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Abstract XML is currently the most popular format for
exchanging and representing data on the web. It is used in
various applications and for different types of data including
structured, semistructured, and unstructured heterogeneous
data types. During the period, XML was establishing itself,
data streaming applications have gained increased attention
and importance. Because of these developments, the query-
ing and efficient processing of XML streams has became
a central issue. In this study, we survey the state of the
art in XML streaming evaluation techniques. We focus on
both the streaming evaluation of XPath expressions and of
XQuery queries. We classify the XPath streaming evaluation
approaches according to the main data structure used for the
evaluation into three categories: automaton-based approach,
array-based approach, and stack-based approach. We review,
analyze, and compare the major techniques proposed for
each approach. We also review multiple query streaming
evaluation techniques. For the XQuery streaming evaluation
problem, we identify and discuss four processing paradigms
adopted by the existing XQuery stream query engines: the
transducer-based paradigm, the algebra-based paradigm, the
automata-algebra paradigm, and the pull-based paradigm.
In addition, we review optimization techniques for XQuery
streaming evaluation. We address the problem of optimizing
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1 Introduction

Extensible Markup Language (XML) is by now the de facto
standard for exporting and exchanging data on the web due to
its flexibility of organizing data: its inherent self-describing
capability, and its semistructured characteristics [4]. XML
has become the popular exchange format for representing
many types of data, including structured, semistructured,
and unstructured heterogeneous records, “e-science” data (in
astronomy, biology, earth science, etc.), and digitized images,
among others. As increasing amounts of information are
stored, exchanged, and presented using XML, it becomes
increasingly important to effectively and efficiently query
XML data sources.

Along with XML, a new data evaluation model for queries
called streaming model has emerged. In the framework of the
streaming model, data are assumed to arrive continuously
in the form of streams, are unindexed, and can potentially
be unbounded. Because of the limited storage space avail-
able, systems that query data streams require algorithms that
process data in only one sequential scan and return query
results on the fly. Streaming processing is the only option
in a number of applications such as financial applications,
data monitoring in sensor networks, managing network traf-
fic information, telecommunications data management, web
applications, security, manufacturing, distributed and grid-
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based computing, and others [10,38,59]. Efficiently detect-
ing patterns in streams has become increasingly important
also for modern enterprizes that need to react quickly to crit-
ical situations.

Different applications use streaming data in XML format.
Expressed in a platform-neutral format, XML streams are
particularly suitable for data archiving or publication on the
web [81]. For these reasons, the processing and querying of
XML streams has become an important topic over the past
few years. An overview of recent XML streaming applica-
tions is presented in “Appendix A in Electronic Supplemen-
tary Material”.

1.1 The problem

The purpose of querying data streams is to identify specific
data patterns in the continuous flow of data. Research on
XML streams has mainly focused on queries expressed using
XML query languages such as XPath [5] and XQuery [6]. We
briefly introduce XPath and XQuery below.

XPath and XQuery. XPath [5] is a navigational language
for querying and transforming XML data. It is used for navi-
gating through the hierarchical tree structure of an XML doc-
ument and for matching (testing whether or not a collection of
nodes matches a pattern). A simple XPath expression consists
of a sequence of axes and labeled nodes. Two commonly used
axes are the child axis and the descendant axis. Generally, an
XPath query might involve multiple predicates and includes
one output node. XPath lies at the core of XQuery [6], which
is the standard query language for XML data. The XQue-
ry language is designed to extract and restructure subtrees
within XML documents. An XQuery query is composed of
FOR, LET, WHERE, and RETURN clauses, which together
form a FLWR block. The FOR and LET clauses provide a
series of XPath expressions for selecting input nodes. The
WHERE clause defines selection and join predicates. The
RETURN clause creates the output XML structure. XQuery
expressions can be nested within the above clauses to build
hierarchical expressions.

Challenges and issues. The problem of XPath query evalu-
ation against (persistent or streamed) XML data is a funda-
mental database problem in the context of XML [77]. The
evaluation of an XPath query yields a set of nodes that is
further sorted in document order. This incurs an expensive
duplicate elimination operation that can impact query per-
formance considerably. Thus, the key issue of an efficient
XPath evaluation [40] is avoiding duplicate generation at any
time during processing. The compositional syntax of XQue-
ry makes XQuery much more expressive than XPath. As we
will show later, the rich semantics of XQuery makes its eval-
uation and optimization problem even more challenging. A

survey on the XML query evaluation techniques over persis-
tent (stored) XML data is presented in [44].

Data streams pose new challenges to query evaluation.
In the streaming environment, data arrive continuously, are
unindexed, and can be unbounded. Because of the limited
storage space available, systems that query data streams
require algorithms that process data in only one sequen-
tial scan and return query results on the fly. New techniques
are needed to evaluate possibly complex queries in real-time
using as little space as possible for temporary results. Unlike
relational streaming data, which are flat and consist of attri-
bute-value pairs or tuples, XML data streams have tree-like
structures, possibly recursive, whose size and nesting depth
can potentially be unbounded. All these characteristics make
the evaluation of XML data streams particularly challenging.

Over the past few years, considerable research efforts
have been directed on developing evaluation algorithms over
streaming XML documents. A large number of these stream-
ing algorithms consider evaluating queries belonging to dif-
ferent subclasses of XPath [13,27,43,48,66,82,85,86,101].
During this time, various XQuery stream query engines have
been developed [31,33,36,52,54,58,64,66,69,91]. Most of
these engines support only a subset of the XQuery language.
These query evaluation algorithms for XML data streams
share the following common characteristics: (1) they con-
sider single-pass query evaluation techniques that require
limited storage or no storage at all of the input data stream,
and (2) they realize techniques for dealing with and reduc-
ing the amount of data buffered in main memory (and this
is particularly true for algorithms in XQuery stream query
engines).

XML versus relational streaming. A lot of research has
also been done on processing relational streams. In a rela-
tional streaming environment, a stream consists of multiple
homogeneous substreams of tuples, explicit punctuations are
used to identify “end of processing”, and multi-way joins are
employed to process the data. In contrast, in the XML stream-
ing context, a stream is a heterogeneous sequence of XML
constructs, open and close events are used to identify query
scope, and path matching techniques are employed to pro-
cess the data [59]. Relational stream processing techniques
are summarized and reviewed in [10,38,59].

1.2 Outline

In this study, we survey the state of the art in XML
streaming evaluation techniques. We focus on two prob-
lems: XPath streaming evaluation (Sect. 3) and XQue-
ry streaming evaluation (Sect. 4). We classify the XPath
streaming evaluation approaches according to the main
data structure used for matching of structural relationships
into three categories: automaton-based approach (Sect. 3.3),
array-based approach (Sect. 3.4), and stack-based approach
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(a) (b) (c)

Fig. 1 An example a XML document, b XML tree, and c the sequence of stream events

(Sect. 3.5). We review and compare the major techniques
of these approaches. We also review streaming evaluation
techniques for XPath queries with ordered axes (Sect. 3.6)
as well as multiple query streaming evaluation techniques
(Sect. 3.7). For the XQuery streaming evaluation problem,
we classify the existing XQuery stream query engines by
their processing paradigms and provide a high level descrip-
tion for each paradigm (Sect. 4.1). In addition, we review
optimization techniques for XQuery streaming evaluation
(Sect. 4.2). An overview of the XML streaming evaluation
model is presented in the next section. We summarize and
conclude in Sect. 5.

2 Data and evaluation models

In this section, we introduce the basic terminology and nota-
tion. We first define the XML data model and the syntax and
semantics of queries. Then, We introduce the event-based
XML streaming evaluation model. Finally, we provide defi-
nitions of some concepts used throughout the article.

2.1 Data model and query language

Data model. An XML document is commonly modeled by
a tree structure. Tree nodes represent and are labeled by
elements, attributes, or values. Tree edges represent element–
subelement, element–attribute, and element–value relation-
ships. Figure 1a shows the XML tree corresponding to the
XML document of Fig. 1b.

Fragments of XPath. Let / denote the child axis, // the
descendant axis, and [] denote the branching predicate in
XPath. Let also XP{/,//,[]} denote the fragment of XPath cor-
responding to XPath expressions that involve only /, //,
and []. We call tree-pattern queries (TPQs) the fragment
XP{[],/,//,∗} of XPath that involves predicates([]), child (/)
and descendant (//) axes, and wildcards (*). Existing XML
streaming algorithms focus almost exclusively on TPQs. We
call directed acyclic graph (dag) queries, the fragment of

Fig. 2 A TPQ for the XPath
query //bib[year =
“2011′′]//article/ti tle

XPath, denoted XP{[],/,//,∗,\,\\}, that involves, in addition,
parent axes (\), and ancestor axes (\\). Such queries can
be represented as dags that involve child and descendant
relationships. A TPQ or a dag includes one distinguished
node called output node. In the following, an unqualified
reference to a query refers to a dag query. Throughout the
article, when we do not use names, we often use capital let-
ters to denote query nodes and lowercase letters to denote
nodes in XML trees. In the figures, a single (resp. double)
edge between two nodes of a query denotes a child (resp.
descendant) structural relationship between the two nodes.
A node label shown in bold denotes the output node of the
query. Figure 2 shows the XPath query //bib[year=]̀
//article/title on the XML tree of Fig. 1a as a TPQ.

Query embeddings. An embedding of a query Q into an
XML tree T is a mapping M from the nodes of Q to nodes
of T such that: (a) a node in Q labeled by A is mapped by
M to a node of T labeled by a; (b) if there is a single (resp.
double) edge between two nodes X and Y in Q, M(Y ) is a
child (resp. descendant) of M(X) in T .

Query answers. The image of the output node of Q under
an embedding of Q to T is a solution of Q on T . The answer
of Q on T is the set of all the solutions of Q on T .

2.2 Streaming evaluation model

In a streaming evaluation, an XML document tree flows in as
a stream of open and close events. The appearance of events
corresponds to the pre-order traversal of the XML document
tree. For each element node in the tree, an open event is pro-
duced when the opening tag of the node is encountered and
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the node is called open from then on until it closes. After the
subtree rooted at that node is processed, a close event is pro-
duced when the closing element tag of that node is encoun-
tered. At this time, the node closes. The sequence of open and
close events for the XML tree of Fig. 1b is shown in Fig. 1c.

An XML streaming algorithm uses an event-based parser,
for example, a SAX XML parser [72], to scan an XML doc-
ument and produce a stream of events. The streaming algo-
rithm registers functions that are invoked by the parser on
open and close events.

Lazy and eager evaluation. Streaming algorithms can be
categorized into two classes based on when they evalu-
ate the query predicates [43]. A lazy streaming algorithm
evaluates query predicates only at close events, whereas an
eager streaming algorithm eagerly evaluates query predi-
cates before their corresponding close events are encoun-
tered. The lazy evaluation strategy is more straightforward
than the eager one. However, the eager evaluation strategy
has the advantage of optimizing memory usage and reducing
query response time.

2.3 Preliminaries

We now introduce concepts used below in describing stream-
ing evaluation algorithms and analyzing their computational
complexity.

Ancestor and descendant queries. Given a query Q and a
node X in Q, we call ancestor query of X the subquery of
Q that consists of X and the ancestor nodes of X . We call
descendant query of X the subquery of Q rooted at X that
consists of X and all the descendants of X in Q. For example,
consider node article in the query of Fig. 2. Its ancestor and
descendant queries are //bib//article and //article/ti tle,
respectively.

