
A Survey on Region Extractors
from Web Documents

Hassan A. Sleiman and Rafael Corchuelo

Abstract—Extracting information from web documents has become a research area in which new proposals sprout out year after year.

This has motivated several researchers to work on surveys that attempt to provide an overall picture of the many existing proposals.

Unfortunately, none of these surveys provide a complete picture, because they do not take region extractors into account. These tools

are kind of preprocessors, because they help information extractors focus on the regions of a web document that contain relevant

information. With the increasing complexity of web documents, region extractors are becoming a must to extract information from

many websites. Beyond information extraction, region extractors have also found their way into information retrieval, focused web

crawling, topic distillation, adaptive content delivery, mashups, and metasearch engines. In this paper, we survey the existing

proposals regarding region extractors and compare them side by side.

Index Terms—Information extractors, wrappers, web documents, region extractors, enterprise information integration

Ç

1 INTRODUCTION

THE majority of companies world-wide use the web to
provide their customers with catalogues of products

and/or services, not to mention news spots, blogging sites,
social networks, virtual libraries, and so on. This turns the
web into the largest repository of information in human-
friendly formats. Unfortunately, using this information in
automated business processes is not easy at all because it is
buried into text and/or formatting tags.

This has motivated many researchers to work on
proposals to analyze web documents and extract their
information in structured formats automatically; these
proposals are commonly referred to as information ex-
tractors or wrappers [9], [35], [91], [92], [95], [113], [121],
[137], [157]. Web information extraction is the task of
identifying, extracting, and structuring relevant information
from web documents in structured formats, e.g., tables or
XML. (Note that relevancy depends completely on the
context.) For instance, Fig. 1 shows a sample web document
from Amazon to which we have applied DeLa [164], which
is a well-known information extractor. This information
extractor identifies the data region in the web document
using a region extractor called DSE [163], searches for
repeating patterns inside this region to separate the data
records, aligns these records to extract their attributes, and
then, labels and formats these attributes in a results table.

Information extractors can be broadly classified accord-
ing to whether they deal with free-text web documents or
semistructured web documents. The relevant information
in a free-text web document is buried into sentences that are

written in (telegraphic) natural language, whereas in
semistructured web documents it is buried into HTML
scripts. Note that a free-text web document usually contains
HTML tags that provide a little structure, e.g., <h1> tags to
typeset a title, a <div> to typeset the authors, <p> tags
to typeset paragraphs, and <strong> or <emph> tags to
emphasize a piece of text; unfortunately, this structure is far
too light to be useful for information extraction purposes.
Free-text web documents require natural language proces-
sing techniques to extract information from them. Contra-
rily, semistructured web documents generally use HTML
tags to typeset small pieces of information (attributes) in
tables or lists. Independently from the kind of document on
which it can work, the goal of an information extractor is to
identify pieces of relevant information within a document
and return them in a structured format.

The literature provides a collection of surveys on
information extraction. Turmo et al. [157] and Sarawagi
[137] provided two surveys regarding the many existing
techniques to extract information from free-text web docu-
ments; their conclusion was that roughly half the proposals
are based on rules [3], [15], [30], [60], [77], [86], [133], [146],
[147], [156], [174] and the other half are based on statistical
models [37], [38], [43], [57], [62], [63], [83], [118], [128], [135],
[138], [144], [150], [177], [181]. Chang et al. [35] provided the
most recent survey regarding proposals for information
extraction from semistructured web documents. Their focus
was on information extractors that rely on so-called extrac-
tion rules, which can be either learned from examples [8],
[13], [26], [27], [33], [34], [41], [45], [59], [66], [67], [73], [74],
[75], [85], [89], [93], [99], [103], [104], [122], [126], [147], [151],
[164], [178], [182] or handcrafted [10], [44], [64], [70], [116],
[130], [136]. Meng and Yu [113] surveyed information
extraction techniques that can be used to extract search
result records returned by search engines. These surveys did
not take into account either some proposals that build on
heuristics, i.e., built-in extraction rules that have proven to
work well in many common cases [6], [51], [68], [98], [107],
[143], [149] or workbenches, which are targeted toward end

1960 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

. The authors are with the University of Sevilla, ETSI Informática, Avda.
Reina Mercedes, s/n, Sevilla E-41012, Spain.
E-mail: {hassansleiman, corchu}@us.es.

Manuscript received 3 Nov. 2011; revised 17 Apr. 2012; accepted 17 June
2012; published online 27 June 2012.
Recommended for acceptance by J. Pei.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-11-0677.
Digital Object Identifier no. 10.1109/TKDE.2012.135.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



users because they facilitate putting other proposals into
practice in production scenarios [1], [16], [49], [56], [71], [94],
[102], [105], [119], [120]. Unfortunately, none of the previous
proposals is universally applicable, which makes informa-
tion extraction quite an active research area [48].

We define a region in a web document as an HTML
fragment that shows information about one or more related
items when it is rendered on a web browser. Such items can
be data records, e.g., information about products, services,
goods, or pieces of news, headers with navigation menus,
footers with contact and corporate information, or sidebars
with advertisements, to mention a few examples. In the
sequel, we make a distinction between individual data
records, data regions (which encompass a series of data
records), and the rest of regions, to which we refer to as
ancillary regions. The majority of region extractors focus on
data records and data regions. (Note that it is not unusual to

find several data regions in the same web document.) For
instance, Fig. 2 illustrates the regions identified by VIPS [24]
in our running example. It has identified a total of
15 regions, which we classify into: one data region that
contains three data records and 11 ancillary regions around
the data region. Note that VIPS only identifies and separates
regions in a web document; it is the user’s responsibility to
select the region(s) of interest.

Typical information extraction tasks focus on data

regions and data records. That implies that as the complex-

ity of typical web documents increases, information

extractors have to analyze more and more irrelevant
regions, which has an impact on both efficiency and

effectiveness [84], [163], [175]. This has motivated a number

of authors to work on region extractors as a means to

relieve information extractors from the burden of analyzing

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1961

Fig. 1. Extracting information from a semistructured web document using DeLa.



many regions of a web document that do not contain any
relevant information [19], [23], [24], [53], [84], [97], [100],
[114], [125], [141], [163], [169], [179], [180]. The difference
between information extractors and region extractors is that
the former focus on extracting and structuring data records
and their attributes, whereas the latter focus on identifying
the HTML fragments that contain this information. Yi et al.
[175], Wang and Lochovsky [163], and Kang and Choi [84]
have confirmed experimentally that using region extractors
has a positive impact on both efficiency and effectiveness; it
is not surprising then that some recent proposals for
information extraction incorporate a built-in region extrac-
tor [98], [99], [143], [164], [178]. Beyond information
extraction, region extractors have also proven to be useful
for information retrieval [176], focused web crawling [25],
[32], topic distillation [31], adaptive content delivery [82],
mashups [152], and metasearch engines [113].

The literature records an increasing number of proposals
in this area [19], [23], [24], [53], [84], [97], [100], [114], [125],
[141], [163], [169], [179], [180]. Unfortunately, none of the
surveys regarding information extraction that we have
found in the literature take them into account [35], [91], [92],
[95], [121], [137], [157]. The only exception is the survey by
[113], who studied three techniques that are specifically
tailored toward search engines or that can be adapted for
this purpose, namely ViDRE [169], ViNTS [179], and OMINI
[23]. This has motivated us to work on this paper to

complete the overall picture regarding information extrac-
tion. We have surveyed all of the proposals on region
extractors of which we are aware within a four-dimensional
comparison framework in which we have compared them
side by side. Our main conclusions are the following:

1. more effort is required regarding free-text web
documents because the proposals we have surveyed
rely almost exclusively on finding regular structures
in a web document;

2. the majority of proposals seem scalable because they
are unsupervised;

3. there are no conclusive and comparable results
regarding their efficiency and effectiveness; and

4. none of them is universally applicable.

The rest of the paper is organized as follows: In Section 2,
we report on previous surveys of the literature and describe
our comparison framework briefly; In Section 3, we report
on current state-of-the-art region extractors; then, we
compare them in Section 4; we present our conclusions in
Section 5. The paper finishes with a list of references to
selected articles.

2 RELATED WORK

The large number of existing proposals on information
extraction has motivated several authors to work on surveys

1962 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 2. Regions identified by VIPS.



of the literature that provide comparison frameworks other

researchers can use to have an overall picture of what the

latest achievements are and how they compare to each other.

By comparison framework, we mean a taxonomy to classify

the existing proposals into several categories and/or a set of

comparison features that allow to compare them side by

side; related features can be grouped into independent

dimensions; ideally, the majority of features should be

objective, but we have found a few subjective features in the

literature (see below).
The surveys in the literature can be classified into two

groups according to how they compare the proposals. The
first group includes the surveys that just provide a
taxonomy, cf. Table 1, whereas the latter group includes
surveys that also present a comparison framework, study
the pros and cons, and compare the techniques side-by-side,
cf. Tables 2 and 3.

Regarding the surveys that just provide a taxonomy, our

conclusions are as follows:

. To the best of our knowledge, Hsu and Dung [75]
were the first to provide a taxonomy according to
which the existing proposals were classified into
four categories, namely: Hand-crafted information
extractors using general-purpose programming lan-
guages, specific-purpose languages and tools, heur-
istic-based proposals, and extraction rule learners.

. Muslea [121] presented a new taxonomy that sepa-
rated information extraction techniques into three
categories, namely: Information extractors that are
based on lexical/syntactic/semantic features, infor-
mation extractors that are solely based on delimiters
around the pieces of text to be extracted, and hybrid
information extractors that use both lexical/syntac-
tic/semantic features and text delimiters.

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1963

TABLE 1
Comparison between Previous Surveys that Just Provide a Taxonomy



. Kushmerick and Thomas [92] presented a survey in

which they provided the following two-category

taxonomy: Finite-state proposals that are based on

automata and relational proposals that are based on
first-order logic.

. Sarawagi [137] provided an additional survey on
proposals to deal with free-text documents. The

survey presented a three-category taxonomy based

on the type of the technique used to extract

information from free-text documents, namely:

Techniques based on rule-based methods, techni-

ques based on statistical models, and techniques

based on both rules and statistical models.

. Meng and Yu [113] presented a survey on proposals
that can be used to extract search result records from
web documents returned by search engines. They
created a taxonomy of two categories, namely:
Supervised information extraction techniques and
unsupervised information extraction techniques.
The techniques in the latter category were classified
into four subcategories, namely: Techniques based
on tag information, techniques based on visual
information, techniques based on tag and visual
information, and techniques based on tag, visual and
domain information. This survey includes three
region extractors [23], [179], [169].

Regarding the surveys that provide a taxonomy and a set

of comparison features, our conclusions are as follows:

. Laender et al. [95] presented a taxonomy that
distinguishes among six categories, namely: Infor-
mation extraction languages, HTML-based propo-
sals, natural language proposals, induction
algorithms to learn extraction rules, proposals that
map text fragments into user-defined data struc-
tures, and ontology-based proposals. The compar-
ison features included seven features, namely:
Degree of automation, support to extract hierarch-
ical records, whether they deal with semistructured
documents or not, how easy it is to use them,
whether they produce XML output or not, whether
they can deal with non-HTML sources, and how
resilient and adaptive they are.

