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Abstract Enterprises today acquire vast volumes of data
from different sources and leverage this information by
means of data analysis to support effective decision-making
and provide new functionality and services. The key require-
ment of data analytics is scalability, simply due to the
immense volume of data that need to be extracted, processed,
and analyzed in a timely fashion. Arguably the most popu-
lar framework for contemporary large-scale data analytics is
MapReduce, mainly due to its salient features that include
scalability, fault-tolerance, ease of programming, and flexi-
bility. However, despite its merits, MapReduce has evident
performance limitations in miscellaneous analytical tasks,
and this has given rise to a significant body of research that
aim at improving its efficiency, while maintaining its desir-
able properties. This survey aims to review the state of the art
in improving the performance of parallel query processing
using MapReduce. A set of the most significant weaknesses
and limitations of MapReduce is discussed at a high level,
along with solving techniques. A taxonomy is presented for
categorizing existing research on MapReduce improvements
according to the specific problem they target. Based on the
proposed taxonomy, a classification of existing research is
provided focusing on the optimization objective. Conclud-
ing, we outline interesting directions for future parallel data
processing systems.
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1 Introduction

In the era of “Big Data”, characterized by the unprece-
dented volume of data, the velocity of data generation, and
the variety of the structure of data, support for large-scale
data analytics constitutes a particularly challenging task. To
address the scalability requirements of today’s data ana-
lytics, parallel shared-nothing architectures of commodity
machines (often consisting of thousands of nodes) have
been lately established as the de-facto solution. Various sys-
tems have been developed mainly by the industry to support
Big Data analysis, including Google’s MapReduce [32,33],
Yahoo’s PNUTS [31], Microsoft’s SCOPE [112], Twitter’s
Storm [70], LinkedIn’s Kafka [46], and WalmartLabs’ Mup-
pet [66]. Also, several companies, including Facebook [13],
both use and have contributed to Apache Hadoop (an open-
source implementation of MapReduce) and its ecosystem.

MapReduce has become the most popular framework for
large-scale processing and analysis of vast data sets in clus-
ters of machines, mainly because of its simplicity. With
MapReduce, the developer gets various cumbersome tasks
of distributed programming for free without the need to write
any code; indicative examples include machine to machine
communication, task scheduling to machines, scalability
with cluster size, ensuring availability, handling failures, and
partitioning of input data. Moreover, the open-source Apache
Hadoop implementation of MapReduce has contributed to its
widespread usage both in industry and academia. As a wit-
ness to this trend, we counted the number of papers related to
MapReduce and cloud computing published yearly in major
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database conferences.1 We report a significant increase from
12 in 2008 to 69 papers in 2012.

Despite its popularity, MapReduce has also been the object
of severe criticism [87,98], mainly due to its performance
limitations, which arise in various complex processing tasks.
For completeness, it should be mentioned that MapReduce
has been defended in [34]. Our article analyzes the limita-
tions of MapReduce and surveys existing approaches that aim
to address its shortcomings. We also describe common prob-
lems encountered in processing tasks in MapReduce and pro-
vide a comprehensive classification of existing work based
on the problem they attempt to address.

Scope and Aim of this Survey. This survey focuses primar-
ily on query processing aspects in the context of data ana-
lytics over massive data sets in MapReduce. A broad cov-
erage of existing work in the area of improving analytical
query processing using MapReduce is provided. In addition,
this survey offers added value by means of a comprehensive
classification of existing approaches based on the problem
they try to solve. The topic is approached from a data-centric
perspective, thus highlighting the importance of typical data
management problems related to efficient parallel processing
and analysis of large-scale data.

This survey aims to serve as a useful guidebook of prob-
lems and solving techniques in processing data with MapRe-
duce, as well as a point of reference for future work in
improving the MapReduce execution framework or intro-
ducing novel systems and frameworks for large-scale data
analytics. Given the already significant number of research
papers related to MapReduce-based processing, this work
also aims to provide a clear overview of the research field
to the new researcher who is unfamiliar with the topic, as
well as record and summarize the already existing knowl-
edge for the experienced researcher in a meaningful way.
Last but not least, this survey provides a comparison of the
proposed techniques and exposes their potential advantages
and disadvantages as much as possible.

Related Work. Probably the most relevant work to this
article is the recent survey on parallel data processing with
MapReduce [68]. However, our article provides a more
in-depth analysis of limitations of MapReduce and clas-
sifies existing approaches in a comprehensive way. Other
related work includes the tutorials on data layouts and stor-
age in MapReduce [35] and on programming techniques for
MapReduce [93]. A comparison of parallel DBMSs versus
MapReduce that criticizes the performance of MapReduce is
provided in [87,98]. The work in [57] suggests five design
factors that improve the overall performance of Hadoop, thus
making it more comparable to parallel database systems.

1 The count is based on articles that appear in the proceedings of ICDE,
SIGMOD, VLDB, thus includes research papers, demos, keynotes, and
tutorials.
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Fig. 1 MapReduce dataflow

Of separate interest is the survey on systems for large-
scale data management in the cloud [91] and Cattell’s survey
on NoSQL data stores [25]. Furthermore, the tutorials on Big
Data and cloud computing [10] and on the I/O characteristics
of NoSQL databases [92] as well as the work of Abadi on
limitations and opportunities for cloud data management [1]
are also related.

Organization of this Paper. The remainder of this article is
organized as follows: Sect. 2 provides an overview of MapRe-
duce focusing on its open-source implementation Hadoop.
Then, in Sect. 3, an outline of weaknesses and limitations
of MapReduce are described in detail. Section 4 organizes
existing approaches that improve the performance of query
processing in a taxonomy of categories related to the main
problem they solve and classifies existing work according to
optimization goal. Finally, Sect. 5 identifies opportunities for
future work in the field.

2 MapReduce basics

2.1 Overview

MapReduce [32] is a framework for parallel processing of
massive data sets. A job to be performed using the MapRe-
duce framework has to be specified as two phases: the map
phase as specified by a Map function (also called mapper)
takes key/value pairs as input, possibly performs some com-
putation on this input, and produces intermediate results in
the form of key/value pairs; and the reduce phase which
processes these results as specified by a Reduce function
(also called reducer). The data from the map phase are shuf-
fled, i.e., exchanged and merge-sorted, to the machines per-
forming the reduce phase. It should be noted that the shuffle
phase can itself be more time-consuming than the two oth-
ers depending on network bandwidth availability and other
resources.

In more detail, the data are processed through the follow-
ing 6 steps [32] as illustrated in Fig. 1:

1. Input reader: The input reader in the basic form takes
input from files (large blocks) and converts them to
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key/value pairs. It is possible to add support for other
input types, so that input data can be retrieved from a
database or even from main memory. The data are divided
into splits, which are the unit of data processed by a map
task. A typical split size is the size of a block, which
for example in HDFS is 64 MB by default, but this is
configurable.

2. Map function: A map task takes as input a key/value
pair from the input reader, performs the logic of the Map
function on it, and outputs the result as a new key/value
pair. The results from a map task are initially output to a
main memory buffer, and when almost full spill to disk.
The spill files are in the end merged into one sorted file.

3. Combiner function: This optional function is provided for
the common case when there is (1) significant repetition
in the intermediate keys produced by each map task, and
(2) the user-specified Reduce function is commutative
and associative. In this case, a Combiner function will
perform partial reduction so that pairs with same key will
be processed as one group by a reduce task.

4. Partition function: As default, a hashing function is used
to partition the intermediate keys output from the map
tasks to reduce tasks. While this in general provides good
balancing, in some cases it is still useful to employ other
partitioning functions, and this can be done by providing
a user-defined Partition function.

5. Reduce function: The Reduce function is invoked once
for each distinct key and is applied on the set of associated
values for that key, i.e., the pairs with same key will be
processed as one group. The input to each reduce task is
guaranteed to be processed in increasing key order. It is
possible to provide a user-specified comparison function
to be used during the sort process.

6. Output writer: The output writer is responsible for writ-
ing the output to stable storage. In the basic case, this is
to a file, however, the function can be modified so that
data can be stored in, e.g., a database.

As can be noted, for a particular job, only a Map function
is strictly needed, although for most jobs a Reduce function
is also used. The need for providing an Input reader and
Output writer depends on data source and destination, while
the need for Combiner and Partition functions depends on
data distribution.

2.2 Hadoop

Hadoop [104] is an open-source implementation of Map-
Reduce, and without doubt, the most popular MapReduce
variant currently in use in an increasing number of prominent
companies with large user bases, including companies such
as Yahoo! and Facebook.

Client
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Fig. 2 Hadoop architecture

Hadoop consists of two main parts: the Hadoop distributed
file system (HDFS) and MapReduce for distributed process-
ing. As illustrated in Fig. 2, Hadoop consists of a number of
different daemons/servers: NameNode, DataNode, and Sec-
ondary NameNode for managing HDFS, and JobTracker and
TaskTracker for performing MapReduce.

HDFS is designed and optimized for storing very large
files and with a streaming access pattern. Since it is expected
to run on commodity hardware, it is designed to take into
account and handle failures on individual machines. HDFS is
normally not the primary storage of the data. Rather, in a typ-
ical workflow, data are copied over to HDFS for the purpose
of performing MapReduce, and the results then copied out
from HDFS. Since HDFS is optimized for streaming access
of large files, random access to parts of files is significantly
more expensive than sequential access, and there is also no
support for updating files, only append is possible. The typi-
cal scenario of applications using HDFS follows a write-once
read-many access model.

Files in HDFS are split into a number of large blocks (usu-
ally a multiple of 64 MB) which are stored on DataNodes.
A file is typically distributed over a number of DataNodes in
order to facilitate high bandwidth and parallel processing. In
order to improve reliability, data blocks in HDFS are repli-
cated and stored on three machines, with one of the replicas in
a different rack for increasing availability further. The main-
tenance of file metadata is handled by a separate NameN-
ode. Such metadata includes mapping from file to block and
location (DataNode) of block. The NameNode periodically
communicates its metadata to a Secondary NameNode which
can be configured to do the task of the NameNode in case of
the latter’s failure.

MapReduce Engine. In Hadoop, the JobTracker is the
access point for clients. The duty of the JobTracker is to
ensure fair and efficient scheduling of incoming MapRe-
duce jobs, and assign the tasks to the TaskTrackers which
are responsible for execution. A TaskTracker can run a num-
ber of tasks depending on available resources (for example
two map tasks and two reduce tasks) and will be allocated a
new task by the JobTracker when ready. The relatively small
size of each task compared to the large number of tasks in
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Table 1 Weaknesses in MapReduce and solving techniques at a high
level

Weakness Technique

Access to input data Indexing and data layouts

High communication cost Partitioning and colocation

Redundant and wasteful
processing

Result sharing, batch processing of
queries and incremental
processing

Recomputation Materialization

Lack of early termination Sampling and sorting

Lack of iteration Loop-aware processing, caching,
pipelining, recursion,
incremental processing

Quick retrieval of
approximate results

Data summarization and sampling

Load balancing Pre-processing, approximation of
the data distribution and
repartitioning

Lack of interactive or
real-time processing

In-memory processing, pipelining,
streaming and pre-computation

Lack of support for n-way
operations

Additional MR phase(s),
re-distribution of keys and record
duplication

total helps to ensure load balancing among the machines. It
should be noted that while the number of map tasks to be
performed is based on the input size (number of splits), the
number of reduce tasks for a particular job is user-specified.