If X is the output node of Q, the ancestor nodes of X are
called backbone nodes of Q, and the rest of the nodes of Q
are called branching (predicate) nodes.

Ancestor and candidate query matches. Let x be a node in
an XML tree T . Node x is an ancestor match of query node
X if it is the image of X under an embedding of the ancestor
query of X to the path from the root of T to x in T . Node
x is a candidate match of X if it is the image of X under an
embedding of the descendant query of X to the subtree rooted
at x in T . A candidate match of X is a candidate output if X
is the output node of Q.

Recursion depth. An XML document contains recursive
structures when more than one node in the same path of the
data tree has the same label. The recursion depth of a query
node X in Q on an XML tree T is defined as the maximum
number of nodes in a path of T that are ancestor matches of

(a)

(b)

(c)

Fig. 3 Evaluating a path query with a basic automaton-based evalua-
tion paradigm. a A NFA for the XPath query //A//B/C, b an XML
fragment, c the snapshot of the runtime stack

X [11]. For example, the recursion depth of node A in the
query //A//B/C on the XML fragment of Fig. 3b is two.

3 XPath streaming evaluation

Two problems are commonly studied in the context of XPath
streaming evaluation. One of them is the stream filtering
problem: given a set of queries, the goal of the stream filter-
ing problem is to determine which of them have a nonempty
output on an incoming XML document stream. The other one
is the stream querying problem which requires finding all the
matches of the output nodes of a given set of queries against
the XML stream. Techniques for the filtering problem are
simpler than those for the querying problem since they only
need to return a boolean indicator instead of query matches.
In this survey, we focus on reviewing the major techniques
for the stream querying problem, while only giving a brief
overview on the stream filtering techniques.

3.1 Filtering XML streams

The XML filtering problem arises in the context of selective
dissemination of information (SDI) [9]. This problem has
attracted a lot of research attention. Various versions of fil-
tering algorithms for path pattern queries or TPQs have been
proposed [9,22,24,30,39,45,46,52,60,84,74]. Most of these
algorithms are based on finite state automata [51].

Finite state automata. A pushdown automaton (PDA) is a
non-deterministic finite automaton (NFA) equipped with a
stack [51]. A PDA’s transition is based on the current state,
the input symbol, and the symbol at the top of the stack.
A pushdown transducer (PDT) is an extended PDA that can
emit a string in each move [47]. Actions are defined along the

123



A survey on XML streaming evaluation techniques 181

transition arcs of the automaton. An output operation is spec-
ified as a PDA transition function. A PDT is commonly used
to transform data by using a state transition function with an
output operation. In the paper, we may use the terms “NFA”
and “transducer” to denote “PDA” and “PDT,” respectively.

Filtering paradigm. The working paradigm of a filtering
algorithm goes as follows. An input query is translated into
an automaton by mapping steps of the query to states in
the automaton. During execution, a transition from an active
state is triggered when an event that matches the transition
arrives. Finally, if an accepting state is reached, a value true
is returned which indicates that the document satisfies the
query. Data structures varying from stacks [30,45] to tries
[24] and hash tables [9] are used to compute states of the
automaton at runtime.

Filtering systems are typically designed to process large
number of queries over relatively small size XML documents
and are based on the premises that in the SDI context, queries
representing user interests share significant commonality. In
order to improve the filtering performance, filtering eval-
uation techniques exploit common subexpressions among
query expressions. For instance, YFilter [30] and PrefixFil-
ters [39] identifies common subquery prefixes, XPush [46]
computes common query predicates, and XTrie [24] finds
common substrings, among the input queries.

3.2 Querying XML streams

Several streaming algorithms focus on the querying prob-
lem [25,27,43,48,54,66,78,82,85,86]. The majority of these
algorithms center on tree-pattern queries (TPQs). TPQs cor-
respond to XPath queries that involve only child and descen-
dant axes (Sect. 2). Streaming algorithms for TPQs can be
extended to process XPath queries with ordered axes (fol-
lowing, following-sibling, preceding, and preceding-sibling).
We will introduce processing techniques on ordered axes in
Sect. 3.6.

Streaming algorithms broadly fall in three categories:
the automaton-based approach [66,78,82], the array-based
approach [54], and the stack-based approach [25,27,43,48,
85,86].

3.3 The automaton-based approach

Automata are widely used [31,45,52,66,78,82,81] for pat-
tern retrieval against the XML stream.

A basic evaluation paradigm. A basic automaton-based
evaluation paradigm first compiles the input query into a
NFA. This NFA is then used to compute pattern matches
against the XML stream. Figure 3a shows a NFA for an XPath
query, where * denotes a wildcard. The NFA is executed in
an event-driven fashion. In order to enable backtracking, a

stack is used to store the history of state transitions. Figure 3c
shows a snapshot of the runtime stack of the NFA of Fig. 3a
while the XML fragment of Fig. 3b is streaming in. When
an open event arrives, the NFA looks up its tag in the transi-
tion entries of all currently active states (they are at the stack
top) and follows all matching transitions. The states that are
transitioned to are activated and pushed onto the stack. For
example, in Fig. 3c, when the first 〈a〉 is read, state $0 transi-
tions to both states $1 and $2 and $1 and $2 pushed onto the
stack. Active states usually correspond to ancestor matches
(See Sect. 2) identified in the data. If a state transitioned to
is an accepting state, then a query match has been identified.
When a close event is encountered, the NFA performs back-
tracking by popping the top set of states off the stack. The
NFA can be converted to a deterministic automaton (DFA)
so as to reduce the time spent on matching transitions to
incoming events. The problem of exponential state blow-up
in DFA is addressed in [45] by using a lazy DFA, which is
a DFA constructed in a lazy way by adding new states only
when needed.

The basic automaton-based evaluation paradigm is effi-
cient for processing path queries. It is used in [31,45,52] and
serves as the core of more sophisticated automaton-based
streaming engines for complex XPath queries [66,78,81,82].

XPath streaming engine XSQ. Algorithm XSQ [82,83] sup-
ports a larger fragment of XPath than the earlier autom-
aton-based algorithms [31,45,52]. The fragment of XPath
queries it supports includes child and descendant axes and
predicates with at most one nesting step (i.e., predicates
which are either value-based predicates or node tests). XSQ
uses pushdown transducers as the basic building block for its
system design. Each of the transducers corresponds to one
step of the input query.

A transducer transforms data using a state transition func-
tion with output operations. Besides storing the history of
state transitions, the stack of a XSQ transducer records also
the run-time information of which nodes in the input lead to
the current state. Figure 4c shows the run-time states of XSQ
for evaluating the path pattern query //A//B/C (whose
pushdown transducer is shown in Fig. 4b) against the data
path of Fig. 4a. For instance, when 〈b1〉 is read, a transi-
tion is taken from both states ($2,(a1)) and ($2,(a2)) and
results in states ($3,(a1, b1)) and ($3,(a2, b1)). Both pairs
of nodes (a1, b1) and (a2, b1) are matches of the pattern
//A//B on the input data. Comparing this with the execu-
tion of the basic evaluation paradigm for the same query and
data shown in Fig. 3, one can see that, besides active states,
XSQ stores for each incoming open event the set of pattern
matches in which the stream node of the event and its ancestor
nodes occur. Therefore, the states of a transducer essentially
enumerate the patterns that the transducer matches against
the input stream. Enumerating and storing pattern matches
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(a) (b) (c)

Fig. 4 Evaluating the query //A//B/C with XSQ [82,83]. a An XML data path, b the pushdown transducer for the query //A//B/C, c the states
table of (b) on the input of (a)

is needed in XSQ for handling query predicates as shown
below.

The evaluation problem is more complicated for a query
with predicates. Recall that in the streaming context, nodes
arrive in their pre-order appearance in the XML docu-
ment tree. Because of the presence of predicates, there
might be nodes, at a time, whose membership in the
solutions cannot be determined based on the part of the
document seen so far (they are candidate outputs). Can-
didate outputs have to be buffered by a streaming algo-
rithm. To this end, XSQ augments each transducer with
a buffer and a set of buffer operations. For each can-
didate output, XSQ enumerates every possible path that
the node matches the query. This path is used to iden-
tify each candidate output in the buffer, so that the buffer
operation can be correctly carried out. Further, in order
to keep track of predicate satisfaction of candidate out-
puts, XSQ creates multiple instances of a transducer, each
of which corresponds to a possible combination of pred-
icate results, and connects transducer instances in a hier-
archical manner to build an automaton called hierarchical
automaton.

Figure 5 shows the hierarchical automaton for the query
//A//B[.//C]//D. Notice that from the automaton state
$5 there is a transition to state $6 on 〈/C〉. In state $6, the
automaton starts matching 〈D〉 again, just as in state $4.
In the general case, if a query node has n predicate chil-
dren, XSQ would need n! state transitions to take care of
all the permutations of the n children. The number of trans-
ducers in the obtained automaton can thus be exponential
in the size of the query. When feeding the XML tree of
Fig. 8a to the automaton of Fig. 5, a set of four pattern
matches {(a1, b1, c1, d1), (a1, b2, c1, d1), (a2, b1, c1, d1),
(a2, b2, c1, d1)} will be constructed and stored by the autom-
aton. Each of these matches corresponds to the same solution
d1 to the query.

Fig. 5 The hierarchical pushdown transducer for the query //A
//B[.//C]//D built by XSQ [82,83]

The main advantages of XSQ are its clean system design
and its straightforward evaluation process. However, XSQ
needs to explicitly enumerate and store all pattern matches
for an input query during its execution. For this reason, XSQ
suffers from exponential states blow-up and its worst case
complexity can be exponential in the size of the query. Let
|Q| and |T | denote the size of Q and T , respectively. As
shown in [82,83], given a query Q on an XML document T ,
XSQ works in O(|T |× 2|Q| × k) time, where k is O(r |Q|) in
the worst case and r is the recursion depth of Q on T . Also,
since a candidate output can participate in multiple matches
of the query, XSQ might have to buffer multiple copies of
the same candidate output at a time. The buffer requirement
for possibly multiple copies of candidate outputs together
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Fig. 6 Evaluating the query //A//B/C with SPEX [78,79]

with the need for storing an exponential number of transition
states results in the high space cost for XSQ.
XPath streaming evaluator SPEX. SPEX is chronologi-
cally the first polynomial streaming algorithm [78,79]. It is
a streaming XPath evaluator which is also based on trans-
ducers. SPEX translates an input query into a transducer
network by generating an independent transducer for each
construct corresponding to an XPath subexpression of the
input query. Unlike XSQ, the number of transducers in a
SPEX transducer network is linear in the size of the query.
Each SPEX transducer is associated with a stack of con-
figurations. The stack is used to keep track of the depth
of the nodes of the input XML document stream and to
store annotations (described below) read from the input
stream. This is in contrast to a XSQ transducer that uses a
stack to enumerate subquery matches against the input XML
stream.

SPEX uses a different evaluation strategy than XSQ.
It assumes a pipeline evaluation paradigm, where each
SPEX transducer processes an event stream before for-
warding it to subsequent transducers. The communication
between transducers is realized by annotating stream nodes
output from one transducer and providing them as input to
the succeeding transducers. A node annotation is expressed
as a list of positive integers in ascending order. It marks
a state transition and is used by transducers to differenti-
ate matched nodes from unmatched node in the input/output
streams. The annotation of each stream node is propagated to
its children, descendants, or following siblings etc., depend-
ing on the query axis the transducer corresponds to.