. Kuhlins and Tredwell [91] a taxonomy that classified
information extraction toolkits into two categories,
namely: Noncommercial and commercial. In the case
of noncommercial toolkits, they compared the
following features: Whether they output XML or
text, whether they provide an API or not, whether
they are open-source or not, whether they support
web crawling or not, whether they have an end-user
interface or not, whether they provide an editor or
not, whether they provide a scripting language or
not, whether these toolkits provide support to end

1964 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

TABLE 2
Comparison between Previous Surveys that Provide a Comparison Framework (1/2)



users or not, and their source code language. In the
case of the commercial toolkits, they compared their
vendors, whether they provide a demo version or
not, the output, whether they allow connectivity to a
database or not, whether they provide an API or not,
whether they allow web crawling or not, whether
they provide a user interface or not, whether they
provide an editor or not, and whether they provide a
scripting language or not. However, none of their
comparison features provides an insight into the
techniques behind the scenes since they all focus on
how the toolkits can be used.

. Turmo et al. [157] created a taxonomy in which they
classified machine learning techniques used for
information extraction into two categories, namely:
Techniques that learn rules and technique that learn
statistical models. Then, they compared the follow-
ing features for each category: The learning para-
digm, the learning strategy, whether the technique
learns knowledge that is useful to extract text
fragments including its context or not, and features
of the input documents. The authors compared
fifteen free-text information extraction systems using

the following features: Syntactic parsing, semantic
interpretation, and discourse analysis.

. Chang et al. [35] presented an additional survey in
which they classified the existing proposals into
four categories according to their degree of user-
supervision, namely: Handcrafted, supervised,
semi-supervised, and unsupervised proposals. They
devised a three-dimensional framework to compare
them, namely: Features regarding how the proposal
can adapt to formatting variations, aka. task
domains, features regarding the technique used,
and features regarding the degree of user interven-
tion required.

The previous surveys provide a partial view of the whole
range of proposals in the area of information extraction
because only one of them reports on three region extractors
and none of them provides a comparison framework that is
specifically tailored to region extractors. This has motivated
us to work on this survey. We have created a four-
dimensional comparison framework in which each dimen-
sion reports on several related objective features. The first
dimension includes a collection of features that are related
to input requirements and output characteristics; the second

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1965

TABLE 3
Comparison between Previous Surveys that Provide a Comparison Framework (2/2)



dimension focuses on features that are related to the
algorithms used in each proposal; the third dimension
provides several features that are related to performance;
the last dimension is about miscellaneous features. All of
the features on which we report are objective and can be
contrasted in the literature.

3 STATE OF THE ART

In the following sections, we summarize the current state-
of-the-art proposals regarding region extraction from web
documents. In each case, we report on the most up-to-date
references to the literature, what they are intended for,
provide a synopsis of the hypothesis on which they rely,
known problems, and a short description of the techni-
ques behind the scenes; we also mention if the proposal
being examined has inspired or put the foundation to
other proposals.

3.1 Embley et al.

The proposal by Embley et al. [53] is intended to extract the
data records from the largest data region in a web document.
It builds on the hypothesis that there is a unique data region,
which is the largest region in the web document, that this
region contains multiple data records, that some tags are
more likely to be data record separators based on their
type and their occurrences, and that counting on an
ontology helps identify data records. Some of the heuristics
proposed by Embley et al. were used in the region extractor
OMINI [23].

The algorithm works as follows:

1. It converts the HTML code of the input document
into XHTML and removes comment tags. Then, it
builds the DOM tree.

2. It detects the root node of the largest data region by
searching for a so-called highest fan-out node in the
DOM tree, i.e., the node with the highest number of
immediate child nodes.

3. The algorithm calculates the occurrences of im-
mediate child nodes in the highest fan-out node
and considers the nodes whose frequency is less
than 10 percent as separator candidates for the data
records. If only one separator candidate is found,
then it is considered as the data record separator in
the data region. Otherwise, some heuristics are
applied to the highest fan-out node contents and
combined to detect the separators. These heuristics
are: The tags that appear many times are more
likely to be separating tags when the data region
contains many data records, some types of tags
have more probability to be separating tags based
on typical web development practices, a tag is more
likely to be a separator if the standard deviation of
the size of the information between the occurrences
of this tag is low, and a repeating tag sequence is
more likely to be a separator. The technique also
relies on a user-defined ontology that provides
information about so-called record-identifying
fields, i.e., sort of keywords that help identify data
records and separate them.

4. The algorithm applies Stanford’s certainty theory
[106] to combine the previous heuristics and identify
the tags that better separate the data records, which
are returned.

Note that this proposal needs an user-defined ontology,

but it is considered unsupervised because it is not

mandatory according to the authors; contrarily, Buttler et

al. [23] have found that this ontology plays a critical role in

achieving high accuracy.

3.2 OMINI

OMINI [23] is intended to learn rules to extract data records

from web documents that contain multiple data records in a

unique data region. It builds on the hypothesis that there is

a unique data region in the web document, that this region

corresponds to the subtree with the largest number of

children, and that some tags are more likely to be data

record separators based on their occurrences and type.

OMINI is a constituent part of the information extraction

toolkit called XWRAP Elite [71].
The OMINI algorithm works as follows:

1. The DOM tree of the input document is built.
2. The algorithm searches for the data region using the

following heuristics: It is the subtree with the largest
number of children, it is has the largest contents
(measured in bytes), and the largest number of tags.

3. It then works on detecting the data record separators
inside the identified data region. It considers the
child tags of the data region subtree node as record
candidate separator tags, and ranks them according
to five heuristics, namely: A tag is more likely to be a
separator if the standard deviation of the size of the
information between the occurrences of this tag is
low, pairs of tags that appear several times con-
secutively without any text between them are more
likely to be separators, some types of tags have more
probability to be separating tags based on typical
web development practices, pairs of tags that are
immediate siblings and that appear several times are
more likely to separate data records because their
number of occurrences is the same as the number of
data records in the data region, and the record
candidate separator whose path to the other nodes in
the data region has many occurrences is more likely
to be a record separator since data records usually
have a similar structure.

4. It combines the results from the heuristics using an
approach for combining evidences from two or more
independent observations [72]. A filtering step is
then applied to the extracted data records to discard
those that are not similar to the majority in terms of
their tags and sizes. The idea is to discard false data
records in the data region, e.g., advertisements.

Note that OMINI learns extraction rules, but the authors

did not provide too much insight into their structure.

However, according to [113], the rules include the DOM

path to the root of the data region subtree, and a list of

separator tags identified by OMINI to separate this data

region into data records.

1966 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013



3.3 MDR: Mining Data Records

Mining Data Records [100], or MDR for short, is intended to
extract data records. It builds on the hypothesis that a data
region contains a repetitive structure in a document, that
each repetitive structure inside a data region is a data
record, and that data records are usually rendered inside
tables and forms. Some recent information extractors have
got inspiration from MDR, including [178], [99], and [143].

The MDR algorithm works as follows:

1. The DOM tree of the input document is built.
2. It then uses a combinatorial algorithm to find so-

called generalized nodes, which are subsets of nodes
that fulfill the following conditions: They are
siblings, they are adjacent, they have the same
number of children, and the edit distance among
them does not exceed a predefined threshold. The
idea is to detect regions that contain repetitive
similar structures. The edit distance is calculated
on the strings that result from serializing the nodes
to be compared as strings; this serialization does not
take text nodes into account, only HTML tags.

3. The subsets of generalized nodes that result from the
previous step are considered as data regions because
each data region is supposed to contain two or more
data records that have similar structures.

4. The algorithm then separates the data records
inside the previous data regions using the follow-
ing heuristics:

a. if the region consists of only one generalized
node, it then checks if this node is not a table row,
but all of its children are similar; if the condition
is met, then the children are returned as
independent data records; otherwise the general-
ized node itself is returned as a data record.

b. If the generalized node contains two or more
nodes with the same number of children and
these children are similar to each other, then it
means that they are noncontiguous data records,
i.e., the data region is an HTML table in which
each data record is formatted in columns and
not in rows; otherwise, the whole generalized
node is returned.

3.4 TPC: Tag Path Clustering

Tag Path Clustering [114], or TPC for short, is a proposal
that is intended to extract all of the data records from all of
the data regions in a web document. It is based on the
hypothesis that a data region contains multiple contiguous
or noncontiguous data records, that they are rendered
similarly, visually aligned, and contain at least three
HTML tags.

The TPC algorithm works as follows:

1. The DOM tree is first built, and the DOM paths of
every node are calculated.

2. The algorithm works on mining visually repeating
information using the DOM paths. For this purpose,
it works with the HTML code as an ordered
sequence of opening HTML tags of size n. For each
DOM path p, it calculates a so-called visual signal

vector, which is an occurrence vector for each
possible DOM path (without repetition). The visual
vector for a DOM path p is a binary vector of size n;
it contains a 1 at position i if the DOM path for the
tag at position i in the sequence of opening tags is
the same as p, and 0 in other case.

3. The authors defined a visual signal as a triple ðp; s;OÞ,
where p is a DOM path, s is its visual signal vector,
and O is a collection that contains the individual
occurrences, i.e., the nodes whose DOM path is p.

4. The algorithm works on the collection of visual
signals. It builds a similarity matrix between the
visual signals using a similarity function that relies
on signal theory. Then, the similarity matrix is fed
into a spectral clustering technique [123] that
groups similar visual signals. The idea is that each
cluster contains visual signals that belong to the
same data region.

5. The algorithm discards clusters that contain less
than three visual signals because it considers that a
data record must contain at least three HTML tags. It
also considers that the visual signals that belong to
the same cluster represent the same data region.

6. The authors then introduce ancestor and descendant
relationships between visual signals in each cluster,
and determine the visual signals that are the
maximal ancestors, i.e., visual signals that do not
have any ancestors in their cluster.

7. If there is a single maximal ancestor in a cluster, then
the algorithm considers that some of the nodes in the
occurrence collection in the maximal ancestor are
data records and that some of these nodes may
contain multiple data records. It iteratively performs
two steps until finding the best data record
separators; first, it detects data record candidates
by selecting node occurrences that have many
descendants in the cluster, and then searches for a
separator between the data record candidates by
applying a technique that is similar to MDR [100],
but uses the width and the height of the visual signal
occurrence collection instead of the tree-edit dis-
tance. If there are multiple maximal ancestors, then it
considers they are consecutive siblings that repre-
sent a data record, and the algorithm tries to detect a
repeating pattern from a sequence of occurrences in
different signals. It applies a heuristic in which the
occurrences in the first maximal ancestor are
considered record boundaries, creates data records
candidates, and applies the steps described in the
first case.

8. The algorithm tries to detect nested data records by
applying the following heuristic: If a visual signal
occurs at each point where data records are
separated, then this visual signal corresponds to a
visual pattern that separates two data records, and
the text contained in this visual signal describes the
relationship between these data records.

3.5 DSE: Data-Rich Section Extraction

Data-rich Section Extraction [163], or DSE for short, is

intended to extract data regions. It builds on the hypothesis

that documents from the same website have a common

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1967



layout that includes ancillary regions such as headers,
footers, menus, or banners, whose structure is identical
from document to document; what differentiates them is
the structure of the data region, which should be similar
only in documents that come from the same section. This
proposal is a constituent part of a well-known information
extractor called DeLa [164].

The DSE algorithm works as follows:

1. The user provides an input document. The algo-
rithm then selects a document that can be reached
from this document using a similarity measure that
is based on their URLs. Both documents are then
transformed into DOM trees.

