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Describing user activity plays an essential role in ambient intelligence. In this work, we review different
methods for human activity recognition, classified as data-driven and knowledge-based techniques. We focus
on context ontologies whose ultimate goal is the tracking of human behavior. After studying upper and domain
ontologies, both useful for human activity representation and inference, we establish an evaluation criterion
to assess the suitability of the different candidate ontologies for this purpose. As a result, any missing
features, which are relevant for modeling daily human behaviors, are identified as future challenges.
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1. INTRODUCTION

Semantics is the branch of linguistics and logic concerned with meaning. Its two main
areas are (a) logical semantics, concerned with matters such as sense, reference, preas-
sumption, and implication, and (b) lexical semantics, dealing with the analysis of word
meanings and relations between them.1 In systems equipped with semantic tools, in-
formation is given well-defined meaning so that it enables computers and people to
work in cooperation.

1Oxford Dictionaries, http://oxforddictionaries.com/definition/english/semantics.

Authors’ addresses: Natalia Dı́az-Rodrı́guez and Johan Lilius, Turku Centre for Computer Science (TUCS),
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20520 Turku (Finland); M. P. Cuéllar and Miguel Delgado Calvo-Flores, Department of Computer Science
and Artificial Intelligence, University of Granada, Escuela Técnica Superior de Ingenierı́as Informática y
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In this work, we make a survey and comparison of semantic tools for the recognition
of human behavior. We focus on a more detailed analysis of ontologies, since properties
like flexibility, reasoning, information sharing, and knowledge representation make
these models one of the most promising tools for this purpose [Chen and Biswas 2009].
Both the environment and the user can be provided with semantics to help in the
context definition process. Moreover, including semantics aids in the management of
user information and the interaction with the system, facilitates the definition and
comprehension of human behavior, and, thereafter, helps to develop new learning and
recognition models.

In this introduction, we make first a contextualization of the problem and provide a
general perspective on human behavior recognition. After that, Section 1.2 discusses
context awareness tools to motivate the deeper analysis of ontologies in this survey.
The aim of this section, in order to make this review more complete, is also to show
different tools to model context and identify system requirements that serve to evaluate
ontologies on behavior recognition. Finally, we provide the structure of this article.

1.1. Ambient Intelligence

The term ambient intelligence (AmI) was introduced by the European Commission in
2001 [Ducatel et al. 2001] as a response to new user needs in ubiquitous environments.
One of the latest definitions [Augusto 2007] describes AmI as digital and proactive en-
vironments, with capacity to sense the environment and assist users in their daily lives.
The major difference between ubiquitous computing and AmI is the introduction of AI
in the latter. Thanks to that, user friendliness, user empowerment, human assistance,
and easy interaction with efficient services are improved. Examples of AmI scenarios
can be seen in Augusto [2007], Remagnino et al. [2005], and Cook et al. [2009].

AmI systems are usually composed by at least (a) a perception mechanism to gather
information from both the user and the environment [Remagnino et al. 2005], (b) a
set of actuators to modify the environment and communicate with users, and (c) a
reasoning/decision-making module able to recognize what is happening to users in the
environment, what they do, and what their aims are and to make decisions to assist
them. These three abstract components often expand when designing AmI applica-
tions, since some scenarios also require the design of a sensor network, data fusion
techniques, or a real-time response, among others [Remagnino et al. 2005; Ramos et al.
2008].

In AmI systems in general, the user occupies a central part. Thus, it becomes nec-
essary to develop techniques to model, learn, recognize, and predict what users are
doing in the environment, so that the system is able to make decisions about how
to assist them. Usually, the literature calls what users are doing human behavior or
human activity interchangeably [Remagnino et al. 2005; Cook et al. 2009; Rashidi and
Cook 2009; Ros et al. 2013]. These terms usually mean a sequence of human actions
that can be tagged with a label, that is, the corresponding activity/behavior. However,
most of these authors agree to define human action as the simplest unit in the human
activity, and it is usually associated with a sensor event. From our point of view, as
long as new semantic approaches are being developed [Chen and Nugent 2009], new
abstraction levels appear in the system. For this reason, in our opinion, a difference
should be made between the terms human activity and human behavior to separate
the concepts of what the user is really doing in the environment (activity), which is in-
ferred from sensor data and machine-learning techniques, and the purpose or meaning
it could have (behavior). However, since this work is a survey, we will not consider any
difference between human activity and behavior in the rest of the article to preserve
consistency with the existing literature.