Figure 6 shows an example of evaluating the path query
//A//B/C with SPEX on the XML data path of Fig. 4a.
Consider, for instance, the execution of the //A transducer.
When 〈a〉[2] is read, the transducer pushes onto the stack the
annotation [0, 1, 2], which is the union of the received anno-
tation [2] with the top annotation [0, 1]; then, it outputs 〈a〉
followed by [0, 1], which is the union of the annotations of

the ancestor nodes of 〈a〉[2] in the XML stream. The anno-
tated nodes in the output stream of the transducer of the query
output node (e.g., the annotated node 〈c〉[0, 1] in the output
stream of the /C transducer in Fig. 6) represents the query
answer.

When the input XPath query has branching predicates,
SPEX independently evaluates each predicate and the back-
bone part of the query, and then merges their intermediate
results. Specifically, for a transducer with multiple immedi-
ate successors (corresponding to a query node with multi-
ple children connected by boolean operators AND and OR),
the output stream from the parent transducer is sent simul-
taneously to each of its child transducers. The output stream
from each successor is then composed (by a transducer) to
make a single aggregated stream. In order to uniquely identify
a stream node which appears in each of the output streams
and check whether it satisfies the query predicates, SPEX
uses a four-phase annotation-mapping process. Each of the
four phases is conducted by different transducers. Figure 7
shows an example of processing the query predicate [./B
and.//C] with SPEX. The annotated nodes in the output
stream from the fourth transducer denote those input stream
nodes that satisfy the predicate. For example, in Fig. 7, nodes
a1 and a2 satisfy the predicates, since their annotations appear
in the annotations of nodes c1 and b2 in the output stream.

SPEX can be used to evaluate a restricted form of dag
queries called single-join dag [79]. A single-join dag is a dag
where any two distinct paths share at most one node. To eval-
uate such a dag query, SPEX uses a process similar to that
used for queries with predicates. The core idea is to evaluate
independently distinct paths that share the same sink node
and then intersect the results of these evaluations to produce
the matches for the sink node. For a more complex dag query,
SPEX needs to decompose it to simple subqueries, such as
path, tree queries, or single-join dags before doing the eval-
uation. For a query involving reverse axes (such as parent
and ancestor), SPEX rewrites it into disjunctions of path or
tree queries [80]. In this case though, the size of the resulting
queries can be exponential in the size of the initial query.

Given a query Q (without reverse axes) and an XML doc-
ument T , let B and h denote the fan-out of Q and the height
of T respectively. SPEX works in O(|T |× |Q|×h) time and
uses O(|T | × B × h + |Q| × h2) space [78].

There are two potential problems of SPEX. First, each
incoming stream event is processed by the entire trans-
ducer network by default. Therefore, the size of messages
communicated between each pair of immediately connected
transducers in the SPEX network reaches the size of the
input XML document stream. To reduce the stream traffic,
SPEX introduces filter transducers to the transducer network.
A filter transducer filters input stream events and forwards to
subsequent transducers only stream events relevant to query
evaluation. While effective for selective queries, running
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Fig. 7 The four-phase process for evaluating the query predicate [./B and .//C] in SPEX [78,79]: an example

additional filters incurs overhead that may degrade query per-
formance for non-selective queries.

Second, SPEX evaluates query predicates inefficiently. For
each incoming stream event, it evaluates the query predicates
and the backbone part of the query independently, and merges
the intermediate results. Because the size of the intermediate
results tends to be comparable with the size of the input XML
document stream, the overall performance can be negatively
impacted.

A double-layered XPath streaming engine. A recent
XPath streaming engine presented in [81] uses two NFAs
that are organized in two layers (Layered NFA) to evaluate
XPath queries involving the axes child, descendant, follow-
ing siblings, and following as well as predicates.

The core idea of the Layered NFA method is to sepa-
rate automaton states that depend on the input XML stream
events from those that are static and can be determined at
the query compilation stage. To this end, two NFAs are con-
structed which handle the evaluation of query predicates and
the evaluation of the backbone part of the query, respectively.
Specifically, this method parses an input XPath query and
compiles it into a NFA which constitutes the first layer. The
first layer NFA is used to evaluate the backbone part of the
query.

Its result is fed into the second layer NFA which han-
dles the query predicates. The second layer NFA is dynam-
ically maintained at runtime using a lazy approach [46].
This means that only those states of the first layer NFA that
are accessible for the current node in the XML stream are
expanded in the second layer. Matches of query nodes with
predicates are maintained in a tree structure called context
node tree. A node of a context node tree records evaluation
results of the predicates of the corresponding query node.
It also keeps scope information which indicates the period
during evaluation when the node may become a candidate
match (See Sect. 2.3). During evaluation, predicate results
and candidate outputs will be propagated upwards in the tree
so as to check whether context nodes of predicates become
candidate matches. This propagation technique is similar to

that employed by the stack-based algorithm TwigM [27] and
will be explained in Sect. 3.5.2. The idea of separating the
evaluation of predicates from the rest of the query is also
employed by the stack-based algorithm presented in [85,86].

The Layered NFA method needs to keep track of multiple
active states and to support multiple transitions from each
state. However, it improves over XSQ [82,83] in the following
two important ways. First, the Layered NFA method dynam-
ically maintains the second layer NFA to avoid generating
states from all possible combinations of predicate results.
In contrast, XSQ constructs O(2|Q|) transducers beforehand
to differentiate between predicates that have been satisfied
and predicates that are unsatisfied and wait to be evaluated.
Second, in order to avoid the exponential growth in the state
size when a query contains the descendant or following axes,
the Layered NFA method introduces state sharing and state
pruning optimization techniques. As shown in [81], thanks
to these two improvements, the Layered NFA method is able
to achieve O(|T | + |Q| × h) space and O(|T | × |Q|) time
complexity, respectively.

An approach presented in [18] also uses separate NFAs to
handle the evaluation of query predicates and the evaluation
of the rest of an XPath query. It decomposes an XPath query
into its backbone path and a set of predicate paths and con-
structs for each query path a NFA. Unlike the Layered NFA
method, in this approach, all SAX events are regarded as
input for both the backbone NFA and the predicate NFAs. The
approach is based on reducing every axis to three primitive
axes: firstchild, nextsibling, and self using the query rewrit-
ing rules in [40]. Accordingly, the input SAX event stream
is transformed into a SAX event stream that uses first-child
and next-sibling relations to represent the XML tree. Because
of these transformations, the approach only needs to handle
four types of state transitions during query evaluation.

Summary. The theory of finite automata is the root of all
the XML streaming evaluation techniques. Automaton-based
streaming algorithms adapt the mature techniques of auto-
mata—typically used for matching patterns over strings—to
the query evaluation process. This often makes for a natural
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design for a streaming system. Many XML streaming pro-
totypes have been built using automaton-based evaluation
techniques. Automaton-based algorithms are generally effi-
cient for stream processing of simple path queries, but their
extensions to handle TPQs (or XPath queries with predi-
cates) turned out to be hard. The reason is that, by undertak-
ing query evaluation at the granularity of stream tokens, the
automaton-based approach fails to completely capture the
tree-structured nature of the XML data [63]. A typical prob-
lem with automaton-based algorithms is that they all require
to compute automata states and the corresponding transition
tables at runtime. Further, they generally spend a significant
amount of time matching transitions to incoming events. The
experimental evaluation results in [27,43] show that the per-
formance of automaton-based streaming algorithms such as
XSQ cannot be compared with that of the stack-based stream-
ing algorithms introduced later.

3.4 The array-based approach

We start with algorithms that assume tree-pattern queries and
then continue with algorithms that consider a more general
class of queries.

Streaming algorithms for tree-pattern queries. Since
array-based approaches do not translate the given query to
finite state automata they do not have to explicitly compute
states and the corresponding transition tables. TurboXPath
[54] is a representative of the array-based approach. TurboX-
Path first builds a parse tree for a given query and then finds
matches of the parse tree nodes on the input XML stream.

The algorithm uses mainly an array data structure, denoted
as Work Array (WA), to record the matching status during
evaluation. Each WA entry has four fields: (1) a pointer to
the corresponding parse tree node; (2) the level of the cor-
responding document node; (3) a set of references (point-
ers) between parent and child entries; (4) a status flag
that is used during evaluation to indicate whether the cor-
responding document node has satisfied the query con-
ditions. The WA is dynamically maintained by the algo-
rithm. At any point during the evaluation, the WA stores
entries corresponding to nodes in the part of the XML doc-
ument already read provided they are relevant to the query
processing.

Figure 9 shows an illustration of TurboXPath evaluating
the TPQ of Fig. 8b on an XML document of Fig. 8a. In the
figure, only fields (1) and (4) for a WA entry are shown for
clarity. The algorithm works by trying to match each incom-
ing (open or close) event with all the entries in the WA. A
match occurs when the corresponding document node is an
ancestor match (see Sect. 2) of the corresponding parse tree
node X of a WA entry. When a match is found, new entries
are inserted into the WA at the open events and old entries are

(a) (b)

Fig. 8 a XML tree, b The parse tree for the query //A//B[.//C]//D.
The node D, shown in bold, is the output node

removed from the WA at the close events. More specifically,
when an open event arrives, for each child Y of the parse tree
node X of the matched WA entry, a new child array entry is
added to the WA. For instance, in Fig. 9, when 〈a1〉 is read, an
entry for the parse tree node B is added to the WA. If node X
is a leaf node in the parse tree, the status flag of the matched
WA entry is set to true. For instance, the status of all the C
entries in the WA are set to true when 〈c1〉 is read (Fig. 9).
When a close event arrives, the following two actions are
performed: (1) the status of a matched WA entry is evaluated
by checking the status of its child WA entries; (2) the child
WA entries of the matched WA entry are removed from the
WA.

TurboXPath supports TPQs with multiple output nodes.
The query answer is a sequence of tuples of XML fragments
matching the output nodes. All the candidate matches that
may participate in result tuples are stored in buffers. In order
to construct tuples, TurboXPath uses a nested-loop join algo-
rithm which computes all the possible combinations of buf-
fered candidate matches.

Algorithm TurboXPath works efficiently for queries on
non-recursive XML documents. However, it exhibits expo-
nential behavior for queries on recursive XML documents
[48]. Recall that TurboXPath scans all the entries in the WA
in order to find a matching entry for each incoming event
and inserts into the WA a set of new child entries for each
matched WA entry. When multiple document nodes match
the parse tree node of a matched WA entry, multiple copies
of the same set of child entries for that entry can coexist in
the WA. In the example of Fig. 9, the WA contains two B
entries after the 〈a1〉 event and before 〈/a2〉 event because
both a1 and a2 match the WA entry for A. Each of the two B
entries adds two pairs of C and D entries to the WA because
they are matched by both b1 and b2. Clearly, the large num-
ber of duplicate WA entries for the same query node incurs
significant overhead to the evaluation.

Given a query Q on an XML document T , the size of
the WA (number of entries) is, in the worst case, O(r H )

where r and H denote, respectively, the recursion depth of
Q on T and the height of Q. Since for each XML document
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Fig. 9 Evaluating the query of Fig. 8b on the XML tree of Fig. 8a using Algorithm phTurboXPath [54]: state of WA after each incoming event
has been processed

node, TurboXPath needs to scan the WA to locate matches,
the total running time of TurboXPath is O(|T | × r H ). The
time complexity of TurboXPath improves the O(|D| × r |Q|)
time complexity of the automaton-based algorithm XSQ [82]
(notice that H = O(log|Q|)), as TurboXPath does not need
to enumerate all possible combinations of query predicate
results during evaluation. However, the size of the WA can
still grow exponentially on the height of the query tree on
recursive XML documents. This could impact negatively the
time performance of TurboXPathon recursive XML docu-
ment streams.