2. The algorithm now searches for matching nodes
in the previous trees. The matching is based on
a recursive similarity function that takes the tag, a
limited subset of attributes, and the number of
children of every node into account. The idea is that
similar nodes in different web documents constitute
ancillary regions.

3. The nodes that are similar are removed from the
original DOM trees, which results in two pruned
trees that are likely to contain data regions. The data
region that is selected by DSE is the pruned tree that
corresponds to the input document.

3.6 U-REST: Unsupervised Record Extraction
SysTem

Unsupervised Record Extraction SysTem [140], [141], or U-
REST for short, is intended to extract data records. It builds
on the hypothesis that data records in a document belong to
a unique data region, have similar DOM trees, have similar
structure, and have small separators, if any.

The U-REST algorithm works as follows:

1. The DOM tree of the input document is built and all
of its subtrees are stored in a collection. Subtrees that
have tags that cannot clearly represent a data record
are removed. This includes subtrees with tags html,
head, title, or script to mention a few.

2. The algorithm now clusters the remaining subtrees
using a similarity function that is based on three
features, namely: The tree-edit distance between
subtrees, the string edit distance between their DOM
paths, and a so-called trigram model, which is a
vector that contains the HTML tags of the previous,
next, and the root nodes of each subtree. The
similarity function must be learned from samples.

3. U-REST now ranks the clusters according to a
scoring function that must also be learned from
samples. This scoring function is based on the
following features: A contiguity function that mea-
sures the amount of text between contiguous
subtrees, a content-coverage function that measures
the amount of contents provided by the subtrees in a
cluster with regard to the total amount of contents in
the input document, and a variation function that
measures both the internal irregularity of the
subtrees in a cluster and their external regularity.

4. The algorithm now selects the cluster with the
highest score as the data region because it contains
similar subtrees that are supposed to be the data

records. The subtrees in this region are returned as
the data records in the input document.

Note that U-REST relies on two functions that must be
learned from sample documents using the SVM method.
However, the method is considered unsupervised because
once these functions are learned, they can be reused with a
variety of documents; in other words, the proposal does not
require to be trained for specific websites.

3.7 STAVIES

STAVIES [125] is intended to extract data records. It builds
on the hypothesis that relevant information resides in leaf
nodes in the DOM tree, attributes inside data records share
a high number of ancestors, at least 20 percent of the data in
a document are relevant, and that data records have a
repetitive structure.

The STAVIES algorithm works as follows:

1. The HTML code of the input document is converted
into XHTML, its DOM tree is built, and the leaf
nodes are stored in a pool.

2. The first step attempts to locate the data region
within the input document. To do so, STAVIES relies
on an algorithm that clusters the leaf nodes
hierarchically. The similarity between every two
nodes is calculated as the number of common
ancestors, and two adjacent nodes are put in the
same cluster at level l as long as the similarity
between the child nodes is greater than or equal to l.

3. The algorithm returns the cluster that has less
statistical variance and contains at least 20 percent
of the total number of leaf nodes as the data region.

4. The authors realized experimentally that if leaf nodes
are plotted against similarity, the result is quite a
regular periodic signal. They developed a method to
calculate a threshold that is based on calculating the
semiperiod of the previous signal. This threshold is
then used to cluster the nodes in the data region
again. The authors used an outlier detection method
for signals to remove noisy clusters.

5. STAVIES returns the clusters it identifies within the
data region as data records.

3.8 VIPS: Vision-Based Page Segmentation

VIsion-based Page Segmentation [24], or VIPS for short, is
intended to find all of the regions of which a document is
composed. It builds on the hypothesis that web designers
provide visual cues that help people recognize the different
regions of which a document is composed, e.g., horizontal
or vertical rules, boxes, colored panels, special fonts, or
background images. Proposals like ViDRE [169], RIPB [84],
and VSDR [97] endow VIPS with an algorithm to determine
which the data regions are.

The VIPS algorithm works as follows:

1. The DOM tree of the input document is built, and it
is enriched with information about visual features,
e.g., position, background color, foreground color,
font information, or background image.

2. Initially, the algorithm assumes that the whole
document is a big region; it then traverses the DOM
tree level after level and analyzes each node to

1968 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013



determine if it can be considered a subregion. To do
so, the authors devised a collection of 12 heuristics,
including the following: If a parent node has a child
node of type hr, then that node must be divided into
two subregions; if the background color or a node is
different from the background color of one of its
children, then that child is a subregion; if a table cell
does not have any subregions, then the next table cell
should not have any subregions, either; and so on.

3. After discovering the subregions in each level of the
DOM tree, the algorithm calculates a set of separa-
tors, which are visual boxes that do not intersect any
of the subregions. In other words, a separator is an
empty region within a document. Each separator is
assigned a weight that is related to the visual
difference between the regions that it separates.
The authors devised a number of heuristic to
calculate the weight of a separator building on
how similar the blocks it separates are, what colors
they have, if a horizontal rule overlaps the separator,
and so on. Adjacent regions that have a separator
whose weight are smaller than a predefined thresh-
old are merged.

4. Once all of the regions have been identified, they are
organized into a tree that represents containment
relationships, i.e., a region is the child of another
region as long as the rendering box of the former is
contained within the rendering box of the latter. The
whole tree is returned by VIPS.

3.9 ViDRE: Vision-Based Web Data Records
Extraction

Vision-based web Data Records Extraction [169], or ViDRE
for short, relies on VIPS [24] and is intended to learn rules to
extract data records from web documents. It builds on the
hypothesis that a web document contains a unique data
region, that this region is the largest one, it is reasonably
centered, data records inside this data region are aligned to
the left, adjacent, do not overlap, are separated homo-
geneously, and are similar from a visual point of view. This
region extractor is a constituent part of the ViDE informa-
tion extractor [104].

The ViDRE algorithm works as follows:

1. Given an input document, it first creates a tree of
regions using VIPS [24].

2. It then identifies the data region in the previous tree
by searching for the largest region that is reasonably
centered horizontally. If more than one region
satisfies this condition, ViDRE selects the one at
the lowest level in the tree returned by VIPS.

3. The selected region is first analyzed to find noisy
subregions, which are removed. The authors take
only the top and bottom subregions into account,
which are considered noisy as long as they are not
aligned to the left.

4. The algorithm now clusters the remaining subre-
gions using a similarity function that relies on
features of the images, the text, and the links in the
subregions being compared.

5. For each of the previous clusters, the algorithm first
finds the minimum bounding box that encloses all of

the subregions in that cluster and reorders them
according to their relative positions.

6. Then, the cluster with the maximum number of
subregions is selected, let it be C, and each of its
subregions is considered an initial data record.

7. Now, for each cluster that is different from C, it
finds the subregions whose bounding boxes overlap
the bounding box of a data record in C; such
subregions are merged into a unique subregion. In
other words, this step grows the initial data records
with overlapping subregions that are adjacent and
returns them.

8. The algorithm now creates an extraction rule for
the data region of the form ðx; y; w; h; lÞ, where x
and y are the upper coordinates of the data region,
w and h are the width and the height of this
region, and l is the level of this region in the tree of
regions constructed by VIPS. Furthermore, ViDRE
creates an extraction rule that contains visual
information regarding the first data record (font,
size, etc.), and gap space between two consecutive
data records. The first rule identifies the data
region, whereas the second rule uses the visual
information to identify the first data record, and
the gap space to detect and separate the remaining
data records in the data region.

3.10 RIPB: Recognizing Informative Page Blocks

Recognizing Informative Page Blocks [84], or RIPB for short,

relies on VIPS [24] and is intended to identify the largest data

region in a document. RIPB is supervised, which implies that

the user must provide a few examples of data records. The

algorithm then tries to find the regions that contain

structures that are similar to these records.
The RIPB algorithm works as follows:

1. It first finds a matching between the DOM trees that
represent the data records that the user must
provide. This matching builds on the algorithm
proposed by the DEPTA information extractor [178].
The result is a so-called augmented tree, which can
be interpreted as a rule that allows to identify the
trees in a document that have a data record that is
similar to one of the sample data records provided
by the user.

2. It then uses VIPS [24] to segment the input document
into a collection of candidate regions.

3. It then applies a clustering algorithm to the previous
candidate regions. The similarity function used is
based on a tree-edit distance.

4. Next, each region in a cluster must be compared to
the augmented tree and the result is a score that is
based on the tree-edit distance. The total score of a
cluster is the sum of the partial scores of its regions.

5. The algorithm selects the cluster with the highest
score and returns it as the data region in the input
document.

3.11 VSDR: Visual Segmentation-Based Data Record

Visual Segmentation-based Data Record [97], or VSDR for

short, builds on VIPS [24] and is intended to extract data

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1969



records. It builds on the hypothesis that the regions with
data records are nonleaf contiguous siblings; furthermore, it
assumes that data records are totally contained within a
unique region that is composed of at least two subregions
with different kinds of contents.

The VSDR algorithm works as follows:

1. First, it uses VIPS [24] to partition the input
document into a tree of visual regions.

2. The leaf regions returned by VIPS are explored in an
attempt to classify them into the following cate-
gories: text Region, text link region, image region,
image link region, drop down region, text box
region, or action button region. Note that it is
common that the leaf regions returned by VIPS
contain a mixture of contents, e.g., text and links; this
implies that VSDR may need to split them so that
they fit into a unique category.

3. It then identifies noisy regions using the following
heuristics: Nodes at the first level in the DOM tree
that have zero or one child are removed; if at least
75 percent of the subregions inside a region were
classified as text link or image link, then the region is
removed; regions that are of type drop drown or
action button are removed if they are rendered in a
small box.

4. VSDR now attempts to merge some of the regions in
the region tree returned by VIPS using two
heuristics, namely: If all of the leaf subregions of a
region are of the same type, then they are merged;
similarly, if a region has a unique child then the
parent region is removed and the child is raised to
replace it in the region tree.

5. Now, the algorithm attempts to find the regions that
contain the data records in the input document. To
do so, VSDR compares every pair of sibling regions
using a tree-edit distance algorithm. The algorithm
returns the regions that are similar enough accord-
ing to a user-defined threshold.

3.12 ViNTs: Visual Information and Tag Structure

Visual information aNd Tag structure [179], or ViNTs for
short, is intended to learn rules to extract data records from
web documents that are returned by search engines. It
builds on the hypothesis that there is a unique data region
that is large, centered, and contains many data records,
which are very similar even if they come from different
search engines, share a parent node, are clearly separated,
and the shape of their left sides is very regular. ViNTs was
used to generate wrappers for most of the search engines
used in the AllInOneNews [101] metasearch engine

The ViNTs algorithm works as follows:

1. The input to ViNTs is a set of documents that must
contain at least four data records and an additional
document that does not contain any records at all.

2. First, input documents are rendered using a browser
and each node is assigned the coordinates of their
corresponding rendering boxes.

3. Rendering boxes are then used to extract content
lines, which are classified as text, link, link-text, link-
head, text-head, link-text-head, horizontal rule, and

blank lines. (“Head” refers to whether the line starts
with a number or not.)

