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Plenty of feature selection methods are available in literature due to the availability of data
with hundreds of variables leading to data with very high dimension. Feature selection
methods provides us a way of reducing computation time, improving prediction perfor-
mance, and a better understanding of the data in machine learning or pattern recognition
applications. In this paper we provide an overview of some of the methods present in lit-
erature. The objective is to provide a generic introduction to variable elimination which can
be applied to a wide array of machine learning problems. We focus on Filter, Wrapper and
Embedded methods. We also apply some of the feature selection techniques on standard
datasets to demonstrate the applicability of feature selection techniques.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A feature is an individual measurable property of the process being observed. Using a set of features, any machine learn-
ing algorithm can perform classification. In the past years in the applications of machine learning or pattern recognition, the
domain of features have expanded from tens to hundreds of variables or features used in those applications. Several tech-
niques are developed to address the problem of reducing irrelevant and redundant variables which are a burden on challeng-
ing tasks. Feature Selection (variable elimination) helps in understanding data, reducing computation requirement, reducing
the effect of curse of dimensionality and improving the predictor performance. In this paper we look at some of the methods
found in literature which use particular measurements to find a subset of variables (features) which improves the overall
prediction performance.

The focus of feature selection is to select a subset of variables from the input which can efficiently describe the input data
while reducing effects from noise or irrelevant variables and still provide good prediction results [1]. One of the applications
would be in gene microarray analysis [1–5]. The standardized gene expression data can contain hundreds of variables of
which many of them could be highly correlated with other variables (e.g. when two features are perfectly correlated, only
one feature is sufficient to describe the data). The dependant variables provide no extra information about the classes and
thus serve as noise for the predictor. This means that the total information content can be obtained from fewer unique fea-
tures which contain maximum discrimination information about the classes. Hence by eliminating the dependent variables,
the amount of data can be reduced which can lead to improvement in the classification performance. In some applications,
variables which have no correlation to the classes serve as pure noise might introduce bias in the predictor and reduce the
classification performance. This can happen when there is a lack of information about the process being studied. By applying
feature selection techniques we can gain some insight into the process and can improve the computation requirement and
prediction accuracy.

To remove an irrelevant feature, a feature selection criterion is required which can measure the relevance of each feature
with the output class/labels. From a machine learning point if a system uses irrelevant variables, it will use this information
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for new data leading to poor generalization. Removing irrelevant variables must not be compared with other dimension
reduction methods such as Principal Component Analysis (PCA) [6] since good features can be independent of the rest of
the data [7]. Feature elimination does not create new features since it uses the input features itself to reduce their number.
Once a feature selection criterion is selected, a procedure must be developed which will find the subset of useful features.
Directly evaluating all the subsets of features (2N) for a given data becomes an NP-hard problem as the number of features
grow. Hence a suboptimal procedure must be used which can remove redundant data with tractable computations.

In this paper we will look at some of these methods developed for this purpose. In [8], the variable elimination methods
were broadly classified into filter and wrapper methods. Filter methods act as preprocessing to rank the features wherein the
highly ranked features are selected and applied to a predictor. In wrapper methods the feature selection criterion is the per-
formance of the predictor i.e. the predictor is wrapped on a search algorithm which will find a subset which gives the highest
predictor performance. Embedded methods [1,9,10] include variable selection as part of the training process without split-
ting the data into training and testing sets. In this paper we will focus on feature selection methods using supervised learning
algorithms and a very brief introduction to feature selection methods using unsupervised learning will be presented.

The rest of the paper is organized as follows. In Section 2 Filter methods are presented followed by Wrapper methods in
Section 3. Section 4 provides a brief overview of the Embedded methods. In Section 5 we present briefly other feature selec-
tion techniques for unsupervised and semi-supervised learning and in Section 6 we present a brief discussion on the stability
of the feature selection algorithms followed by Section 7 where we look at two classifiers which can be used for feature
selection. In Section 8 we present some of the results obtained by applying the feature selection algorithms and finally in
Section 9 we present the conclusion.

2. Filter methods

Filter methods use variable ranking techniques as the principle criteria for variable selection by ordering. Ranking meth-
ods are used due to their simplicity and good success is reported for practical applications. A suitable ranking criterion is
used to score the variables and a threshold is used to remove variables below the threshold. Ranking methods are filter
methods since they are applied before classification to filter out the less relevant variables. A basic property of a unique fea-
ture is to contain useful information about the different classes in the data. This property can be defined as feature relevance
[8] which provides a measurement of the feature’s usefulness in discriminating the different classes.