Filtering algorithms for tree-pattern queries that are based
on the array-based approach which are similar to TurboXPath
are presented in [11,13]. In [12], an array-based streaming
algorithm is given that works for tree-pattern queries on non-
recursive XML documents.

A streaming algorithm for tree-pattern queries extended
with reverse axes. In [14], a streaming algorithm called
Xaos is presented which supports an extension of tree-pattern
queries with reverse axes (parent and ancestor). The class of
queries supported by Algorithm Xaos belongs to the fragment

(a) (b) (c)

Fig. 10 a XML tree, b The parse tree for the query
//A[D]//C[\\B/E], c The dag for the same query. The node C
shown in bold is the output node

of XPath XP{[],/,//,∗,\,\\}. Algorithm Xaos is an array-based
algorithm which extends Algorithm TurboXPath.

For an input query, it not only builds a parse tree, but also
constructs a directed acyclic graph (dag) in which all reverse
axes are converted into their symmetrical forward axes. Fig-
ures 10b and c show the parse tree and the dag for an XPath
expression. Note that in the parse tree of Fig. 10b, the edge
from node B to node C denotes an ancestor edge. Algorithm
Xaos uses the dag to determine whether an XML document
node is an ancestor match of a dag node while it constructs
real matches based on the parse tree. Figure 11 illustrates the
evaluation process of Algorithm Xaos on the query and the
XML tree of Fig. 10.

At an open event, if the corresponding XML document
node is an ancestor match of a dag node, Algorithm Xaos

creates and adds to WA a new entry called matching-struc-
ture [14]. A matching-structure consists of three fields: (1) a
parse tree node X ; (2) an XML tree node matching node X ;
and (3) a submatching for each child of X in the parse tree. A
submatching at child Y of X is a set of matching-structures
at Y .

Algorithm Xaos utilizes a technique called propagation
for a matched WA entry at a close event. Recall that a match
occurs when the corresponding document node of the WA
entry is an ancestor match of a dag node. A matched entry
e is propagated to each of its parent entries to become their
submatching. The parent entries of e refer to the matching-
structure at the parent parse tree node of e. More specifically,
for each matched entry e at an incoming close event, Algo-
rithm Xaos determines whether e is a real match by checking
whether all its child entries are real matches. If this is the
case, entry e is propagated to its parent entries. In Fig. 11,
after 〈/d1〉 is read, entry d1 is propagated to its parent entry
a2 as its submatching.

When ancestor and parent edges are present in the parse
tree, Xaos is unable to determine conclusively whether a
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Fig. 11 Evaluating the query of Fig. 10b on the XML tree of Fig. 10a using Algorithm Xaos[14]

matched entry e is a real match at its close event. The reason
is that the close event of a child entry of e (which corresponds
to a parent or ancestor node of e) has not arrived yet and con-
sequently Xaos is unable to determine at this time whether
that child entry is a real match. In this case, Xaos optimis-
tically propagates all the child entries to entry e assuming
these entries are real matches. In the example of Fig. 10b,
query node C has an outgoing ancestor edge. As shown in
Fig. 11, after 〈/c1〉 is read, the child entry b1 of c1 is prop-
agated into the submatching of c1. Subsequently, entry c1 is
propagated to its parent entries a1 and a2. Since at that time
all the submatchings of entry a2 are non-empty, entry a2 is
identified as a real match and is propagated to its parent entry
r . A similar process is followed after 〈/c2〉 is read. If at some
point, it can be determined conclusively that an entry is not a
real match, Xaos reverses the previous optimistic propagation
by removing the entry from the submatching of all its parent
entries. This undo operation is cascaded to all affected WA
entries. In Fig. 11, after 〈/b1〉 is read, b1 can be identified
as a non-real match since its submatching for E is empty.
Therefore, entry b1 is removed from its parent entry c1. The
undo propagation is then recursively applied to entries c1, a1,
a2, and r . Clearly, such an undo operation affects negatively
the time performance of Xaos.

After all the XML document nodes have been processed,
Algorithm Xaos produces query answers by traversing the
matching-structure of the query root and projecting the
matches for the output node of the input query. In Fig. 11,

after the close event for the document root r is read, two
matching-structures are traversed and a single solution c2 is
produced (the same solution c2 occurs in the two matching-
structures).

Summary. Originated from the theory of finite automata,
the array-based approach [54] avoids the expensive steps
of translating queries to automata and computing transi-
tion states of the automaton-based approach. Nevertheless,
it has three major limitations: (1) it enumerates and records
in memory all the query node matches and then iterates on
each of the matches for every incoming event during evalua-
tion. These operations incur exponential memory usage and
time complexity for queries on recursive XML documents;
(2) it can store multiple copies of the same answer node in
memory. For example, as illustrated in Fig. 9, TurboXPath
stores in memory four copies of the answer node d1. Also,
as shown in Fig. 11, Xaos constructs two matching-structures
at the query root corresponding to the same solution c2. As
a result, the array-based approach needs an additional pro-
cess to eliminate duplicate answers at the final stage; and (3)
it does not deliver query answers until the entire document
stream is processed. In the case of an unbounded stream,
the evaluation may be unnecessarily postponed. Because of
these limitations, this type of processing is inefficient and not
viable for applications that require incremental outputs and
process streams that are unbounded and/or have recursive
structures.
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Fig. 12 The path stack technique: an example

3.5 The stack-based approach

Algorithm PathStack [21] was designed to evaluate path
queries on preprocessed XML data. A number of more recent
algorithms [27,43,48,85,86] exploit its ideas in order to eval-
uate TPQs on streaming XML data. These stack-based algo-
rithms extend PathStack to compactly encode query pattern
matches in a chain of stacks. This technique avoids the enu-
meration and explicit storage of the query pattern matches
during the evaluation. The stack-based algorithms evaluate
TPQs on XML streams in polynomial time and space, and
this is a significant improvement over the automaton-based
and the array-based approaches.

3.5.1 The path stack technique

Given a path pattern query Q and an XML tree T , the path
stack technique [21] creates a stack for each query node of
Q and uses these stacks to compactly represent all possible
embeddings of Q in a tree path of T .

Figure 12 shows an example of the evaluation of a path
query over an XML tree path using Algorithm PathStack
[21]. Tree nodes are read in their pre-order appearance in the
tree and are pushed into their corresponding query stacks.
Entries in the stack correspond to tree nodes. The entries
below an entry in a stack correspond to nodes in the XML
tree path that are ancestors of that node. In addition, each

entry e in a stack has a pointer to an entry in its parent stack
which is the highest entry in that stack among the entries cor-
responding to ancestors of e in the XML tree. These pointers
are used to construct query solutions. Solutions (in the form
of tuples) are generated by following the pointers of the stack
entries once a tree node for the leaf query node is pushed into
its stack. An important feature of such a stack-based orga-
nization is that it encodes a potentially exponential number
of solutions in a linear space. In the above example, a total
number of n2 solutions is encoded using 2n +2 entries in the
stacks.

In order to evaluate a TPQ Q against an XML document
stream T , the stack-based approach extends the path stack
technique in the following two ways. First, each node in Q
can now have multiple child nodes. In order to keep track of
whether a stack entry has satisfied its branching predicates,
the approach associates each stack entry with a boolean array
indexed by its child nodes (seen as branching predicates),
and employs a procedure to determine when an entry sat-
isfies/fails a predicate. Second, since the answer of Q now
consists of the set of matches of the output node of Q on T
(and not of a set of tuples), instead of computing all the em-
beddings of Q on T , the stack-based approach utilizes a prop-
agation technique to maintain a set of possible output node
matches (i.e., candidate outputs). Maintaining candidate out-
puts is an important and complex task of a stack-based algo-
rithm which affects its efficiency. Below, we describe five
representative stack-based streaming algorithms.

3.5.2 Stack-based streaming algorithms for TPQs

Algorithm TwigM. Algorithm TwigM [27] is a stack-based
streaming algorithm for evaluating TPQs. It is a lazy algo-
rithm because it evaluates query predicates only at close
events. Figure 13 shows an example of the evaluation of the
query of Fig. 8b against the XML tree of Fig. 8a using TwigM.

Let Q and T denote the input query and an XML tree,
respectively. At every open event of T, TwigM determines
whether the corresponding XML document node x is an
ancestor match of a query node X of Q. It does so by check-
ing the existence of a parent entry y of x , that is, an entry y in

Fig. 13 Evaluating the query of Fig. 8b on the XML tree of Fig. 8a using Algorithm TwigM [27]
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Fig. 14 Evaluating the query of Fig. 8b on the XML tree of Fig. 8a using Algorithm LQ [43]

the stack of X ’s parent Y such that the structural relationship
between x and y satisfies the structural relationship between
X and Y in Q. If it is the case, a new entry for x is created and
pushed onto the stack of X . At every close event, stack entries
which match that event are popped out from their stacks. For
each popped entry x which is a candidate match (see Sect. 2)
of a non-root query node X , TwigM sets the field for X in
the boolean array of every parent entry y of x to true. This
denotes that a candidate match to the child node X has been
found. TwigM also propagates the candidate outputs associ-
ated with x (if any) to y. Duplicate candidates are eliminated.
If entry x is not a candidate match, it is simply discarded. In
the example of Fig. 13, when 〈/b2〉 is read, the candidate out-
put d1 (associated with b2) is propagated to both a1 and a2 in
stack SA. Similarly, when 〈/b1〉 is read, the candidate output
d1 (associated with b1) is propagated to both a1 and a2 and
is eliminated because it is already associated with them. If X
is the query root of Q, the candidate outputs associated with
the candidate match x are returned as solutions to the user.

Algorithm TwigM works in O(|T |×|Q|×(|Q|+ B ×h))

time and uses O(|T | × h + |Q| × r) space in the worst
case, where B, h, and r denote the fan-out of Q, the height
of T , and the recursion depth of Q on T , respectively.
Clearly, it improves over the array-based algorithm Tur-
boXPath because it avoids explicitly enumerating and stor-
ing query pattern matches during execution. Nevertheless,
TwigM has the following limitations: (1) it may have to exam-
ine exhaustively a large number of stack entries for each
incoming event. In particular, at a close event, it needs to
propagate the matching information and candidate outputs
to multiple stack entries. In Fig. 13, when 〈/d1〉 is read, all
the entries in stack SB (b1 and b2) are accessed. For each
of them, the boolean array field for D is set to true and d1

is uploaded as a candidate output. (2) It may have to store
multiple physical copies of a candidate output at a time in
different stack entries. As a result, it needs to eliminate redun-
dant candidate outputs in order to avoid duplicate solutions.
Figure 13 shows one such case of duplicate elimination.

Algorithm LQ. In [43], a stack-based algorithm called LQ
was presented to address the limitations of TwigM[27].

Algorithm LQ also works in a lazy fashion. Figure 14 shows
the evaluation of the query of Fig. 8b against the XML tree of
Fig. 8a using LQ. Notice that the boolean array of each stack
entry is now indexed only by the branching child nodes (seen
as branching predicates) of the corresponding node instead
of all the child nodes as in TwigM.