4. The content lines that appear in the document that
do not contain any records are removed from the
other documents.

5. It then uses a suffix tree to identify repetitive line
patterns that occur at least three times. Each pattern
is considered as a record separator. These separators
are used to partition the input document into several
regions that are clustered according to their visual
similarity and their type; i.e., two regions belong to
the same cluster if their distance is less than a given
threshold. The distance function builds on the types
of lines they contain, the distance between their
rendering boxes, and a so-called shape distance that
measures how similar the left sides of the regions
are. Each resulting cluster is a region.

6. The next step is to identify the first line of each data
record in the previous regions. It builds on four
simple heuristics, namely: It follows a horizontal
rule, it follows a blank line, and there are no other
blank lines, it is the only line that starts with a
number, or it is the leftmost line. The first lines, thus,
identified help identify records.

7. ViNTs now learn extraction rules of the form
ðp; S; �; �Þ, where p denotes the DOM path to the
region, S a set of record separators, and � and �
denote the minimum and maximum number of
records (NR) per region.

8. For every region, the algorithm calculates p as the
longest common prefix out of the DOM paths of its
records; S is calculated building on the differences
among the DOM paths that lead to the records in the
region being analyzed; � and � are calculated by
means of a heuristic that is based on the presence of
links and the similarity of the records.

9. The last step consists of selecting and merging the
rules that are more likely to extract the right data
records. To do so, ViNTs searches for the rules that
extract a large data region that is reasonably
centered and have many data records.

3.13 MSE: Multiple Section Extraction

Multiple Section Extraction [180], or MSE for short, is

intended to learn rules to extract data records from all of the

data regions in the documents returned by search engines.

It builds on the hypothesis that data records in a data region

appear consecutively, they are siblings, they are cohesive

(which means that their content lines are dissimilar from

each other, but records are similar as a whole), and content

lines that are common to many documents do not have

relevant information.
The MSE algorithm works as follows:

1. MSE takes a set of documents as input. It analyzes
them using two algorithms called Multirecord
Extractor, or MRE for short, and Dynamic-Section
Extractor, or DSE for short. The former attempts to
identify data records, whereas the latter attempts
to identify data regions. Note that MRE implicitly
identifies a number of data regions, as well, which

1970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013



are the ones that enclose the data records this
algorithm identifies. MRE is a version of ViNTs that
relies on a different distance function; it then returns
the same rules as ViNTs. DSE relies on the
hypothesis that the boundaries of data regions
consist of content lines that are not likely to change
from document to document, or content lines that
change very little; DSE returns rules of the form
ðl; rÞ, where l denotes the left boundary of a region
and r its right boundary.

2. If exactly the same region is returned by both MRE
and DSE, then the records identified by MRE are
selected as candidate data records; if a region
returned by MRE overlaps a region returned by
DSE, then the algorithm searches the DSE region for
records that are similar to the records in the MRE
region; if an MRE region does not overlap any DSE
regions, then it is ignored; if a DSE region does not
overlap any MRE regions, then the algorithm
partitions it using MRE.

3. The previous step removes some MRE regions and
partitions the DSE regions. They both need to be
refined since the authors identified that there are
chances that MRE returns so-called oversized data
records, i.e., a number of consecutive actual records
that are merged together, and splitted records, i.e.,
an actual record that is identified as two or more
consecutive records.

4. To deal with oversized records, MSE iterates
through the collection of regions identified by
MRE, and reapplies MRE to them. If new records
are found, then MSE assumes that it was oversized.

5. To deal with splitted data records, MSE checks every
combination of consecutive records to find out if
they are cohesive enough, i.e., they are similar as a
whole, but internally dissimilar.

6. In the previous steps, MSE has partitioned every
input document into a set of candidate records and
data regions. It now clusters these regions using a
distance function that builds on their DOM paths,
their boundaries, and their tree-edit distances.
Singleton clusters are ignored because they refer to
regions that are isolated.

7. The algorithm now creates an extraction rule of the
form ðp; S; L;RÞ for each cluster, where p denotes the
DOM path that leads to a region, S is a set of
separators (in the sense of ViNTs), and L and R are
the set of left and right boundaries, respectively. p is
calculated by compacting the DOM paths of the
regions in the same cluster; S is the union of
the separators returned by MRE; and L and R are
the union of the boundaries returned by DSE.

3.14 RST: Record Segmentation Tree

Record Segmentation Tree [19], or RST for short, is intended
to extract data records from all of the data regions in a web
document. It is based on the hypothesis that similar data
records in a contiguous region compose a data region, that
data records inside a data region are formatted using similar
HTML tags, that a data record consists of a collection of
subtrees, and that these subtrees share a parent node.

The RST algorithm works as follows:

1. The DOM tree of the input document is built, and a
sequence S with its subtrees is created.

2. The subtrees sequence S is used to create a so-called
RST, which is a search structure. An RST is a tree in
which each node covers a subsequence of adjacent
subtrees in S and has a set of separators for these
subtrees. Each child node covers a subsequence of
subtrees that starts at the parent subtrees and covers
a number of adjacent subtrees; the separator set is
the union between the parent’s separators and its
own set of separators.

3. Each node in the RST tree is a possible segmentation
of the subtrees in S starting from a given subtree,
where each segment (group of subtrees) is a data
record candidate. Since data records are supposed to
be formatted using similar tags, then the algorithm
searches for a node in the RST such that the
similarity between its segments is greater than a
predefined threshold; if none is found, then the
subtree considered is not a data region; if more than
one node satisfies the previous similarity condition,
then the node with the greatest number of data
records is considered as a data region.

4. The previous step is performed starting from the
first subtree in S, but if the data region is not found,
the step is repeated by starting from the second
subtree in S, and so on. When a data region is found,
the previous step can also be applied again to the
remaining subtrees to detect additional data regions
in the input web document.

5. To reduce the complexity of the algorithm, building
the RST is optimized by building a slimmed RST, in
which some children are not created if the average
number of subtrees per data record in a node is less
than the number of subtrees in the child to create.
Furthermore, some search pruning strategies are
introduced, and noise reduction is performed by
removing the first subtree in the first data record if
this record contains more subtrees than the next data
records and if this subtree is not similar enough to
the next data records. The similarity is calculated
using a token-based tree-edit distance [69], [143].

4 COMPARATIVE ANALYSIS

We have studied and compared four dimensions of
features, namely: Input and output, algorithmic, efficiency
and effectiveness, and other miscellaneous features. We
report on the results in the following sections.

4.1 Input and Output Dimension

This dimension contains features that are related to the
input and output of region extractors, namely:

. Domain: It refers to the domain of the input
documents. Some proposals rely on some character-
istics of a specific domain to identify regions,
whereas other proposals are domain independent.

. Input: It refers to the data on which a proposal works.

. Number of Documents (ND): It refers to the minimum
number of input documents that are necessary for
the region extractor to work.

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1971



. NR: It refers to the minimum NR in each document
that are necessary for the region extractor to work.

. Nesting: It refers to the ability to deal with regions
that are nested, and to maintain this relationship.

. Output: It refers to what the region extractor returns
as output.

. Rules type: It refers to the kind of rules produced by
the region extractor, if any.

Table 4 reports on the results of our analysis regarding
the previous features. Note that the majority of region
extractors are domain independent, with the exception of
ViNTs [179] and MSE [180], which are targeted toward
search engines. The majority of the proposals need input
documents to be formatted using the HTML markup
language because they rely on DOM trees or HTML tags,
except ViDRE [169], RIPB [84], and VSDR [97], which work
on the region tree produced by VIPS [24]; this precludes
them from being used with free-text documents. Most
region extractors need a unique document to work. In the
case of DSE [163], the user needs to provide only a
document; the other is fetched automatically. ViNTs [179]
and MSE [180] require several input documents, including
one document that does not contain any records. Unfortu-
nately, there is not a rule of thumb to determine what the
most appropriate ND or records is; in general, the user must
make an attempt to provide an example of every possible
formatting so that it can be analyzed. Proposals that need

more than one data record in each input document
generally build on the fact that they are formatted regularly,
e.g., Embley et al. [53], OMINI [23], STAVIES [125], and
MSE [180], or they search for regions that contain records
that are similar to the ones provided by the user, namely,
RIPB [84]. Regarding nested regions, the majority of
proposals are single level because they can maintain the
relationship between the detected data regions and the data
records inside them. VIPS [24] supports multilevel nesting
because it partitions regions in a hierarchical structure in
which it maintains the relationships between the parent and
child subregions, thus allowing to detect nested subregions.
TPC [114] and RST [19] support multilevel nesting because
they are able to detect nested regions and to infer the
relationship between parent and child regions. Note that
proposals that use VIPS, such as RIPB [84] and VSDR [97],
are not considered to extract nested data regions (zero-
level) because the former extracts one data region only and
the latter does not maintain the relationships between
regions. DSE [163] is not considered to extract nested data
regions since it does not extract the data records from the
detected data regions. Once the largest data region or all of
the data regions are detected, some proposals partition
them into records that are then output, e.g., Embley et al.
[53], MDR [100], and STAVIES [125]. Some region extractors
produce extraction rules, namely: OMINI [23], [169], ViNTs
[179] and MSE [180]. These rules range from regular

1972 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

TABLE 4
Comparison of Input and Output Features



expressions to tuples that contain visual or tag information
to locate a data region and separate it into data records.

4.2 Algorithmic Dimension

The second dimension includes features that are related to
the algorithms used in the region extractors. These features
are the following:

. Supervised: It refers to whether a proposal requires
the user to provide samples of the regions in which
he or she is interested.

. View: It refers to the view of the input document on
which a region extractor works.

. Features: It refers to the features of the web document
used by the region extractor.

. Algorithm: It refers to the algorithms used by the
region extractor.

. Removes noise: It refers to whether a proposal imple-
ments an algorithm to remove noisy regions or not.

Table 5 reports on the results of our analysis regarding
algorithmic features. The majority of proposals are un-
supervised, except for RIPB [84], which requires the user to
provide a few examples of the records in which he or she is
interested. Note that U-REST [141] is considered an
unsupervised proposal, but it requires a similarity and a
ranking function to be learned from examples; the key is
that these functions need not to be customized for specific
sites, i.e., they can be learned once and reused many times.
The proposal by Embley et al. [53] needs an ontology to
match data records, but the algorithm still works unsuper-
visedly if this ontology is not provided, although this may
have an impact on its effectiveness. Approximately half of
the proposals work on the DOM tree of the input
documents; a quarter of the proposals rely on the regions

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1973

TABLE 5
Comparison of Algorithmic Features



that were returned by VIPS, whereas ViNTs [179] and MSE
[180] convert input documents into collections of so-called
content lines. Region extractors are based on two types of
features, namely: Visual and tag information. Note that half
of the proposals use only tag information, e.g., OMINI [23]
and RST [19]; ViDRE [169] is the unique region extractor
that is solely based on visual information, whereas the
remaining proposals use both visual and tag information,
e.g., ViNTs [179] and TPC [114]. Note that the majority of
proposals rely on a number of key algorithms in the
literature: Tree matching, string matching, and clustering
using a variety of similarity functions. The majority of
proposals take noise reduction into account by filtering
some regions that are not likely to be a data region, which is
performed by removing small regions, regions that do not
contain similar-enough structures, regions that appear in
almost every document, or regions that are isolated.

4.3 Efficiency and Effectiveness Dimension

The third dimension includes efficiency and effectiveness

features. Note that the problem of identifying regions is

somewhat related to the problem of setting up a binary

classifier that works on all of the possible regions in a

document and classifies them as either relevant or not. It is not

surprising then that the usual measures to characterize the

effectiveness of a region extractor are the standard measures

used to characterize the effectiveness of a binary classifier.

