 1–31 25
6.3. Vehicle and robot control

With the advent of increasingly efficient RL methods, one can observe a growing number of successful RL applications in
robotics, e.g. helicopter control [9,84], car driving [98], learning of robot behaviors [66,91,155], control of soccer robots
[97,110], and mobile robot navigation [62]. Autonomous helicopter control is a challenging problem with high-dimensional,
complex, asymmetric, noisy, nonlinear, dynamics. Bagnell and Schneider studied applying policy search methods to the flight
control of an autonomous helicopter [9]. In [84], Ng et al. described a successful application of RL to autonomous helicopter
flight. Autonomous underwater vehicles (AUVs) control is another successful application of RL. Carreras et al. presented a
hybrid behavior-based scheme using RL for high-level control of autonomous AUVs [30]. There have been other applications
of RL to vehicle and robot control besides helicopter and AUVs. Riedmiller et al. applied Neural Fitted Q Iteration (NFQ) to
learn to drive a real car in 20 min [98]. Jaradat et al. developed a RL approach for solving the problem of mobile robot path
planning in an unknown dynamic environment based on Q-learning [62].

6.4. Power systems

There have existed several applications of RL in power systems. One is to improve the stability of the power system.
Power system stability is the property of a power system which enables it to remain in a state of equilibrium under normal
operating conditions and to regain an acceptable state of equilibrium after a disturbance [46]. One way to increase power
system stability margins is to control power systems more efficiently. For this purpose, Ernst introduced a methodology
based on RL as a frame work that provided a systematic approach to design power system stability control agents [46]. An-
other application is to solve the constrained load flow problem by using RL methods. The Constrained Load Flow (CLF) prob-
lem deals with the adjustment of the power system control variables in order to satisfy physical and operating constraints.
Vlachogiannis and Hatziargyriou formulated the CLF problem as a multistate decision problem and applied the Q-learning
algorithm to the IEEE 14-bus system and to the IEEE 136-bus system for constrained reactive power control [130]. Besides,
the adaptive critic design method was used for the design of the static compensator neuro-fuzzy controller in a multi-ma-
chine power system [81]. In [151], a novel stochastic optimal relaxed automatic generation control in non-Markov environ-
ment using Q (k) learning is proposed and successfully implemented on a small two-area power system and the China
Southern Grid power systems.

6.5. Traffic systems

Traffic control in urban areas is becoming increasing complex with the exponential growth in vehicle count. The traffic
junctions play a very important role in determining the congestion state of the road network. Traffic signals were introduced
to control the traffic flow, thereby improving the safety of road users. Many traffic junctions worldwide currently use fixed
signal timings, i.e., they periodically cycle through the sign configurations in a round-robin manner. RL has been studied in
the design of intelligent traffic signal timing for the junctions. Arel et al. introduced a multi-agent RL system to obtain an
efficient traffic signal control policy, aiming at minimizing the average delay, congestion and likelihood of intersection
cross-blocking [7]. In [12], a multi-agent reinforcement learning (RLA) signal control algorithm was proposed to reduce
the total travel time and delay experienced by vehicles. Simulation tests conducted on a virtual traffic network of Central
Business District in Singapore for four different traffic scenarios showed almost 15% improvement over the benchmark signal
controls. Prashanth and Bhatnagar [94] proposed a RL algorithm with function approximation for traffic signal control. The
algorithm incorporated state-action features and was easily implementable in high-dimensional settings. They designed and
evaluated two Q-learning-based algorithms for road traffic control on a network of junctions.

6.6. Communication networks and cognitive radio

In cellular communication systems, an important techniques is to allocate the communication resource (bandwidth) so as
to maximize the service provided to mobile callers whose demand for service varies stochastically. This problem can be eas-
ily formulated as a dynamic programming problem. Singh and Bertsekas used the TD(0) algorithm to find dynamic channel
allocation policies which have better performance than previous heuristic solutions [106]. The policies were tested with
good performance for a broad variety of call traffic patterns.

Cognitive radio (CR) systems can be seen as a new way to implement efficient reuse of the pooled radio spectrum as-
signed to multiple wireless communication systems, by exploiting a wide variety of intelligent behavior [80]. Yang and Grace
presented a random picking distributed channel assignment scheme applied to a cognitive radio system, which exploited
reinforcement learning with a user population receiving multicast downlink transmissions [148]. Serrano and Giupponi pro-
posed a decentralized Q-learning algorithm to manage the aggregated interference generated by multiple CRs [49]. The con-
cept of a Cognition Cycle (CC) is the key element of CR to provide context awareness and intelligence so that each unlicensed
user is able to observe and carry out an optimal action on its operating environment for performance enhancement. In [149],
RL was applied to implement the conceptual of the Cognition Cycle. Jiang, Grace and Mitchell introduced two approaches,
pre-partitioning and weight-driven exploration, to enable an efficient learning process in the context of cognitive radio base
on RL [63]. The simulation results showed that the exploration of cognitive radio was more efficient by using the proposed

26 X. Xu et al. / Information Sciences 261 (2014) 1–31
approaches and the system performance was improved accordingly. A robust power control algorithm with low implemen-
tation complexity was designed for competitive and autonomous CR networks in [154].

6.7. Computer vision

Reinforcement learning has been successfully applied to several computer vision problems such as image segmentation,
feature extraction, and object recognition [88,89]. In image retrieval system, relevance feedback (RF) is an interactive process
which refines the retrievals to a particular query by utilizing user’s feedback on previously retrieved results. Yin [150] pro-
posed an image relevance reinforcement learning (IRRL) model for integrating existing RF techniques in a content-based im-
age retrieval system. Recently, Iftekharuddin has applied the ACD methods to automatic target recognition (ATR) [60]. ATR
has been an active research area due to its widespread applications in defense, robotics, medical imaging and geographic
scene analysis. Iftekharuddin used adaptive critic design (ACD) neural network (NN) models to obtain an on-line ATR system
for targets in presence of image transformations, such as rotation, translation, scale and occlusion as well as resolution
changes. Implementation of two ACD-based learning designs, such as heuristic dynamic programming (HDP) and dual heu-
ristic dynamic programming (DHP), demonstrate that RL is an effective approach for on-line transformation invariant ART.