At each open event, LQ exploits better the features of the
stack-based organization and determines the existence of a
parent entry by examining only the structural relationship
between the XML document node of the event and the top
entry of the corresponding parent stack. At every close event,
for each corresponding entry x that is a candidate match of
a query node X , Algorithm LQ visits at most two entries.
One is the top entry in the parent stack of X . It is visited for
recording the matching information (in its boolean array) if
X is a branching node, or for uploading the candidate out-
puts associated with x if X is a backbone node. The other
is the entry below x (if any) in the stack of X . It gets the
matching information of x if X is related to its parent with a
descendant relationship. In Fig. 14, when 〈/b2〉 is read, the
candidate output d1 associated with b2 is attached to a2 in
stack SA. Also, the truth value for C in the boolean array of
b2 is transferred to b1 in stack SB .

In the case that entry x is not a candidate match of X
(which implies that X is a backbone node), at most one entry
is visited. When X is linked with a descendant edge to its
backbone child node, the candidate outputs associated with
x are propagated to the entry below x in stack SX . Otherwise,
these candidate outputs are propagated to the top entry of the
first descendant node of X which is linked with a descendant
edge to its backbone child node. Figure 16 shows an example.
When 〈/b2〉 is read, the candidate output c1 associated with
b2 is attached to a2 in stack SA. Subsequently, when 〈/a2〉 is
read, since a2 is not a candidate match of A (the branching
predicate D is not satisfied) and the edge between A and B
in the query is //, the candidate output c1 is propagated to
b1 in stack SB .

The proper propagation of candidate outputs allows LQ
to avoid unnecessarily accessing many query matches and
storing multiple copies for each candidate output. These
improved propagation techniques are also used in the
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Fig. 15 Evaluating the query of Fig. 8b on the XML tree of Fig. 8a using Algorithm EQ [43]

Fig. 16 The propagation
technique used by Algorithm
LQ and EQ [43] in the presence
of child edges: an example. a
Data tree, b query, c snapshot of
the runtime stacks
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stack-based streaming algorithms presented in [103] and in
[85,86] for queries with only descendant edges. Another
improvement realized by LQ is the exploitation of the exis-
tential semantics of the queries during the evaluation. For
instance, consider again evaluating the query of Fig. 8b
against the XML tree of Fig. 8a. Suppose that c1 has many
following siblings matching query node C . Those siblings
will not be processed and stored by LQ since c1 has already
satisfied the branching predicate C of node B in the query.
All these improvements together make LQ achieve O(|T | ×
|Q|) time performance and O(|T | + |Q| × r) space per-
formance. Note that the algorithms of [85,86] use a more
complicated procedure than that of LQ to evaluate queries
with child edges. This results in their worse complexity as
shown in Fig. 20.

Algorithm EQ. Based on LQ, another stack-based stream-
ing algorithm, called EQ [43], was developed that further
optimized the space performance of LQ. Algorithm EQ is an
eager streaming algorithm which eagerly evaluates branch-
ing predicates before their close events arrive. Figure 15
shows an example of an evaluation of the query of Fig. 8b
against the XML tree of Fig. 8a using EQ (Fig. 16).

The key principle of an eager streaming algorithm is that
when a branching predicate is satisfied, the algorithm checks
whether the candidate outputs within the scope of the newly
satisfied predicate become solutions. Specifically, whenever
a branching predicate of a node becomes true, EQ checks
whether the branching predicates of all the ancestor nodes
also become true. During the checking process, matches that
are not useful for determining solutions (redundant matches)
are discarded. Candidate outputs are returned to the user as
soon as they can be determined to be solutions. Also, EQ
stores at open events only nodes that possibly contribute to
new solutions. In Fig. 15, when 〈a2〉 is read, a2 is not stored
in its stack since entry a1 has trivially satisfied its branching

predicates (node A has no predicate child nodes). When 〈c1〉
is read, the predicate for C in the boolean array of b2 in stack
SB is evaluated to true. Subsequently, the predicate for b1 is
also evaluated to true. Then, b2 is determined to be redun-
dant and is discarded. Intuitively, a redundant match (like b2)
at the top of its stack might hide a “good” match (i.e., one
that has satisfied its predicates, like b1 here) below it. Stor-
ing a redundant match would not only cost memory space
but also delay the return of solutions. Finally, when 〈d1〉 is
read, d1 is determined to be a solution and is returned to the
user right away. Notice that, during the evaluation, EQ stores
zero candidate outputs, compared with one for LQ and two
for TwigM.

Similar eager evaluation strategies as described previously
were also used by the streaming algorithm presented in [85,
86]. The eager evaluation can save substantial memory space
and provide better query response time. First, storing query
node matches can be partially avoided. Second, it can be
determined earlier which candidate outputs can be returned
to the user as solutions (even without buffering them). Exper-
imental results in [43] show that among the tested algorithms
(XSQ [82], TwigM [27], LQ, and EQ), EQ has the best space
performance without trading off the time performance of LQ
(which shows the best time performance).

Algorithm StreamTX. In [48], a streaming algorithm called
StreamTX is presented which supports TPQs with multi-
ple output nodes. StreamTX adapts the twig join algorithm
T wigStack [21] so that it can compute TPQs over stream-
ing XML data. Algorithm T wigStack is a holistic algorithm
that represents the state of the art for evaluating TPQs over
XML data that are preprocessed (each node is assigned a
positional representation) and stored in a database. In order
to find all the pattern matches of a TPQ over an XML tree,
T wigStack first decomposes a given TPQ Q into multiple
root-to-leaf path patterns and computes solutions to those
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path patterns using the aforementioned path stack technique.
Then, it merge-joins solutions of the path patterns to pro-
duce the TPQ answer. When all edges in Q are descendant
relationships, T wigStack is CPU and I/O optimal for com-
puting Q [21]. There is one issue that needs to be addressed
for adapting T wigStack to the streaming evaluation: at each
evaluation step, T wigStack needs to access multiple input
XML tree nodes in order to determine whether the node
under consideration should be stored in its stack. However,
in the streaming environment, the document is sequentially
scanned and each tree node can only be accessed in the pre-
order appearance of the node in the XML tree. As a con-
sequence, when a determination needs to be made about
the storage of a node e in its stack, the relevant nodes may
have not arrived yet (node e is characterized as blocked). For
instance, consider evaluating the query of Fig. 8b against the
XML tree of Fig. 8a. When 〈a1〉 is read, T wigStack needs
the presence of b1 and c1 in order to determine if a1 should be
pushed onto its stack. However, none of b1 and c1 has arrived
yet. Clearly, it would not be efficient for StreamTX to buffer
a1, a2, b1, and b2 before it reaches c1 and start its matching
process by accessing the buffered nodes. Instead, StreamTX
uses a blocking technique which attempts to continue the
evaluation process with non-blocked nodes which have been
buffered. Nevertheless, in the worst case, StreamTX still has
to buffer all the incoming tree nodes in memory. In order to
minimize the buffering space, it uses two optimization tech-
niques. The first one buffers at open events only nodes that
are ancestor matches. The other one prunes at close events
non-candidate match nodes from buffers.

Experimental results in [48] show that StreamTX has
superior performance over the array-based algorithm
TurboXPath [54] on queries with multiple output nodes.
However, the time and memory performance of StreamTX
might be inferior to algorithms LQ and EQ [43] for the fol-
lowing reasons: (1) StreamTX needs to compute all the pat-
tern matches of the given query. Those pattern matches are
projected over output nodes to produce the final answer. As
multiple pattern matches may contribute to the same solu-
tion, like the array-based approach, an additional process is
needed to eliminate duplicate solutions at the final stage. In
contrast, LQ and EQ compute query answers without enu-
merating query pattern matches; and (2) there is an overhead
in StreamTX associated with finding non-blocked nodes for
each incoming open event during evaluation.

Algorithm Twig2Stack. A twig join algorithm called
Twig2Stack presented in [25] can be viewed as a stack-
based streaming algorithm. Unlike the original (non-stream-
ing) stack-based algorithm TwigStack [21], Twig2Stack does
not decompose the input TPQ into root-to-leaf path patterns.
Therefore, it does not need to merge-join path solutions to
produce the query solutions. Instead, it evaluates the input
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Fig. 17 The hierarchical stack encoding used by Algorithm
Twig2Stack [25]: an example

TPQ against XML data in a bottom-up way. The bottom-
up evaluation entails a post-order document traversal. How-
ever, in the streaming context, nodes arrive in the pre-order
appearance in the document tree. In order to address this
discrepancy, Twig2Stack maintains during the evaluation a
global stack for the nodes that are on the same path of the
XML tree. Solutions to twig patterns (subpatterns of the input
TPQ) are incrementally encoded using a proposed hierarchi-
cal stack encoding scheme. Figure 17 shows an example of
the hierarchical stack encoding. A node above another node
in a stack is an ancestor node. A pointer from a node in a
stack to a node in another stack indicates that the former
node is an ancestor of the later one. Query solutions encoded
in the hierarchical stacks are enumerated at the final stage.
Algorithm Twig2Stack needs to store all the relevant data in
memory for its matching process. As such, it is categorized
by [48] as an in-memory evaluation algorithm.

3.5.3 Streaming algorithms for partial tree-pattern queries

Existing XML streaming algorithms focus almost exclusively
on tree-pattern queries (TPQs). Requirements for flexible
querying of XML data have motivated recently the consider-
ation of classes of queries that are more general and flexible
than TPQs. These queries could not be supported by existing
algorithms.

Partial tree-pattern queries. A recent XML streaming
paper [101] considers the class of partial tree-pattern queries
(PTPQs) which generalizes and strictly contains TPQs, TPQs
with reverse axes [14,78] and dag queries [14,79]. PTPQs
are not restricted by a total order for the nodes in the paths
of a tree pattern. They can restrict nodes to lie on the same
path even without specifying structural relationships between
them, while permitting some or all of these nodes to be shared
by multiple paths. PTPQs can express XPath queries with the
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Fig. 18 Fragments of two XML bibliography documents
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Fig. 19 a Two TPQs and b a PTPQ for querying the XML bibliography
of Fig. 18

reverse axes parent and ancestor along with the is-same-node
node equality operator of XPath. These constructs are impor-
tant since they provide a lot of flexibility for querying XML
data sources with different structures or for querying a single
XML data source without fully knowing its structure.

As an example, consider two streaming XML documents
containing bibliographic information from two different data
sources that organize articles differently, one grouping them
by year and author, and the other grouping them by year and
subject. Figure 18 shows fragments of these two XML doc-
uments. Suppose that we want to find articles on the subject
“XML” authored by “Mary” in year “2010.” This require-
ment can be expressed by a single PTPQ which is graphi-
cally represented as an annotated directed acyclic graph (dag)
shown in Fig. 19b. The annotations [p1], [p2] and [p3] indi-
cate that the annotated nodes and their ancestor nodes belong
to paths p1, p2 and p3, respectively. In contrast, two TPQs
(shown in Fig. 19a) are needed to retrieve the same infor-
mation from the two XML documents. It is not possible to
retrieve the same information from both documents using a
single TPQ. The reason is that TPQs impose a total order
for the nodes in every one of their paths. It is not possible in
a TPQ to indicate that two nodes, say author and subject ,
occur in a path without specifying a precedence relationship
between them: node author has to precede node subject
or vice versa. It is shown that a PTPQ is equivalent to a set
of TPQs [101]. However, the number of these TPQs can be
exponential on the size of the PTPQ. Clearly, PTPQs cannot
be evaluated efficiently using efficient streaming algorithms
for TPQs, since an exponential number of them might need
to be executed. Therefore, ad hoc algorithms are needed for
the efficient evaluation of PTPQs.