Besides perception, actuation, and AI techniques, another important part included
in the design of AmI systems is the analysis of the most suitable task model required
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to achieve a well-designed approach. In Activity Theory [Nardi 1996], the fundamental
unit of analysis is human activity. Activities’ aim is to accomplish a goal. Sampling,
analyzing, and modeling are examples of a user modeling process [Casas et al. 2008].
As the level of decomposition in task modeling depends on its purpose, task models
should be rich in information and flexible to capture all the main activities that should
be performed to reach the desired goals, as well as the different ways to accomplish
them [W3C 2010]. A summary of existing task models and their limitations can be
found in Gharsellaoui et al. [2012]. HTA (Hierarchical Task Analysis), GTA (Group-
ware Task Analysis), CTT (Concur Task Trees), UAN (User Action Notation), TKS (Task
Knowledge Structure), DIANE+, and TOOD (Task Object-Oriented Description) are ex-
amples of hierarchical, tree-based, and taxonomic structures. Common requirements
often included in task models consider tasks, goals, activities, devices, time operators,
and so forth. Despite the great advances produced in the last decade, the complexity
and the quantity of possible complex activities [Naeem and Bigham 2007], the tempo-
ral interdependences among actions [Ros et al. 2013], the relevance of the semantics
associated with a behavior [Chen and Nugent 2009], and the existence and interaction
of several actors in the same environment [Singla et al. 2010; Cook et al. 2009], among
others, make learning and recognition of human behavior nontrivial and bring up clear
challenges in AmI research.

As new approaches for task modeling include semantics to represent the meaning of
human activity, context awareness techniques become a more central part of AmI sys-
tems. To make this review more complete, the next subsection provides an introduction
to the most widely used frameworks in context modeling.

1.2. Context Awareness

Context consists of any information that can be used to characterize the state of an
entity [Dey and Abowd 2000]. Entities can include a person, an object, an environment,
an application, or a device that interacts with the user. Context awareness is one of
the drivers of the ubiquitous computing paradigm, and a well-designed model is a key
accessor to the context in any context-aware system [Strang and Linnhoff-Popien 2004].
Proposals to model context can be integrated with human activity models provided
with semantics. This subsection details models and frameworks to deal with context
information as well as some ontologies used in these. The ontologies will be further
studied in Section 3.

As regards data integration [Winograd 2001], we may distinguish among widgets,
networked services, and blackboard models. Widgets may hide low-level details of sens-
ing and ease application development. On the other hand, networked services can be
less efficient than widgets, but at the same time, they may form a more robust and
flexible approach (e.g., by using a widget manager discovery in a context server archi-
tecture). Finally, blackboard models have a data-centric view with event subscription
capabilities, which provides simplicity for the addition of new data sources. A draw-
back is that they can have low efficiency in communication. Concerning the way data
is captured, sensors can be classified as physical sensors (i.e., hardware), virtual sen-
sors (context data from software applications or services), or logical sensors (combining
physical and virtual sensors). Different physical sensors are available for diverse types
of contexts, for example, light, visual context, audio, motion, acceleration, location,
touch, temperature, or other physical attributes such as biosensors [Baldauf et al.
2007] or nonvisual tracking systems in general [Zhou and Hu 2008].

There are different approaches [Strang and Linnhoff-Popien 2004] to conceptually
model context. Key-value models [Baldauf et al. 2007] are one of the simplest ap-
proaches that serve to describe service capabilities in service discovery matching.
Markup scheme models use hierarchical data structures with tags to define, for exam-
ple, profile instances. Graphical model tools [Strang and Linnhoff-Popien 2004] such
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Fig. 1. OWL-encoded context ontology (CONON) [Wang et al. 2004] (partial).