Here the issue of relevancy of a feature has to be raised i.e. how do we measure the relevancy of a feature to the data or
the output. Several publications [1,8–11] have presented various definitions and measurements for the relevance of a var-
iable. One definition that can be mentioned which will be useful for the following discussion is that ‘‘A feature can be re-
garded as irrelevant if it is conditionally independent of the class labels.’’ [7]. It essentially states that if a feature is to be
relevant it can be independent of the input data but cannot be independent of the class labels i.e. the feature that has no
influence on the class labels can be discarded. As mentioned above inter feature correlation plays an important role in deter-
mining unique features. For practical applications the underlying distribution is unknown and is measured by the classifier
accuracy. Due to this, an optimal feature subset may not be unique because it may be possible to achieve the same classifier
accuracy using different sets of features.

Next we will look into two ranking methods which will help us understand the relevance of a feature. For the rest of the
paper we use a standard notation to represent data and the variables. The input data ½xij; yk� consists of N samples i ¼ 1 to N
with D variables j ¼ 1 to D; xi is the ith sample and yk is the class label k ¼ 1 to Y .

2.1. Correlation criteria

One of the simplest criteria is the Pearson correlation coefficient [1,12] defined as:
RðiÞ ¼ covðxi;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxiÞ � varðYÞ

p ð1Þ
where xi is the ith variable, Y is the output (class labels), covðÞ is the covariance and varðÞ the variance. Correlation ranking
can only detect linear dependencies between variable and target.

2.2. Mutual Information (MI)

Information theoretic ranking criteria [1,5,8,12–14] use the measure of dependency between two variables. To describe
MI we must start with Shannons definition for entropy given by:
HðYÞ ¼ �
X

y

pðyÞlogðpðyÞÞ ð2Þ
Eq. (2) represents the uncertainty (information content) in output Y. Suppose we observe a variable X then the conditional
entropy is given by:
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HðYjXÞ ¼ �
X

x

X
y

pðx; yÞlogðpðyjxÞÞ ð3Þ
Eq. (3) implies that by observing a variable X, the uncertainty in the output Y is reduced. The decrease in uncertainty is given
as:
IðY;XÞ ¼ HðYÞ �HðYjXÞ ð4Þ
This gives the MI between Y and X meaning that if X and Y are independent then MI will be zero and greater than zero if they
are dependent. This implies that one variable can provide information about the other thus proving dependency. The defi-
nitions provided above are given for discrete variables and the same can be obtained for continuous variables by replacing
the summations with integrations. The MI can also be defined as a distance measure given by:
Kðf ; gÞ ¼
Z

f ðyÞlog
f ðyÞ
gðyÞ

� �
ð5Þ
The measure K in (5) is the Kullback–Leibler divergence [15,16] between two densities which can also be used as a measure
of MI. From the above equations, we need to know the probability density function (PDF) of the variables to calculate MI.
Since the data we obtain is of finite samples, the PDF cannot be calculated accurately. Several methods have been developed
for estimating the MI in [12,15,16]. Once a particular method is chosen for calculating MI then one of the simplest methods
for feature selection is to find the MI between each feature and the output class labels and rank them based on this value. A
threshold is set to select d < D features. This is a simple method and the results can be poor [13] since inter-feature MI is not
taken into account. But MI is an important concept and is used in embedded methods which will be presented in a later
section.

In [17] the author develops a feature ranking criteria based on Conditional Mutual Information for binary data (boolean
data). A score table is updated as features are selected to the subset using the conditional mutual information criteria which
is to be maximized. The score at each iteration is calculated using (6) given by:
s½n� ¼ minl<k
bIðY; XnjXmðlÞÞ ð6Þ
where s½n� is the score which is updated at each iteration, Xn is the current evaluated feature, XmðlÞ is the set of already se-
lected features. The above equation iteratively selects features which maximize MI with the class and not select features
similar to ones already picked. This provides a good trade-off between independence and discrimination.

Since the data distribution is not known, various techniques can be used to evaluate different subsets with a chosen clas-
sifier. Other statistical tests found in literature can be used for feature ranking. In [13] twelve feature selection metrics are
considered for the text classification problem [1,13,18]. All the features are ranked using each metric and a threshold is set
which would select 100 words which are then applied to the predictor. Filter approaches applied to various applications can
be found in [19–21,18,5]. Earlier comparisons for text classification using ranking methods can be found in [22]. In [23,24]
the authors develop a ranking criteria based on class densities for binary data. A two stage algorithm utilizing a less expen-
sive filter method to rank the features and an expensive wrapper method to further eliminate irrelevant variables is used.
The RELIEF algorithm [25,26] is another filter based approach wherein a feature relevance criterion is used to rank the fea-
tures. Using a threshold a subset of features is selected. The drawback of the RELIEF algorithm is in selecting a threshold.
Authors in [26] compare the RELIEF and other wrapper methods for different datasets. In [19] discarded variables are used
to perform multitask learning (MTL). In [27] a random variable called probe is used to rank the features using Gram-Schmidt
orthogonalization.