6.8. Discussions

As seen above, RL and ADP methods have been applied in many different fields. However, different classes of RL/ADP algo-
rithms may be suitable to different applications since different problems have their own characteristics. In general, we can
classify existing RL/ADP algorithms into three main types. One is value-based algorithms which mainly include Q-learning
and Sarsa-learning algorithms with different function approximators. The second class of RL/ADP methods makes use of an
actor–critic architecture which approximates the value function and the policy simultaneously. The third class belongs to
policy search methods which only approximate the policy. Table 3 lists the application domains in which different classes
of RL and ADP methods have been popularly applied. As shown in Table 3, learning control methods using value-based
RL/ADP algorithms were most widely used in different domains, including computer games, industrial and financial systems,
vehicle control and robotics, to name a few. All of these applications usually have discrete and countable action spaces. The
popularity of value-based algorithms may be due to their simplicity for online implementation. Besides, when linear approx-
imators are used, value-based algorithms usually have fast convergence speed. However, the performance of value-based
algorithms may not be satisfactory for solving problems with continuous state and action spaces. To deal with this difficulty
in practical applications, approximate policy iteration and ACD methods have been taken into consideration. So far, API and
ACD methods have been applied in computer games, robotics, power systems and computer vision. In particular, ACDs have
been shown to be suitable for solving online learning control problems of continuous dynamical systems. Policy search
methods have been applied in several domains with large action spaces. The advantage of policy search methods is their sta-
ble performance for online learning but the convergence speed of policy search is usually slow when compared with value-
based RL/ADP methods and ACD methods.
7. Some open problems

7.1. Feature learning in RL and ADP

Feature representation is a fundamental problem in VFA for RL. Earlier research in RL usually relied on hand-coded neural
network structure for VFA in large or continuous spaces. Thus, the performance of RL greatly depends on an empirical pro-
Table 3
Major application domains of different classes of RL/ADP algorithms.

RL/ADP methods Domains Algorithms

Value-based algorithms Computer Games Tabular Q-learning
Industrial and Financial systems Q-learning with neural network
Vehicle control and Robotics applications Q-learning with state abstraction
Traffic Systems Q-learning with linear FA
Communication networks and Cognitive Radio Neural Fitted Q-iteration (NFQ)
Power Systems Sarsa (k)
Computer Vision

Policy Iteration/ACDs Computer Games Optimistic policy iteration using TD (k) with neural network
Robotics Neural fitted value/policy iteration
Power Systems HDP and DHP with neural networks
Computer Vision

Policy Search Industrial and Financial systems Policy search with TD (k) learning PEGASUS
Robotics Parameterized policy
Communication networks and Cognitive Radio Policy gradient

X. Xu et al. / Information Sciences 261 (2014) 1–31 27
cess of feature representation and selection. Due to the successful applications of kernel machines in supervised learning, the
combination of kernel methods with RL and ADP receives increasing interests in recent years. Several attempts have been
made to apply GPs or SVMs in reinforcement learning problems, such as Gaussian processes in TD (0) learning [43], SVMs
for RL [96] and Gaussian processes in model-based approximate policy iteration [36]. Recently, a framework for VFA called
proto-reinforcement learning (PRL) has been proposed [75,76]. Instead of learning task-specific value functions using a
hand-coded parametric architecture, agents can automatically learn basis functions by using spectral analysis of the self-ad-
joint Laplace operator. This approach also yields new learning control algorithms called representation policy iteration (RPI)
where both the underlying representations (basis functions) and policies are simultaneously learned. Laplacian eigenfunc-
tions also provide ways of automatically decomposing state spaces since they reflect bottlenecks and other global geometric
invariants. However, both KLSPI and RPI are mainly restricted to solve MDPs with discrete actions. In addition, it is still dif-
ficult select subsamples from which the graph is derived from, especially in continuous MDPs. ACDs can be used solve MDPs
with both continuous state and action spaces. Nevertheless, for ACDs, it was pointed out in [19] that a study on the choice of
the basis functions for the critic to obtain a good estimate of the policy gradient needs to be done. Recent works on model
selection and regularization in RL [47,48] addressed the problem of regularization of function approximators in order to im-
prove the generalization ability of RL algorithms.

7.2. Rate of convergence and tuning step-sizes in RL and ADP

As indicated in [53], it is often the case in RL that the learning process goes through an initial transient period where the
estimate of the value either increases or decreases steadily and then converges to a limit at an approximately geometric rate,
which means that the series of observations is no longer stationary. In such situations, either of stepsize rules (constant or
declining) would give an inferior rate of convergence. The rigorous theoretical results on the rate of convergence for RL/ADP
algorithms with FAs are still open research questions to be addressed. Nonstationarity could arise if the initial estimate is of
poor quality, in the sense that it might be far from the true value, but with more iterations, it moves closer to the correct
value. Alternatively, the RL problem could be of a nonstationary nature and it might be hard to predict when the estimate
has actually approached the true value. It is an open problem to design the optimal stepsize when the observed data is non-
stationary. Darken and Moody [33] addresses the problem of having the stepsizes evolve at different rates, where the step-
size chosen is a deterministic function of the iteration counter. These methods are not able to adapt to differential rates of
convergence among the parameters. George and Powell [53] addressed the problem of determining optimal stepsizes for
estimating parameters in ADP and derived formulas for optimal stepsizes for minimizing estimation errors. However, much
work still needs to be done to design optimal or near-optimal stepsizes for general RL and ADP algorithms. In a recent work
[77], it was shown that the performance of existing step-size adaptation methods are strongly dependent on the choice of
their meta-step-size parameter and that their meta-step-size parameter cannot be set reliably in a problem-independent
way. They introduce a series of modifications and normalizations to the IDBD method [117] that together eliminate the need
to tune the meta-step-size parameter to the particular problem.