as UML (Unified Modeling Language) or extensions to ORM (Object-Role Modeling)
are useful to appropriately and easily model context by means of graphical interfaces.
Object-oriented models take advantage of object-oriented features to encapsulate con-
text processing and representation through well-defined interfaces. Logic-based models
are formal ways to represent facts, expressions, and rules that allow an inference pro-
cess to derive new facts based on existing rules. Finally, ontology-based models describe
concepts and relationships in a high and formal expressiveness level [Baldauf et al.
2007]. Ontology-based context modeling overcomes the limitations of other models re-
garding simplicity, flexibility, extensibility, generality, expressiveness, and automatic
code generation [Saleemi et al. 2011]. Interoperability solutions based on the ontology
model can benefit from ontology reasoning, since ontologies are the most promising and
expressive models fulfilling requirements for modeling context information [Baldauf
et al. 2007].

The survey [Baldauf et al. 2007] shows advanced context models in a good com-
pendium of design architectures with their respective advantages and disadvantages.
Georgia Tech aware house [Kientz et al. 2008] is an example of a project that de-
velops applications to support seniors living independently at home by using time-
independent heterogeneous context sources. Regarding context-aware frameworks,
examples of OWL-based approaches for context modeling are CoBrA and SOCAM.
CoBrA [Chen et al. 2003] is an agent-based infrastructure for context modeling, reason-
ing, and knowledge sharing using context acquisition components. SOUPA and CoBrA-
Ont ontologies are some of the related tools. User privacy control is also included.
SOCAM (Service-Oriented Context Aware Middleware) [Gu et al. 2004] introduces a
server-based architecture for building context-aware services focused on information
sensing and context providers. Another project providing an OWL-encoded context on-
tology (CONON) is Wang et al. [2004]. As an example, a reduced part of CONON, for
the home domain, can be seen in Figure 1. CoDAMos (Context-Driven Adaptation of
Mobile Services) [Preuveneers et al. 2004] is another ontology, and it contains four
main concepts: User, Environment, Platform, and Service. An excerpt of the CoDAMos
ontology, with different environment conditions and locations, can be seen in Figure 2.

In Gaia [Roman et al. 2002], a metaoperative system is extended to include context
awareness. Instead of using RDF Triples, Gaia uses 4-ary predicates (the fourth one is
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Fig. 2. Ontology concepts within the CoDAMos ontology [Preuveneers et al. 2004].

context type), first-order logic, and DAML+OIL. Other architectures for smartphone
context-aware frameworks can be found in Kovacs et al. [2009], Yun Her [2010], and
van Sinderen et al. [2006].

Context Toolkit [Dey and Abowd 2000] presents an approach to enable application de-
velopment through reusable components. Situations are modeled on a system level, but
there is no language-level situation modeling. However, a restriction in meaningfulness
exists due to its attribute-value tuples, in contrast with RDF. Many systems use SQL
rather than the semantic standard SPARQL. Another example is HIPPIE [Oppermann
and Specht 2000], which utilizes existing users’ information to distribute context infor-
mation to their devices. NESSIE [Prinz 1999] focuses, on the other hand, on event-based
awareness. For compensating its lack of handling interaction, HIPPIE was combined
with NESSIE [Prinz 1999], but the result still lacked a semantic information descrip-
tion. In Bettini et al. [2008] and Agostini et al. [2009], the Context Aggregation and
REasoning (CARE) middleware interacts with the COSAR [Riboni and Bettini 2011a]
system to recognize human activities through hybrid ontological/statistical reasoners
executed on personal mobile devices.

In summary, we can observe different frameworks to facilitate the creation of context-
aware services. They use distinct context representation models and different sensors
and infrastructure. However, we may notice that there is a predominance of OWL
languages. In addition, we observed critical research issues such as the type of con-
text modeling and reasoning, knowledge sharing, and user privacy [Chen et al. 2003].
Ontologies, as context-aware representation methods for human activities, will be an-
alyzed in Section 3.

1.3. Article Organization

At this point, we have discussed some architectures for the design of AmI applications,
with special emphasis on user activity modeling. We have shown different points of
view for the development of human behavior recognition systems. We distinguish be-
tween data-driven approaches, mainly focused on the branch of pattern recognition
and machine learning, and knowledge-based approaches, which include tools to model
semantics and require a more accurate and refined activity knowledge representation.
Section 1.2 provided us with an overview on the techniques and frameworks to model
context and semantics in this application field.