The advantages of feature ranking are that it is computationally light and avoids overfitting and is proven to work well for
certain datasets [1,28,5]. Filter methods do not rely on learning algorithms which are biased which is equivalent to changing
data to fit the learning algorithm. One of the drawbacks of ranking methods is that the selected subset might not be optimal
in that a redundant subset might be obtained. Some ranking methods such as Pearson correlation criteria (1) and MI (4) do
not discriminate the variables in terms of the correlation to other variables. The variables in the subset can be highly corre-
lated in that a smaller subset would suffice [11,28]. This issue of redundant vs. relevant variables is addressed in [1] with
good examples. In feature ranking, important features that are less informative on their own but are informative when com-
bined with others could be discarded [1,29]. Finding a suitable learning algorithm can also become hard since the underlying
learning algorithm is ignored [11]. Also, there is no ideal method for choosing the dimension of the feature space.

In the next section, we will look at the second type of feature selection method called Wrapper methods. Unlike filter
methods which use a feature relevance criteria, Wrapper methods rely on the classification for obtaining a feature subset.

3. Wrapper methods

Wrapper methods use the predictor as a black box and the predictor performance as the objective function to evaluate the
variable subset. Since evaluating 2N subsets becomes a NP-hard problem, suboptimal subsets are found by employing search
algorithms which find a subset heuristically. A number of search algorithms can be used to find a subset of variables which
maximizes the objective function which is the classification performance. The Branch and Bound method [8,30] used tree
structure to evaluate different subsets for the given feature selection number. But the search would grow exponentially



G. Chandrashekar, F. Sahin / Computers and Electrical Engineering 40 (2014) 16–28 19
[8] for higher number of features. Exhaustive search methods can become computationally intensive for larger datasets.
Therefore simplified algorithms such as sequential search or evolutionary algorithms such as Genetic Algorithm (GA) [31]
or Particle Swarm Optimization (PSO) [32] which yield local optimum results are employed which can produce good results
and are computationally feasible.

We broadly classify the Wrapper methods into Sequential Selection Algorithms and Heuristic Search Algorithms. The
sequential selection algorithms start with an empty set (full set) and add features (remove features) until the maximum
objective function is obtained. To speed up the selection, a criteria is chosen which incrementally increases the objective
function until the maximum is reached with the minimum number of features. The heuristic search algorithms evaluate dif-
ferent subsets to optimize the objective function. Different subsets are generated either by searching around in a search-
space or by generating solutions to the optimization problem. First we will look at sequential selection algorithms followed
by the heuristic search algorithms.
3.1. Sequential selection algorithms

These algorithms are called sequential due to the iterative nature of the algorithms. The Sequential Feature Selection (SFS)
algorithm [33,34] starts with an empty set and adds one feature for the first step which gives the highest value for the objec-
tive function. From the second step onwards the remaining features are added individually to the current subset and the new
subset is evaluated. The individual feature is permanently included in the subset if it gives the maximum classification accu-
racy. The process is repeated until the required number of features are added. This is a naive SFS algorithm since the depen-
dency between the features is not accounted for. A Sequential Backward Selection (SBS) algorithm can also be constructed
which is similar to SFS but the algorithm starts from the complete set of variables and removes one feature at a time whose
removal gives the lowest decrease in predictor performance.