7.3. FA for hierarchical RL [146]

Recent attempts to overcome the obstacles associated with dimensionality have turned to principled ways of problem
decomposition or exploiting temporal abstraction, which are called hierarchical approaches to RL [15,146]. As indicated
in [15], existing work in hierarchical RL (HRL) has followed three trends: focusing on subsets of the state space in a divide
and conquer approach (state space decomposition) [37], grouping sequences or sets of actions together (temporal abstrac-
tion) [118], and ignoring differences between states based on the context (state abstraction) [6,38,58]. These three trends
have led to three main approaches to hierarchical RL: options formalism [118], the hierarchies of abstract machines (HAMs)
approach [87], and the MAXQ framework [37], in which the model of semi-Markov decision processes (SMDPs) is commonly
used as a formal basis [59]. Although function approximators can be combined with HRL, few successful applications of
existing HRL approaches to MDPs with large or continuous spaces have occurred. In addition, it remains difficult to decom-
pose the state space of MDPs automatically or construct options so that global optimal policies can be well approximated
[146].

7.4. Robust ADP for nonlinear systems

As indicated in [152], it is worth mentioning that many existing results based on ADP technique require a knowledge of
known nonlinear dynamics. Recent works have attempted to solve the optimal control solution based on ADP technique
without an a priori system model [126,127,131,132]. For the continuous-time case, an offline neural net policy iteration solu-
tion was given in [131] and an online actor–critic algorithm was proposed in [126] to solve the continuous-time infinite hori-
zon optimal control problem. Nevertheless, the requirement of system dynamics is hard to be satisfied, either fully or even
partially known. Hence, for the unknown general nonlinear systems, ADP methods mentioned above cannot be applied di-
rectly. Recent progresses in this direction also include ADP methods for partially unknown nonlinear systems [132], multi-
player non-zero-sum games [127] and robust approximate optimal tracking control scheme for unknown general nonlinear
systems [152].

28 X. Xu et al. / Information Sciences 261 (2014) 1–31
8. Conclusions and future work

As an interdisciplinary area, RL and ADP algorithms with function approximation have attracted many research interests
from different domains such as machine learning, control theory, operations research, and robotics. In this paper, recent
developments in RL algorithms with function approximation are comprehensively surveyed. Theoretical results on the con-
vergence and feature representation of RL algorithms are discussed. The performance of different RL algorithms was evalu-
ated and compared in several benchmark learning prediction and learning control tasks. The applications of RL with function
approximation are also summarized. Although many progresses have been made in the past decade, there are still some re-
search challenges and open problems. It is desirable to develop new RL/ADP algorithms with the abilities of learning repre-
sentation, fast convergence in online learning process [74], generalization in high-dimensional continuous spaces [147]. The
research of RL/ADP methods as data-driven or learning control techniques for complex dynamical systems is also an impor-
tant topic for future work. Furthermore, RL/ADP methods for multi-agent systems and multi-objective decision and control
tasks still need to be explored for real-world applications.
Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 61075072, 91220301, and New-
Century Excellent Talent Plan of the Ministry of Education of China (Grant No. NCET-10-0901). The authors would like to
thank Prof. Richard S. Sutton for his comments and suggestions.
References

[1] B. Abdulhai, R. Pringle, et al, Reinforcement learning for true adaptive traffic signal control, Journal of Transportation Engineering 129 (3) (2003) 278–
285.

[2] A. Al-Tamimi, F.L. Lewis, M. Abu-Khalaf, Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control,
Automatica 43 (2007) 473–481.

[3] A. Al-Tamimi, M. Abu-Khalaf, F.L. Lewis, Adaptive critic designs for discrete-time zero-sum games with application to H-Infinity control, IEEE
Transactions on Systems Man Cybernetics-Part B (2006).

[4] S. Amari, Natural gradient works efficiently in learning, Neural Computation 10 (2) (1998) 251–276.
[5] A. Antos, R. Munos, C. Szepesvari, Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems, in: 2009 American

Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, June 10–12, pp. 725–730.
[6] D. Andre, S.J. Russell, State abstraction for programmable reinforcement learning agents, in: Proceedings of the Eighteenth National Conference on

Artificial Intelligence, 2002, pp. 119–125.
[7] I. Arel, C. Liu, et al, Reinforcement learning-based multi-agent system for network traffic signal control, IET Intelligent Transport Systems 4 (2) (2010)

128–135.
[8] F.R. Bach, M.I. Jordan, Kernel independent component analysis, Journal of Machine Learning Research 3 (2002) 1–48.
[9] J.A. Bagnell, J.G. Schneider, Autonomous helicopter control using reinforcement learning policy search methods, in: Proceedings of the 2001 IEEE

International Conference on Robotics & Automation, Seoul, Korea, 2001, pp. 1615–1620.
[10] J.A. Bagnell, J.G. Schneider, Covariant policy search, in: G. Gottlob, T. Walsh (Eds.), Proceedings of the Eighteenth International Joint Conference on

Artificial Intelligence (IJCAI-03), Morgan Kaufmann, San Francisco, CA, USA, 2003, pp. 1019–1024.
[11] L.C. Baird, Residual algorithms: reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on

Machine Learning (ICML 1995), Morgan Kaufman, San Francisco, CA, USA, 1995, pp. 30–37.
[12] P.G. Balaji, X. German, et al, Urban traffic signal control using reinforcement learning agents, IET Intelligent Transport Systems 4 (3) (2010) 177–188.
[13] S.N. Balakrishnan, V. Biega, Adaptive-critic-based neural networks for aircraft optimal control, Journal of Guidance, Control, Dynamics 19 (4) (1996)

893–898.
[14] A.G. Barto, T.G. Dietterich, Reinforcement learning and its relationship to supervised learning, in: J. Si, A. Barto, W. Powell, D. Wunsch (Eds.),