Both types of approaches are studied in Section 2. Specifically, Section 2.1 focuses
on machine-learning proposals used for human activity modeling and recognition, and
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Section 2.2 focuses on knowledge-based approaches. Finally, Section 2.3 provides a
simple taxonomy that summarizes the evaluation aspects considered for this literature
review and identifies and discusses open challenges.

In this survey, we focus our efforts on the evaluation of ontology-based techniques
for semantic modeling in human behavior recognition, since these techniques have
shown better performance and possibilities than others in the management of context
awareness for this application study, as shown in the previous subsection. Section 3 is
aimed to this purpose. First, it introduces the concept of ontology reasoning and shows
its main advantages in human behavior modeling. After that, in Section 3.1, we select a
set of relevant ontologies for human activity modeling, and for context and environment
representation in Section 3.2. Section 4 starts with a brief discussion about ontology
evaluation methodologies, and Section 4.1 provides an assessment of each proposal.
Then, the benefits and disadvantages of the presented ontologies and methodologies
are discussed in Section 4.2. Finally, Section 5 concludes the review with a summary
and promising research directions to be addressed.

2. TRENDS IN ACTIVITY RECOGNITION AND MONITORING

Activity recognition techniques can be divided into data-driven methods and
knowledge-based approaches. Traditionally, techniques for activity recognition have
focused on the branch of pattern recognition and machine learning and belong to the
first group. These techniques have been extensively studied in the last decade; how-
ever, since they have been tackled from the pattern recognition perspective, they have
not integrated mechanisms for semantic treatment or management. Despite this fact,
they have meant an important step forward in the AmI discipline, and therefore, we
devote Section 2.1 to their study. After that, a review on knowledge-driven and hybrid
approaches is provided in Section 2.2, to describe those methods for activity inference
and recognition from the knowledge engineering point of view. Finally, Section 2.3 ends
with a taxonomy to evaluate the existing approaches and open challenges.

2.1. Data-Driven Approaches for Human Behavior Recognition

Approaches for the recognition of human activities and the detection of anomalies
during their performance use the information provided by sensors to build, infer, or
calibrate a behavior model. Machine-learning techniques have been extensively used
with this purpose, and, more specially, probabilistic models, data mining, and inductive
learning.

Probabilistic systems provide great flexibility when controlling different alternatives
in the performance of behaviors and may be easily adapted to different environments.
The work [Kim et al. 2010] collects a study on advantages and drawbacks on the
use of stochastic techniques for human activity recognition. Although Bayesian net-
works [van Kasteren and Krose 2007; Rashidi and Cook 2009], Naı̂ve Bayes classifiers
[Tapia et al. 2004], or nonparametric Bayesian clustering methods [Tominaga et al.
2012] have been used in several cases, one of the most common approaches is Hidden
Markov Models (HMMs) [Boger et al. 2006; Meng et al. 2006; Zhang et al. 2006]. The
systems implementing these approaches usually build a model for each activity to be
recognized. These activities are checked in parallel as the sensors cast events in order
to find the most likely model that fits the current human behavior. These approaches
have the power to be noise tolerant for sensor data and are capable to model sensor
failure probability, but they have two main limitations: first, HMMs suffer from the
first-order assumption; second, if a behavior may be performed in several ways, it is
also necessary to calibrate multiple models, one for each. Multiple Behavioral HMM
(MBHMM) [Naeem and Bigham 2007] and conditional random fields [Kim et al. 2010]
overcome this last limitation. The determination of which tasks are currently active,
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even if the activity has not been concluded by the user, is possible with these mod-
els. This is very helpful when there are several ways to finish an activity correctly or
when actions within an activity can be executed in any order. Another work dealing
with the loss of sensor event data is Naeem et al. [2007], where they use a size and
relevance-based hierarchy of activities of daily living.