Table 6 provides the exact formulation of these measures:

. Complexity/Time: Complexity refers to the computa-
tional complexity of a proposal; as usual, this is
characterized using the well-known big-O notation.
Since the majority of proposals do not report their
complexity, we added the Time feature that reports
on the learning and extraction times if they are
reported in the original proposal.

. Test data sets: It refers to the data sets that were used
to test a proposal experimentally, and the features of
the web documents inside the ad hoc data sets.

. Compared with: It refers to the techniques with which
each proposal was compared.

. Precision (P ): It refers to the average fraction of
regions that are identified by a proposal and
correspond to actual data regions. Intuitively, the
higher the precision, the less regions identified by a
proposal are not actually relevant.

. Recall (R): It refers to the average fraction of actual
data regions that are identified by a proposal;

intuitively, the higher the recall, the more actual
data regions are identified.

. Accuracy (A): It focuses on both the ability of a
proposal to identify data regions and not to identify
ancillary regions.

Table 7 reports on the results of our analysis regarding
efficiency and effectiveness. Note that this is by far the
dimension in which there is more missing data in the
literature. Unfortunately, only a few proposals are accom-
panied by a complexity analysis, namely: Embley et al. [53],
MDR [100], DSE [163], TPC [114], and [19]. Some proposals
reported on the learning and extraction times, namely:
STAVIES [125], ViDRE [169], ViNTs [179], and MSE [180].
However, the timings reported in these proposals are not
side-by-side comparable because they were measured on
different machines. The majority of proposals have been
analyzed on ad hoc data sets, which reflects the lack of
standardized up-to-date data sets; some proposals used the
TBDW [173] repository and the data sets used in MEMPHIS
([112]) project, which are not maintained since 2004.
Comparisons are fairer in the cases in which third-party
data sets were used, namely: TPC Miao et al. [114],
STAVIES [125], VSDR [97] and MSE [180]. Regarding the
standard measures P , R, and A, note that the results
reported in Table 7 are not comparable side-by-side because
they were calculated on different data sets; this is an
important problem in this field, because this makes it
impossible to discern which proposal globally behaves
better than the others. Furthermore, note that the proposals
surveyed generally achieve very good results when test
data sets are ad hoc, namely: Embley et al. [53], OMINI [23],
MDR [100], DSE [163], U-REST [141], ViDRE [169], RIPB
[84], ViNTs [179], MSE [180], and RST [19], but these
measures are lower in case the data sets are third-party data
sets, namely: TPC [114], STAVIES [125], and VSDR [97].
Note that although MSE [180] uses the ViNTs [179] data
sets, which are not considered third-party data sets because
both proposals were presented by the same authors. None
of the proposals we have surveyed reported on specificity
or on the negative prediction, which are other well-known
effectiveness measures in the field of machine learning.

4.4 Miscellaneous Dimension

The fourth dimension includes the following features:

. Availability: It refers to whether an implementation is
publicly available to the research community or not.

. Used in/Inspired: It refers to the techniques in the
literature that use a proposal or whose region
extractor was inspired by a proposal.

1974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

TABLE 6
Standard Measures to Characterize the Effectiveness of a Classifier



. Applicability: It characterizes the situation in which a
proposal is most applicable.

. Weak features: It reports on known limitations and
weaknesses of a proposal.

Table 8 reports on the results of our analysis regarding

miscellaneous features. Unfortunately, only a few proposals

are available on the web to the research community. Half of

them are used or have inspired other proposals. Note that

about half of the proposals are applicable to semistructured

web documents that contain multiple data regions, whereas

the other half needs web documents to contain a unique

data region. The main drawbacks of the studied proposals

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1975

TABLE 7
Comparison of Effectiveness and Efficiency Features



are that many of them build on the hypothesis that the input

web document contains a unique data region (Embley et al.,

OMINI, TPC, U-REST, STAVIES, ViDRE, and RIPB);

furthermore, many proposals are based on the hypothesis

that a data region contains multiple similar data records

(Embley et al., OMINI, MDR, TPC, U-REST, STAVIES,

ViDRE, VSDR, ViNTs, MSE, and RST), which fails when a

web document contains a unique data record with details

about a unique product or service or multiple data records

with different formatting tags; furthermore, many propo-

sals are based on hypothesis regarding the size of the data

region (Embley et al., OMINI, TPC, STAVIES, and ViNTs),

1976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

TABLE 8
Comparison of Miscellaneous Features



which fails when data regions are smaller than ancillary
regions. Only few proposals can be applied to extract nested
data records and their relationships. Note, too, that none of
the proposals can be considered universally applicable due
to their weak points.

5 CONCLUSIONS

Web documents are getting more and more sophisticated,
which complicates the task of information extraction. This
has motivated using region extractors so that information
extractors can focus only on data records or data regions.
The importance of data regions extractors is clear given that
some of the proposals we have analyzed are now an intrinsic
part of recent information extractors or have inspired them;
there are also applications to fields such as information
retrieval, focused web crawling, topic distillation, adaptive
content delivery, mashups, and metasearch engines.

Despite the importance of the region extractors, they
have not been compared extensively in the literature. In this
paper, we have surveyed region extractors and compared
them regarding four dimensions, namely: Input and output,
algorithmic, efficiency and effectiveness, and some mis-
cellaneous features. The following conclusion can be drawn
from our survey:

1. All of the region extractors work on semistructured
documents that are formatted in HTML and rely on
their DOM tree directly or indirectly by using VIPS.
In general, they search for repetitive structures to
identify data regions. This makes it difficult to apply
them to free-text documents whose contents do not
rely heavily on HTML tags.

2. The majority of region extractors are unsupervised
and usually rely on the following algorithms: Tree
matching, string matching, and clustering. This
makes the majority of proposals scalable because
they do not rely on a user to provide samples of the
regions to be extracted.

3. The efficiency and effectiveness is by far the
dimension in which there are more missing data in
the literature; furthermore, the available results are
not comparable side by side. It is an essential
requirement to count on an up-to-date and main-
tained data set repository to perform homogeneous
and fair empirical evaluations.

4. Region extraction is not an easy task. The proposals
in the literature have strong features and drawbacks,
but none of them is universally applicable, which
keeps this quite an active research field.

ACKNOWLEDGMENTS

This work was supported by the European Commission
(FEDER), the Spanish and the Andalusian R& D& I
programmes (Grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-
09809-E, TIN2010-10811-E, and TIN2010-09988-E).

REFERENCES

[1] B. Adelberg, “NoDoSE: A Tool for Semi-Automatically Extracting
Semi-Structured Data from Text Documents,” Proc. ACM SIG-
MOD Int’l Conf. Management of Data, pp. 283-294, 1998.

[2] E. Agichtein and V. Ganti, “Mining Reference Tables for
Automatic Text Segmentation,” Proc. ACM 10th SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD), pp. 20-29, 2004.

[3] E. Agichtein and L. Gravano, “Snowball: Extracting Relations
from Large Plain-Text Collections,” Proc. Int’l Conf. Digital
Libraries (ICDL), pp. 85-94, 2000.

[4] J.S. Aitken, “Learning Information Extraction Rules: An Inductive
Logic Programming Approach,” Proc. 15th European Conf. Artificial
Intelligence (ECAI), pp. 355-359, 2002.

[5] E. Almasy, D. Sleasman, and R. Bower, “Software for Building
a Full-Featured Discipline-Based Web Portal: The Scout Portal
Toolkit,” D-Lib Magazine, vol. 8, no. 11, p. 11, 2002, http://
dx.doi.org/10.1045/november2002-almasy.

[6] M. �Alvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda,
“Extracting Lists of Data Records from Semi-Structured Web
Pages,” Data Knowledge Eng., vol. 64, no. 2, pp. 491-509, 2008.

[7] D.E. Appelt, J.R. Hobbs, J. Bear, D.J. Israel, and M. Tyson,
“FASTUS: A Finite-State Processor for Information Extraction
from Real-World Text,” Proc. 13th Int’l Joint Conf. Artificial
Intelligence (IJCAI), pp. 1172-1178, 1993.

[8] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from
Web Pages,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 337-348, 2003.

[9] J.L. Arjona, R. Corchuelo, D. Ruiz, and M. Toro, “From Wrapping
to Knowledge,” IEEE Trans. Knowledge Data Eng., vol. 19, no. 2,
pp. 310-323, Feb. 2007.

[10] G.O. Arocena and A.O. Mendelzon, “WebOQL: Restructuring
Documents, Databases, and Webs,” TAPOS, vol. 5, no. 3, pp. 127-
141, 1999.

[11] J.H. Aseltine, “WAVE: An Incremental Algorithm for Information
Extraction,” Proc. AAAI Workshop Machine Learning for Information
Extraction, 1999.

[12] N. Ashish and C.A. Knoblock, “Semi-Automatic Wrapper Gen-
eration for Internet Information Sources,” Proc. Conf. Cooperative
Information Systems (CoopIS), pp. 160-169, 1997.

[13] F. Ashraf, T. Özyer, and R. Alhajj, “Employing Clustering
Techniques for Automatic Information Extraction from HTML
Documents,” IEEE Trans. Systems, Man, and Cybernetics, Part C,
vol. 38, no. 5, pp. 660-673, Sept. 2008.

[14] P. Atzeni and G. Mecca, “Cut & Paste,” Proc. ACM 16th SIGACT-
SIGMOD-SIGART Symp. Principles of Database Systems (PODS),
pp. 144-153, 1997.

[15] R. Basili, M.T. Pazienza, M. Vindigni, P. Bank and The Reuters
Trevi Collection, “Corpus-Driven Learning of Event Recognition
Rules,” Proc. ECAI Workshop Machine Learning for Information
Extraction, 2000.

[16] R. Baumgartner, S. Flesca, and G. Gottlob, “Visual Web Informa-
tion Extraction with Lixto,” Proc. 27th Int’l Conf. Very Large Data
Bases (VLDB), pp. 119-128, 2001.

[17] G. Beuster, B. Thomas, and C. Wolff, “MIA: An Ubiquitous Multi-
Agent Web Information System,” Proc. Int’l ICSC Symp. Multi-
Agents and Mobile Agents in Virtual Organizations and E-Commerce,
pp. 11-13, 2000.

[18] D.M. Bikel, S. Miller, R.M. Schwartz, and R.M. Weischedel,
“Nymble: A High-Performance Learning Name-Finder,” Proc.
Fifth Conf. Applied Natural Language Processing (ANLP), pp. 194-201,
1998.

[19] L. Bing, W. Lam, and Y. Gu, “Towards a Unified Solution: Data
Record Region Detection and Segmentation,” Proc. 20th ACM Int’l
Conf. Information and Knowledge Management (CIKM), pp. 1265-
1274, 2011.

[20] V.R. Borkar, K. Deshmukh, and S. Sarawagi, “Automatic
Segmentation of Text into Structured Records,” Proc. ACM
SIGMOD Int’l Conf. Management of Data pp. 175-186, 2001.

[21] S. Brin, “Extracting Patterns and Relations from the World Wide
Web,” Proc. Selected Papers Int’l Workshop World Wide Web and
Databases (WebDB), pp. 172-183, 1998.