Handbook of Learning and Approximate Dynamic Programming, Wiley-IEEE Press, New York, 2004.
[15] A.G. Barto, S. Mahadevan, Recent advances in hierarchical reinforcement learning, Discrete Event Dynamic Systems-Theory and Applications 13 (1-2)

(2003) 41–77.
[16] A.G. Barto, R. Sutton, C.W. Anderson, Neuron-like adaptive elements that can solve difficult learning control problems, IEEE Transactions on Systems,

Man, and Cybernetics 13 (5) (1983) 834–846.
[17] J. Baxter, P.L. Bartlett, Infinite-horizon policy-gradient estimation, Journal of Artificial Intelligence Research 15 (2001) 319–350.
[18] D.P. Bertsekas, J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.
[19] S. Bhatnagar, R.S. Sutton, M. Ghavamzadeh, M. Lee, Natural actor–critic algorithms, Automatica 45 (11) (2009) 2471–2482.
[20] V.S. Borkar, Stochastic approximation with two time scales, Systems & Control Letters 29 (5) (1997) 291–294.
[21] V.S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge University Press, 2008.
[22] J. Boyan, A.W. Moore, Generalization in reinforcement learning: safely approximating the value function, in: Advances in Neural Information

Processing Systems, 1995, pp. 369–376.
[23] J. Boyan, Technical update: least-squares temporal difference learning, Machine Learning 49 (2–3) (2002) 233–246.
[24] J. Boyan, M. Littman, Packet routing in dynamically changing networks: a reinforcement learning approach, Advances in neural information

processing systems 6 (NIPS 1994) (1994).
[25] S. Bradtke, B. Ydstie, A. Barto, Adaptive linear quadratic control using policy iteration, Univ. Massachusetts, Amherst, MA, Tech. Rep. CMPSCI-94-49,

June 1994.
[26] S. Bradtke, Incremental Dynamic Programming for On-Line Adaptive Optimal Control, Ph.D. thesis, University of Massachusetts, Computer Science

Dept. Tech. Rep., 1994, pp. 94–62.
[27] S.J. Brartke, A. Barto, Linear least-squares algorithms for temporal difference learning, Machine Learning 22 (1996) 33–57.
[28] L. Busoniu, R. Babuska, B. De Schutter, D. Ernst, Reinforcement Learning and Dynamic Programming Using Function Approximators, CRC Press, NY,

2010.
[29] X. Cao, Stochastic Learning and Optimization, Springer-Verlag, Berlin, 2009.
[30] M. Carreras, J. Yuh, et al, A behavior-based scheme using reinforcement learning for autonomous underwater vehicles, IEEE Journal of Oceanic

Engineering 30 (2) (2005) 416–427.
[31] R.H. Crites, A.G. Barto, Elevator group control using multiple reinforcement learning agents, Machine Learning 33 (2–3) (1998) 235–262.

http://refhub.elsevier.com/S0020-0255(13)00597-5/h0005
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0005
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0010
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0010
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0015
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0015
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0020
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0025
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0025
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0030
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0035
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0035
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0035
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0035
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0035
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0040
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0040
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0040
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0045
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0050
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0050
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0055
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0060
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0060
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0065
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0065
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0070
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0075
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0075
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0080
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0085
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0090
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0090
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0095
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0100
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0100
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0105
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0110
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0110
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0110
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0115
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0115
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0120
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0120
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0125

X. Xu et al. / Information Sciences 261 (2014) 1–31 29
[32] R.H. Crites, A.G. Barto, Improving elevator performance using reinforcement learning, Advances in Neural Information Processing Systems 8 (NIPS
1995) (1996).

[33] C. Darken, J. Moody, Note on learning rate schedules for stochastic optimization, in: Lippman, et al. (Eds.), Advances in Neural Information Processing
Systems, vol. 3, 1991, pp. 1009–1016.

[34] P. Dayan, The convergence of TD(k) for general k, Machine Learning 8 (1992) 341–362.
[35] P. Dayan, T.J. Sejnowski, TD(k) converges with probability 1, Machine Learning 14 (1994) 295–301.
[36] T.G. Dietterich, X. Wang, Batch value function approximation via support vectors, Advances in Neural Information Processing Systems, vol. 14, MIT

Press, Cambridge, MA, 2002, pp. 1491–1498.
[37] T.G. Dietterich, Hierarchical reinforcement learning with the Max-Q value function decomposition, Journal of Artificial Intelligence Research 13

(2000) 227–303.
[38] T.G. Dietterich, State abstraction in MAXQ hierarchical reinforcement learning, in: S.A. Solla, T.K. Leen, K.R. Muller (Eds.), Advances in Neural

Information Processing Systems, NIPS, 2000, pp. 994–1000.
[39] K. Driessens, S. Dzeroski, Integrating guidance into relational reinforcement learning, Machine Learning 57 (2004) 271–304.
[40] K. Driessens, J. Ramon, H. Blockeel, Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner,

in: L. De Raedt, P. Flach (Eds.), Proceedings of the 13th European Conference on Machine Learning, Lecture Notes in Artificial Intelligence, vol. 2167,
Springer-Verlag, 2001, pp. 97–108.

[41] K. Driessens, J. Ramon, Relational instance based regression for relational reinforcement learning, in: Proceedings of the Twentieth International
Conference on Machine Learning, AAAI Press, 2003, pp. 123–130.

[43] Y. Engel, S. Mannor, R. Meir, ‘‘Bayes meets bellman: the Gaussian Process approach to temporal difference learning, in: Proceedings of the Twentieth
International Conference of Machine Learning, Washington, DC, 2003, pp. 154–161.

[44] R. Enns, J. Si, Helicopter trimming and tracking control using direct neural dynamic programming, IEEE Transactions on Neural Networks 14 (4)
(2003) 929–939.