In a large cluster, machine failures are expected to occur
frequently, and in order to handle this, regular heartbeat mes-
sages are sent from TaskTrackers to the JobTracker periodi-
cally and from the map and reduce tasks to the TaskTracker.
In this way, failures can be detected, and the JobTracker can
reschedule the failed task to another TaskTracker. Hadoop
follows a speculative execution model for handling failures.
Instead of fixing a failed or slow-running task, it executes
a new equivalent task as backup. Failure of the JobTracker
itself cannot be handled automatically, but the probability of
failure of one particular machine is low so that this should
not present a problem in general.

The Hadoop Ecosystem. In addition to the main compo-
nents of Hadoop, the Hadoop ecosystem also contains other
libraries and systems. The most important in our context are
HBase, Hive, and Pig. HBase [45] is a distributed column-
oriented store, inspired by Google’s Bigtable [26] that runs
on top of HDFS. Tables in HBase can be used as input or out-
put for MapReduce jobs, which is especially useful for ran-
dom read/write access. Hive [99,100] is a data warehousing
infrastructure built on top of Hadoop. Queries are expressed
in an SQL-like language called HiveQL, and the queries are
translated and executed as MapReduce jobs. Pig [86] is a
framework consisting of the Pig Latin language and its exe-
cution environment. Pig Latin is a procedural scripting lan-

guage making it possible to express data workflows on a
higher level than a MapReduce job.

3 Weaknesses and limitations

Despite its evident merits, MapReduce often fails to exhibit
acceptable performance for various processing tasks. Quite
often this is a result of weaknesses related to the nature of
MapReduce or the applications and use-cases it was origi-
nally designed for. In other cases, it is the product of lim-
itations of the processing model adopted in MapReduce.
In particular, we have identified a list of issues related to
large-scale data processing in MapReduce/Hadoop that sig-
nificantly impact its efficiency (for a quick overview, we refer
to Table 1):

– Selective access to data: Currently, the input data to a job
is consumed in a brute-force manner, in which the entire
input is scanned in order to perform the map-side process-
ing. Moreover, given a set of input data partitions stored
on DataNodes, the execution framework of MapReduce
will initiate map tasks on all input partitions. However,
for certain types of analytical queries, it would suffice
to access only a subset of the input data to produce the
result. Other types of queries may require focused access
to a few tuples only that satisfy some predicate, which
cannot be provided without accessing and processing all
the input data tuples. In both cases, it is desirable to pro-
vide a selective access mechanism to data, in order to
prune local non-useful data at a DataNode from process-
ing as well as prune entire DataNodes from processing.
In traditional data management systems, this problem is
solved by means of indexing. In addition, since HDFS
blocks are typically large, it is important to optimize their
internal organization (data layout) according to the query
workload to improve the performance of data access. For
example, queries that involve only few attributes bene-
fit from a columnar layout that allows fetching of spe-
cific columns only, while queries that involve most of the
attributes perform better when row-wise storage is used.

– High communication cost: After the map tasks have com-
pleted processing, some selected data are sent to reduce
tasks for further processing (shuffling). Depending on
the query at hand and on the type of processing that takes
place during the map phase, the size of the output of the
map phase can be significant and its transmission may
delay the overall execution time of the job. A typical
example of such a query is a join, where it is not possible
for a map task to eliminate input data from being sent
to reduce tasks, since this data may be joined with other
data consumed by other map tasks. This problem is also
present in distributed data management systems, which

123



Large-scale analytical query processing 359

address it by careful data partitioning and placement of
partitions that need to be processed together at the same
node.

– Redundant and wasteful processing: Quite often multiple
MapReduce jobs are initiated at overlapping time inter-
vals and need to be processed over the same set of data. In
such cases, it is possible that two or more jobs need to per-
form the same processing over the same data. In MapRe-
duce, such jobs are processed independently, thus result-
ing in redundant processing. As an example, consider two
jobs that need to scan the same query log, one trying to
identify frequently accessed pages and another perform-
ing data mining on the activity of specific IP addresses.
To alleviate this shortcoming, jobs with similar subtasks
should be identified and processed together in a batch.
In addition to sharing common processing, result shar-
ing is a well-known technique that can be employed to
eliminate wasteful processing over the same data.

– Recomputation: Jobs submitted to MapReduce clusters
produce output results that are stored on disk to ensure
fault-tolerance during the processing of the job. This is
essentially a check-pointing mechanism that allows long-
running jobs to complete processing in the case of fail-
ures, without the need to restart processing from scratch.
However, MapReduce lacks a mechanism for manage-
ment and future reuse of output results. Thus, there exists
no opportunity for reusing the results produced by previ-
ous queries, which means that a future query that requires
the result of a previously posed query will have to resolve
in recomputing everything. In database systems, query
results that are expected to be useful in the future are
materialized on disk and are available at any time for
further consumption, thus achieving significant perfor-
mance benefits. Such a materialization mechanism that
can be enabled by the user is missing from MapReduce
and would boost its query processing performance.

– Lack of early termination: By design, in the MapReduce
execution framework, map tasks must access input data
in its entirety before any reduce task can start processing.
Although this makes sense for specific types of queries
that need to examine the complete input data in order
to produce any result, for many types of queries only a
subset of input data suffices to produce the complete and
correct result. A typical example arises in the context of
rank-aware processing, as in the case of top-k queries. As
another prominent example, consider sampling of input
data to produce a small and fixed-size set of representative
data. Such query types are ubiquitous in data analytics
over massive data sets and cannot be efficiently processed
in MapReduce. The common conclusion is the lack of an
early termination mechanism in MapReduce processing,
which would allow map tasks to cease processing, when
a specific condition holds.

– Lack of iteration: Iterative computation and recursive
queries arise naturally in data analysis tasks, including
PageRank or HITS computation, clustering, social net-
work analysis, recursive SQL queries, etc. However, in
MapReduce, the programmer needs to write a sequence
of MapReduce jobs and coordinate their execution, in
order to implement simple iterative processing. More
importantly, a non-negligible performance penalty is
paid, since data must be reloaded and reprocessed in
each iteration, even though quite often a significant part
of the data remains unchanged. In consequence, iterative
data analysis tasks cannot be processed efficiently by the
MapReduce framework.

– Quick retrieval of approximate results: Exploratory
queries are a typical requirement of applications that
involve analysis of massive data sets, as in the case of
scientific data. Instead of issuing exploratory queries to
the complete data set that would entail long waiting times
and potentially non-useful results, it would be extremely
useful to test such queries on small representative parts
of the data set and try to draw conclusions. Such queries
need to be processed fast and if necessary, return approx-
imate results, so that the scientist can review the result
and decide whether the query makes sense and should be
processed on the entire data set. However, MapReduce
does not provide an explicit way to support quick retrieval
of indicative results by processing on representative input
samples.

– Load balancing: Parallel data management systems try
to minimize the runtime of a complex processing task by
carefully partitioning the input data and distributing the
processing load to available machines. Unless the data
is distributed in a fair manner, the runtime of the slow-
est machine will easily dominate the total runtime. For a
given machine, its runtime is dependent on various para-
meters (including the speed of the processor and the size
of the memory), however, our main focus is on the effect
induced by data assignment. Part of the problem is parti-
tioning the data fairly, such that each machine is assigned
an equi-sized data partition. For real data sets, data skew
is commonly encountered in practice, thus plain partition-
ing schemes that are not data-aware, such as those used
by MapReduce, easily fall short. More importantly, even
when the data is equally split to the available machines,
equal runtime may not always be guaranteed. The rea-
son for this is that some partitions may require complex
processing, while others may simply contain data that
need not be processed for the query at hand (e.g., are
excluded based on some predicate). Providing advanced
load balancing mechanisms that aim to increase the effi-
ciency of query processing by assigning equal shares of
useful work to the available machines is a weakness of
MapReduce that has not been addressed yet.
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Fig. 3 Taxonomy of MapReduce improvements for efficient query processing

– Lack of interactive or real-time processing: MapReduce
is designed as a highly fault-tolerant system for batch
processing of long-running jobs on very large data sets.
However, its very design hinders efficient support for
interactive or real-time processing, which requires fast
processing times. The reason is that to guarantee fault-
tolerance, MapReduce introduces various overheads that
negatively impact its performance. Examples of such
overheads include frequent writing of output to disk (e.g.,
between multiple jobs), transferring big amounts of data
in the network, limited exploitation of main memory,
delays for job initiation and scheduling, extensive com-
munication between tasks for failure detection. However,
numerous applications require fast response times, inter-
active analysis, online analytics, and these requirements
are hardly met by the performance of MapReduce.

– Lack of support for n-way operations: Processing n-way
operations over data originating from multiple sources is
not naturally supported by MapReduce. Such operations
include (among others) join, union, intersection, and can
be binary operations (n = 2) or multi-way operations
(n > 2). Taking the prominent example of a join, many
analytical tasks typically require accessing and process-
ing data from multiple relations. In contrast, the design
of MapReduce is not flexible enough to support n-way
operations with the same simplicity and intuitiveness as
data coming from a single source (e.g., single file).

4 MapReduce improvements

In this section, an overview is provided of various methods
and techniques present in the existing literature for improv-
ing the performance of MapReduce. All approaches are cat-
egorized based on the introduced improvement. We organize

the categories of MapReduce improvements in a taxonomy,
illustrated in Fig. 3.

Table 2 classifies existing approaches for improved proces-
sing based on their optimization objectives. We determine the
primary objective (marked with ♠ in the table), and then, we
also identify secondary objectives (marked with ♦).

4.1 Data access

Efficient access to data is an essential step for achieving
improved performance during query processing. We identify
three subcategories of data access, namely indexing, inten-
tional data placement, and data layouts.

4.1.1 Indexing

Hadoop++ [36] is a system that provides indexing function-
ality for data stored in HDFS by means of User-defined Func-
tions (UDFs), i.e., without modifying the Hadoop framework
at all. The indexing information (called Trojan Indexes) is
injected into logical input splits and serves as a cover index
for the data inside the split. Moreover, the index is created
at load time, thus imposing no overhead in query process-
ing. Hadoop++ also supports joins by co-partitioning data
and colocating them at load time. Intuitively, this enables the
join to be processed at the map side, rather than at the reduce
side (which entails expensive data transfer/shuffling in the
network). Hadoop++ has been compared against HadoopDB
and shown to outperform it [36].