The Sequential Floating Forward Selection (SFFS) [33,34] algorithm is more flexible than the naive SFS because it intro-
duces an additional backtracking step. The basic flowchart is given in Fig. 1 where k is the current subset size and d is the
required dimension. The first step of the algorithm is the same as the SFS algorithm which adds one feature at a time based
on the objective function. The SFFS algorithm adds another step which excludes one feature at a time from the subset ob-
tained in the first step and evaluates the new subsets. If excluding a feature increases the value of the objective function then
that feature is removed and goes back to the first step with the new reduced subset or else the algorithm is repeated from the
top. This process is repeated until the required number of features are added or required performance is reached.
Fig. 1. SFFS flow chart.
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The SFS and SFFS methods suffer from producing nested subsets since the forward inclusion was always unconditional
which means that two highly correlated variables might be included if it gave the highest performance in the SFS evaluation.
To avoid the nesting effect, adaptive version of the SFFS was developed in [35,36]. The Adaptive Sequential Forward Floating
Selection (ASFFS) algorithm used a parameter r which would specify the number of features to be added in the inclusion
phase which was calculated adaptively. The parameter o would be used in the exclusion phase to remove maximum number
of features if it increased the performance. The ASFFS attempted to obtain a less redundant subset than the SFFS algorithm. It
can be noted that a statistical distance measure can also be used as the objective function for the search algorithms as done
in [9,10,33,35]. Theoretically, the ASFFS should produce a better subset than SFFS but this is dependent on the objective func-
tion and the distribution of the data. The Plus-L-Minus-r search method [35,37,38] also tries to avoid nesting. In the Plus-L-
Minus-r search, in each cycle L variables were added and r variables were removed until the desired subset was achieved.
The parameters L and r have to be chosen arbitrarily. In [37] the authors try to improve the SFFS algorithm by adding an extra
step after the backtracking step in the normal SFFS in which a weak feature is replaced with a new better feature to form the
current subset.
3.2. Heuristic search algorithms

Genetic Algorithm (GA) [31] can be used to find the subset of features [36,39–42] wherein the chromosome bits represent
if the feature is included or not. The global maximum for the objective function can be found which gives the best suboptimal
subset. Here again the objective function is the predictor performance.

The GA parameters and operators can be modified within the general idea of an evolutionary algorithm to suit the data or
the application to obtain the best performance or the best search result. A modified version of the GA called the CHCGA
[43,44] can be used for feature selection [36]. The CHCGA is a non-traditional GA which differs from GA in the following
ways:

� The best N individuals are chosen from the pool of parents and offspring i.e. better offspring replaces lesser fit parents.
� A highly disruptive half uniform crossover (HUX) operator is used which crosses over exactly half of the non-matching

alleles, wherein the bits to be crossed over are selected at random.
� During reproduction step, each member of the parent population is randomly selected without replacement and paired

for mating. Not all the pairs are crossed over but before mating the Hamming distance between the parents are calculated
and if half this distance does not exceed a threshold d, they are not mated. The threshold is usually initialized to L=4
where L is the chromosome length. If no offspring is obtained in the generation, the threshold is decremented by one.
Due to these mating criteria of mating only diverse parents, the population converges as the threshold decreases.
� If there are no offspring generated and the threshold drops to zero, a cataclysmic mutation is introduced to create a new

population. The best individual in the current parent population is taken as the template to create the new population.
The rest N � 1 individuals are obtained by randomly flipping a percentage (35–40%) of bits of the template. The regular
mutation after crossover step is skipped each time and the above mentioned mutation is carried if required.

The CHCGA converges on the solution faster and provides a more effective search by maintaining the diversity and avoid-
ing stagnation of the population. In [45] multi-objective GA is used for hand written digit recognition. In [46,47] several
wrapper methods some of which mentioned above, are compared with different datasets. They derive various fitness func-
tions with weighting/penalty imposing characteristics. A binary PSO [32,48,4] algorithm can also be used for wrapper imple-
mentation. In [49] comparison between GA and PSO using SVM for gene selection can be found.

The main drawback of Wrapper methods is the number of computations required to obtain the feature subset. For each
subset evaluation, the predictor creates a new model i.e. the predictor is trained for each subset and tested to obtain the clas-
sifier accuracy. If the number of samples is large, most of the algorithm execution is spent in training the predictor. In some
algorithms such as GA feature selection, the same feature subset might be evaluated multiple times since the classifier accu-
racies for evaluated subsets are not stored for future retrieval. Another drawback of using the classifier performance as the
objective function is that the classifiers are prone to overfitting [8]. Overfitting occurs if the classifier model learns the data
too well and provides poor generalization capability. The classifier can introduce bias and increases the classification error.
Using classification accuracy in subset selection can result in a bad feature subset with high accuracy but poor generalization
power. To avoid this, a separate holdout test set can be used to guide the prediction accuracy of the search [8].