[22] R.C. Bunescu, R. Ge, R.J. Kate, E.M. Marcotte, R.J. Mooney, A.K.
Ramani, and Y.W. Wong., “Comparative Experiments on Learn-
ing Information Extractors for Proteins and their Interactions,”
Artificial Intelligence in Medicine, vol. 33, no. 2, pp. 139-155, 2005.

[23] D. Buttler, L. Liu, and C. Pu, “A Fully Automated Object
Extraction System for the World Wide Web,” Proc. Int’l Conf.
Distributed Computing Systems (ICDCS), pp. 361-370, 2001.

[24] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Extracting Content
Structure for Web Pages Based on Visual Representation,” Proc.
Fifth Asia Pacific Web Conf. (APWeb), pp. 406-417, 2003.

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1977



[25] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Block-Based Web Search,”
Proc. 27th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR), pp. 456-463, 2004.

[26] M.E. Califf and R.J. Mooney, “Bottom-up Relational Learning of
Pattern Matching Rules for Information Extraction,” J. Machine
Learning Research, vol. 4, 177-210, 2003.

[27] A. Carlson and C. Schafer, “Bootstrapping Information Extraction
from Semi-Structured Web Pages,” Proc. European Conf. Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD),
pp. 195-210, 2008.

[28] N. Català, N. Castell, and M. Martı́n, “Essence: A Portable
Methodology for Acquiring Information Extraction Patterns,”
Proc. 14th European Conf. Artificial Intelligence (ECAI), pp. 411-
415, 2000.

[29] J.Y. Chai and A.W. Biermann, “The Use of Lexical Semantics in
Information Extraction,” Proc. ACL Workshop Automatic Information
Extraction and Building of Lexical Semantic Resources for NLP
Applications, pp. 61-70, 1997.

[30] J.Y. Chai, A.W. Biermann, and C.I. Guinn, “Two Dimensional
Generalization in Information Extraction,” Proc. 16th Nat’l Conf.
Artificial Intelligence and 11th Innovative Applications Artificial
Intelligence Conf. Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pp. 431-438, 1999.

[31] S. Chakrabarti, “Integrating the Document Object Model with
Hyperlinks for Enhanced Topic Distillation and Information
Extraction,” Proc. 10th Int’l Conf. World Wide Web (WWW),
pp. 211-220, 2001.

[32] S. Chakrabarti, K. Punera, and M. Subramanyam, “Accelerated
Focused Crawling through Online Relevance Feedback,” Proc.
11th Int’l Conf. World Wide Web (WWW), pp. 148-159, 2002.

[33] C.-H. Chang and S.-C. Kuo, “OLERA: Semisupervised Web-Data
Extraction with Visual Support,” IEEE Intelligent Systems, vol. 19,
no. 6, pp. 56-64, Nov./Dec. 2004.

[34] C.-H. Chang and S.-C. Lui, “IEPAD: Information Extraction Based
on Pattern Discovery,” Proc. 10th Int’l Conf. World Wide Web
(WWW), pp. 681-688, 2001.

[35] C.-H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan, “A Survey
of Web Information Extraction Systems,” IEEE Trans. Knowledge
Data Eng., vol. 18, no. 10, pp. 1411-1428, Oct. 2006.

[36] W.-T. Milly Chiang, M. Hagenbuchner, and A.C. Tsoi, “The
WT10G Data Set and the Evolution of the Web,” Proc. 14th Int’l
Conf. World Wide Web (WWW) (Special Interest Tracks and Posters),
pp. 938-939, 2005.

[37] H.L. Chieu and H.T. Ng, “A Maximum Entropy Approach to
Information Extraction from Semi-Structured and Free Text,”
Proc. 18th Nat’l Conf. Artificial Intelligence (AAAI), pp. 786-791,
2002.

[38] H.L. Chieu, H.T. Ng, and Y.K. Lee, “Closing the Gap: Learning-
Based Information Extraction Rivaling Knowledge-Engineering
Methods,” Proc. 41st Ann. Meet. Associ. Computational Linguistics
(ACL), pp. 216-223, 2003.

[39] Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan, “Identifying
Sources of Opinions with Conditional Random Fields and
Extraction Patterns,” Pro. Conf. Human Language Technology and
Empirical Methods in Natural Language Processing (HLT/EMNLP),
2005.

[40] F. Ciravegna, “Adaptive Information Extraction from Text by Rule
Induction and Generalisation,” Proc. 17th Int’l Joint Conf. Artificial
Intelligence (IJCAI), pp. 1251-1256, 2001.

[41] W.W. Cohen, M. Hurst, and L.S. Jensen, “A Flexible Learning
System for Wrapping Tables and Lists in HTML Documents,”
Proc. Int’l Conf. World Wide Web (WWW), pp. 232-241, 2002.

[42] Content Extractor, “Content Extractor (Home Page),” http://
integration.pervasive.com, Jan. 2012.

[43] C. Cox, J. Nicolson, J.R. Finkel, C. Manning, and P. Langley,
“Template Sampling for Leveraging Domain Knowledge in
Information Extraction,” Proc. PASCAL Challenges Workshop,
2005.

[44] V. Crescenzi and G. Mecca, “Grammars Have Exceptions,”
Information Systems, vol. 23, no. 8, pp. 539-565, 1998.

[45] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards
Automatic Data Extraction from Large Web Sites,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 109-118, 2001.

[46] C. Cumby and D. Roth, “Feature Extraction Languages for
Propositionalzed Relational Learning,” Proc. IJCAI Workshop
Learning Statistical Models from Relational Data, pp. 24-31, 2003.

[47] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan,
“GATE: A Framework and Graphical Development Environment
for Robust NLP Tools and Applications,” Proc. Meeting Assoc. for
Computational Linguistics, pp. 1-8, 2002.

[48] N.N. Dalvi, A. Machanavajjhala, and B. Pang, “An Analysis of
Structured Data on the Web,” Proc. VLDB Endowment, vol. 5, no. 7,
pp. 680-691, 2012.

[49] Denodo, “Denodo (Home Page),” http://www.denodo. com, Jan.
2012.

[50] R.B. Doorenbos, O. Etzioni, and D.S. Weld, “A Scalable Compar-
ison-Shopping Agent for the World Wide Web,” Proc. First Int’l
Conf. Autonomous Agents, pp. 39-48, 1997.

[51] H. Elmeleegy, J. Madhavan, and A.Y. Halevy, “Harvesting
Relational Tables from Lists on the Web,” Proc. VLDB Endowment,
vol. 2, no. 1, pp. 1078-1089, 2009.

[52] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, Y.-K. Ng, D.
Quass, and R.D. Smith, “Conceptual-Model-Based Data Extraction
from Multiple-Record Web Pages.” Data Knowledge Eng., vol. 31,
no. 3 pp. 227-251, 1999.

[53] D.W. Embley, Y.S. Jiang, and Y.-K. Ng, “Record-Boundary
Discovery in Web Documents,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 467-478, 1999.

[54] R. Feldman, B. Rosenfeld, and M. Fresko, “TEG: A Hybrid
Approach to Information Extraction,” Knowledge Information
Systems, vol. 9, no. 1, pp. 1-18, 2006.

[55] D. Ferrucci and A. Lally, “UIMA: An Architectural Approach to
Unstructured Information Processing in the Corporate Research
Environment,” Natural Language Eng., vol. 10, no. 3/4, pp. 327-348,
2004.

[56] Fetch Technologies, “Fetch Technologies (Home Page),” http://
www.fetch.com, Jan. 2012.

[57] A. Finn and N. Kushmerick, “Information Extraction by Con-
vergent Boundary Classification,” Proc. AAAI Workshop Adaptive
Text Extraction and Mining, 2004.

[58] First Rain, “First Rain (Home Page),” http://www.firstrain. com,
Jan. 2012.

[59] D. Freitag, “Information Extraction from HTML: Application of a
General Machine Learning Approach,” Proc. 15th Nat’l Conf.
Artificial Intelligence/10th Conf. Innovative Applications of Artificial
Intelligence (AAAI/IAAI), pp. 517-523, 1998.

[60] D. Freitag, “Toward General-Purpose Learning for Information
Extraction,” Proc. 17th Int’l Conf. Computational Linguistics (COL-
ING-ACL), pp. 404-408, 1998.

[61] D. Freitag and N. Kushmerick, “Boosted Wrapper Induction,”
Proc. 17th Nat’l Conf. Artificial Intelligence/12th Conf. Innovative
Applications of Artificial Intelligence (AAAI/IAAI), pp. 577-583, 2000.

[62] D. Freitag and A. McCallum, “Information Extraction with HMM
Structures Learned by Stochastic Optimization,” Proc. 17th Nat’l
Conf. Artificial Intelligence and 12th Conf. Innovative Applications of
Artificial Intelligence (AAAI), pp. 584-589, 2000.

[63] D. Freitag and A.K. Mccallum, “Information Extraction with
HMMs and Shrinkage,” Proc. AAAI Workshop Machine Learning for
Information Extraction, pp. 31-36, 1999.

[64] D.G. Gregg and S. Walczak, “Exploiting the Information Web,”
IEEE Trans. Systems, Man, and Cybernetics, Part C, vol. 37, no. 1,
pp. 109-125, Jan. 2007.

[65] G. Grieser, K.P. Jantke, S. Lange, and B. Thomas, “A Unifying
Approach to HTML Wrapper Representation and Learning,” Proc.
Third Int’l Conf. Discovery Science, pp. 50-64, 2000.

[66] P. Gulhane, R. Rastogi, S.H. Sengamedu, and A. Tengli, “Exploit-
ing Content Redundancy for Web Information Extraction,” Proc.
19th Int’l Conf. World Wide Web (WWW), pp. 1105-1106, 2010.

[67] P. Gulhane, A. Madaan, R.R. Mehta, J. Ramamirtham, R. Rastogi,
S. Satpal, S.H. Sengamedu, A. Tengli, and C. Tiwari, “Web-Scale
Information Extraction with Vertex,” Proc. IEEE 27th Int’l Conf.
Data Eng. (ICDE), pp. 1209-1220, 2011.

[68] R. Gupta and S. Sarawagi, “Answering Table Augmentation
Queries from Unstructured Lists on the Web,” Proc. VLDB
Endowment, vol. 2, no. 1, pp. 289-300, 2009.

[69] D. Gusfield and J. Stoye, “Linear Time Algorithms for Finding and
Representing all the Tandem Repeats in a String,” J. Computer
Systems Sciences, vol. 69, no. 4, pp. 525-546, 2004.

[70] J. Hammer, J. McHugh, and H. G.-Molina, “Semistructured Data:
The Tsimmis Experience,” Proc. First East-European Workshop
Advances in Databases and Information Systems (ADBIS), pp. 1-8,
1997.

1978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013



[71] W. Han, D. Buttler, and C. Pu, “Wrapping Web Data into XML,”
SIGMOD Record, vol. 30, no. 3, pp. 33-38, 2001.

[72] J. Higgins and S. Keller-McNulty, Concepts in Probability and
Stochastic Modeling. Duxbury Press, 1995.

[73] A.W. Hogue and D.R. Karger, “Thresher: Automating the
Unwrapping of Semantic Content from the World Wide Web,”
Proc. 14th Int’l Conf. World Wide Web (WWW), pp. 86-95, 2005.

[74] J.L. Hong, E.-G. Siew, and S. Egerton, “Information Extraction for
Search Engines Using Fast Heuristic Techniques,” Data Knowledge
Eng., vol. 69, no. 2, pp. 169-196, 2010.