HAIL [37] improves the long index creation times of
Hadoop++, by exploiting the n replicas (typically n = 3)
maintained in Hadoop by default for fault-tolerance and by
building a different clustered index for each replica. At query
time, the most suitable index to the query is selected, and the
particular replica of the data is scanned during the map phase.
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Table 2 Classification of existing approaches based on optimization objective (♠ indicates primary objective, while ♦ indicates secondary objec-
tives)

Approach Data access Avoidance of
redundant
processing

Early
termination

Iterative
processing

Query
optimization

Fair work
allocation

Interactive, real-
time processing

Hadoop++ [36] ♠ ♦ ♦ ♦
HAIL [37] ♠ ♦ ♦ ♦
CoHadoop [41] ♠ ♦
Llama [74] ♠ ♦
Cheetah [28] ♠ ♦
RCFile [50] ♠ ♦
CIF [44] ♠ ♦
Trojan layouts [59] ♠ ♦ ♦
MRShare [83] ♠ ♦
ReStore [40] ♠ ♦
Sharing scans [11] ♠ ♦
Silva et al. [95] ♠
Incoop [17] ♦ ♠ ♦ ♦
Li et al. [71,72] ♠
Grover et al. [47] ♦ ♠ ♦
EARL [67] ♦ ♠ ♦
Top-k queries [38] ♦ ♦ ♠ ♦
RanKloud [24] ♦ ♦ ♠ ♦
HaLoop [22,23] ♦ ♠
MapReduce online [30] ♦ ♠
NOVA [85] ♠ ♦
Twister [39] ♠
CBP [75,76] ♠
Pregel [78] ♠
PrIter [111] ♠
PACMan [14] ♠
REX [82] ♦ ♠ ♦
Differential dataflow [79] ♦ ♠
HadoopDB [2] ♦ ♦ ♦ ♠
SAMs [101] ♦ ♠ ♦
Clydesdale [60] ♦ ♦ ♠
Starfish [51] ♠
AQUA [105] ♦ ♠
YSmart [69] ♦ ♠
RoPE [8] ♠
SUDO [109] ♠
Manimal [56] ♦ ♠
HadoopToSQL [54] ♠
Stubby [73] ♠
Hueske et al. [52] ♠
Kolb et al. [62] ♠
Ramakrishnan et al. [88] ♠
Gufler et al. [48] ♠
SkewReduce [64] ♠
SkewTune [65] ♠
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Table 2 continued

Approach Data access Avoidance of
redundant
processing

Early
termination

Iterative
processing

Query
optimization

Fair work
allocation

Interactive, real-
time processing

Sailfish [89] ♠
Themis [90] ♠
Dremel [80] ♦ ♦ ♠
Hyracks [19] ♠
Tenzing [27] ♦ ♦ ♠
PowerDrill [49] ♦ ♦ ♠
Shark [42,107] ♦ ♠
M3R [94] ♦ ♦ ♠
BlinkDB [7,9] ♠

As a result, HAIL improves substantially the performance of
MapReduce processing, since the probability of finding a
suitable index for efficient data access is increased. In addi-
tion, the creation of the indexes occurs during the data upload
phase to HDFS (which is I/O bound), by exploiting “unused
CPU ticks”, and thus, it does not affect the upload time signif-
icantly. Given the availability of multiple indexes, choosing
the optimal execution plan for the map phase is an interesting
direction for future work. HAIL is shown in [37] to improve
index creation times and the performance of Hadoop++. Both
Hadoop++ and HAIL support joins with improved efficiency.

4.1.2 Intentional data placement

CoHadoop [41] colocates and copartitions data on nodes
intentionally, so that related data are stored on the same node.
To achieve colocation, CoHadoop extends HDFS with a file-
level property (locator), and files with the same locator are
placed on the same set of DataNodes. In addition, a new data
structure (locator table) is added to the NameNode of HDFS.
This is depicted in the example of Fig. 4 using a cluster of
five nodes (one NameNode and four DataNodes) where 3
replicas per block are kept. All blocks (including replicas)
of files A and B are colocated on the same set of DataN-
odes, and this is described by a locator present in the locator
table (shown in bold) of the NameNode. The contributions
of CoHadoop include colocation and copartitioning, and it
targets a specific class of queries that benefit from these tech-
niques. For example, joins can be efficiently executed using
a map-only join algorithm, thus eliminating the overhead of
data shuffling and the reduce phase of MapReduce. However,
applications need to provide hints to CoHadoop about related
files, and therefore, one possible direction for improvement
is to automatically identify related files. CoHadoop is com-
pared against Hadoop++, which also supports copartitioning

NameNode DataNodes

File A: Block A1 
Block A2

File B: Block B1 
Block B2
Block B3

Locator Table

1 File A, File B
2 File C

File C: Block C1 
Block C2

C1 C2

A1 A2

B1 B2 B3

A1 A2

B1 B2 B3

C1 C2

A1 A2

B1 B2 B3

C1 C2

Fig. 4 The way files are colocated in CoHadoop [41]

and colocating data at load time, and demonstrates superior
performance for join processing.

4.1.3 Data layouts

A nice detailed overview of the exploitation of different data
layouts in MapReduce is presented in [35]. We provide a
short overview in the following.

Llama [74] proposes the use of a columnar file (called
CFile) for data storage. The idea is that data are partitioned
in vertical groups, each group is sorted based on a selected
column and stored in column-wise format in HDFS. This
enables selective access only to the columns used in the query.
In consequence, more efficient access to data than traditional
row-wise storage is provided for queries that involve a small
number of attributes.

Cheetah [28] also employs data storage in columnar for-
mat and also applies different compression techniques for
different types of values appropriately. In addition, each cell
is further compressed after it is created using GZIP. Cheetah
employs the PAX layout [12] at the block level, so each block

123



Large-scale analytical query processing 363

contains the same set of rows as in row-wise storage, only
inside the block column layout is employed. Compared to
Llama, the important benefit of Cheetah is that all data that
belong to a record are stored in the same block, thus avoiding
expensive network access (as in the case of CFile).

RCFile [50] combines horizontal with vertical partition-
ing to avoid wasted processing in terms of decompression
of unnecessary data. Data are first partitioned horizontally,
and then, each horizontal partition is partitioned vertically.
The benefits are that columns belonging to the same row are
located together on the same node thus avoiding network
access, while compression is also possible within each verti-
cal partition thus supporting access only to those columns that
participate in the query. Similarly to Cheetah, RCFile also
employs PAX, however, the main difference is that RCFile
does not use block-level compression. RCFile has been pro-
posed by Facebook and is extensively used in popular sys-
tems, such as Hive and Pig.

CIF [44] proposed a column-oriented, binary storage for-
mat for HDFS aiming to improve its performance. The idea
is that each file is first horizontally partitioned in splits, and
each split is stored in a subdirectory. The columns of the
records of each split are stored in individual files within the
respective subdirectory, together with a file containing meta-
data about the schema. When a query arrives that accesses
some columns, multiple files from different subdirectories
are assigned in one split and records are reconstructed fol-
lowing a lazy approach. CIF is compared against RCFile and
shown to outperform it. Moreover, it does not require changes
to the core of Hadoop.

Trojan data layouts [59] also follow the spirit of PAX,
however, data inside a block can have any data layout.
Exploiting the replicas created by Hadoop for fault-tolerance,
different Trojan layouts are created for each replica, thus
the most appropriate layout can be used depending on the
query at hand. It is shown that queries that involve almost
all attributes should use files with row-level layout, while
selective queries should use column layout. Trojan data lay-
outs have been shown to outperform PAX-based layouts in
Hadoop [59].

4.2 Avoiding redundant processing

MRShare [83] is a sharing framework that identifies differ-
ent queries (jobs) that share portions of identical work. Such
queries do not need to be recomputed each time from scratch.
The main focus of this work is to save I/O, and therefore,
sharing opportunities are identified in terms of sharing scans
and sharing map-output. MRShare transforms sets of submit-
ted jobs into groups and treat each group as a single job, by
solving an optimization problem with objective to maximize
the total savings. To process a group of jobs as a single job,
MRShare modifies Hadoop to (a) tag map output tuples with
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tags that indicate the tuple’s originating jobs, and (b) write
to multiple output files on the reduce side. Open problems
include extending MRShare to support jobs that use multi-
ple inputs (e.g., joins) as well as sharing parts of the Map
function.

ReStore [40] is a system that manages the storage and reuse
of intermediate results produced by workflows of MapRe-
duce jobs. It is implemented as an extension to the Pig
dataflow system. ReStore maintains the output results of
MapReduce jobs in order to identify reuse opportunities by
future jobs. To achieve this, ReStore maintains together with
a file storing a job’s output the physical execution plan of
the query and some statistics about the job that produced it,
as well as how frequently this output is used by other work-
flows. Figure 5 shows the main components of ReStore: (1)
the plan matcher and rewriter, (2) the subjob enumerator,
and (3) the enumerated subjob selector. The figure shows
how these components interact with MapReduce as well as
the usage of the repository of MapReduce job outputs. The
plan matcher and rewriter identifies outputs of past jobs in the
repository that can be used to answer the query and rewrites
the input job to reuse the discovered outputs. The subjob enu-
merator identifies the subsets of physical operators that can
be materialized and stored in the DFS. Then, the enumerated
subjob selector chooses which outputs to keep in the reposi-
tory based on the collected statistics from the MapReduce job
execution. The main difference to MRShare is that ReStore
allows individual queries submitted at different times to share
results, while MRShare tries to optimize sharing for a batch
of queries executed concurrently. On the downside, ReStore
introduces some overhead to the job’s execution time and
to the available storage space, when it decides to store the
results of subjobs, especially for large-sized results.

Sharing scans from a common set of files in the MapRe-
duce context has been studied in [11]. The authors study
the problem of scheduling sharable jobs, where a set of
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files needs to be accessed simultaneously by different jobs.
The aim is to maximize the rate of processing these files
by aggressively sharing scans, which is important for jobs
whose execution time is dominated by data access, yet the
input data cannot be cached in memory due to its size. In
MapReduce, such jobs have typically long execution times,
and therefore, the proposed solution is to reorder their execu-
tion to amortize expensive data access across multiple jobs.
Traditional scheduling algorithms (e.g., shortest job first) do
not work well for sharable jobs, and thus, new techniques
suited for the effective scheduling of sharable workloads are
proposed. Intuitively, the proposed scheduling policies pri-
oritize scheduling non-sharable scans ahead of ones that can
share I/O work with future jobs, if the arrival rate of sharable
future jobs is expected to be high.

The work by Silva et al. [95] targets cost-based optimiza-
tion of complex scripts that share common subexpressions,
and the approach is prototyped in Microsoft’s SCOPE [112].
Such scripts, if processed naively, may result in executing the
same subquery multiple times, leading to redundant process-
ing. The main technical contribution is dealing with compet-
ing physical requirements from different operators in a DAG,
in a way that leads to a globally optimal plan. An important
difference to existing techniques is that locally optimizing
the cost of shared subexpressions does not necessarily lead
to an overall optimal plan, and thus, the proposed approach
considers locally suboptimal local plans that can generate a
globally optimal plan.

Many MapReduce workloads are incremental, resulting in
the need for MapReduce to run repeatedly with small changes
in the input. To process data incrementally using MapRe-
duce, users have to write their own application-specific code.
Incoop [17] allows existing MapReduce programs to exe-
cute transparently in an incremental manner. Incoop detects
changes to the input and automatically updates the output.
In order to achieve this, a HDFS-like file system called Inc-
HDFS is proposed, and techniques for controlling granularity
are presented that make it possible to avoid redoing the full
task when only parts of it need to be processed. The approach
has a certain extra cost in the case where no computations
can be reused.