In the next section, we will discuss Embedded methods which try to compensate for the drawbacks in the Filter and
Wrapper methods.
4. Embedded methods

Embedded methods [1,9,10] want to reduce the computation time taken up for reclassifying different subsets which is
done in wrapper methods. The main approach is to incorporate the feature selection as part of the training process. In Section
2 we mentioned that MI is an important concept but the ranking using MI yielded poor results since the MI between the
feature and the class output only was considered. In [12] a greedy search algorithm is used to evaluate the subsets. The



G. Chandrashekar, F. Sahin / Computers and Electrical Engineering 40 (2014) 16–28 21
objective function is designed such that choosing a feature will maximize the MI between the feature and the class output
while the MI between the selected feature and the subset of the so far selected features is a minimum. This is formulated as:
IðY; f Þ � b
X
s2S

Iðf ; sÞ ð7Þ
where Y is the output, f is the current selected feature, s is the feature in the already selected subset S and b controls the
importance of the MI between the current feature f and the features in the subset S. The output subset is applied to a Neural
Network classifier. Eq. (7) will select better subset since the inter-feature MI is used in the calculation to select the non-
redundant features. An improvement of this method is presented in [14] which estimates the MI using Parzen window
method.

The mRMR (max-relevancy, min-redundancy) [24] is another method based on MI. It uses similar criteria as in (7) given
as:
Iðxj; CÞ � 1
m� 1

X
xl2Sm�1

Iðxj; xlÞ ð8Þ
where xi is the mth feature in subset S and the set Sm�1 is the so far selected subset with m � 1 features. Instead of a greedy
algorithm a two stage approach is implemented. First the criterion (8) is used to select a number k which is the optimal num-
ber of features which gives the lowest cross-validation classification error. In the second stage, wrapper methods are used to
evaluate different subsets of size k or direct evaluations are done on different subsets to find the subset which consistently
yields the smallest classification error. The application of mRMR can be found in [50,3] wherein the simplest incremental
search method is used with four different classifiers for gene classification.

Another method used in literature is to use the weights of a classifier [1,2,50] to rank the feature for their removal. Let wj

be defined as:
wj ¼
ljðþÞ � ljð�Þ
rjðþÞ þ rjð�Þ

ð9Þ
where ljðþÞ and ljð�Þ are the mean of the samples in class (+) and (�) and rj is the variance of the respective classes and j =
1 to D. Eq. (9) [2] can be used as a ranking criteria to sort the features. The rank vector w can be used to classify since features
rank proportionally contributes to the correlation. A voting scheme given as:
DðxÞ ¼ wðx� lÞ ð10Þ
where w is the rank of the features or weight, D(x) is the decision and l is the mean of the data. Hence the weights (rank) of
the features can be used as classifier weights. By conducting sensitivity analysis [1,2] of the weights, feature selection can be
done i.e. the change in the weight wj can be viewed as removing a feature j. In [2] it is suggested to use the change in the
objective function, a linear discriminant function J which is a function of wj. This concept of using the weights as the ranking
and the search is done using the change in the objective function is applied to the SVM classifier [2,51,50] to perform Recur-
sive Feature Elimination or known as the SVM-RFE method. The objective function of the SVM is presented later in Section 7.
The SVM-RFE method in [2] is proposed for binary class classification, its multi-class classification technique can be found in
[52]. In [53] the authors use the concept of RFE to derive a modified algorithm for selecting features in hyper spectral image
data. In the SVM-RFE method, the l2 norm is used in the SVM minimization problem. It is shown in the literature that other
norms can be used which help in feature selection. In [54] the authors provide a comprehensive review of the different SVM
based feature selection methods. The paper also presents a non-linear classification and feature selection approaches using
SVM.

Similar to optimizing the SVM equation and assigning weight to features, the same can be done using Neural Networks.
Multilayer perceptron networks are trained and feature weights are calculated using a saliency measure calculated from the
trained network [55,56]. In [55] a penalty is applied for features with small magnitude at the node and the nodes connecting
to these input features are excluded. This type of node removal is also called Network Pruning [55,56] is commonly used to
obtain the optimum network architecture for Neural Networks. In [57] the authors derive a cost function for random variable
elimination. In chemometric applications [58–60] regression models are developed to reduce the number of variables which
helps in analyzing the chemical properties. In [19] the discarded variables are used to improve the prediction performance
using multitask learning (MTL) approach. Lazy Feature Selection (LFS) approach is developed in [61] where the authors take
advantage of the sparseness in the feature space as a feature selection method for text categorization problem. The LFS ranks
the test samples against all training samples and k-NN [18,6] type algorithm is used to determine the class.