Traditionally, probabilistic methods have been the most used models, but data mining
techniques are also found for behavior mining [Rashidi and Cook 2009; Wilson et al.
2005]. Another proposed machine-learning technique is inductive learning [Maurer
et al. 2006; Delgado et al. 2009] to mine the most frequent actions of a behavior and
their temporal relationship and to build decision trees that represent the ways in which
an activity could be performed. These approaches provide a simple representation and
a fast detection of the human behavior; however, their limitation arises when activities
with cyclic actions should be modeled. Regarding other models, in Ermes et al. [2008],
a neural network is designed to receive data from active sensors (acceleration, tem-
perature, etc.), which are used to infer if the user is rowing, biking, playing football,
walking, running, sitting, or hiking. In this case, the noise tolerance and low compu-
tation requirements to detect the activity in real time are key points of the approach.
However, due to the inherent features of neural networks, their main limitations are
difficulty in training the network with no local optima, its later adaptation to changes
in the behavior, the validation of the results, and the interpretation of the network
performance.

All previous approaches use passive sensors located in the environment or active
wearable sensors to acquire data. One recent trend in human activity analysis is to use
computer vision to avoid body markers. An approach-based taxonomy was designed
in Aggarwal and Ryoo [2011] to categorize works in this area, distinguishing among
nonhierarchical approaches, developed for the recognition of gestures and actions, and
hierarchical approaches for high-level interaction analysis. A survey about these tech-
niques may be found in Poppe [2010] and Chaaraoui et al. [2012]. The main potential
of these methods is that the information gathered by video sensors may provide much
more information than passive sensors about the state of the user, its position, and
its movements. In contrast to wearable sensors, these have the advantage to be much
more comfortable and invisible to the user. However, the cost of these systems, the
privacy loss, and the complexity of techniques to identify every action are limitations
to be solved by these approaches nowadays.

Due to the growing interest in designing smart environments that reason about
residents [Cook and Das 2005], intensive data collection is becoming more common. A
great number of applications are tested on single user settings (naive Bayes classifiers
[van Kasteren and Krose 2007], decision trees [Maurer et al. 2006], or conditional
random fields [Vail et al. 2007]). Nowadays, open challenges are how to tackle multiple
resident settings, interleaved activities, or social interaction, although we can find
preliminary approaches in the literature [Singla et al. 2010; Cook et al. 2009; Crandall
and Cook 2010; Li and Dustdar 2011]. For example, Singla et al. [2010] focuses on real-
time recognition of interrupted and interleaved activities among multiple residents in
smart environments. Manually labeled data from 40 residents were used to identify
the most likely sequence of actions corresponding to a series of sensor events. The
average accuracy was 60.60%. Parallel activities and those in cooperation have not
been considered, since a strong constraint is the assumption of knowing the person’s
ID for each sensor event. With respect to handling social interaction, in Cook et al.
[2009], an unsupervised learning algorithm is applied to detect social interaction and
monitor ADLs in the CASAS smart environment [Rashidi and Cook 2009]. Activity and
event density maps visualize sensor events for 15 days in a two-resident apartment.
They applied a supervised learning algorithm with two HMMs (resident identifier and
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activity identifier models) with an accuracy of 90%. However, since not all interactions
can be determined by physical proximity, they suggest fusing the resident identification
and the activity identifier models into a multilayer hierarchical model to improve the
activity recognition task in multiresident settings.

Considering the adaptation of behaviors to changes in user routines, HMM and
similar stochastic models have the limitation of being static; therefore, they cannot
be applied to dynamic environments. A possible solution to overcome this limitation
while maintaining the probabilistic nature of the system is Ros et al. [2013], where
human activity modeling is enhanced with the online adaptation to habit changes,
environmental variations, and temporal information. In this approach, actions are
ordered into temporal execution levels, and learning automata are in charge of changing
the temporal execution level associated to an action as the user performs changes in his
or her routine. However, the main limitation of this technique is that it is not applicable
to activities with an unknown number of cyclic execution times.

Other important issues are system scalability and tackling the presence of multiple
users. Approaches that address these problems can be found in Crandall and Cook
[2010] and Cook et al. [2009]. Likewise, it is important to consider the migration of
learned behaviors to other spaces and their adaptation to other users [Rashidi and
Cook 2010]. All these works assume probabilistic models such as HMM or Bayesian
networks: a model is in charge of the inference of the user that is performing a behav-
ior while a secondary one performs the activity recognition. In spite of these advances,
there is no general solution that integrates all the aspects desired in an SS (i.e. scal-
ability, multiuser support, adaptation to other users or routine changes, and support
for interleaved activities and social behaviors). In addition, there is no consensus on
what kind of sensors should be used and what activity models or what information
treatment methodologies should be employed in each case. This is due to the fact that
it mostly depends on the type of problem domain and task to be solved.