Support for incremental processing of new data is also
studied in [71,72]. The motivation is to support one-pass ana-
lytics for applications that continuously generate new data.
An important observation of this work is that support for
incremental processing requires non-blocking operations and
avoidance of bottlenecks in the processing flow, both com-
putational and I/O-specific. The authors’ main finding is to
abandon the sort-merge implementation for data partition-
ing and parallel processing, for purely hash-based techniques
which are non-blocking. As a result, the sort cost of the map
phase is eliminated, and the use of hashing allows fast in-
memory processing of the Reduce function.

4.3 Early termination

Sampling based on predicates raises the issue of lack of early
termination of map tasks [47], even when a job has read
enough input to produce the required output. The problem
addressed by [47] is how to produce a fixed-size sample (that
satisfies a given predicate) of a massive data set using MapRe-
duce. To achieve this objective, some technical issues need
to be addressed on Hadoop, and thus, two new concepts are
defined. A new type of job is introduced, called dynamic,
which is able to dynamically control its data access. In addi-
tion, the concept of Input Provider is introduced in the exe-
cution model of Hadoop. The Input Provider is provided by
the job together with the Map and Reduce logic. Its role is
to make dynamic decisions about the access to data by the
job. At regular intervals, the JobClient provides statistics to
the Input Provider, and based on this information, the Input
Provider can respond in three different ways: (1) “end of
input”, in which case the running map tasks are allowed to
complete, but no new map tasks are invoked and the shuf-
fle phase is initiated, (2) “input available”, which means that
additional input needs to be accessed, and (3) “input unavail-
able”, which indicates that no decision can be made at this
point and processing should continue as normal until the next
invocation of Input Provider.

EARL [67] aims to provide early results for analytical
queries in MapReduce, without processing the entire input
data. EARL utilizes uniform sampling and works itera-
tively to compute larger samples, until a given accuracy
level is reached, estimated by means of bootstrapping. Its
main contributions include incremental computation of early
results with reliable accuracy estimates, which is increasingly
important for applications that handle vast amounts of data.
Moreover, EARL employs delta maintenance to improve the
performance of re-executing a job on a larger sample size.
At a technical level, EARL modifies Hadoop in three ways:
(1) reduce tasks can process input before the completion of
processing in the map tasks by means of pipelining, (2) map
tasks remain active until explicitly terminated, and (3) an
inter-communication channel between map tasks and reduce
tasks is established for checking the satisfaction of the ter-
mination condition. In addition, a modified reduce phase is
employed, in which incremental processing of a job is sup-
ported. Compared to [47], EARL provides an error estimation
framework and focuses more on using truly uniform random
samples.

The lack of early termination has been recognized in the
context of rank-aware processing in MapReduce [38], which
is also not supported efficiently. Various individual tech-
niques are presented to support early termination for top-k
processing, including the use of sorted access to data, intel-
ligent data placement using advanced partitioning schemes
tailored to top-k queries, and the use of synopses for the data
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stored in HDFS that allow efficient identification of blocks
with promising tuples. Most of these techniques can be com-
bined to achieve even greater performance gains.

RanKloud [24] has been proposed for top-k retrieval in
the cloud. RanKloud computes statistics (at runtime) dur-
ing scanning of records and uses these statistics to com-
pute a threshold (the lowest score for top-k results) for early
termination. In addition, a new partitioning method is pro-
posed, termed uSplit, that aims to repartition data in a utility-
sensitive way, where utility refers to the potential of a tuple
to be part of the top-k. The main difference to [38] is that
RanKloud cannot guarantee retrieval of k results, while [38]
aims at retrieval of the exact result.

4.4 Iterative processing

The straightforward way of implementing iteration is to use
an outsider driver program to control the execution of loops
and launch new MapReduce jobs in each iteration. For exam-
ple, this is the approach followed by Mahout. In the follow-
ing, we review iterative processing using looping constructs,
caching and pipelining, recursive queries, and incremental
iterations.

4.4.1 Loop-aware processing, caching and pipelining

HaLoop [22,23] is a system designed for supporting itera-
tive data analysis in a MapReduce-style architecture. Its main
goals include avoidance of processing invariant data at each
iteration, support for termination checking without the need
for initiating an extra devoted job for this task, maintain-
ing the fault-tolerant features of MapReduce, and seamless
integration of existing MapReduce applications with minor
code changes. However, several modifications need to be
applied at various stages of MapReduce. First, an appropriate
programming interface is provided for expressing iteration.
Second, the scheduler is modified to ensure that tasks are
assigned to the same nodes in each iteration, thus enabling
the use of local caches. Third, invariant data is cached and
does not need to be reloaded at each iteration. Finally, by
caching the reduce task’s local output, it is possible to sup-
port comparisons of results of successive iterations in an effi-
cient way and allow termination when convergence is iden-
tified. Figure 6 shows how these modifications are reflected
to specific components in the architecture. It depicts the new
loop control module as well as the modules for local caching
and indexing in the HaLoop framework. The loop control is
responsible for initiating new MapReduce steps (loops) until
a user-specified termination condition is fulfilled. HaLoop
uses three types of caches: the map task and reduce task
input caches, as well as the reduce task output cache. In addi-
tion, to improve performance, cached data are indexed. The
task scheduler is modified to become loop-aware and exploits

Distributed File System

Local File System

HaLoop Framework

Loop Control Task Tracker

Task Queue

Local communication Remote communication

abc New in HaLoop abc Modified from Hadoop
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Fig. 6 Overview of the HaLoop framework [22,23]

local caches. Also, failure recovery is achieved by coordina-
tion between the task scheduler and the task trackers.

MapReduce online [30] proposes to overcome the built-in
feature of materialization of output results of map tasks and
reduce tasks, by providing support for pipelining of interme-
diate data from map tasks to reduce tasks. This is achieved
by applying significant changes to the MapReduce frame-
work. In particular, modification to the way data is transferred
between map task and reduce tasks as well as between reduce
tasks and new map tasks is necessary, and also the Task-
Tracker and JobTracker have to be modified accordingly. An
interesting observation is that pipelining allows the execution
framework to support continuous queries, which is not possi-
ble in MapReduce. Compared to HaLoop, it lacks the ability
to cache data between iterations for improving performance.

NOVA [85] is a workflow manager developed by Yahoo!
for incremental processing of continuously arriving data.
NOVA is implemented on top of Pig and Hadoop, without
changing their interior logic. However, NOVA contains mod-
ules that communicate with Hadoop/HDFS, as in the case of
the Data Manager module that maintains the mapping from
blocks to the HDFS files and directories. In summary, NOVA
introduces a new layer of architecture on top of Hadoop to
support continuous processing of arriving data.

Twister [39] introduces an extended programming model
and a runtime for executing iterative MapReduce computa-
tions. It relies on a publish/subscribe mechanism to handle all
communication and data transfer. On each node, a daemon
process is initiated that is responsible for managing locally
running map and reduce tasks, as well as for communication
with other nodes. The architecture of Twister differs sub-
stantially from MapReduce, with indicative examples being
the assumption that input data in local disks are maintained
as native files (differently than having a distributed file sys-
tem), and that intermediate results from map processes are
maintained in memory, rather than stored on disk. Some lim-
itations include the need to break large data sets to multiple
files, the assumption that map output fits in the distributed
memory, and no intra-iteration fault-tolerance.
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CBP [75,76] (Continuous Bulk Processing) is an archi-
tecture for maintaining state during bulk processing, thus
enabling the implementation of applications that support
incremental analytics. CBP introduces a new processing
operator, called translate, that has two distinguishing fea-
tures: it takes state as an explicit input and supports group-
based processing. In this way, CBP achieves maintenance
of persistent state, thus re-using work that has been car-
ried out already (incremental processing), while at the
same time it drastically reduces data movement in the sys-
tem.

Pregel [78] is a scalable system for graph processing
where a program is a sequence of iterations (called super-
steps). In each superstep, a vertex sends and receives mes-
sages, updates its state as well as the state of its outgoing
edges, and modifies the graph topology. The graph is parti-
tioned, and the partitions are assigned to machines (workers),
while this assignment can be customized to improve local-
ity. Each worker maintains in memory the state of its part
of the graph. To aggregate global state, tree-based aggrega-
tion is used from workers to a master machine. However, to
recover from a failure during some iteration, Pregel needs
to re-execute all vertices in the iteration. Furthermore, it is
restricted to graph data representation, for example it cannot
directly support non-graph iterative data mining algorithms,
such as clustering (e.g., k-means) or dimensionality reduc-
tion (e.g., multi-dimensional scaling).

PrIter [111] is a distributed framework for faster conver-
gence of iterative tasks by support for prioritized iteration.
In PrIter, users can specify the priority of each processing
data point, and in each iteration, only some data points with
high priority values are processed. The framework supports
maintenance of previous states across iterations (not only
the previous iteration’s), prioritized execution, and termina-
tion check. A StateTable, implemented as an in-memory hash
table, is kept at reduce side to maintain state. Interestingly, a
disk-based extension of PrIter is also proposed for cases that
the maintained state does not fit in memory.

In many iterative applications, some data are used in sev-
eral iterations, thus caching this data can avoid many disk
accesses. PACMan [14] is a caching service that increases
the performance of parallel jobs in a cluster. The motivation
is that clusters have a large amount of (aggregated) mem-
ory, and this is underutilized. The memory can be used to
cache input data, however, if there are enough slots for all
tasks to run in parallel, caching will only help if all tasks
have their input data cached, otherwise those that have not
will be stragglers and caching is of no use. To facilitate this,
PACMan provides coordinated management of the distrib-
uted caches, using cache-replacement strategies developed
particularly for this context. The improvements depend on
the amount of data re-use, and it is therefore not beneficial
for all application workloads.

4.4.2 Recursive queries

Support for recursive queries in the context of MapReduce is
studied in [3]. Examples of recursive queries that are mean-
ingful to be implemented in MapReduce include PageRank
computation, transitive closure, and graph processing. The
authors explore ways to implement recursion. A significant
observation is that recursive tasks usually need to produce
some output before completion, so that it can be used as
feedback to the input. Hence, the blocking property of map
and reduce (a task must complete its work before delivering
output to other tasks) violates the requirements of recursion.

In [21], recursive queries for machine learning tasks
using Datalog are proposed over a data-parallel engine
(Hyracks [19]). The authors argue in favor of a global declara-
tive formulation of iterative tasks using Datalog, which offers
various optimization opportunities for physical dataflow
plans. Two programming models (Pregel [78] and iterative
MapReduce) are shown that they can be captured in Data-
log, thus demonstrating the generality of the proposed frame-
work.

4.4.3 Incremental processing

REX [82] is a parallel query processing platform that also
supports recursive queries expressed in extended SQL, but
focuses mainly on incremental refinement of results. In REX,
incremental updates (called programmable deltas) are used
for state refinement of operators, instead of accumulating the
state produced by previous iterations. Its main contribution is
increased efficiency of iterative processing, by only comput-
ing and propagating deltas describing changes between iter-
ations, while maintaining state that has not changed. REX is
based on a different architecture than MapReduce, and also
uses cost-based optimization to improve performance. REX
is compared against HaLoop and shown to outperform it in
various setups.