So far we have discussed the feature selection techniques using supervised learning i.e. the output class labels of the data
were known or could be calculated. In practical applications, there can be processes whose operational details are unknown
but their operational data is available. In the next section we will briefly look at some of the articles which apply feature
selection using unsupervised learning.
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5. Other feature selection techniques

Unsupervised learning deals with finding hidden structure in unlabelled data. Clustering techniques [7] are a primary
example of unsupervised learning which tries to discover natural groupings in a set of objects without knowledge of class
labels. Feature selection using unsupervised learning techniques are beyond the scope of this paper and will not be discussed
in detail but in this section we mention a few articles which perform unsupervised feature selection. Feature selection using
unsupervised learning can provide better description and reliability of the data than just unsupervised learning [7]. Several
papers that attempt to solve the feature selection using unsupervised learning can be found in [7,62–65].

Semi-supervised learning is another class wherein both labelled and unlabelled data are used for learning [7,29,66,67]. It
uses both labelled data (less number of samples) and unlabelled data (abundantly available) to modify a hypothesis obtained
from labelled data alone. In [67] the authors use a clustering indicator construction to score a set of features. In [29]
the authors use the maximum margin principle (SVM) using manifold regularization problem optimization similar to
SVM-RFE [2].

Ensemble feature selection [68,69] is a relatively new technique used to obtain a stable feature subset. A single feature
selection algorithm is run on different subsets of data samples obtained from bootstrapping method. The results are
aggregated to obtain a final feature set. Authors in [68,69] use filter methods to rank the genes/features and use different
aggregation methods such as ensemble-mean, linear aggregation, weighted aggregation methods to obtain the final feature
subset.

6. Stability of feature selection algorithms

For a particular application, various feature selection algorithms can be applied and the best one can be selected which
meets the required criteria. An overlooked problem is the stability of the feature selection algorithms. Stability of a feature
selection algorithm can be viewed as the consistency of an algorithm to produce a consistent feature subset when new train-
ing samples are added or when some training samples are removed [68,70–73]. If the algorithm produces a different subset
for any perturbations in the training data, then that algorithm becomes unreliable for feature selection. Examples of insta-
bilities are demonstrated in [70,73] which can be verified by changing the training set and running the algorithm again. In
[70], wrapper techniques are used to study their instability and stability measures are introduced along with possible solu-
tions to alleviate the problem. Various measures are established in [68,70–72] to evaluate different subsets obtained for a
certain number of runs. Using these measures, a more robust subset can be found for different datasets. In [73] multicriterion
fusion algorithm is developed which uses multiple feature selection algorithms to rank/score the features which are com-
bined to obtain a robust subset based on combining multiple classifiers to improve the accuracy. In [74] the author also sug-
gests dividing the input features (based on their feature extraction procedures) to obtain different classifiers and combine
the predictions to obtain a final decision.

7. Classifiers

In this section we want to provide a brief introduction to two classifiers in literature which can be used for feature selec-
tion tasks. We will present the SVM and RBF classifiers due to their wide range of applications found in literature.

7.1. Support Vector Machine (SVM)

SVM [51,2,24,18] is a marginal classifier which maximizes the margin between the data samples in the two classes. An
optimal hyperplane boundary is drawn which will separate the data. In SVM, kernels are used to map the input data to a
higher dimensional space where a decision boundary can be constructed. The decision function is given as:
DðxÞ ¼ w/ðxÞ þ b ð11Þ
where w and b are the SVM parameters and /ðxÞ is a kernel function that maps the input data into the new M dimension. Eq.
(11) defines the hyperplane and
DðxÞ
kwk ð12Þ
is the distance between hyperplane and pattern x. In Fig. 2 (taken from [51]) a graphical illustration of the boundary and the
samples is provided. The objective of the training algorithm is to find w such that M⁄ is maximized. For the linear decision
function in (11), the parameters are given as:
w ¼
X

k

akykxk ð13Þ

b ¼ ðyk �w � xkÞ ð14Þ



Fig. 2. Maximum margin for linear decision function D(x) [10].
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The vector w is a linear combination of training patterns wherein ak is non-zero for the marginal patterns which forms the
support vectors. The value b is an average over the support vectors. The objective function of the training algorithm is:
J ¼ 1
2

� �
kwk2 ð15Þ
For the SVM-RFE method described in Section 3, Eq. (13) gives the feature ranking criteria. To solve the objective in (15) qua-
dratic programming methods have to be used. These methods are not easy to implement when compared to other classifier
algorithms. Libraries like LIBSVM [75] can be used to implement wrapper techniques. Since SVM is a binary classifier, in this
paper we use the one-vs-all classification technique for multiclass problems. In one-vs-all approach, different binary classi-
fiers are trained wherein each one is trained to distinguish samples of a single class from all the remaining samples. It is a
simple method which is proven to be robust and accurate when compared to other approaches [53,76].