PTPQs were initially introduced in [93]. Evaluation algo-
rithms for partial path queries (PTPQs with a single “path”)
were presented in [90,97,100]. Partial path queries are not a
subclass of TPQs but they form a subclass of PTPQs. Eval-
uation algorithms for PTPQs on persistent XML data were
presented in [98,99].

Streaming algorithms for PTPQs. Two efficient streaming
algorithms for PTPQs, PSX and EagerPSX, are presented in
[101]. Algorithm PSX exploits the annotated dag represen-
tation of PTPQs and uses a stack-based technique to com-
pactly encode query matches. It avoids processing redundant
matches (i.e., matches of the query dag that do not contrib-
ute to new results), and outputs results incrementally (i.e.,
as soon as they are produced). A theoretical analysis of PSX
shows polynomial time and space complexity [101]. When
the input query is a TPQ, PSX has the same time and space
complexity as the state of the art streaming algorithms for
TPQs [43]. An experimental evaluation shows that, compared
to Algorithm Xaos [14] which is the only known streaming
algorithm that supports TPQs extended with reverse axes,
PSX performs better by orders of magnitude while consum-
ing a much smaller fraction of memory space.

In order to satisfy stringent requirements of current
streaming applications on query response time and memory
consumption, a new polynomial time and space algorithm,
EagerPSX, which extends PSX,was designed in [101]. One
of its key features is that its evaluation strategy eagerly deter-
mines whether node matches should be returned as solutions
to the user. An eager strategy is also used to proactively detect
redundant matches. Results of an experimental comparison
with PSX show that EagerPSX not only achieves better space
performance without compromising time performance, but
also greatly improves query response time for both simple
and complex queries, in many cases, by orders of magnitude.

Summary. The stack-based algorithms extend the array-
based algorithms by exploiting the path stack technique to
compactly encode a potentially exponential number of query
pattern matches in polynomial space. This way, they avoid
the enumeration and explicit storage of query pattern matches
during execution. In general, they have performance advan-
tages over the automaton-based and array-based algorithms.
This has been confirmed experimentally in [27,43,48]. The
table in Fig. 20 summarizes the main features of the algo-
rithms of the XPath streaming evaluation algorithms dis-
cussed in this paper.

Among the stack-based algorithms, LQ and EQ [43]
seem to be the most competitive XPath streaming algo-
rithms. They both achieve the best time performance in
the streaming environment. They also have better mem-
ory performance than other streaming algorithms that use
the lazy or eager strategy, respectively. For TPQs involv-
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Fig. 20 The comparative table for XPath streaming evaluation algorithms. Notation summary: |Q| is the size of query Q, |T | is the size of the
XML tree T, r is the recursion depth of Q on T, B is the fan-out Q, H is the height of Q, and h is the height of T

ing multiple output nodes, StreamTX [48] seems to be the
best one. It shows superior performance over the array-based
algorithm TurboXPath [54] on queries with multiple output
nodes.

3.6 Streaming algorithms for XPath queries with ordered
axes

Streaming algorithms for processing XPath queries that
involve only downward un-ordered XPath axes (child,
descendant) can be extended for handling XPath queries
with ordered axes (following-sibling, following, preceding-
sibling, and preceding) [75,76,78,81,86].

Computing queries with backward ordered axes preceding
and preceding-sibling implies retrieving pattern matchings
against history stream. For instance, consider evaluating an
XPath query //A/preceding::B against an XML doc-
ument T . For each current stream node a matching A, we
need to find all the embeddings of pattern //B in T each of
which maps B to a node b preceding a in T . Those b nodes
preceding a in T are descendants of node a’s ancestors in T .
The computation can be performed in a bottom-up manner
by exploiting properties of stacks to record pattern matches
needed for later use. Stack-based streaming algorithms for
un-ordered XPath axes can be easily adapted to perform the
computation. A stack-based algorithm presented in [86] is
capable of processing queries involving backward ordered

(a) (b)

Fig. 21 TPQ representations for XPath queries with ordered axes. a A
TPQ for //A/preceding::B, b A TPQ for //A/following::B

axes in their predicates (e.g., //A[preceding::B]).
In [76], a processing technique is presented for computing
XPath queries whose backward ordered axes do not appear in
predicates (e.g., //A/preceding::B). The given query
is translated into a TPQ whose nodes are annotated with
additional constraints to capture the semantics of backward
ordered axes. Figure 21a shows a TPQ representation of
//A/preceding::B. The leftmost node of the aug-
mented TPQ is the return node of the query. The annotated
constraints (denoted by the horizontal arrows among nodes)
indicate that nodes of predicate matches for verifying the
membership of a candidate match in the result must come
after the node of the candidate match in the stream. The
augmented TPQ is computed against the input data using
a stack-based algorithm.

Computing queries with forward ordered axes follow-
ing and following-sibling implies that the computation of
pattern matchings refers to nodes which are still in the
stream. For instance, consider evaluating an XPath query
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//A/following::B against an XML document T .
For each current stream node a matching A, we need to find
all the embeddings of pattern //B in T each of which maps
B to a node b in T that has not yet arrived. Those b nodes
following a in T are descendants of node a’s ancestors in T .
Three different streaming algorithms have been developed to
compute queries with forward ordered axes.

As discussed in Sect. 3.3, SPEX [78] computes an XPath
query by mapping it to a network of transducers. Like child
and descendant axes, each forward ordered axis in an XPath
query is mapped to a transducer. The transducer correspond-
ing to a forward ordered axis is configured to move annota-
tions of nodes to the next siblings of their ancestors (instead
of moving them to the children or the descendants of these
nodes).

The Layered NFA method for XPath queries with unor-
dered axes discussed in Sect. 3.3 is also used to compute
XPath queries that have forward ordered axes [81]. Recall
that the approach uses the concept of axis scope to keep track
of the execution status and maintain the buffered tree. The
scope of an axis for a context node denotes the period dur-
ing evaluation when the context node may become effective.
The only difference of the computation of ordered axes lays
in the determination of the scope. The scope of a forward
ordered axis depends on the predicate results of the step that
matches a context node. When the context node satisfies its
predicates, it will remain effective until the end of the stream
is reached. Otherwise, it is useless and it is removed from the
buffer. In contrast, the scope of a non-ordered axis (child or
descendant) is determined by the open and close events of
the context node.

A stack-based algorithm for computing XPath queries
with forward ordered axes which do not appear in predi-
cates (e.g., //A/following::B) is presented in [75]. As
in [76], the input XPath query is translated into a TPQ whose
nodes are annotated with additional constraints to capture the
semantics of forward ordered axes. Figure 21b shows a TPQ
representation of //A/following::B. In the augmented
TPQ, the rightmost node is the return node of the query. Both
algorithms in [75,76] essentially extend LQ [43] to compute
augmented TPQs.

3.7 Streaming algorithms for evaluating multiple XPath
queries

Different applications may require finding concurrently the
matching elements of multiple queries against the stream-
ing XML document. This is the XML multiquery stream-
ing evaluation problem. A number of approaches have been
developed to handle this problem [23,26,31,62,73]. Most of
them use automaton-based methods to retrieve query pattern
matches.

Some approaches have focused on a restricted fragment of
XPath like path expressions [23,62]. Given a set of path que-
ries and a streaming XML document, mq X -scan [62] buffers
in memory a data path from the root of the XML document to
the last seen element (current path) and computes each input
query against the current path. The process continues until
the end of the stream is reached. To enable real-time process-
ing, a large number of path queries on the streaming XML
data, AFilter[23] exploits the sharing opportunities across
different queries. Specifically, it indexes the input queries to
identify both common subquery prefixes and suffixes. These
common subexpressions among queries need to be computed
only once and their matches are shared across the queries. To
avoid enumerating an exponentially large number of active
states during the automata execution, AFilter uses a lazy
mechanism as XPush[46] to retrieve pattern matches.

One processing scheme for multiple TPQs decomposes
each TPQ to its constituent paths, evaluates the resulting path
queries, and merge-joins path matches to produce query solu-
tions [26,31]. YFilter [31] builds a NFA to represent the set of
path queries, and supports shared processing of the common
prefixes of all these paths. Unlike YFilter which evaluates
path queries top-down (i.e., from query root to leave) and
exploits the sharing of common prefixes, GFilter [26] uses
a bottom-up approach which evaluates path queries bottom-
up and exploits the sharing of common suffixes. Moreover,
GFilter exploits the hierarchical stack encoding scheme pre-
sented in Twig2Stack [25] (See Sect. 3.5.2) to encode the
path matches in polynomial time and space. This technique
resolves the exponential path enumeration problem that can
occur with YFilter [31].

XTREAM [73] uses a different scheme to evaluate multi-
ple TPQs. It constructs for each TPQ a tree-structured NFA,
where each state corresponds to a node in the TPQ. The que-
ries are evaluated by traversing the NFAs with respect to the
incoming stream events. Two runtime stacks are used to keep
track of active states during evaluation. Unlike YFilter [31]
and GFilter [26], XTREAM does not exploit sharing oppor-
tunities across different queries.

Index-Filter [20] extends YFilter [30] through the path
stack technique [21] to compute query matches of multi-
ple path pattern queries on XML document streams. How-
ever, Index-Filter is not a strict streaming algorithm since it
requires the XML document to be pre-processed and indexed.
Algorithms for finding query matches of multiple TPQs on
XML document streams are presented in [61]. Similar to
Index-Filter, they are not strict streaming algorithms in that
they require scanning the input data in more than one pass.

4 XQuery streaming evaluation and optimization

Query language XQuery [6] has evolved into a power-
ful and widely accepted query language for XML data
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Fig. 22 The comparative table for XQuery streaming evaluation engines

over the past years. As mentioned in Sect. 1.1, an XQuery
query is based on a FOR-LET-WHERE-RETURN (FLWR)
construct. The FOR and LET clauses contain a series of var-
iable names and XPath expressions. The WHERE clause
defines selection and join predicates. The RETURN clause
creates the output XML structure. Consider, for instance, the
following simple XQuery query:

FOR $x in //bib
WHERE $x/year = “2011′′
RETURN 〈result〉 {$x//ti tle} 〈/result〉
The query returns the ti tle of articles published in year 2011,
on the XML data in Fig. 1b. The query variable x is bound
to a sequence of bib nodes as computed by the expression
//bib. In addition, each binding must satisfy the condition
specified in the WHERE clause: the value of its child node
year in the XML data should be 2011. For each such binding
of x , the RETURN clause is invoked to construct an XML
fragment which consists of its descendant element ti tle in the
data.

Besides FLWR constructs, an XQuery query can contain
an ORDER BY clause to specify the sort order of the results.
Aggregate functions such as max(), min(), sum(), count(),
avg() and a GROUP BY operator (introduced in XQuery
1.1) are supported by XQuery as well.

XQuery expressions can be nested within FLWR clauses
to build hierarchical expressions. The compositional syntax
of XQuery makes XQuery much more expressive than XPath.
In the streaming context, the rich semantics of XQuery makes
the evaluation and optimization problem more challenging
than that of XPath since: (1) the nested syntax of XQuery
often implies an evaluation plan that uses the nested-loop
procedure. Such an evaluation plan requires multiple passes
over the data and results in poor evaluation performance.
A careful analysis of the semantics of the XQuery query is
needed to find an efficient query plan; (2) in processing an
XML document stream, XPath expressions are evaluated as
node-selecting queries whereas XQuery expressions are used
for specifying XML data transformations.