An iterative data flow system is presented in [43], where
the key novelty is support for incremental iterations. Such
iterations are typically encountered in algorithms that entail
sparse computational dependencies (e.g., graph algorithms),
where the result of each iteration differs only slightly from
the previous result.

Differential dataflow [79] is a system proposed for
improving the performance of incremental processing in a
parallel dataflow context. It relies on differential computation
to update the state of computation when its inputs change, but
uses a partially ordered set of versions, in contrast to a totally
ordered sequence of versions used by traditional incremental
computation. This results in maintaining the differences for
multiple iterations. However, the state of each version can
be reconstructed by indexing the related set of updates, in
contrast to consolidating updates and discarding them. Thus,
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differential dataflow supports more effective re-use of any
previous state, both for changes due to an updated input and
due to iterative execution.

4.5 Query optimization

4.5.1 Processing optimizations

HadoopDB [2] is a hybrid system, aiming to exploit the best
features of MapReduce and parallel DBMSs. The basic idea
behind HadoopDB is to install a database system on each
node and connect these nodes by means of Hadoop as the
task coordinator and network communication layer. Query
processing on each node is improved by assigning as much
work as possible to the local database. In this way, one can
harvest all the benefits of query optimization provided by the
local DBMS. Particularly, in the case of joins, where Hadoop
does not support data colocation, a significant amount of
data needs to be repartitioned by the join key in order to
be processed by the same Reduce process. In HadoopDB,
when the join key matches the partitioning key, part of the
join can be processed locally by the DBMS, thus reducing
substantially the amount of data shuffled. The architecture of
HadoopDB is depicted in Fig. 7, where the newly introduced
components are marked with bold lines and text. The data-
base connector is an interface between database systems and
TaskTrackers. It connects to the database, executes a SQL
query, and returns the result in the form of key-value pairs.
The catalog maintains metadata about the databases, such
as connection parameters as well as metadata on data sets
stored, replica locations, data partitioning properties. The
data loader globally repartitions data based on a partition
key during data upload, breaks apart single node data into
smaller partitions, and bulk loads the databases with these
small partitions. Finally, the SMS planner extends Hive and
produces query plans that can exploit features provided by
the available database systems. For example, in the case of a
join, some tables may be colocated, and thus, the join can be
pushed entirely to the database engine (similar to a map-only
job).

Situation-Aware Mappers (SAMs) [101] have been recen-
tly proposed to improve the performance of query processing
in MapReduce in different ways. The crucial idea behind this
work is to allow map tasks (mappers) to communicate and
maintain global state by means of a distributed meta-data
store, implemented by the distributed coordination service
Apache ZooKeeper,2 thus making globally coordinated opti-
mization decisions. In this way, MapReduce is enhanced with
dynamic and adaptive features. Adaptive Mappers can avoid
frequent checkpointing by taking more input splits. Adaptive
Combiners can perform local aggregation by maintaining a

2 http://zookeeper.apache.org/.
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hash table in the map task and using it as a cache. Adap-
tive Sampling creates local samples, aggregates them, and
produces a global histogram that can be used for various
purposes (e.g., determine the satisfaction of a global condi-
tion). Adaptive Partitioning can exploit the global histogram
to produce equi-sized partitions for better load balancing.

Clydesdale [60] is a system for structured data process-
ing, where the data fits a star schema, which is built on
top of MapReduce without any modifications. Clydesdale
improves the performance of MapReduce by adopting the
following optimization techniques: columnar storage, repli-
cation of dimension tables on local storage of each node
which improves the performance of joins, re-use of hash
tables stored in memory by scheduling map tasks to spe-
cific nodes intentionally, and block iteration (instead of row
iteration). However, Clydesdale is limited by the available
memory on each individual node, i.e., when the dimension
tables do not fit in memory.

4.5.2 Configuration parameter tuning

Starfish [51] introduces cost-based optimization of MapRe-
duce programs. The focus is on determining appropriate val-
ues for the configuration parameters of a MapReduce job,
such as number of map and reduce tasks, amount of allo-
cated memory. Determining these parameters is both cum-
bersome and unclear for the user, and most importantly they
significantly affect the performance of MapReduce jobs, as
indicated in [15]. To address this problem, a Profiler is intro-
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duced that collects estimates about the size of data processed,
the usage of resources, and the execution time of each job.
Further, a What-if Engine is employed to estimate the bene-
fit from varying a configuration parameter using simulations
and a model-based estimation method. Finally, a cost-based
optimizer is used to search for potential configuration set-
tings in an efficient way and determine a setting that results
in good performance.

4.5.3 Plan refinement and operator reordering

AQUA [105] is a query optimizer for Hive. One significant
performance bottleneck in MapReduce is the cost of storing
intermediate results. In AQUA, this problem is addressed
by a two-phase optimization where join operators are orga-
nized into a number of groups which each can be executed
as one job, and then, the intermediate results from the join
groups are joined together. AQUA also provides two impor-
tant query plan refinements: sharing table scan in map phase,
and concurrent jobs, where independent subqueries can be
executed concurrently if resources are available. One lim-
itation of AQUA is the use of pairwise joins as the basic
scheduling unit, which excludes the evaluation of multi-way
joins in one MapReduce job. As noted in [110], in some cases,
evaluating a multi-way join with one MapReduce job can be
much more efficient.

YSmart [69] is a correlation-aware SQL-to-Map- Reduce
translator, motivated by the slow speed for certain queries
using Hive and other “one-operation-to-one-job” translators.
Correlations supported include multiple nodes having input
relation sets that are not disjoint, multiple nodes having both
non-disjoint input relations sets and same partition key, and
occurrences of nodes having same partition key as child node.
By utilizing these correlations, the number of jobs can be
reduced thus reducing time-consuming generation and read-
ing of intermediate results. YSmart also has special optimiza-
tions for self-join that require only one table scan. One pos-
sible drawback of YSmart is the goal of reducing the number
of jobs, which does not necessarily give the most reduction
in terms of performance. The approach has also limitations
in handling theta-joins.

RoPE [8] collects statistics from running jobs and use
these for re-optimizing future invocations of the same (or
similar) job by feeding these statistics into a cost-based opti-
mizer. Changes that can be performed during re-optimization
include changing degree of parallelism, reordering opera-
tions, choosing appropriate implementations, and grouping
operations that have little work into a single physical task.
One limitation of RoPE is that it depends on the same jobs
being executed several times and as such is not beneficial for
queries being executed the first time. This contrasts to other
approach like, e.g., Shark [107].

In MapReduce, user-defined functions such as Map and
Reduce are treated like “black boxes”. The result is that in the
data-shuffling stage, we must assume conservatively that all
data-partition properties are lost after applying the functions.
In SUDO [109], it is proposed that these functions expose
data-partition properties, so that this information can be used
to avoid unnecessary reordering operations. Although this
approach in general works well, it should be noted that it can
also in some situations introduce serious data skew.

4.5.4 Code analysis and query optimization

The aim of HadoopToSQL [54] is to be able to utilize
SQL’s features for indexing, aggregation, and grouping from
MapReduce. HadoopToSQL uses static analysis to analyze
the Java code of a MapReduce query in order to completely or
partially transform it to SQL. This makes it possible to access
only parts of data sets when indexes are available, instead
of a full scan. Only certain classes of MapReduce queries
can be transformed, for example there can be no loops in
the Map function. The approach is implemented on top of a
standard database system, and it is not immediately applica-
ble in a standard MapReduce environment without efficient
indexing. This potentially also limits the scalability of the
approach to the scalability of the database system.

Manimal [56] is a framework for automatic analysis and
optimization of data-centric MapReduce programs. The aim
of this framework is to improve substantially the perfor-
mance of MapReduce programs by exploiting potential query
optimizations as in the case of traditional RDBMSs. Exem-
plary optimizations that can be automatically detected and
be enforced by Manimal include the use of local indexes and
the delta-compression technique for efficient representation
of numerical values. Manimal shares many similarities with
HadoopToSQL, as they both rely on static analysis of code
to identify optimization opportunities. Also, both approaches
are restricted to detecting certain types of code. Some differ-
ences also exist, and the most important being that the actual
execution in HadoopToSQL is performed by a database sys-
tem, while the execution in Manimal is still performed on top
of MapReduce.

4.5.5 Data flow optimization

An increasing number of complex analytical tasks are repre-
sented as a workflow of MapReduce jobs. Efficient process-
ing of such workflows is an important problem, since the per-
formance of different execution plans of the same workflow
varies considerably. Stubby [73] is a cost-based optimizer
for MapReduce workflows that searches the space of the full
plan of the workflow to identify optimization opportunities.
The input to Stubby is an annotated MapReduce workflow,
called plan, and its output is an equivalent, yet optimized
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plan. Stubby works by transforming a plan to another equiv-
alent plan, and in this way, it searches the space of potential
transformations in a selective way. The space is searched
using two traversals of the workflow graph, where in each
traversal different types of transformations are applied. The
cost of a plan is derived by exploiting the What-If engine
proposed in previous work [51].

Hueske et al. [52] study optimization of data flows,
where the operators are User-defined Functions (UDFs) with
unknown semantics, similar to “black boxes”. The aim is to
support reorderings of operators (together with parallelism)
whose properties are not known in advance. To this end, auto-
matic static code analysis is employed to identify a limited set
of properties that can guarantee safe reorderings. In this way,
typical optimizations carried out on traditional RDBMSs,
such as selection and join reordering as well as limited forms
of aggregation push-down, are supported.

4.6 Fair work allocation

Since reduce tasks work in parallel, an overburdened reduce
task may stall the completion of a job. To assign the work
fairly, techniques such as pre-processing and sampling, repar-
titioning, and batching are employed.

4.6.1 Pre-processing and sampling

Kolb et al. [62] study the problem of load balancing in
MapReduce in the context of entity resolution, where data
skew may assign workload to reduce tasks unfairly. This
problem naturally occurs in other applications that require
pairwise computation of similarities when data is skewed,
and thus, it is considered a built-in vulnerability of MapRe-
duce. Two techniques (BlockSplit and PairRange) are pro-
posed, and both rely on the existence of a pre-processing
phase (a separate MapReduce job) that builds information
about the number of entities present in each block.

Ramakrishnan et al. [88] aim at solving the problem of
reduce keys with large loads. This is achieved by splitting
large reduce keys into several medium-load reduce keys, and
assigning medium-load keys to reduce tasks using a bin-
packing algorithm. Identifying such keys is performed by
sampling before the MapReduce job starts, and information
about reduce-key load size (large and medium keys) is stored
in a partition file.

4.6.2 Repartitioning

Gufler et al. [48] study the problem of handling data skew
by means of an adaptive load balancing strategy. A cost esti-
mation method is proposed to quantify the cost of the work
assigned to reduce tasks, in order to ensure that this is per-
formed fairly. By means of computing local statistics in the

map phase and aggregating them to produce global statis-
tics, the global data distribution is approximated. This is then
exploited to assign the data output from the map phase to
reduce tasks in a way that achieves improved load balanc-
ing.