[45] D. Ernst, P. Geurts, L. Wehenkel, Tree-based batch mode reinforcement learning, Journal of Machine Learning Research 6 (2005) 503–556.
[46] D. Ernst, M. Glavic, et al, Power systems stability control: reinforcement learning framework, IEEE Transactions on Power Systems 19 (1) (2004) 427–

435.
[47] A. Farahmand, Cs. Szepesvári, Model selection in reinforcement learning, Machine Learning 85 (3) (2011) 299–332.
[48] A.m. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, S. Mannor, Regularized policy iteration, NIPS (2008) 441–448.
[49] A. Galindo-Serrano, L. Giupponi, Distributed Q-Learning for aggregated interference control in cognitive radio networks, IEEE Transactions on

Vehicular Technology 59 (4) (2010) 1823–1834.
[50] K. Driessens, J. Ramon, T. Gärtner, Graph kernels and Gaussian Processes for relational reinforcement learning, Machine Learning 64 (1–3) (2006) 91–

119.
[51] T. Gärtner, P. Flach, S. Wrobel, On graph kernels: hardness results and efficient alternatives, in: M.W.B. Scholkopf (Ed.), Proceedings of the 16th Annual

Conference on Computational Learning Theory and the 7th Kernel Workshop, 2003, pp. 129–143.
[52] A. Gosavi, Reinforcement learning for long-run average cost, European Journal of Operational Research 155 (2004) 654–674.
[53] A.P. George, W.B. Powell, Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming, Machine Learning 65

(2006) 167–198.
[54] A. Geramifard, M. Bowling, M. Zinkevich, R.S. Sutton, iLSTD: eligibility traces and convergence analysis, in: B. Scḧolkopf, J. Platt, T. Hoffman (Eds.),

Advances in Neural Information Processing Systems, vol. 19, MIT Press, Cambridge, MA, 2007, pp. 441–448.
[55] M. Ghavamzadeh, Y. Engel, Bayesian policy gradient algorithms, in: Advances in Neural Information Processing Systems, 2006, pp. 457–464.
[56] M. Ghavamzadeh, S. Mahadevan, Hierarchical average reward reinforcement learning, Journal of Machine Learning Research 8 (2007) 2629–2669.
[57] D. Haussler, Convolution Kernels on Discrete Structures, Technical Report, Department of Computer Science, University of California at Santa Cruz,

1999.
[58] B. Hengst, Safe state abstraction and reusable continuing subtasks in hierarchical reinforcement learning, in: AI 2007: Advances in Artificial

Intelligence, Lecture Notes in Computer Science, vol. 4830, 2007, pp. 58–67.
[59] Q.Y. Hu, W.Y. Yue, Markov Decision Processes with Their Applications, Springer, 2008.
[60] K.M. Iftekharuddin, Transformation invariant on-line target recognition, IEEE Transactions on Neural Networks 22 (6) (2011) 906–918.
[61] T. Jaakkola, M. Jordan, S. Singh, On the convergence of stochastic iterative dynamic programming algorithms, Neural Computation 6 (6) (1994) 185–

1201.
[62] M.A.K. Jaradat, M. AI-Rousan, et al, Reinforcement based mobile robot navigation in dynamic environment, Robotics and Computer-Integrated

Manufacturing 27 (2011) 135–149.
[63] T. Jiang, D. Grace, et al, Efficient exploration in reinforcement learning-based cognitive radio spectrum sharing, IET Communication 5 (10) (2011)

1309–1317.
[64] J. Johns, M. Petrik, S. Mahadevan, Hybrid least-squares algorithms for approximate policy evaluation, Machine Learning 76 (2009) 243–256.
[65] S. Kakade, A natural policy gradient, Advances in Neural Information Processing Systems (2002) 1531–1538.
[66] J. Kober, J. Peters, Policy search for motor primitives in robotics, Advances in Neural Information Processing Systems (NIPS 2008) (2008).
[67] N. Kohl, P. Stone, Machine learning for fast quadrupedal locomotion, in: D.L. McGuinness, G. Ferguson (Eds.), Proceedings of the Nineteenth National

Conference on Artificial Intelligence (AAAI 2004), AAAI Press, Menlo Park, pp. 611–616.
[68] V.R. Konda, J.N. Tsitsiklis, Actor–critic algorithms, Advances in Neural Information Processing Systems, vol. 12, MIT Press, Cambridge, MA, 2000.
[69] M.G. Lagoudakis, R. Parr, Least-squares policy iteration, Journal of Machine Learning Research 4 (2003) 1107–1149.
[70] F.L. Lewis, G. Lendaris, D. Liu, Special issue on approximate dynamic programming and reinforcement learning for feedback control, IEEE Transactions

on Systems, Man, and Cybernetics B 38 (4) (2008).
[71] F.L. Lewis, D. Vrabie, Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits and Systems Magazine 9 (3)

(2009) 32–50.
[72] D. Liu, Y. Zhang, H. Zhang, A self-learning call admission control scheme for CDMA cellular networks, IEEE Transactions on Neural Networks 16 (5)

(2005) 1219–1228.
[73] H.R. Maei, C. Szepesvári, S. Bhatnagar, D. Precup, R.S. Sutton, Convergent temporal-difference learning with arbitrary smooth function approximation,

in: J. Laferty, C. Williams (Eds.), Advances in Neural Information Processing Systems, vol. 22, MIT Press, Cambridge, MA, USA, 2010.
[74] H.R. Maei, C. Szepesvári, S. Bhatnagar, R. Sutton, Toward off-policy learning control with function approximation, in: J. F}urnkranz, T. Joachims (Eds.),

ICML, Omnipress, 2010, pp. 719–726.
[75] S. Mahadevan, Proto-value functions: developmental reinforcement learning, in: Proceedings of the 22nd International Conference on Machine

Learning, 2005, pp. 553–560.
[76] S. Mahadevan, M. Maggioni, Proto-value functions: a laplacian framework for learning representation and control in markov decision processes,