XQuery is useful not only to query XML data stored in
databases, but also to process XML data streams. Various

XQuery stream query engines have been developed recently,
such as X SM [66], T ukwila[52], YFilter [31], Galax
[36,69], XQRL [36], FluXQuery [58,57], TurboXPath [54],
Raindrop [91,92], and XQPull [33]. Most of these engines
support only a subset of the XQuery language.

Unlike relational streaming data, which are flat and con-
sist of attribute-value pairs or tuples, XML streaming data
are nested. Also, unlike relational streaming query engines,
which focus on grouping and aggregation and window oper-
ations [38], XML streaming query engines focus on physi-
cally matching query patterns over XML data streams and
constructing the results. Even though efficient algorithms
are proposed to process grouping operations over persis-
tent XML data [96], it is not known how they can be
extended to handle group by queries over XML stream-
ing data. FlowGraph [64] performs static data dependency
analysis on queries for generating query execution plans that
allow computing XQuery aggregations on the fly. Extending
XQuery to handle window-based aggregations over XML
streams is explored in [17].

Below we classify the existing XQuery stream query
engines by their processing paradigms and provide a high
level description for each paradigm. Then, we overview
the existing XQuery optimization techniques for processing
XML stream data. Figure 22 provides a comparative view
for the XQuery streaming engines in terms of the supported
fragment of XQuery, the adopted processing paradigm and
the optimization scheme.

4.1 XQuery streaming evaluation paradigms

The evaluation approaches taken by the existing XQuery
stream query engines largely follow four processing par-
adigms: the transducer-based paradigm, the algebra-based
paradigm, the automata-algebra paradigm, and the pull-based
paradigm. Note that the processing model of TurboXPath [54]
does not strictly follow one of the above four paradigms.
Rather, it uses the array-based approach to compute a parse
tree with multiple output nodes (a query plan compiled from
the given query) against the input XML data stream and pro-
duces a sequence of tuples of XML fragments matching the
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output nodes. We have described the computation process of
TurboXPath in Sect. 3.4.

The transducer-based paradigm. This paradigm adapts tra-
ditional transducers [47] augmented with buffers to process
XQuery on XML data streams. X SM [66] is one noticeable
XQuery engine that follows this processing paradigm.

X SM first compiles a query into a network of trans-
ducers. Each transducer corresponds to a subexpression of
the query (e.g., a path expression). A transducer takes as
input one or more XML data streams and produces one
or more output streams. It may be additionally associated
with input/output buffers and a set of read/write pointers.
Buffers are used to store variable bindings. Then, the net-
work of transducers is reduced to a single transducer by
repeatedly composing a pair of transducers linked via buf-
fers into a single transducer. X SM is designed to process
non-recursive XML data. It supports a subset of XQue-
ry whose path expressions do not have descendant axes.
In order to reduce computation, for instance, to elimi-
nate unnecessary transition states, schema information is
exploited.

While the transducer-based paradigm is clean and ele-
gant, it has two potential problems: (1) XQuery engines
following this paradigm are difficult to generalize to sup-
port full XQuery. The reason is, in this paradigm, every
XQuery construct has to be expressed by a transducer.
This is very hard even for simple XQuery constructs,
such as sequence concatenation and element construction
[32]; (2) automata operate at a low level of abstraction
which involves all internal details of the computations. As
a result, it may be difficult to integrate automata-based
approaches with algebraic-based approaches for query opti-
mization.

The algebra-based paradigm. This processing paradigm
produces an algebraic query plan for a given XQuery and
uses algebra operators to evaluate queries on XML data
streams. One of its advantages over the transducer-based par-
adigm is that it offers more query optimization opportunities,
since optimizations can be developed for each operator sep-
arately.

A number of XQuery engines adopt the algebra-based
processing paradigm. One example is Galax[36], where
streaming operators are used in the physical query algebra.
These operators are event-based and are evaluated directly
over the events in the input stream rather than over buffered
data. A feature of Galax is its blending of stream process-
ing with traditional evaluation techniques (e.g., index-based
access, join, and query unnesting) for persistent XML dat-
abases. Without introducing dedicated streaming operators,
FluXQuery [58,57] specifies which parts of the query are
evaluated directly on the stream and which are evaluated
over buffered data. This is in contrast to Galax [36] which

specifies the physical query plans in detail. Finally, the work
present in [34] adapts XQuery algebras [35] for conven-
tional query processing on stored XML data to the streaming
context.

The automata-algebra paradigm. This paradigm models
the query semantics as a combination of automata and alge-
braic operations. A given XQuery is decomposed into two
parts: one part uses automata to process all the path expres-
sions in the query and the other part is processed based on
algebraic techniques. Accordingly, the query execution pro-
ceeds in two stages: the pattern matching stage and the post-
processing stage.

The pattern matching stage converts the input XML
stream into a stream of tuples by binding variables to the
nodes matched by XPath expressions. Automata are used to
compute pattern matchings of XPath expressions against the
input XML data stream. The matched nodes are combined
to form tuples which are forwarded to the post-processing
stage. The pattern matching stage also incrementally main-
tains a tree which represents some of the parsed XML stream
events for later use. The post-processing is performed by an
algebraic engine which filters, combines, and restructures the
tuples to produce the final query answer. Most of the query
operators used in this stage are similar to the standard rela-
tional equivalents. In order to accommodate the streaming
environment, tuples are incrementally produced in the first
stage and are pipelined to the second stage so that query
results can be delivered to the user on the fly. As one can
see, unlike the transducer-based paradigm which uses stream
events as the processing unit throughout the evaluation pro-
cess, the automata-algebra paradigm uses two processing
units (stream events and tuples) in different stages.

The automata-algebra paradigm has the following bene-
fits: (1) it can utilize the automaton-based methods developed
for the XPath streaming evaluation, and (2) it can leverage
the mature techniques from relational query processing.

A number of XQuery stream querying engines adopt the
automata-algebra paradigm including T ukwila[52], YFilter
[31], and Raindrop [92]. Besides using automata, Raindrop
additionally defines a class of stream algebra operators to
perform data navigation, variable binding, and structural join
operations. These algebra operators allow Raindrop to take
advantage of algebra-based optimizations for streaming eval-
uation. We will present the optimization techniques of Rain-
drop later. A unique feature of YFilter is the employment
of an NFA to represent the full set of navigation paths and
the support of shared processing of the common prefixes
of all these paths. YFilter uses a schema-based optimization
technique for reducing computation at the post-processing
stage. Unlike YFilter and Raindrop, the optimization opera-
tions in T ukwila are cost-based and take place at the physical
level.
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The pull-based paradigm. This paradigm has two distinc-
tive features: (1) the construction of a query plan as an opera-
tor pipeline, and (2) the use of a pull-based processing model
on input streams. The goal of the pull-based paradigm is to
minimize unnecessary data buffering between operators. In
essence, this is an instance of the classic database principle
of pipelining. Both XQRL [36] and XQPull [33] adopt this
processing paradigm.

In this paradigm, a given XQuery is translated into a pipe-
line of operators, called iterators, with each XQuery syntac-
tic structure (e.g., a path expression or a FOR clause) being
mapped to an iterator. The iterators are connected in the same
way as the corresponding XQuery syntactic structures are
composed to form the query. Each iterator is equivalent in
functionality with an algebraic operator used by relational
query engines. At run-time, the iterators process the stream
of events through the pipeline one-event-at-a-time in a pull-
based fashion: an iterator delivers a stream event to the output
only when requested by the next iterator in the pipeline. To
deliver one stream event to the output, an iterator requests
from the previous iterator as many events as necessary to
produce a single event. The execution continues until the
end of the input stream is reached.

The pull-based paradigm has the following benefits:
(1) the compositional approach of constructing query plans
leads to concise, clean, and extensible implementations [33],
and (2) the pipeline-based execution model avoids buffering
intermediate results when possible.

Nevertheless, the pull-based paradigm suffers from three
potential problems: (1) it incurs the overhead of method calls
to handle an event, the number of which is proportional to the
size of the pipeline. In contrast, the cost of handling an event
in other paradigms is typically constant; (2) a custom wrapper
is required for the operators to process the pull-based events;
and (3) the execution of iterators needs to be synchronized
and this complicates programming considerably.

4.2 XQuery streaming optimization

4.2.1 Problem statement

The semantics of XQuery requires a query engine to com-
pute the subexpressions of a query only after the referred
nodes have been fully read from the input XML stream and
may be assumed available in main memory buffers [58]. In
the streaming context, the input cannot be completely loaded
in memory prior to query evaluation. Nevertheless, a query
engine has to buffer some XML nodes until it can verify that
they are not part of the query answer. A large main memory
buffer requirement may lead to a significant CPU consump-
tion due to the operation cost on the buffered data. For this
reason, a primary optimization target on XQuery streaming

evaluation is the minimization of main memory consumption
and efficient buffer management. Indeed, considerable work
on optimizing XQuery streaming evaluation has focused on
developing buffer optimization techniques for dealing with
and reducing the amount of data buffered in main memory
[58,64,69,87,91]. A more recent work [71] proposed a solu-
tion which bounds the amount of data buffering by building
a stream synopsis. In this survey, we focus on the problem of
optimizing XQuery streaming evaluation as a buffer optimi-
zation problem.

Schmidt et al. [87] list three desiderata for the buffer man-
agement of an XML streaming evaluation engine: (1) only
data that is relevant for query evaluation is stored in the
buffer; (2) data are not buffered longer than necessary;
and (3) no multiple copies of data is kept in buffers. To
be optimal for (1), a system should be able to check the
satisfiability of XQuery expressions, which however is an
undecidable problem [15]. Therefore, XQuery engines that
target on buffer optimizations have to rely on a best-effort
approach.

Buffer optimization techniques often exploit schema con-
straints to: (1) statically infer the buffers which are nec-
essary to avoid superfluous buffering [58]; (2) predict the
non-occurrence of a certain pattern within a context; and
(3) detect the failure of predicates early on so as to discard
earlier the data which fail on these predicates [91]. Utiliz-
ing schema information to optimize XML filtering perfor-
mance is addressed in [88]. A common assumption here is
that XML streams are generated conforming to a pre-defined
schema such as document type definition (DTD) and XML
Schema.

4.2.2 Optimization schemes

We categorize the existing XQuery streaming optimization
techniques into the following five optimization schemes:
query rewriting, data pre-filtering, early data filtering, data
output unblocking, and early buffer releasing. These opti-
mization techniques use either static or dynamic analysis or
a combination of the two. The static analysis technique is
performed at compile time. Example applications of static
analysis include deriving constraints or inferring types from
schema information, analyzing queries regarding the rele-
vance of data to query evaluation, and analyzing the data
dependencies to transform queries. Many XQuery stream-
ing engines [31,54,58,64,66,69,91] adopt static analysis for
query optimization. The dynamic analysis is performed at
runtime, where an optimization decision is made based on
the current buffer content, the current state of query evalu-
ation, and the part of the input read so far. Eager streaming
evaluation techniques introduced in Sect. 3.5 use dynamic
analysis. Dynamic analysis is also used in [87] for imple-
menting buffer releasing optimization.
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Fig. 23 An example of the
application of the XML
document projection technique
in Galax . a An XML tree T, b
an XQuery query Q, c two
projection paths of Q, d the
projected XML tree [69]

(a) (b) (c) (d)

Below, we describe the five optimization schemes at the
conceptual level. More technical details for each optimiza-
tion technique can be found in the referenced papers.