In SkewReduce [64], mitigating skew is achieved by an
optimizer utilizing user-supplied cost functions. Requiring
users to supply this is a disadvantage and is avoided in their
follow-up approach SkewTune [65]. SkewTune handles both
skew caused by an uneven distribution of input data to opera-
tor partitions (or tasks) as well as skew caused by some input
records (or key-groups) taking much longer to process than
others, with no extra user-supplied information. When Skew-
Tune detects a straggler and its reason is skew, it repartitions
the straggler’s remaining unprocessed input data to one or
additional slots, including ones that it expects to be available
soon.

4.6.3 Batching at reduce side

Sailfish [89] aims at improving the performance of MapRe-
duce by reducing the number of disk accesses. Instead of
writing to intermediate files at map side, data are shuffled
directly and then written to a file at reduce side, one file per
reduce task (batching). The result is one intermediate file per
reduce task, instead of one per map task, giving a significant
reduction in disk seeks for the reduce task. This approach
also has the advantage of giving more opportunities for auto-
tuning (number of reduce tasks). Sailfish aims at applications
where the size of intermediate data is large, and as also noted
in [89], when this is not the case other approaches for han-
dling intermediate data might perform better.

Themis [90] considers medium-sized Hadoop-clusters
where failures will be less common. In case of failure, jobs
are re-executed. Task-level fault-tolerance is eliminated by
aggressively pipelining records without unnecessarily mate-
rializing intermediate results to disk. At reduce side, batching
is performed, similar to how it is done in Sailfish [89]. Sam-
pling is performed at each node and is subsequently used to
detect and mitigate skew. One important limitation of Themis
is its dependence on controlling access to the host machine’s
I/O and memory. It is unclear how this will affect it in a
setting where machines are shared with other applications.
Themis also has problems handling stragglers since jobs are
not split into tasks.

4.7 Interactive and real-time processing

Support for interactive and real-time processing is provided
by a mixture of techniques such as streaming, pipelining,
in-memory processing, and pre-computation.

123



370 C. Doulkeridis, K. Nørvåg

4.7.1 Streaming and pipelining

Dremel [80] is a system proposed by Google for interac-
tive analysis of large-scale data sets. It complements MapRe-
duce by providing much faster query processing and analy-
sis of data, which is often the output of sequences of
MapReduce jobs. Dremel combines a nested data model
with columnar storage to improve retrieval efficiency. To
achieve this goal, Dremel introduces a lossless representa-
tion of record structure in columnar format, provides fast
encoding and record assembly algorithms, and postpones
record assembly by directly processing data in columnar
format. Dremel uses a multi-level tree architecture to exe-
cute queries, which reduces processing time when more
levels are used. It also uses a query dispatcher that can
be parameterized to return a result when a high percent-
age but not all (e.g., 99 %) of the input data has been
processed. The combination of the above techniques is
responsible for Dremel’s fast execution times. On the down-
side, for queries involving many fields of records, Dremel
may not work so well due to the overhead imposed by
the underlying columnar storage. In addition, Dremel sup-
ports only tree-based aggregation and not more complex
DAGs required for machine learning tasks. A query process-
ing framework sharing the aims of Dremel, Impala [63],
has recently been developed in the context of Hadoop and
extends Dremel in the sense it can also support multi-table
queries.

Hyracks [19] is a platform for data-intensive process-
ing that improves the performance of Hadoop. In Hyracks,
a job is a dataflow DAG that contains operators and con-
nectors, where operators represent the computation steps
while connectors represent the redistribution of data from
one step to another. Hyracks attain performance gains due
to design and implementation choices such as the use of
pipelining, support of operators with multiple inputs, addi-
tional description of operators that allow better planning and
scheduling, and a push-based model for incremental data
movement between producers and consumers. One weak-
ness of Hyracks is the lack of a mechanism for restarting
only the necessary part of a job in the case of failures,
while at the same time keeping the advantages of pipelin-
ing.

Tenzing [27] is a SQL query execution engine built on
top of MapReduce by Google. Compared to Hive [99,100]
or Pig [86], Tenzing additionally achieves low latency and
provides a SQL92 implementation with some SQL99 exten-
sions. At a higher level, the performance gains of Tenz-
ing are due to the exploitation of traditional database tech-
niques, such as indexes as well as rule-based and cost-based
optimization. At the implementation level, Tenzing keeps
processes (workers) running constantly in a worker pool,
instead of spawning new processes, thus reducing query

latency. Also, hash table-based aggregation is employed to
avoid the sorting overhead imposed in the reduce task. The
performance of sequences of MapReduce jobs is improved by
implementing streaming between the upstream reduce task
and the downstream map task as well as memory chaining by
colocating these tasks in the same process. Another impor-
tant improvement is a block-based shuffle mechanism that
avoids the overheads of row serialization and deserializa-
tion encountered in row-based shuffling. Finally, when the
processed data are smaller than a given threshold, local exe-
cution on the client is used to avoid sending the query to the
worker pool.

4.7.2 In-memory processing

PowerDrill [49] uses a column-oriented datastore and var-
ious engineering choices to improve the performance of
query processing even further. Compared to Dremel that
uses streaming from DFS, PowerDrill relies on having as
much data in memory as possible. Consequently, PowerDrill
is faster than Dremel, but it supports only a limited set of
selected data sources, while Dremel supports thousands of
different data sets. PowerDrill uses two dictionaries as basic
data structures for representing a data column. Since it relies
on memory storage, several optimizations are proposed to
keep the memory footprint of these structures small. Since it
works in memory, PowerDrill is constrained by the available
memory for maintaining the necessary data structures.

Shark [42,107] (Hive on Spark [108]) is a system devel-
oped at UC Berkeley that improves the performance of
Hive by exploiting in-memory processing. Shark uses a
main memory abstraction called resilient distributed dataset
(RDD) that is similar to shared memory in large clusters.
Compared to Hive, the improvement in performance mainly
stems from inter-query caching of data in memory, thus
eliminating the need to read/write repeatedly on disk. In
addition, other improving techniques are employed includ-
ing hash-based aggregation and dynamic partial DAG exe-
cution. Shark is restricted by the size of available main
memory, for example when the map output does not fit in
memory.

M3R [94] (Main Memory MapReduce) is a framework that
runs MapReduce jobs in memory much faster than Hadoop.
Key technical changes of M3R for improving performance
include sharing heap state between jobs, elimination of com-
munication overheads imposed by the JobTracker and heart-
beat mechanisms, caching input and output data in memory,
in-memory shuffling, and always mapping the same parti-
tion to the same location across all jobs in a sequence thus
allowing re-use of built memory structures. The limitations
of M3R include lack of support for resilience and constraints
on the type of supported jobs imposed by memory size.
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4.7.3 Pre-computation

BlinkDB [7,9] is a query processing framework for running
interactive queries on large volumes of data. It extends Hive
and Shark [42] and focuses on quick retrieval of approximate
results, based on pre-computed samples. The performance
and accuracy of BlinkDB depends on the quality of the sam-
ples, and amount of recurring query templates, i.e., set of
columns used in WHERE and GROUP-BY clauses.

4.8 Processing n-way operations

By design, a typical MapReduce job is supposed to consume
input from one file, thereby complicating the implementation
of n-way operations. Various systems, such as Hyracks [19],
have identified this weakness and support n-way operators
by design, which naturally take multiple sources as input. In
this way, operations such as joins of multiple data sets can
be easily implemented. In the sequel, we will use the join
operator as a typical example of n-way operation, and we
will examine how joins are supported in MapReduce.

Basic methods for processing joins in MapReduce include
(1) distributing the smallest operand(s) to all nodes, and per-
forming the join by the Map or Reduce function, and (2) map-
side and reduce-side join variants [104]. The first approach
is only feasible for relatively small operands, while the map-
side join is only possible in restricted cases when all records
with a particular key end up at the same map task (for exam-
ple, this is satisfied if the operands are outputs of jobs that
had the same number of reduce task and same keys, and the
output files are smaller than one HDFS block). The more
general method is reduce-side join, which can be seen as a
variant of traditional parallel join where input records are
tagged with operands and then shuffled so that all records
with a particular key end up at the same reduce task and can
be joined there.

More advanced methods for join processing in MapRe-
duce are presented in the following, categorized according
to the type of join.

4.8.1 Equi-join

Map-Reduce-Merge [29] introduces a third phase to MapRe-
duce processing, besides map and reduce, namely merge. The
merge is invoked after reduce and receives as input two pairs
of key/values that come from two distinguishable sources.
The merge is able to join reduced outputs, and thus, it can
be effectively used to implement join of data coming from
heterogeneous sources. The paper describes how traditional
relational operators can be implemented in this new system
and also focuses explicitly on joins, demonstrating the imple-
mentation of three types of joins: sort-merge joins, hash joins,
and block nested-loop joins.

Map-Join-Reduce [58] also extends MapReduce by intro-
ducing a third phase called join, between map and reduce.
The objective of this work is to address the limitation of
the MapReduce programming model that is mainly designed
for processing homogeneous data sets, i.e., the same logic
encoded in the Map function is applied to all input records,
which is clearly not the case with joins. The main idea is that
this intermediate phase enables joining multiple data sets,
since join is invoked by the runtime system to process joined
records. In more details, the Join function is run together
with Reduce in the same ReduceTask process. In this way,
it is possible to pipeline join results from join to reduce,
without the need of checkpointing and shuffling intermedi-
ate results, which results in significant performance gains.
In practice, two successive MapReduce jobs are required to
process a join. The first job performs filtering, joins the qual-
ified tuples, and pushes the join results to reduce tasks for
partial aggregation. The second job assembles and combines
the partial aggregates to produce the final result.

The work in [5,6] on optimizing joins shares many sim-
ilarities in terms of objectives with Map-Join-Reduce. The
authors study algorithms that aim to minimize the commu-
nication cost, under the assumption that this is the domi-
nant cost during query processing. The focus is on process-
ing multi-way joins as a single MapReduce process, and the
results show that in certain cases this works better than hav-
ing a sequence of binary joins. In particular, the proposed
approach works better for (1) analytical queries where a
very large fact table is joined with many small dimension
tables and (2) queries involving paths in graphs with high
out-degree.

The work in [18] provides a comparison of join algo-
rithms for log processing in MapReduce. The main focus
of this work is on two-way equijoin processing of relations
L and R. The compared algorithms include Repartition Join,
Broadcast Join, Semi-Join, and Per-Split Semi-Join. Repar-
tition Join is the most common join strategy in which L and
R are partitioned on join key and the pairs of partitions with
common key are joined. Broadcast Join runs as a map-only
job that retrieves the smaller relation, e.g., R(|R| << |L|),
over the network to join with local splits of L . Semi-Join oper-
ates in three MapReduce jobs, and the main idea is to avoid
sending records of R over the network that will not join with
L . Finally, Per-Split Semi-Join also has three phases and tries
to send only those records of R that will join with a particular
split Li of L . In addition, various pre-processing techniques,
such as partitioning, replication, and filtering, are studied that
improve the performance. The experimental study indicates
that all join strategies are within a factor of 3 in most cases
in terms of performance for a high available network band-
width (in more congested networking environments, this fac-
tor is expected to increase). Another reason that this factor
is relatively small is that MapReduce has inherent overheads
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related to input record parsing, checksum validation, and task
initialization.