[75] C.-N. Hsu and M.-T. Dung, “Generating Finite-State Transducers
for Semi-Structured Data Extraction from the Web,” Information
Systems, vol. 23, no. 8, pp. 521-538, 1998.

[76] G. Huck, P. Fankhauser, K. Aberer, and E.J. Neuhold, “Jedi:
Extracting and Synthesizing Information from the Web,” Proc.
Conf. Cooperative Information Systems (CoopIS), pp. 32-43, 1998.

[77] S.B. Huffman, “Learning Information Extraction Patterns from
Examples,” Proc. Connectionist, Statistical, and Symbolic Approaches
Learning for Natural Language Processing, pp. 246-260, 1995.

[78] Intelligent Miner, “IBM Intelligent Miner (Home Page),” http://
www.ibm.com/developerworks/data/library/tutorials/iminer/
iminer.html. Jan. 2012.

[79] T.S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan,
and H. Zhu, “The Avatar Information Extraction System,” IEEE
Data Eng. Bull., vol. 29, no. 1, pp. 40-48, Month 2006.

[80] J.Y.j. Hsu and W.t. Yih, “Template-Based Information Mining
from HTML Documents,” Proc. 14th Nat’l Conf. Artificial Intelli-
gence/Ninth Conf. Innovative Applications Artificial Intelligence
(AAAI/IAAI), pp. 256-262, 1997.

[81] M. Junker, M. Sintek, and M. Rink, “Learning for Text
Categorization and Information Extraction with ILP,” Proc. Work-
shop Learning Language in Logic, pp. 247-258, 1999.

[82] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, and T. Laakko,
“Two Approaches to Bringing Internet Services to WAP Devices,”
Computer Networks, vol. 33, no. 1-6, pp. 231-246, 2000.

[83] N. Kambhatla, “Combining Lexical Syntactic, and Semantic
Features with Maximum Entropy Models for Extracting
Relations,” Proc. ACL (Interactive Poster & Demonstration
Sessions), 2004.

[84] J. Kang and J. Choi, “Recognising Informative Web Page Blocks
Using Visual Segmentation for Efficient Information Extraction,”
J. Universal Computer Science, vol. 14, no. 11, pp. 1893-1910, 2008.

[85] M. Kayed and C.-H. Chang, “FiVaTech: Page-Level Web Data
Extraction from Template Pages,” IEEE Trans. Knowledge Data
Eng., vol. 22, no. 2, pp. 249-263, Feb. 2010.

[86] J.-T. Kim and D.I. Moldovan, “Acquisition of Linguistic Patterns
for Knowledge-Based Information Extraction,” IEEE Trans. Knowl-
edge Data Eng., vol. 7, no. 5, pp. 713-724, Oct. 1995.

[87] T. Kistler and H. Marais, “WebL: A Programming Language for
the Web,” Computer Networks, vol. 30, no. 1-7 pp. 259-270, 1998.

[88] D. Klein and C.D. Manning, “Conditional Structure Versus
Conditional Estimation in NLP Models,” Proc. ACL Conf. Empirical
Methods in Natural Language Processing, pp. 9-16, 2002.

[89] R. Kosala, H. Blockeel, M. Bruynooghe, and J.V.d. Bussche,
“Information Extraction from Structured Documents Using k-
Testable Tree Automaton Inference,” Data Knowledge Eng., vol. 58,
no. 2, pp. 129-158, 2006.

[90] G.R. Krupka, “SRA: Description of the SRA System as Used for
MUC-6,” Proc. Sixth Conf. Message Understanding (MUC), pp. 221-
235, 1995.

[91] S. Kuhlins and R. Tredwell, “Toolkits for Generating Wrappers,”
Proc. Revised Papers Int’l Conf. NetObjectDays Objects, Components,
Architectures, Services, and Applications Networked World, pp. 184-
198, 2002.

[92] N. Kushmerick and B. Thomas, “Adaptive Information Extraction:
Core Technologies for Information Agents,” Agent Link, pp. 79-
103, 2003.

[93] N. Kushmerick, D.S. Weld, and R.B. Doorenbos, “Wrapper
Induction for Information Extraction,” Proc. Int’l Joint Conf.
Artificial Intelligence (IJCAI), pp. 729-737, 1997.

[94] A.H.F. Laender, B.A. Ribeiro-Neto, and A. Soares da Silva,
“DEByE: Data Extraction by Example,” Data Knowledge Eng.,
vol. 40, no. 2, 121-154, 2002.

[95] A.H.F. Laender, B.A. Ribeiro-Neto, A. Soares da Silva, and J.S.
Teixeira, “A Brief Survey of Web Data Extraction Tools,” SIGMOD
Record, vol. 31, no. 2, pp. 84-93, 2002.

[96] W.G. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie, J.
Peterson, F. Feng, C. Dolan, and S. Goldman, “Description of the
CIRCUS System used for MUC-5,” Proc. Conf. Message Under-
standing (MUC), pp. 277-291, 1993.

[97] L. Li, Y. Liu, A. Obregon, and M. Weatherston, “Visual
Segmentation-Based Data Record Extraction from Web Docu-
ments,” Proc. IEEE Int’l Conf. Information Reuse Integration (IRI),
pp. 502-507, 2007.

[98] Q. Li, Y. Ding, A. Feng, and Y. Dong, “A Novel Method for
Extracting Information from Web Pages with Multiple Presenta-
tion Templates,” J. Software, vol. 5, no. 5, pp. 506-513, 2010.

[99] B. Liu and Y. Zhai, “NET: A System for Extracting Web Data from
Flat and Nested Data Records,” Proc. Sixth Int’l Conf. Web
Information Systems Eng. (WISE), pp. 487-495, 2005.

[100] B. Liu, R.L. Grossman, and Y. Zhai, “Mining Web Pages for Data
Records,” IEEE Intelligent Systems, vol. 19, no. 6, pp. 49-55, Nov./
Dec. 2004.

[101] K.-L. Liu, W. Meng, J. Qiu, C.T. Yu, V. Raghavan, Z. Wu, Y. Lu, H.
He, and H. Zhao, “AllInOneNews: Development and Evaluation
of a Large-Scale News Metasearch Engine,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 1017-1028, 2007.

[102] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources,” Proc. 16th Int’l
Conf. Data Eng. (ICDE), pp. 611-621, 2000.

[103] W. Liu, D. Shen, and T. Nie, “An Effective Method Supporting
Data Extraction and Schema Recognition on the Deep Web,” Proc.
10th Asia Pacific Web Conf. (APWeb), pp. 419-431, 2008.

[104] W. Liu, X. Meng, and W. Meng, “ViDE: A Vision-Based Approach
for Deep Web Data Extraction,” IEEE Trans. Knowledge Data Eng.,
vol. 22, no. 3, pp. 447-460, Mar. 2010.

[105] Lixto, “Lixto (Home Page),” http://www.lixto.com, Jan. 2012.
[106] G.F. Luger, Artificial Intelligence: Structures and Strategies for

Complex Problem Solving. third ed. Addison-Wesley, 1997.
[107] A. Machanavajjhala, A.S. Iyer, P. Bohannon, and S. Merugu,

“Collective Extraction from Heterogeneous web Lists,” Proc.
Fourth ACM Int’l Conf. Web Search and Data Mining (WSDM),
pp. 445-454, 2011.

[108] R. Malouf, “Markov Models for Language-Independent Named
Entity Recognition,” Proc. Sixth Conf. Natural Language Learning
(COLING), pp. 1-4, 2002.

[109] D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and Y.
Wilks, “Named Entity Recognition from Diverse Text Types,”
Proc. Conf. Recent Advances in Natural Language Processing,
pp. 257-274, 2001.

[110] A.K. McCallum, “MALLET: A Machine Learning for Language
Toolkit,” technical report, UMass Amherst, 2002.

[111] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni, “The
Araneus Web-Based Management System,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 544-546, 1998.

[112] MEMPHIS, “Multilingual Content for Flexible Format Internet
Premium Services,” http://www.dfki.de/lt/project.php?id= Pro-
ject_116 &l=en, 2003.

[113] W. Meng and C.T. Yu, Advanced Metasearch Engine Technology.
Morgan & Claypool Publishers, 2010.

[114] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L.E. Moser,
“Extracting Data Records from the Web using Tag Path Cluster-
ing,” Proc. Int’l Conf. World Wide Web (WWW), pp. 981-990, 2009.

[115] R.C. Miller and K. Bharat, “SPHINX: A Framework for Creating
Personal, Site-Specific Web Crawlers,” Computer Networks, vol. 30,
no. 1-7, pp. 119-130, 1998.

[116] R.C. Miller and B.A. Myers, “Lightweight Structured Text
Processing,” Proc. USENIX Ann. Technical Conf., General Track,
pp. 131-144, 1999.

[117] R.C. Miller and B.A. Myers, “LAPIS: Smart Editing with Text
Structure,” Proc. Conf. Human Factors Computing Systems (CHI
Extended Abstracts), pp. 496-497, 2002.

[118] S. Miller, H. Fox, L.A. Ramshaw, and R.M. Weischedel, “A Novel
Use of Statistical Parsing to Extract Information from Text,” Proc.
Sixth Applied Natural Language Processing Conf. (ANLP), pp. 226-
233, 2000.

[119] S. Minton, S.I. Ticrea, and J. Beach, “Trainability: Developing a
Responsive Learning System,” Proc. Workshop Information Integra-
tion Web (IIWeb), pp. 27-32, 2003.

[120] P. Montoto, A. Pan, J. Raposo, J. Losada, F. Bellas, and V. Carneiro,
“A Workflow Language for Web Automation,” J. Universal
Computer Science, vol. 14, no. 11, pp. 1838-1856, 2008.

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1979



[121] I. Muslea, “Extraction Patterns for Information Extraction Tasks: A
Survey,” Proc. AAAI Workshop Machine Learning for Information
Extraction, pp. 1-6, 1999.

[122] I. Muslea, S. Minton, and C.A. Knoblock, “Hierarchical Wrapper
Induction for Semistructured Information Sources,” Autonomous
Agents and Multi-Agent Systems, vol. 4, no. 1/2, pp. 93-114, 2001.

[123] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering:
Analysis and an Algorithm,” Proc. Neural Information Processing
Systems (NIPS), pp. 849-856, 2001.

[124] Online Miner, “Online Miner (home page),” http://www.temis-
group.com, Jan. 2012.

[125] N. Papadakis, D. Skoutas, K. Raftopoulos, and T.A. Varvarigou,
“STAVIES: A System for Information Extraction from Unknown
Web Data Sources through Automatic Web Wrapper Generation
using Clustering Techniques,” IEEE Trans. Knowledge Data Eng.,
vol. 17, no. 12, pp. 1638-1652, Dec. 2005.

[126] J. Park and D. Barbosa, “Adaptive Record Extraction from Web
Pages,” Proc. Int’l Conf. World Wide Web (WWW), pp. 1335-1336,
2007.

[127] Parser Studio, “Parser Studio (Home Page),” http://www.item-
field.com, Jan. 2012.

[128] L. Peshkin and A. Pfeffer, “Bayesian Information Extraction
Network,” Proc. Int’l Joint Conf. Artificial Intelligence (IJCAI),
pp. 421-426, 2003.