Journal of Machine Learning Research 8 (2007) 2169–2231.
[77] A.R. Mahmood, R. Sutton, T.Degris, P.M. Pilarski, Tuning-free step-size adaptation, in: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, Kyoto, Japan, 2012.
[78] M. McPartl, M. Gallagher, Reinforcement learning in first person shooter games, IEEE Transactions on Computational Intelligence and AI in Games 3

(1) (2011) 43–56.
[79] M.L. Minsky, Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model Problem, Ph.D. Thesis, Princeton University,

1954.

http://refhub.elsevier.com/S0020-0255(13)00597-5/h0130
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0130
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0135
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0140
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0145
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0145
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0145
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0150
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0150
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0155
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0160
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0165
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0165
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0165
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0170
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0170
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0175
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0180
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0180
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0185
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0190
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0195
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0195
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0200
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0200
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0205
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0210
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0210
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0215
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0220
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0225
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0225
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0230
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0235
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0235
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0240
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0240
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0245
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0245
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0250
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0255
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0260
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0265
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0265
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0270
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0275
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0275
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0280
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0280
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0285
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0285
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0290
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0290
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0290
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0290
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0290
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0295
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0300
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0300
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0305
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0305

30 X. Xu et al. / Information Sciences 261 (2014) 1–31
[80] J. Mitola III, G.Q. Maguire, Cognitive radio: making software radios more personal, IEEE Personal Communications 6 (4) (1999) 13–18.
[81] S. Mohagheghi, G.K. Venayagamoorthy, et al, Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power

system, IEEE Transactions on Power Systems 21 (4) (2006) 1744–1754.
[82] V. Nanduri, T.K. Das, A reinforcement learning model to assess market power under auction-based energy pricingm, IEEE Transactions on Power

Systems 22 (1) (2007) 85–95.
[83] A. Nedic, D.P. Bertsekas, Least squares policy evaluation algorithms with linear function approximation, Discrete Event Dynamic Systems 13 (1)

(2003) 79–110.
[84] A.Y. Ng, H.J. Kim, et al, Autonomous helicopter flight via reinforcement learning, Advances in Neural Information Processing Systems 16 (NIPS 2003)

(2004).
[85] J. O, J. Lee, J.W. Lee, B.-T. Zhang, Adaptive stock trading with dynamic asset allocation using reinforcement learning, Information Sciences 176 (15)

(2006) 2121–2147.
[86] D. Ormoneit, S. Sen, Kernel-based reinforcement learning, Machine Learning 49 (2-3) (2002) 161–178.
[87] R. Parr, S. Russell, Reinforcement learning with hierarchies of machines, in: Advances in Neural Information Processing Systems, MIT Press,

Cambridge, MA, 1998, pp. 1043–1049.
[88] J. Peng, B. Bhanu, Delayed reinforcement learning for adaptive image segmentation and feature extraction, IEEE Transactions on System Man and

Cybernetics-Part C 28 (3) (1998) 482–488.
[89] J. Peng, B. Bhaun, Closed-loop object recognition using reinforcement learning, IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (2)

(1998) 139–154.
[90] J. Peters, S. Schaal, Natural actor–critic, Neurocomputing 71 (2008) 1180–1190.
[91] J. Peters, S. Schaal, Policy gradient methods for robotics, in: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots ans

Systems, Beijing, China, 2006, pp. 2219–2225.
[92] J. Peters, S. Vijayakumar, S. Schaal, Reinforcement learning for humanoid robotics, in: IEEE/RSJ International Conference on Humanoid Robotics, 2003.
[93] W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley, NY, 2007.
[94] L.A. Prashanth, S. Bhatnagar, Reinforcement learning with function approximation for traffic signal control, IEEE Transactions on Intelligence

Transportation Systems 12 (2) (2011) 412–421.
[95] D.V. Prokhorov, D.C. Wunsch, Adaptive critic designs, IEEE Transactions Neural Networks 8 (5) (1997) 997–1007.
[96] C.E. Rasmussen, M. Kuss, Gaussian processes in reinforcement learning, in: S. Thrun, L.K. Saul, B. Schölkopf (Eds.), Advances in Neural Information

Processing Systems, vol. 16, MIT Press, 2004, pp. 751–759.
[97] M. Riedmiller, T. Gabel, et al, Reinforcement learning for robot soccer, Autonomous Robots 27 (1) (2009) 55–74.
[98] M. Riedmiller, M. Montemerlo, et al., Learning to drive in 20 min, in: Proceedings of the FBIT 2007 Conference, Jeju, Korea, 2007.
[99] S. Richter, D. Aberdeen, J. Yu, Natural actor–critic for road traffic optimisation, in: Advances in Neural Information Processing Systems, 2006, pp.

3522–3529.
[100] A.L. Samuel, Some studies in machine learning using game of checkers, IBM Jounal on Research and Development 3 (1959) 211–229.

[101] B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.
[102] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, A.J. Smola, Input space vs feature space in kernel-based algorithms, IEEE

Transactions on Neural Networks 10 (3) (1999) 1000–1017.
[103] A. Schwartz, A reinforcement learning method for maximizing undiscounted rewards, in: Proceedings of the Tenth Annual Conference on Machine

Learning, Morgan Kaufmann, 1993, pp. 298–305.
[104] T. Shimokawa, K. Suzuki, et al, Predicting investment behavior: an augmented reinforcement learning model, Neurocomputing 72 (2009) 3447–3461.
[105] D. Silver, R.S. Sutton, et al, Reinforcement learning of local shape in the game of Go, Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence (IJCAI 2007) (2007) 1053–1058.
[106] S.P. Singh, D. Bertsekas, Reinforcement learning for dynamic channel allocation in cellular telephone systems, Advances in Neural Information

Processsing Systems 9 (NIPS 1996) (1997) 974–980.
[107] S.P. Singh, T. Jaakkola, M.L. Littman, Cs. Szepesvari, Convergence results for single-step on-policy reinforcement-learning algorithms, Machine