Llama [74] proposes the concurrent join for processing
multi-way joins in a single MapReduce job. Differently than
the existing approaches, Llama relies on columnar storage
of data which allows processing as many join operators as
possible in the map phase. Obviously, this approach signifi-
cantly reduces the cost of shuffling. To enable map-side join
processing, when data is loaded in HDFS, it is partitioned
into vertical groups and each group is stored sorted, thus
enabling efficient join processing of relations sorted on key.
During query processing, it is possible to scan and re-sort
only some columns of the underlying relation, thus improv-
ing substantially the cost of sorting.

4.8.2 Theta-join

Processing of theta-joins using a single MapReduce job is
first studied in [84]. The basic idea is to partition the join
space to reduce tasks in an intentional manner that (1) bal-
ances input and output costs of reduce tasks, while (2) min-
imizing the number of input tuples that are duplicated at
reduce tasks. The problem is abstracted to finding a mapping
of the cells of the join matrix to reduce tasks that minimizes
the job completion time. A cell M(i, j) of the join matrix
M is set to true if the i th tuple from S and the j th tuple
from R satisfy the join condition, and these cells need to
be assigned to reduce tasks. However, this knowledge is not
available to the algorithm before seeing the input data. There-
fore, the proposed algorithm (1-Bucket-Theta) uses a matrix
to regions mapping that relies only on input cardinalities and
guarantees fair balancing to reduce tasks. The algorithm fol-
lows a randomized process to assign an incoming tuple from
S(R) to a random row (column). Given the mapping, it then
identifies a set of intersecting regions of R(S), and outputs
multiple tuples having the corresponding regions IDs as keys.
This is a conservative approach that assumes that all inter-
secting cells are true, however, the reduce tasks can then
find the actual matches and ignore those tuples that do not
match. To improve the performance of this algorithm, addi-
tional statistics about the input data distribution are required.
Approximate equi-depth histograms of the inputs are con-
structed using two MapReduce jobs and can be exploited to
identify empty regions in the matrix. Thus, the resulting join
algorithms, termed M-Bucket, can improve the runtime of
any theta-join.

Multi-way theta-joins are studied in [110]. Similar to [5,
6], the authors consider processing a multi-way join in a
single MapReduce job and identify when a join should be
processed by means of a single or multiple MapReduce jobs.
In more detail, the problem addressed is given a limited num-
ber of available processing units, how to map a multi-way
theta-join to MapReduce jobs and execute them in a sched-

uled order, such that the total execution time is minimized.
To this end, they propose rules to decompose a multi-way
theta-join query and a suitable cost model that estimates the
minimum cost of each decomposed query plan, and selecting
the most efficient one using one MapReduce job.

4.8.3 Similarity join

Set-similarity joins in MapReduce are first studied in [102],
where the PPJoin+ [106] algorithm is adapted for MapRe-
duce. The underlying data can be strings or sets of values,
and the aim is to identify pairs of records with similarity
above a certain user-defined threshold. All proposed algo-
rithms are based on the prefix filtering technique. The pro-
posed approach relies on three stages, and each stage can
be implemented by means of one or two MapReduce jobs.
Hence, the minimum number of MapReduce jobs to com-
pute the join is three. In a nutshell, the first stage produces a
list of join tokens ordered by frequency count. In the second
stage, the record ID and its join tokens are extracted from
the data, distributed to reduce tasks, and the reduce tasks
produce record ID pairs of similar records. The third stage
performs duplicate elimination and joins the records with
IDs produced by the previous stage to generate actual pairs
of joined records. The authors study both the case of self-join
as well as binary join.

V-SMART-Join [81] addresses the problem of computing
all-pair similarity joins for sets, multi-sets, and vector data.
It follows a two-stage approach consisting of a joining phase
and a similarity phase; in the first phase, partial results are
computed and joined, while the second phase computes the
exact similarities of the candidate pairs. In more detail, the
joining phase uses two MapReduce jobs to transform the
input tuples to join tuples, which essentially are multiple
tuples for each multi-set (one tuple for each element in the
multi-set) enhanced with some partial results. The similarity
phase also consists of two jobs. The first job builds an inverted
index and scans the index to produce candidate pairs, while
the second job computes the similarity between all candidate
pairs. V-SMART-Join is shown to outperform the algorithm
of Vernica et al. [102] and also demonstrates some applica-
tions where the amount of data that need to be kept in memory
is so high that the algorithm in [102] cannot be applied.

SSJ-2R and SSJ-2 (proposed in [16]) are also based on
prefix filtering and use two MapReduce phases to compute
the similarity self-join in the case of document collections.
Document representations are characterized by sparseness,
since only a tiny sub-set of entries in the lexicon occur in
any given document. We focus on SSJ-2R which is the most
efficient of the two and introduces novelty compared to exist-
ing work. SSJ-2R broadcasts a remainder file that contains
frequently occurring terms, which is loaded in memory in
order to avoid remote access to this information from dif-
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ferent reduce tasks. In addition, to handle large remainder
files, a partitioning technique is used that splits the file in
K almost equi-sized parts. In this way, each reduce task is
assigned only with a part of the remainder file, at the expense
of replicating documents to multiple reduce tasks. Compared
to the algorithm in [102], the proposed algorithms perform
worse in the map phase, but better in the reduce phase, and
outperform [102] in total.

MRSimJoin [96,97] studies the problem of distance range
join, which is probably the most common case of similarity
join. Given two relations R and S, the aim is to retrieve pairs
of objects r ∈ R and s ∈ S, such that d(r, s) ≤ ε, where d()

is a metric distance function and ε is a user-specified sim-
ilarity threshold. MRSimJoin extends the centralized algo-
rithm QuickJoin [55] to become applicable in the context of
MapReduce. From a technical viewpoint, MRSimJoin itera-
tively partitions the input data into smaller partitions (using a
number of pivot objects), until each partition fits in the main
memory of a single machine. To achieve this goal, multi-
ple partitioning rounds (MapReduce jobs) are necessary, and
each round partitions the data in a previously generated par-
tition. The number of rounds decreases for increased number
of pivots, however, this also increases the processing cost of
partitioning. MRSimJoin is compared against [84] and shown
to outperform it.

Parallel processing of top-k similarity joins is studied
in [61], where the aim is to retrieve the k most similar (i.e.,
closest) pairs of objects from a database based on some dis-
tance function. Contrary to the other approaches for similar-
ity joins, it is not necessary to define a similarity threshold,
only k is user-specified. The basic technique used is partition-
ing of the pairs of objects in such a way that every pair appears
in a single partition only, and then computing top-k closest
pairs in each partition, followed by identifying the global
top-k objects from all partitions. In addition, an improved
strategy is proposed in which only a smaller sub-set of pairs
(that includes the correct top-k pairs) is distributed to parti-
tions. To identify this smaller sub-set, sampling is performed
to identify a similarity threshold τ that bounds the distance
of the kth closest pair.

In [4], fuzzy joins are studied. Various algorithms that rely
on a single MapReduce job are proposed, which compute all
pairs of records with similarity above a certain user-specified
threshold, and produce the exact result. The algorithms focus
on three distance functions: Hamming distance, Edit dis-
tance, and Jaccard distance. The authors provide a theoretical
investigation of algorithms whose cost is quantified by means
of three metrics; (1) the total map or pre-processing cost (M),
(2) the total communication cost (C), and (3) the total com-
putation cost of reduce tasks (R). The objective is to identify
MapReduce procedures (corresponding to algorithms) that
are not dominated when the cost space of (M, C, R) is con-
sidered. Based on a cost analysis, the algorithm that performs

best for a sub-set of the aforementioned cost metrics can be
selected.

4.8.4 k-NN and top-k join

The goal of k-NN join is to produce the k nearest neigh-
bors of each point of a data set S from another data set
R, and it has been recently studied in the MapReduce con-
text in [77]. After demonstrating two baseline algorithms
based on block nested loop join (H-BNLJ) and indexed
block nested-loop join (H-BRJ), the authors propose an
algorithm termed H-zkNNJ that relies on one-dimensional
mapping (z-order) and works in three MapReduce phases.
In the first phase, randomly shifted copies of the rela-
tions R and S are constructed and the partitions Ri and Si

are determined. In the second phase, Ri and Si are parti-
tioned in blocks, and also a candidate k nearest neighbor
set for each object r ∈ Ri is computed. The third phase
simply derives the k nearest neighbors from the candidate
set.

A top-k join (also known as rank join) retrieves the k join
tuples from R and S with highest scores, where the score of
a join tuple is determined by a user-specified function that
operates on attributes of R and S. In general, the join between
R and S in many-to-many.

RanKloud [24] computes top-k joins in MapReduce by
employing a three-stage approach. In the first stage, the input
data are repartitioned in a utility-aware balanced manner.
This is achieved by sampling and estimating the join selectiv-
ity and threshold that serves as a lower bound for the score of
the top-k join tuple. In the second stage, the actual join is per-
formed between the new partitions. Finally, in the third stage,
the intermediate results produced by the reduce tasks need
to be combined to produce the final top-k result. RanKloud
delivers the correct top-k result, however, the retrieval of k
results cannot be guaranteed (i.e., fewer than k tuples may be
produced), thus it is classified as an approximate algorithm.
In [38] the aim is to provide an exact solution to the top-
k join problem in MapReduce. A set of techniques that are
particularly suited for top-k processing is proposed, includ-
ing implementing sorted access to data, applying angle-based
partitioning, and building synopses in the form of histograms
for capturing the score distribution.

4.8.5 Analysis

In the following, an analysis of join algorithms in MapReduce
is provided based on five important phases that improve the
performance of query processing.