However, despite the current open challenges and the limitations of the existing
data-driven approaches, the biggest strength of these models is that they are able to
handle noise, uncertainty, and incomplete sensor data [Chen and Nugent 2009]. In
addition, they have proven to be accurate in different domains where semantics are
not key, and according to different problem constraints.

2.2. Knowledge-Driven Approaches for Human Behavior Recognition

Among knowledge-driven approaches to recognize human behavior, we can find event
calculus [Kowalski and Sergot 1986]—describing agents and actions with durations
and temporal relationships—and situation calculus [Levesque et al. 1998]—a logic-
based framework for defining actions and changes in the representation of the world.
Other variants [Chen et al. 2008] model temporal characterization of activities and
causality relationships between activities and events. The problems found in these
approaches to dynamic pervasive computing environments are related with interoper-
ability and adaptation to different scenarios, since context data sources are dynamic
and not known in advance. To solve this limitation, DAML+OIL and OWL 1 on-
tology languages are used to formally specify context data semantics and share it
among heterogeneous entities. An approach based exclusively on ontology reasoning
[Chen and Nugent 2009] uses ontologies to represent activities as well as each data
source that can be used to recognize them, from sensors to actors. Coarse-grained
activities are recognized by ontological reasoning based on the available data and
refined as new information becomes available. However, OWL 1 operators have not
enough expressiveness to define complex relationships, and tight integrations of OWL
with expressive rule-based languages, such as SWRL (Semantic Web Rule Language),
lead to undecidability [Riboni and Bettini 2011b]. OWL 2 tackles these problems by
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allowing rule-based activity definitions with ontological axioms and preserving decid-
ability, with the added advantage of providing unique semantics [Riboni and Bettini
2011b].

In Ejigu et al. [2007], upper- and lower-level ontologies are presented for a modeling
context. The lower subclassification indicates domain-dependant views of context (hos-
pital, home, car, campus), while generic context entities include, for example, person,
device, network, physical environment, activity, location, and service. The RDF/OWL
reification principle2 is used to represent additional context attributes to the basic
context triple. By means of the separation of static and dynamic contexts, context se-
mantics, and (ontology-based and user-defined) rules, they focus on limited resource
devices. Their query engine platform, however, relies on RDQL, an RDF Data Query
Language prior to the standard SPARQL. In general, a wide expressiveness model is
required to deal with the description of all possible features of a user and the function-
alities provided by devices and systems [Mocholı́ et al. 2010]. For instance, in Mocholı́
et al. [2010], an ontology models ambient assisted living (AAL) services for the elderly
in a domotic domain. Their particular aim is to facilitate the validation of accessibility
(i.e., disability constraints) for users. A more in-depth analysis of these methods is
provided in Sections 3 and 4.

Other models, based on fuzzy logic [Acampora and Loia 2005], have been also devel-
oped. For instance, in Hagras et al. [2004], embedded agents are connected to sensors
and effectors and use fuzzy logic-based incremental synchronous learning to define
particularized rules instead of seeking to extract generalized rules. Based on rule
bases built from previous (e.g., user or environment) occupiers, the learning time is
minimized, since the system starts from a similar rule base to later refine the rules.
Another approach in the same way uses agents to discretely control the Essex in-
telligent dormitory iDorm [Doctor et al. 2005] after an adaptive learning of human
behavior. Agents use appliance parameters as input to a fuzzy logic controller acting
over effectors. Through a fuzzy markup language (FML), a detailed structure of fuzzy
control can be defined independently of its legacy representation, allowing agents to
capture user habits and to apply an adaptive rule-based strategy.