Learning 38 (2000) 287–308.
[108] S.P. Singh, R.C. Yee, An upper bound on the loss from approximate optimal value functions, Machine Learning 16 (3) (1994) 227–233.
[109] T. Söderström, P. Stoica, Instrumental Variable Methods in System Identification, Springer-Verlag, Berlin, 1983.
[110] P. Stone, R.S. Sutton, et al, Reinforcement learning for RoboCup-soccer keepaway, Adaptive Behavior 13 (3) (2005) 165–188.
[111] R. Sutton, A.G. Barto, Reinforcement Learning. An Introduction, MIT Press, Cambridge MA, 1998.
[112] R. Sutton, A.G. Barto, R.J. Williams, Reinforcement learning is direct adaptive control, IEEE Control Systems 12 (2) (1992) 19–22.
[113] R. Sutton, A.G. Barto, A temporal-difference model of classical conditioning, in: Proceedings of the 9th Annual Conference Cognitive Science Society,

1987, pp. 355–378.
[114] R. Sutton, Learning to predict by the method of temporal differences, Machine Learning 3 (1988) 9–44.
[115] R. Sutton, H.R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, E. Wiewiora, Fast gradient-descent methods for temporal-difference learning

with linear function approximation, in: Proceedings of the 26th Annual International Conference on Machine Learning (ICML-09), 2009, pp. 993–
1000.

[116] R. Sutton, C. Szepesvari, H.R. Maei, A convergent O(n) temporal-difference algorithm for off-policy learning with linear function approximation,
Advances in Neural Information Processing Systems, vol. 21, MIT Press, Cambridge, MA, USA, 2009, pp. 1609–1616.

[117] R. Sutton, Adapting bias by gradient descent: an incremental version of delta-bar-delta, in: Proceedings of the 10th National Conference on Artificial
Intelligence, 1992, pp. 171–176.

[118] R. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning, Artificial Intelligence
112 (1999) 181–211.

[119] R. Sutton, Cs. Szepesvári, A. Geramifard, M. Bowling, Dyna-style planning with linear function approximation and prioritized sweeping, UAI, 2008, pp.
528–536.

[120] Cs. Szepesvári, Algorithms for Reinforcement Learning, Morgan and Claypool, 2010.
[121] G. Tesauro, TD-Gammon, a self-teaching backgammon program, achieves master-level play, Neural Computation 6 (1994) 215–219.
[122] S.Thrun, A. Schwartz, Issues in using function approximation for reinforcement learning, in: Proceedings of the Fourth Connectionist Models Summer

School, 1993, pp. 255–263.
[123] J.N. Tsitsiklis, Asynchronous Stochastic Approximation and Q-learning, Technical Report LIDS-P-2172, Laboratory for Information and Decision

Systems, MIT, Cambridge, MA, 1993.
[124] J.N. Tsitsiklis, B.V. Roy, An analysis of temporal difference learning with function approximation, IEEE Transactions on Automatic Control 42 (5)

(1997) 674–690.
[125] W.T.B. Uther, M.M. Veloso, Tree based discretization for continuous state space reinforcement learning, in: Proceedings of AAAI-98, 1998, pp. 769–

774.
[126] K.G. Vamvoudakis, Frank L. Lewis, Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem, Automatica

46 (5) (2010) 878–888.
[127] K.G. Vamvoudakis, Frank L. Lewis, Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton–Jacobi equations,

Automatica 47 (8) (2011) 1556–1569.
[128] V. Vapnik, Statistical Learning Theory, Wiley Interscience, NewYork, 1998.

http://refhub.elsevier.com/S0020-0255(13)00597-5/h0310
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0315
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0315
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0320
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0320
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0325
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0325
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0330
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0330
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0335
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0335
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0340
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0345
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0345
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0345
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0350
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0350
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0355
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0355
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0360
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0365
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0365
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0370
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0370
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0375
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0380
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0385
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0390
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0395
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0395
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0400
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0400
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0405
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0405
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0405
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0410
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0415
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0415
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0420
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0420
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0425
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0425
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0430
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0435
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0435
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0440
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0445
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0445
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0450
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0455
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0460
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0460
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0460
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0465
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0465
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0470
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0470
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0475
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0480
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0480
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0485
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0485
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0490
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0490
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0495
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0495

X. Xu et al. / Information Sciences 261 (2014) 1–31 31
[129] G.K. Venayagamoorthy, R.G. Harley, D.C. Wunsch, Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for
neurocontrol of a turbogenerator, IEEE Transactions on Neural Networks 13 (3) (2002) 764–773.

[130] J.G. Vlachogiannis, N.D. Hatziargyriou, Reinforcement learning for reactive power control, IEEE Transactions on Power Systems 19 (3) (2004) 1225–
1317.

[131] D. Vrabie, F. Lewis, M. Abu-Khalaf, Adaptive optimal control for continuous-time linear systems based on policy iteration, Automatica 45 (2) (2009)
477–484.

[132] D. Vrabie, F. Lewis, Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems, Neural
Networks 22 (3) (2009) 237–246.