First, improved performance can be achieved by pre-
processing. This includes techniques such as sampling,
which can give a fast overview of the underlying data distrib-
ution or input statistics. Unfortunately, depending on the sta-
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Table 3 Analysis of join processing in MapReduce

Join type Approach Pre-processing Pre-filtering Partitioning Replication Load balancing

Equi-join Map-Reduce-Merge [29] N/A N/A N/A N/A N/A

Map-Join-Reduce [58] N/A N/A N/A N/A N/A

Afrati et al. [5,6] No No Hash-based “share”-based No

Repartition join [18] Yes No Hash-based No No

Broadcast join [18] Yes No Broadcast Broadcast R No

Semi-join [18] Yes No Broadcast Broadcast No

Per-split semi-join [18] Yes No Broadcast Broadcast No

Llama [74] Yes No Vertical groups No No

Theta-join 1-Bucket-Theta [84] No No Cover join matrix Yes Bounds

M-Bucket [84] Yes No Cover join matrix Yes Bounds

Zhang et al. [110] No No Hilbert space-filling
curve

Minimize Yes

Similarity join Set-similarity join [102] Global token
ordering

No Hash-based Grouping Frequency- based

V-SMART-Join [81] Compute
frequencies

No Hash-based Yes Cardinality-based

SSJ-2R [16] Similar to [102] No Remainder file Yes Yes

Silva et al. [97] No No Iterative Yes No

Top-k similarity join [61] Sampling Essential pairs Bucket-based Yes No

Fuzzy join [4] No No Yes

k-NN join H-zkNNJ [77] No No Z-value based Shifted copies of
R, S

Quantile-based

Top-k join RanKloud [24] Sampling No Utility-aware No Yes

Doulkeridis et al. [38] Sorting No Angle-based No Yes

tistical information that needs to be generated, pre-processing
may require one or multiple MapReduce jobs (e.g., for pro-
ducing an equi-depth histogram), which entails extra costs
and essentially prevents workflow-style processing on the
results of a previous MapReduce job. Second, pre-filtering
is employed in order to early discard input records that can-
not contribute to the join result. It should be noted that pre-
filtering is not applicable to every type of join, simply because
there exist join types that need to examine all input tuples as
they constitute potential join results. Third, partitioning is
probably the most important phase, in which input tuples are
assigned to partitions that are distributed to reduce tasks for
join processing. Quite often, the partitioning causes repli-
cation (also called duplication) of input tuples to multiple
reduce tasks, in order to produce the correct join result in a
parallel fashion. This is identified as the fourth phase. Finally,
load balancing of reduce tasks is extremely important, since
the slowest reduce task determines the overall job comple-
tion time. In particular, when the data distribution is skewed, a
load balancing mechanism is necessary to mitigate the effect
of uneven work allocation.

A summary of this analysis is presented in Table 3. In the
following, we comment on noteworthy individual techniques
employed at the different phases.

Pre-processing. Llama [74] uses columnar storage of data
and in particular uses vertical groups of columns that are
stored sorted in HDFS. This is essentially a pre-processing
step that greatly improves the performance of join operations,
by enabling map-side join processing. In [102], the tokens are
ordered based on frequencies in a pre-processing step. This
information is exploited at different stages of the algorithm
to improve performance. V-SMART-Join [81] scans the input
data once to derive partial results and cardinalities of items.
The work in [61] uses sampling to compute an upper bound
on the distance of the kth closest pair.

Pre-filtering. The work in [61] applies pre-filtering by par-
titioning only those pairs necessary for producing the top-k
most similar pairs. These are called essential pairs, and their
computation is based on the upper bound of distance.

Partitioning. In the case of theta-joins [84], the parti-
tioning method focuses on mapping the join matrix (i.e.,
representing the cross-product result space) to the available
reduce tasks, which entails “covering” the populated cells by
assignment to a reduce task. For multi-way theta joins [110],
the join space is multi-dimensional and partitioning is per-
formed using the Hilbert space-filling curve, which is shown
to minimize the optimization objective of partitioning. The
algorithm proposed for k-NN joins [77] uses z-ordering to
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map data to one-dimensional values and partition the one-
dimensional space into ranges. In the case of top-k joins, both
RanKloud [24] and the approach described in [38] propose
partitioning schemes tailored to top-k processing. RanKloud
employs a utility-aware partitioning that splits the space in
non-equal ranges, such that the useful work produced by each
partition is roughly the same. In [38], angle-based partition-
ing is proposed, which works better than traditional parti-
tioning schemes for parallel skyline queries [103].

Replication. To reduce replication, the approach in [102]
uses grouped tokens, i.e., maps multiple tokens to one syn-
thetic key and partitions based on the synthetic key. This
technique reduces the amount of record replication to reduce
tasks. In the case of multi-way theta joins [110], a multi-
dimensional space partitioning method is employed to assign
partitions of the join space to reduce tasks. Interestingly, the
objective of partitioning is to minimize the duplication of
records.

Load balancing. In [102], the authors use the pre-
processed token ordering to balance the workload more
evenly to reduce tasks by assigning tokens to reduce tasks in a
round-robin manner based on frequency. V-SMART-Join [81]
also exploits cardinalities of items in multi-sets to address
skew in data distribution. For theta-joins [84], the partition-
ing attempts to balance the workload to reduce tasks, such
that the job completion time is minimized, i.e., no reduce
task is overloaded and delays the completion of the job. The-
oretical bounds on the number of times the “fair share” of
any reduce task is exceeded are also provided. In the case of
H-zkNNJ [77], load balancing is performed by partitioning
the input relation in roughly equi-sized partitions, which is
accomplished by using approximate quantiles.

5 Conclusions and outlook

MapReduce has brought new excitement in the parallel data
processing landscape. This is due to its salient features that
include scalability, fault-tolerance, simplicity, and flexibil-
ity. Still, several of its shortcomings hint that MapReduce
is not perfect for every large-scale analytical task. It is

therefore natural to ask ourselves about lessons learned from
the MapReduce experience and to hypothesize about future
frameworks and systems.

We believe that the next generation of parallel data
processing systems for massive data sets should combine the
merits of existing approaches. The strong features of MapRe-
duce clearly need to be retained; however, they should be
coupled with efficiency and query optimization techniques
present in traditional data management systems. Hence, we
expect that future systems will not extend MapReduce, but
instead redesign it from scratch, in order to retain all desirable
features but also introduce additional capabilities.

In the era of “Big Data”, future systems for parallel
processing should also support efficient exploratory query
processing and analysis. It is vital to provide efficient support
for processing on subsets of the available data only. At the
same time, it is important to provide fast retrieval of results
that are indicative, approximate, and guide the user to for-
mulating the correct query.

Another important issue relates to support for declarative
languages and query specification. Decades of research in
data management systems have shown the benefits of using
declarative query languages. We expect that future systems
will be designed with declarative querying from the very
beginning, rather than adding it as a layer later.

Finally, support for real-time applications and streaming
data is expected to drive innovations in parallel large-scale
data analysis. An approach for extending MapReduce for
supporting real-time analysis is introduced in [20] by Face-
book. We expect to see more frameworks targeting require-
ments for real-time processing and analysis in the near future.
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Table 4 Modifications induced
by existing approaches to
MapReduce

Approach Modification in MapReduce/Hadoop

Hadoop++ [36] No, based on using UDFs

HAIL [37] Yes, changes the RecordReader and a few UDFs

CoHadoop [41] Yes, extends HDFS and adds metadata to NameNode

Llama [74] No, runs on top of Hadoop

Cheetah [28] No, runs on top of Hadoop

RCFile [50] No changes to Hadoop, implements certain interfaces

CIF [44] No changes to Hadoop core, leverages extensibility features

Trojan layouts [59] Yes, introduces Trojan HDFS (among others)

MRShare [83] Yes, modifies map outputs with tags and writes to multiple output files
on the reduce side

ReStore [40] Yes, extends the JobControlCompiler of Pig

Sharing scans [11] Independent of system

Silva et al. [95] No, integrated into SCOPE

Incoop [17] Yes, new file system, contraction phase, and memoization-aware
scheduler

Li et al. [71,72] Yes, modifies the internals of Hadoop by replacing key components

Grover et al. [47] Yes, introduces dynamic job and Input Provider

EARL [67] Yes, RecordReader and Reduce classes are modified, and simple

extension to Hadoop to support dynamic input and efficient
resampling

Top-k queries [38] Yes, changes data placement and builds statistics

RanKloud [24] Yes, integrates its execution engine into Hadoop and uses local
B+Tree indexes

HaLoop [22,23] Yes, use of caching and changes to the scheduler

MapReduce online [30] Yes, communication between Map and Reduce, and to JobTracker and
TaskTracker

NOVA [85] No, runs on top of Pig and Hadoop

Twister [39] Adopts an architecture with substantial differences

CBP [75,76] Yes, substantial changes in various phases of MapReduce

Pregel [78] Different system

PrIter [111] No, built on top of Hadoop

PACMan [14] No, coordinated caching independent of Hadoop

REX [82] Different system

Differential dataflow [79] Different system

HadoopDB [2] Yes (substantially), installs a local DBMS on each DataNode and
extends Hive

SAMs [101] Yes, uses ZooKeeper for coordination between map tasks

Clydesdale [60] No, runs on top of Hadoop

Starfish [51] No, but uses dynamic instrumentation of the MapReduce framework

AQUA [105] No, query optimizer embedded into Hive

YSmart [69] No, runs on top of Hadoop

RoPE [8] On top of different system (SCOPE [112]/Dryad [53])

SUDO [109] No, integrated into SCOPE compiler

Manimal [56] Yes, local B+Tree indexes and delta-compression

HadoopToSQL [54] No, implemented on top of database system

Stubby [73] No, on top of MapReduce

Hueske et al. [52] Integrated into different system (Stratosphere)

123



Large-scale analytical query processing 377

Table 4 continued
Kolb et al. [62] Yes, changes the distribution of map output to reduce tasks, but uses a

separate MapReduce job for pre-processing

Ramakrishnan et al. [88] Yes, sampler to produce the partition file that is subsequently used by
the partitioner

Gufler et al. [48] Yes, uses a monitoring component and changes the distribution of map
output to reduce tasks

SkewReduce [64] No, on top of MapReduce

SkewTune [65] Yes, mostly on top of Hadoop, but some small changes to core classes
in the map tasks

Sailfish [89] Yes, extending distributed file system and batching data from map
tasks

Themis [90] Yes, significant changes to the way intermediate results are handled

Dremel [80] Different system

Hyracks [19] Different system

Tenzing [27] Yes, sort-avoidance, streaming, memory chaining, and block shuffle

PowerDrill [49] Different system

Shark [42,107] Relies on a different system (Spark [108])

M3R [94] Yes, in-memory caching and shuffling, re-use of structures, and
minimize communication

BlinkDB [7,9] No, built on top of Hive/Hadoop

Table 5 Overview of join processing in MapReduce

Join type Approach #Jobs in MapReduce Exact/approximate Self/binary/multiway

Exact Approximate Self Binary Multiway

Equi-join Map-Reduce-Merge [29] 1 ∗ ∗
Map-Join-Reduce [58] 2 ∗ ∗
Afrati et al. [5,6] 1 ∗ ∗
Repartition join [18] 1 ∗ ∗
Broadcast join [18] 1 ∗ ∗
Semi-join [18] 3 ∗ ∗
Per-split semi-join [18] 3 ∗ ∗
Llama [74] 1 ∗ ∗

Theta-join 1-Bucket-Theta [84] 1 ∗ ∗
M-Bucket [84] 3 ∗ ∗
Zhang et al. [110] 1 or Multiple ∗ ∗

Similarity join Set-similarity join [102] ≥3 ∗ ∗ ∗
V-SMART-Join (all-pair) [81] 4 ∗ ∗
SSJ-2R [16] 2 ∗ ∗
Silva et al. [97] Multiple ∗ ∗
Top-k similarity join [61] 2 ∗ ∗
Fuzzy join [4] 1 ∗ ∗

k-NN join H-zkNNJ [77] 3 ∗ ∗
Top-k join RanKloud [24] 3 ∗ ∗

Doulkeridis et al. [38] 2 ∗ ∗
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