7.2. Radial Basis Function Network

A Radial Basis Function Network [6,77] (RBFN or RBF) is a type of feed-forward Neural Network. The network structure
consists of three layers: input layer, hidden layer and output layer as shown in Fig. 3. The input layer consists of a single D
dimensional input. The hidden layer is composed of radially symmetric Gaussian kernels given by:
/j ¼ e�
kx�xjk

2

r2 ð16Þ
where j = 1 to M, M being the number of kernels, xj the jth kernel centroid and /j is calculated for every input data vector. The
output layer node is connected to each kernel in the hidden layer with a weight Wj. The output Y can be calculated using the
equation:
Y ¼
XM

j¼1

Wj/j ð17Þ
In the training phase the weight vector is calculated for all the samples in the training set. The weight vector can be calcu-
lated using:
Fig. 3. Radial Basis Function Network structure.
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W ¼ /�1:Y ð18Þ
where the / matrix element /ij gives the value of /j for the ith sample. For the testing set the output values can be calculated
for each data using (18) since the weight vector is known in the training phase. To find the centroids of the kernel function,
clustering algorithms [77–81] are employed to enhance the generalizing capability of the classifier. In [78] the RBF network
is used to EEG data classification wherein three clustering methods for the RBF are explored.

7.3. Validation methods

It is also important to choose validation method (classifier accuracy) for the chosen classifier. This method is known as
cross-validation in which the input data is split into training and testing sets and the test set (unseen by the method or clas-
sifier) is validated against the training set to check if the classifier can reproduce the known output. Several types of cross-
validation are used in literature. One of the simplest methods is the 2-fold cross-validation wherein the data is randomly
split into training and test sets. An extension of the 2-fold cross-validation is the K-fold cross-validation in which the data
is randomly split into K subsets. For training K � 1 subsets are chosen and the remaining subset is used for testing. This pro-
cess is repeated until all the subsets are used for testing. Another version of the K-fold cross-validation is the Leave-one out
cross-validation (LOOCV) wherein K is equal to the number of samples i.e. each sample is used for testing and the rest of the
samples are used for training. This process is done until all the samples are tested. For model selection (feature selection or
classifier) the training set may be further split into training and validation sets. The prediction of the validation set is used to
reinforce the model selection. In [34] the authors address the problem of over fitting found when comparisons of the feature
selections are made. The authors argue the cross-validation methods can contribute to over estimating the model perfor-
mance. The author tests the SFS and SFFS method on various datasets with k-NN [18,6] classifier as the wrapper. They
use the 2-fold and LOOCV cross-validation methods to compare the results of the two feature selection algorithms.

8. Results

In this section we present results of applying some of the feature selection algorithms on seven datasets using the two
classifiers mentioned in Section 7. We implement two filter methods given by (1) and (4) wherein the features are ranked
and the performance is obtained for the top ranked feature and subsequently adding the next ranked feature one by one to
cover the whole feature set. For the MI criteria, the MI is found for each feature and the output class. In wrapper techniques
we implement the SFFS algorithm and the CHCGA algorithm with the performance of the two classifiers as the objective
function. Out of the seven datasets, five are from the UCI Machine Learning Repository [82] and the sixth is Fault Mode data
from MKS Instruments. The Fault Mode data is obtained from a 5kW, 40 MHz RF Power generator from MKS Instruments. The
generator consists of several subsystems including an AC/DC converter, RF Power Amplifier, RF Sensor, and Digital Control
System given in Fig. 4.

Sensors are designed into the RF generator to provide accurate power delivery and facilitate health monitoring during
critical semiconductor/thin film processing steps. The data used in the study was created by intentionally seeding various
faults and collecting generator sensor data during an automated RF power sweep designed in LabViewTM. The seventh
dataset is the discrete Fault Mode data obtained by applying histogram to the continuous data. The number of variables
in each dataset is given in Table 1. The datasets are divided into 50% training and 50% testing sets and the performance
measure was the prediction accuracy of the test set. For all the results, the test set was not shown to the feature selection
algorithm. LIBSVM [75] library was used to implement the SVM classifier. For the RBF classifier, clustering must be
performed to determine the optimum number of kernels, variance and their respective centres for (16). As suggested in
[78] we perform an exhaustive search using k-means [6] technique to determine the RBF kernel centres. Since the input
to the classifier varies according to the subset selected by the feature selection algorithm, using the parameters obtained
from the whole dataset will bring down the efficiency of the classifier and results will not be accurate. Due to this, clustering
must be done for each subset which would increase the number of computations significantly. To reduce the number of
Fig. 4. RF Generator block diagram.