[133] X. Wang, Y. Cheng, J.-Q. Yi, A fuzzy actor–critic reinforcement learning network, Information Sciences 177 (18) (2007) 3764–3781.
[134] F.Y. Wang, H. Zhang, D. Liu, Adaptive dynamic programming: an introduction, IEEE Computational Intelligence Magazine (2009) 39–47.
[135] C. Watkins, Learning from Delayed Rewards, Ph.D. thesis, Cambridge Univ., Cambridge, England, 1989.
[136] C. Watkins, P. Dayan, Q-Learning, Machine Learning 8 (1992) 279–292.
[137] P.J. Werbos, Intelligence in the brain: a theory of how it works and how to build it, Neural Networks (2009) 200–212.
[138] P.J. Werbos, Using ADP to understand and replicate brain intelligence: the next level design, in: IEEE International Symposium on Approximate

Dynamic Programming and Reinforcement Learning, 2007, pp. 209–216.
[139] P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavior Sciences, Ph.D. thesis, Committee Appl. Math. Harvard Univ.,

1974.
[140] B. Widrow, N. Gupta, S. Maitra, Punish/reward: Learning with a critic in adaptive threshold systems, IEEE Transactions on Systems, Man, and

Cybernetics SMC-3 (5) (1973) 455–465.
[141] X. Xu, Reinforcement Learning and Approximate Dynamic Programming, Science Press, Beijing, 2010.
[142] X. Xu, H.G. He, D.W. Hu, Efficient reinforcement learning using recursive least-squares methods, Journal of Artificial Intelligence Research 16 (2002)

259–292.
[143] X. Xu, T. Xie, D.W. Hu, X.C. Lu, Kernel least-squares temporal difference learning, International Journal of Information Technology 11 (9) (2005) 54–

63.
[144] X. Xu, D.W. Hu, X.C. Lu, Kernel based least-squares policy iteration for reinforcement learning, IEEE Transactions on Neural Networks 18 (4) (2007)

973–992.
[145] X. Xu, Sequential anomaly detection based on temporal-difference learning: principles, models and case studies, Applied Soft Computing 10 (3)

(2010) 859–867.
[146] X. Xu, C. Liu, S. Yang, D. Hu, Hierarchical approximate policy iteration with binary-tree state space decomposition, IEEE Transactions on Neural

Networks 22 (12) (2011) 1863–1877.
[147] X. Xu, C. Liu, D. Hu, Continuous-action reinforcement learning with fast policy search and adaptive basis function selection, Soft Computing – A Fusion

of Foundations, Methodologies and Applications 15 (6) (2011) 1055–1070.
[148] X. Xu, Z. Hou, C. Lian, H. He, Online learning control using adaptive critic designs with sparse kernel machines, IEEE Transactions on Neural Networks

and Learning Systems 24 (5) (2013) 762–775.
[149] K.-L.A. Yau, P. Komisarczuk, et al., Applications of reinforcement learning to cognitive radio networks, 2010 IEEE International Conference on

Communication Workshops (ICC), 2010, pp. 1–6.
[150] P. Yin, B. Bhanu, et al, Integrating relevance feedback techniques for image retrieval using reinforcement learning, IEEE Transactions on Pattern

Analysis and Machine Intelligence 27 (10) (2005) 1536–1551.
[151] T. Yu, B. Zhou, et al, Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q(k) learning, IEEE

Transactions on Power Systems 26 (3) (2011) 1272–1282.
[152] H. Zhang, L. Cui, X. Zhang, Y. Luo, Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive

dynamic programming method, IEEE Transactions on Neural Networks 22 (12) (2011) 2226–2236.
[153] W. Zhang, T.G. Dietterich. A reinforcement learning approach to job-shop scheduling, in: Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence (IJCAI 1995), 1995, pp. 1114–1120.
[154] P. Zhou, Y. Chang, et al, Reinforcement learning for repeated power control game in cognitive radio networks, IEEE Journal on Selected Areas in

Communications 30 (1) (2012) 54–69.
[155] C. Zhou, Robot learning with GA-based fuzzy reinforcement learning agents, Information Sciences 145 (2002) 45–68.

Further reading

[42] S. Dzeroski, L. De Raedt, H. Blockeel, Relational reinforcement Learning, in: Proceedings of the 15th International Conference on Machine Learning,
Morgan Kaufmann, 1998, pp. 136–143.

http://refhub.elsevier.com/S0020-0255(13)00597-5/h0500
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0500
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0505
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0505
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0510
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0510
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0515
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0515
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0520
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0525
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0530
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0535
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0540
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0540
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0545
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0545
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0550
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0550
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0555
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0555
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0560
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0560
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0565
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0565
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0570
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0570
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0575
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0575
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0580
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0580
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0585
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0585
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0590
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0590
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0595
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0595
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0600
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0600
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0605
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0610
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0610
http://refhub.elsevier.com/S0020-0255(13)00597-5/h0610

	Reinforcement learning algorithms with function approximation: Recent advances and applications
	1 Introduction
	2 RL algorithms with function approximation for learning prediction
	2.1 Markov reward process
	2.2 Monte-Carlo methods and tree-based batch RL
	2.3 TD learning algorithms with linear function approximation
	2.4 Kernel-based TD learning
	2.5 Gradient TD
	2.6 Learning prediction with Gaussian Processes [43,96]

	3 RL algorithms with function approximation for learning control in MDPs
	3.1 MDP
	3.2 Planning and dynamic programming [120]
	3.3 VFA for learning control
	3.4 Relational reinforcement learning
	3.5 Approximate policy iteration
	3.6 Policy gradient methods
	3.7 ACDs for learning control
	3.8 Model-based planning and learning
	3.9 Approximate RL for averaged reward problems

	4 Feature representation and convergence of RL algorithms with function approximation
	4.1 Convergence of TD learning with different representations
	4.2 Convergence of approximate policy iteration
	4.3 Convergence of ACDs [19,148]

	5 Performance comparisons of RL algorithms with function approximation
	5.1 Performance evaluation of different learning prediction algorithms [115,142,143]
	5.2 Performance comparisons among API algorithms
	5.3 Performance comparisons of ACDs [148]

	6 Applications of RL and ADP with function approximation
	6.1 Computer games
	6.2 Industrial and financial systems
	6.3 Vehicle and robot control
	6.4 Power systems
	6.5 Traffic systems
	6.6 Communication networks and cognitive radio
	6.7 Computer vision
	6.8 Discussions

	7 Some open problems
	7.1 Feature learning in RL and ADP
	7.2 Rate of convergence and tuning step-sizes in RL and ADP
	7.3 FA for hierarchical RL [146]
	7.4 Robust ADP for nonlinear systems

	8 Conclusions and future work
	Acknowledgements
	References
	Further reading