Query rewriting. The query rewriting intends to translate
a query expression generated by the query parser into an
equivalent expression that is cheaper to evaluate. It is gener-
ally rule-based and uses static analysis over the input query.
A number of XQuery streaming engines adopt this optimi-
zation scheme, including XQRL [36], FlowGraph [64], and
Raindrop [91,92].

XQRL [36] develops a set of heuristic query rewriting
rules. Examples of the rewriting rules include query normal-
ization rules such as the rule of unnesting FLWR expressions
in the FOR and RETURN clauses, rules for reducing com-
putation such as the rule of translating the descendant axis to
a sequence of child axes based on schema information, and
rules for enabling streaming evaluation such as the rule of
translating expressions with backward axes (e.g., parent and
ancestor) into expressions with only forward axes whenever
possible [80].

FlowGraph [64] rewrites XQuery queries for stream-
ing evaluation by statically analyzing data dependencies
between the variables of the input query. Observing that
XPath expressions in nested loops often incur the traversal
of a data stream multiple times, FlowGraph develops tech-
niques that rewrite XQuery queries that involve nested-loop
XPath expressions so that they can be executed with only a
single scan of the data stream. The techniques include unroll-
ing nested FOR expressions, finding the common prefix of
the XPath expressions that traverse a data stream multiple
times, and pipelining the processing to remove unnecessary
buffering between two query operators.

Data pre-filtering. Document Object Model (DOM) [1]
is a data model which represents an XML document as a
(ordered) node-labeled tree. Conventional in-memory XPath
or XQuery engines [40–42,56] load the entire XML docu-
ment in memory often by constructing a DOM tree before
processing it. These in-memory engines consume main mem-
ory in large multiples of the size of the input XML doc-
uments and therefore face a scalability issue on larger
XML document inputs [69]. In order to reduce memory
requirements in XQuery processors, Galax [69] develops

a data pre-filtering technique called XML document pro-
jection. This technique resembles promoting projections
before a join in relational queries. Based on a static anal-
ysis of the structural requirements of the query, it prunes
all data that are certain to be irrelevant to query evalua-
tion and stores in memory the projected document. This
way, the in-memory evaluation can be conducted on the
projected XML document whose size is generally smaller
than the original one. Figure 23 shows an example of apply-
ing the XML document projection technique for evaluat-
ing the XQuery query Q on the XML tree T . As one
can see, the resulting projected XML tree (Fig. 23d) is
much smaller than the input XML tree T . Figure 23c
shows the two projection paths of Q obtained through a
static analysis on Q.

The projection technique of Galax [69] is further refined
in [16,19] to reduce the pruning overhead and improve
the pruning precision. The technique presented in [19] uti-
lizes a structural index of the data and performs the prun-
ing at run-time. The work presented in [16] extends the
projection technique to support backward axes as well as
query predicates by taking advantage of the schema infor-
mation.

Early data filtering. In the streaming context, a query is
computed by sequentially scanning the data only once. Nor-
mally, there is no way to jump to a certain portion of
the stream. However, by exploiting schema constraints, the
sequential scanning can be expedited by skipping compu-
tations that do not contribute to the final answer. This is
achieved through techniques on early detecting failed query
predicates or predicting the non-occurrence of a certain pat-
tern within a bound context.

As an example, consider an XQuery query: FOR $x in
/A[B] WHERE $x/C = ′′1′′ RETURN $x//D,$x//E.
For a binding x on an A node in the input, a naive execu-
tion strategy would check the existence of its child B node
and the satisfaction of the predicate and produce the output
after the end event of the bound node has arrived. Five com-
putations have to be performed on each binding x . These
are: (1) finding pattern /B, (2) finding pattern /C, (3) eval-
uating whether a matched C node contains “1”, (4) buffer-
ing nodes matching //D, and (5) buffering nodes matching
E. Now suppose the following DTD is given: <!ELEMENT
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A(B?,F,C+,D*,E*)>. From the DTD, we know that ele-
ment F is a mandatory child of element A. When a start
event of F is encountered but no B node has been located,
we can determine that no results can be produced from the
subtree rooted at the current binding on A in the input XML
document. We can then skip all the remaining computations
(2)–(5). This can lead to significant performance improve-
ment when there are a large number of C , D, and E nodes in
the subtree.

Raindrop [91,92] realizes the early filtering optimization
scheme by transforming the query plan based on a set of
semantic optimization rules. The rules utilize the constraints
of ordering, occurrence, and type choice that are derived from
a given DTD. For instance, in the previous example, the eval-
uation of the query can be optimized using an order rule
which indicates that the open event of F is an ending mark
of the pattern /B in the binding on A.

The early data filtering optimization technique can reduce
the memory usage since: (1) buffered data failed on the pred-
icates can be purged from the buffer early, and (2) data buf-
fering can be avoided due to skipped computations.

Besides using schema knowledge, another way of realiz-
ing the data filtering strategy for optimizing queries is to use
indices on XML streams [45]. The streaming index SIX [45]
provides the start and end positions of each element in the
stream. During evaluation, irrelevant elements are skipped
by jumping to their end positions.

Data output unblocking. During query execution, data may
need to be buffered before being delivered to the output in
two cases: (1) pattern matching results need to be produced
according to a specified order, and (2) some predicates for
determining the membership of a pattern matching result in
the output may have not yet be satisfied. However, if it is
known that the order of the data considered for output coin-
cides with the order of the data in the input (for Case 1), or
that, through an early detection, predicates are known to be
satisfied (for Case 2), results can be delivered on the fly with-
out incurring unnecessary data buffering. This way, the main
memory consumption can be reduced significantly. Usually,
an order constraint among matched query patterns for output
can be obtained through static analysis of data dependencies
and with schema knowledge.

For example, consider the following XQuery query: FOR
$x in /A/B, $y in $x/C, $z in $x/DRETURN
〈result〉 {$y} {$z} 〈/result〉. Without schema
information, for each binding of x on a path /A/B, an XQue-
ry engine would normally have to buffer all stream D nodes
matching the query node D before delivering the results.
However, given the DTD <!ELEMENT A(B*)> <!ELE-
MENT B(C*,D*)>, we know that the order of nodes con-
sidered for output coincides with the order of the data in
the input. Therefore, the C and D nodes can be output the

moment their open events are encountered. As a result, no
data buffering is needed.

This optimization technique is adopted by both
FluXQuery [57,58] (Case 1 only) and R-SO X [94] (both
cases). R-SO X enhances the static optimization techniques
of Raindrop [91,92] to support runtime optimization. Both
FluXQuery and Raindrop use static analysis and exploit
schema information to rewrite query plans. While the goal of
FluXQuery is to minimize the buffer size, Raindrop focuses
on reducing unnecessary computations. These two goals are
complementary since skipping unnecessary computations
reduces the buffer size.

Early buffer releasing. In order to successfully reduce the
main memory consumption, an effective technique is needed
to timely remove data from the buffer once they are no longer
relevant to query evaluation. The key to realize the early
buffer releasing is to identify the moments when the evalua-
tion of certain subexpressions has finished.

In [87], an approach called active garbage collection is
presented to realize the early buffer releasing. The approach
centers around the notion of relevance of data to query eval-
uation. It combines the technique of XML document projec-
tion for pre-filtering data irrelevant to query evaluation [69]
and the technique of garbage collection for automatic mem-
ory management in programming languages [95]. Briefly,
the approach proceeds as follows. Based on a static analysis
of the structural requirements of the query, it extracts pro-
jection paths [69] from the query. While reading the XML
input, it prefilters it based on the extracted projection paths,
and assigns roles to each XML node copied into the buffer.
The roles of a node capture the situation where the node
is matched by multiple projection paths and even multi-
ple times. During query evaluation, the roles of nodes are
reduced. The moments for reducing the roles of nodes are
determined at compile time. A node becomes a candidate
for removal from the buffer at runtime once it has lost all its
roles.

In contrast to the early buffer releasing scheme, the static
buffer releasing scheme determines when to purge buffers at
compile time. In the static scheme, the lifetime of a buffer
is associated with the scope of an XQuery variable. Buffers
are purged once the scope of the associated variable ends. A
potential problem of the static scheme is the duplicate buf-
fering, which can happen when an XML node is bound by
different variables (e.g., by a condition checking variable and
by a return variable) or when an XML node participates in
more than one pattern match (and this is more likely when
the query involves descendant axes and wildcards) [87]. The
duplicate buffering problem is resolved by the active garbage
collection approach through dynamic analysis [87]. By pro-
actively releasing buffers, the early buffer releasing scheme
is more effective on reducing main memory consumption
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than the static one. A number of XQuery engines, including
TurboXPath [54], FluXQuery [57,58] and FlowGraph [64],
use the static buffer releasing scheme.

5 Conclusion

We have reviewed the state of the art of XPath and XQuery
evaluation techniques against XML data streams. As this
survey has shown, most current methods for processing
queries over XML streams have focused on physically match-
ing query patterns over XML data streams and construct-
ing query results. Among the three major types of XPath
streaming evaluation techniques, the stack-based approach
seems the most efficient. Algorithms in this approach eval-
uate TPQs against XML streams in polynomial time and
space, which is a significant improvement over automaton-
based and array-based algorithms. Also, as shown in [101],
stack-based evaluation techniques on TPQs can be extended
to support a broad structural fragment of XPath that goes
beyond and strictly contains TPQs and dags. Existing XQue-
ry stream query engines, though, have mainly employed
automata-based techniques for computing XPath expres-
sions. We have identified four processing paradigms imple-
mented by existing XQuery stream query engines. Among
them, the automata-algebra paradigm seems to enjoy more
benefits as it is able to leverage both the automaton-based
methods developed for the XPath streaming evaluation and
the mature techniques developed for relational query pro-
cessing.

We have also reviewed XQuery optimization techniques
for processing XML stream data. We identified the XQue-
ry streaming optimization problem as a buffer optimization
problem. Five buffer optimization schemes were discussed.
An effective optimization scheme such as the scheme of early
buffer releasing is promising since it combines both the static
analysis technique and the (dynamic) eager evaluation strat-
egy for the streaming optimization task.

Although considerable research has been done in the
area of query evaluation on XML streams, there are sev-
eral issues that remain open in this area. We identify a cou-
ple of them below. One issue is the support of windows.
The window mechanism is used by relational stream engines
for extracting a finite relation from an infinite stream [59].
Most of the existing XQuery stream query engines sup-
port XQuery 1.0 (or a subset of it), which lacks support
for window queries [17]. As window functions have been
included as a new feature to XQuery 3.0, efficient tech-
niques need to be developed to process window queries using
XQuery.

Another issue concerns query evaluation and optimization
across multiple XML streams. Techniques that are capable of
processing queries which correlate multiple input events have

been recognized as being highly important for event process-
ing, since they allow detecting complex patterns in real-time
[50]. However, most existing techniques have focused on the
efficient evaluation of XPath or XQuery queries over a single
XML data stream. Although there has been some work on
this problem (e.g., [50]), new techniques need to be devel-
oped to support the evaluation of complex XQuery queries
over multiple XML streams.
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