Table 1
Number of variables in the datasets used.

Dataset No. of Features

Breast cancer 10
Diabetes 8
Ionosphere 34
Liver disorder 6
Medical 19
Fault mode 16

Fig. 5. Results for correlation criteria using SVM.
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computations we first find the number of kernels using the exhaustive search in range D to 2⁄D. The variance in (16) is found
each time by searching in the range [0.1, 0.2, 0.3, . . .10]. By doing this we obtain better classification. To avoid indirectly
learning the test data, the RBF exhaustive search is done on the training data itself. For the CHCGA algorithm, the GA param-
eters are: population size = 40, mutation rate = 0.4, maximum number of generations = 800. The data from the RF generator
was also used to perform fault prediction analysis using the above mentioned algorithms which can be found in [83].

In Fig. 5 the result for the first ranking method is given. The x-axis is the number of features and the y-axis is the perfor-
mance of the subset containing the specified number of features. Fig. 6 gives the result for the MI criteria (4), Fig. 7 gives the
result of applying SFFS algorithm with SVM as the wrapper and Fig. 8 gives the result of applying SFFS with RBF as the wrap-
per. In Fig. 5 we can see that the performance for the first ranked feature of Cancer and Ionosphere give low performance due
to the calculation of MI. Since we are approximating the PDF of a single feature and the output class distribution, calculation
of MI will not be accurate and is easily influenced by marginal densities [22]. The irregular graph for the filter methods also
Fig. 6. Result for MI using SVM.



Fig. 7. Results for SFFS using SVM.

Fig. 8. Results for SFFS using RBF.
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proves that the ranking methods are trivial. Since SFFS can produce only one subset, we generate subsets of lower size by
backward elimination or a subset with larger number of features by forward addition to the subset selected by SFFS. By doing
this we can see that the maximum performance is always obtained from the SFFS algorithm and the performance of all other
subsets are either equal to or lower than the maximum performance. Fig. 8 gives the results of applying SFFS using RBF clas-
sifier with the optimization procedure stated above. It can be seen in Fig. 8 that the graph does not give a clear idea of the
feature selection due to optimization of RBF parameters for each subset. If the sample values are close to the centre of the
kernel, the weight contribution will be higher. It can be noticed in Fig. 7 that for Liver Disorder data the performance is the
same for any subset which is interesting since the same result is not obtained from RBF due to the optimization of the RBF
classifier.

In Table 2 we give the results of running the CHCGA algorithm with objective to find the subset that has the maximum
classifier performance using SVM. We can see that the results in Fig. 7 and Table 2 are close. Table 3 gives the results of run-
ning the CHCGA algorithm with RBF as the wrapper.
Table 2
Experimental results for CHCGA with SVM.

Dataset Maximum performance No. of selected features

Breast cancer 97.361 5
Diabetes 80.469 7
Ionosphere 94.286 16
Liver disorder 57.558 4
Medical 73.2 8
FaultMode 76.392 6
FaultMode (discrete) 98.829 6



Table 3
Experimental results for CHCGA with RBF.

Dataset Maximum performance No. of selected features

Breast cancer 96.774 5
Diabetes 76.822 7
Ionosphere 94.285 16
Liver disorder 72.675 4
Medical 70 8
FaultMode 79.639 6
FaultMode (discrete) 82.799 6

G. Chandrashekar, F. Sahin / Computers and Electrical Engineering 40 (2014) 16–28 27
9. Conclusion

In this paper we have tried to provide an introduction to feature selection techniques. The literature on feature selection
techniques is very vast encompassing the applications of machine learning and pattern recognition. Comparison between
feature selection algorithms can only be done using a single dataset since each underlying algorithm will behave differently
for different data.

Feature selection techniques show that more information is not always good in machine learning applications. We can
apply different algorithms for the data at hand and with baseline classification performance values we can select a final fea-
ture selection algorithm. For the application at hand, a feature selection algorithm can be selected based on the following
considerations: simplicity, stability, number of reduced features, classification accuracy, storage and computational require-
ments. Overall applying feature selection will always provide benefits such as providing insight into the data, better classifier
model, enhance generalization and identification of irrelevant variables. For the results in this paper we use the classifier
accuracy and the number of reduced features to compare the feature selection techniques. We have also successfully used
feature selection for improving predictor performance and for fault prediction analysis of Fault Mode data.
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