[129] G. Ramakrishnan, S. Joshi, S. Balakrishnan, and A. Srinivasan,
“Using ILP to Construct Features for Information Extraction From
Semi-Structured Text,” Proc. 17th Int’l Conf. Inductive Logic
Programming (ILP), pp. 211-224, 2007.

[130] J. Raposo, A. Pan, M. �Alvarez, J. Hidalgo, and �A. Viña, “The
Wargo System: Semi-Automatic Wrapper Generation in Presence
of Complex Data Access Modes,” Proc. DEXA Workshops, pp. 313-
320, 2002.

[131] A. Ratnaparkhi, “Learning to Parse Natural Language with
Maximum Entropy Models,” Machine Learning, vol. 34, no. 1-3,
pp. 151-175, 1999.

[132] E. Riloff, “Automatically Constructing a Dictionary for Informa-
tion Extraction Tasks,” Proc. 11th Nat’l Conf. Artificial Intelligence
(AAAI), pp. 811-816, 1993.

[133] E. Riloff, “Automatically Generating Extraction Patterns from
Untagged Text,” Proc. 13th Nat’l Conf. Artificial Intelligence (AAAI/
IAAI), vol. 2, pp. 1044-1049, 1996.

[134] R. Suite, “Robo Suite (Home Page),” http://kapowsoftware.com,
Jan. 2012.

[135] D. Roth and W.t. Yih, “Relational Learning via Propositional
Algorithms: An Information Extraction Case Study,” Proc. Int’l
Joint Conf. Artificial Intelligence (IJCAI), pp. 1257-1263, 2001.

[136] A. Sahuguet and F. Azavant, “Building Intelligent Web Applica-
tions Using Lightweight Wrappers,” Data Knowledge Eng., vol. 36,
no. 3, pp. 283-316, 2001.

[137] S. Sarawagi, “Information Extraction,” Foundations and Trends in
Databases, vol. 1, no. 3, pp. 261-377, 2007.

[138] K. Seymore, A. McCallum, and R. Rosenfeld, “Learning Hidden
Markov Model Structure for Information Extraction,” Proc. AAAI
Workshop Machine Learning for Information Extraction, pp. 37-42,
1999.

[139] W. Shen, A. Doan, J.F. Naughton, and R. Ramakrishnan,
“Declarative Information Extraction Using Datalog with Em-
bedded Extraction Predicates,” Proc. 33rd Int’l Conf. Very Large
Data Bases (VLDB), pp. 1033-1044, 2007.

[140] Y.K. Shen, “Automatic Record Extraction from the World Wide
Web,” http://dspace.mit.edu/bitstream/handle/1721.1/35609/
75289843.pdf?sequence=1, 2005.

[141] Y.K. Shen and D.R. Karger, “U-REST: An Unsupervised Record
Extraction System,” Proc. Int’l Conf. World Wide Web (WWW),
pp. 1347-1348, 2007.

[142] M. Shilman, P. Liang, and P.A. Viola, “Learning Non-Generative
Grammatical Models for Document Analysis,” Proc. IEEE 10th
Int’l Conf. Computer Vision (ICCV), pp. 962-969, 2005.

[143] K. Simon and G. Lausen, “ViPER: Augmenting Automatic
Information Extraction with Visual perceptions,” Proc. 14th ACM
Int’l Conf. Information and Knowledge Management (CIKM), pp. 381-
388, 2005.

[144] M. Skounakis, M. Craven, and S. Ray, “Hierarchical Hidden
Markov Models for Information Extraction,” Proc. 18th Int’l Joint
Conf. Artificial Intelligence (IJCAI), pp. 427-433, 2003.

[145] D. Smith and M. Lopez, “Information Extraction for Semi-
Structured Documents,” Proc. Workshop Management Semistruc-
tured Data, 1997.

[146] S. Soderland, “Learning to Extract Text-Based Information from
the World Wide Web,” Proc. Third Int’l Conf. Knowledge Discovery
and Data Mining (KDD), pp. 251-254, 1997.

[147] S. Soderland, “Learning Information Extraction Rules for Semi-
Structured and Free Text,” Machine Learning, vol. 34, no. 1-3,
pp. 233-272, 1999.

[148] S. Soderland, D. Fisher, J. Aseltine, and W.G. Lehnert, “CRYSTAL:
Inducing a Conceptual Dictionary,” Proc. 14th Int’l Joint Conf.
Artificial Intelligence (IJCAI), pp. 1314-1321, 1995.

[149] W. Su, J. Wang, and F.H. Lochovsky, “ODE: Ontology-Assisted
Data Extraction,” ACM Trans. Database Systems, vol. 34, no. 2,
article 12, 2009.

[150] A. Sun, M.-M. Naing, E.-P. Lim, and W. Lam, “Using Support
Vector Machines for Terrorism Information Extraction,” Proc. First
NSF/NIJ Conf. Intelligence and Security Informatics (ISI), pp. 1-12,
2003.

[151] C. Tao and D.W. Embley, “Automatic Hidden-Web Table
Interpretation, Conceptualization, and Semantic Annotation.”
Data Knowledge Eng., vol. 68, no. 7, pp. 683-703, 2009.

[152] J. Tatemura, S. Chen, F. Liao, O. Po, K. Selçuk Candan, and D.
Agrawal, “UQBE: Uncertain Query by Example for Web Service
Mashup,” Proc. ACM SIGMOD Int’l Conf. Management of Data,,
pp. 1275-1280, 2008.

[153] Text Pipe, “Text Pipe (Home Page),” http://www.datamystic.
com, Jan. 2012.

[154] The .GOV Test Collection, “The .GOV Test Collection,” http://
ir.dcs.gla.ac.uk/test_collections/govinfo.html, Jan. 2012.

[155] B. Thomas, “Anti-Unification Based Learning of T-Wrappers for
Information Extraction,” Proc. AAAI Workshop Machine Learning for
Information Extraction, pp. 15-20, 1999.

[156] J. Turmo and H. Rodrı́guez, “Learning Rules for Information
Extraction,” Natural Language Eng., vol. 8, pp. 167-191, 2002.

[157] J. Turmo, A. Ageno, and N. Català, “Adaptive Information
Extraction,” ACM Computing Surveys, vol. 38, no. 2, article 4, 2006.

[158] U. Studio, “Uno Studio (Home Page),” http://www.orsus.com,
Jan. 2012.

[159] Unwwwrap, “Unwwwrap (Home Page),” http://www.extradata.
com, Jan. 2012.

[160] P.A. Viola and M. Narasimhan, “Learning to Extract Information
from Semi-Structured Text Using a Discriminative Context Free
Grammar,” Proc. 28th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), pp. 330-337, 2005.

[161] Visual Web Task, “Visual Web Task (Home Page),” http://
www.lencom.com, Jan. 2012.

[162] vTag, “vTag (Home Page),” http://www.connotate.com, Jan.
2012.

[163] J. Wang and F.H. Lochovsky, “Data-Rich Section Extraction from
HTML Pages,” Proc. Third Int’l Conf. Web Information Systems Eng.
(WISE), pp. 313-322, 2002.

[164] J. Wang and F.H. Lochovsky, “Data Extraction and Label
Assignment for Web Databases,” Proc. Int’l Conf. World Wide
Web (WWW), pp. 187-196, 2003.

[165] Web Activity, “Web Activity (Home Page),” http://www.know
madic.com, Jan. 2012.

[166] Web Data Kit, “Web Data Kit (Home Page),” http://www.
lotontech.com, Jan. 2012.

[167] Webinator, “Webinator (Home Page),” http://www.thunder
stone.com, Jan. 2012.

[168] WebQL, “WebQL (Home Page),” http://www.ql2.com, Jan. 2012.
[169] L. Wei, X. Meng, and W. Meng, “Vision-Based Web Data Records

Extraction,” Proc. Int’l Workshop Web and Databases (WebDB), 2006.
[170] F. Wu and D.S. Weld, “Autonomously Semantifying Wikipedia,”

Proc. ACM Conf. Information and Knowledge Management (CIKM),
pp. 41-50, 2007.

[171] X-Fetch Wrapper, “X-Fetch Wrapper,” http://www.x-fetch.com,
Jan. 2012.

[172] XRover, “XRover (Home Page),” http://www.xsb.com, Jan. 2012.
[173] Y. Yamada, N. Craswell, T. Nakatoh, and S. Hirokawa, “Testbed

for Information Extraction from the Deep Web,” Proc. 13th Int’l
World Wide Web Conf. (WWW) (Alternate Track Papers & Posters),
pp. 346-347, 2004.

[174] R. Yangarber, “Counter-Training in Discovery of Semantic
Patterns,” Proc. 41st Ann. Meeting. Assoc. Computational Linguistics
(ACL), pp. 343-350, 2003.

1980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013



[175] L. Yi, B. Liu, and X. Li, “Eliminating Noisy Information in Web
Pages for Data Mining,” Proc. ACM SIGKDD Ninth Int’l Conf.
Knowledge Discovery and Data Mining (KDD), pp. 296-305, 2003.

[176] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma, “Improving Pseudo-
Relevance Feedback in Web Information Retrieval Using Web
Page Segmentation,” Proc. Int’l Conf. World Wide Web (WWW),
pp. 11-18, 2003.

[177] D. Zelenko, C. Aone, and A. Richardella, “Kernel Methods for
Relation Extraction.” J. Machine Learning Research, vol. 3, pp. 1083-
1106, 2003.

[178] Y. Zhai and B. Liu, “Structured Data Extraction from the Web
based on Partial Tree Alignment,” IEEE Trans. Knowledge Data
Eng., vol. 18, no. 12, pp. 1614-1628, Dec. 2006.

[179] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C.T. Yu, “Fully
Automatic Wrapper Generation for Search Engines,” Proc. Int’l
Conf. World Wide Web (WWW), pp. 66-75, 2005.

[180] H. Zhao, W. Meng, and C.T. Yu, “Automatic Extraction of
Dynamic Record Sections from Search Engine Result Pages,” Proc.
32nd Int’l Conf. Very Large Datya Bases (VLDB), pp. 989-1000, 2006.

[181] S. Zhao and R. Grishman, “Extracting Relations with Integrated
Information Using Kernel Methods,” Proc. 43rd Ann. Meeting
Assoc. Computational Linguistics (ACL), 2005.

[182] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma, “Simultaneous
Record Detection and Attribute Labeling in Web Data Extraction,”
Proc. 12th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD), pp. 494-503, 2006.

Hassan A. Sleiman received the MSc degree
from the University of Sevilla in 2008. Currently,
he is a lecturer in the Department of Computer
Languages and Systems at the University of
Sevilla, Spain. He was a software engineer for
companies such as Dynagent and Indevia
Solutions, and a researcher for The Distributed
Group (TDG), where he became involved in
several projects on enterprise information inte-
gration and enterprise application integration.

His current research interests include web information extraction, as well
as enterprise information integration.

Rafael Corchuelo received the PhD degree
from the University of Seville, Spain, and he has
led its Research Group on Distributed Systems
(TDG) since 1997. He is a reader of software
engineering who is with the Department of
Computer Languages and Systems of the
University of Seville, Spain. His current research
interests focus on the integration of web data
islands; previously, he was on multiparty inter-
action and fairness issues.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SLEIMAN AND CORCHUELO: A SURVEY ON REGION EXTRACTORS FROM WEB DOCUMENTS 1981



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