Hybrid approaches (i.e., systems that combine data-driven and knowledge-driven ap-
proaches for activity recognition) are found in works such as evidential network-based
activity inference [Hong et al. 2009] or COSAR [Riboni and Bettini 2011a]. Ontological
reasoning with OWL 2 is used to recognize complex activities based on elementary
sensor data and simple activities recognized through data-driven methods (in this
case, statistical reasoning) [Riboni and Bettini 2011b]. COSAR is used together with
the PalSPOT ontology within the context aggregation middleware CARE [Agostini
et al. 2009]. The COSAR system retrieves information on simple human activities
using hybrid ontological/statistical reasoners. They show how the recognition rate im-
proves considerably as well as how the error rate is reduced by 45.43% with respect to
the uniquely statistical technique. COSAR avoids misclassifications between activities
characterized by similar body movements but different contexts. One disadvantage
of this approach, however, is that it uses location association to infer activities and,
therefore, this can be a problem when recognizing fine-grained activities that occur in
a unique, confined, or small-size space.

Another example of a hybrid approach combines ontology-based context reasoning
with computer vision research and integrates a scene tracking system with an onto-
logical layer to avoid limitations that make classical object tracking procedures fail in
complex scenarios [Gómez-Romero et al. 2011]. Abductive and deductive reasoning is

2A reified RDF data contains each original statement as a resource and the other additional statements
made about it.
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used to build different abstraction levels. The scene interpretation serves to generate
feedback to the quantitative tracking procedure. In this way, DL reasoning reduces
the complexity in the implementations for scene interpretation. One of the challenges,
however, is not only the definition of suitable ontologies but also the detailed creation
of abduction rules.

2.3. Evaluation and Open Challenges

Finally, to conclude the state of the art on human behavior monitoring and recognition,
we create a taxonomy to summarize the issues considered in this section. Taking
into account the approaches studied, the taxonomy in Figures 3 and 4 establishes
the assessment criteria to evaluate human activity modeling. Each criterion and its
correspondent key aspects are specified, together with a list of publications that tackle
those criteria and key aspects. These publications are examples selected from previous
sections as the most representative ones in their respective category.

This classification allows us to summarize the existing methods in the literature for
human activity inference. In addition, it enables the classification of a human activity
recognition system in a multimodal and taxonomic way, according to the methodology,
special needs to model, and application domain considered. Next, we provide an eval-
uation of the mentioned techniques. We mainly focus on data-driven approaches, since
knowledge-based ones, and more specifically ontologies, are analyzed in the following
sections.

The first criterion, learning procedure, distinguishes among data-driven, knowledge-
based, and hybrid approaches. Regarding data-driven methods, we notice that most of
the proposals are based on supervised learning. On the other hand, ontological mod-
els are the most frequent methods used in knowledge-based techniques. The main
difference between them, as stated in previous sections, is the inclusion of context
awareness tools to include semantics in knowledge-based approaches. However, data-
driven cases have provided very promising results for the inference and recognition
of human activities in the environments where they have been tested. Unsupervised
data-driven methods should be highlighted here, because their nature about not need-
ing any previous training makes them suitable for the adaptability of systems to other
environments, and they may contribute to the invisibility of the ubiquitous system
to the user and to reduce the interaction between humans and the environment.
However, in our opinion, these approaches are still in their first stages and much
more work could be done to achieve this goal. In addition, self-adaptive supervised
techniques are also under development and could provide suitable solutions for this
problem.

The second criterion, technique, looks at the specific algorithm or model used for the
recognition phase. We distinguish graphical models as those that provide a graphical
representation of a behavior. This is an important feature to achieve modularity and
ensure a consistent way to build user interfaces for data accessibility [Stengel 2003].
However, the complexity of these models for a nonexpert person makes the provision
of this system feature difficult. Moreover, the model should be accurate enough to
minimize the behavior detection failures, and nongraphical methods could provide
better performance in some applications. In Ros et al. [2013], the authors suggest the
separation of the graphical representation of the human activity from the learning
procedure with this aim, although their approach is difficult to extend to all possible
human behaviors.

Another criterion is the support to model social activities or human interaction, where
multiuser settings or shared activity features are considered. Here, the current sensor
technologies have the challenge to determine which user is performing each detected
action, to model interleaved, social, and interchangeable behaviors. The approaches
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Fig. 3. Taxonomy for human activity recognition (Part I).

provided with this aim are promising, but the underlying sensor architecture of the
environment is a key aspect for these techniques to succeed. In this way, the fourth
criterion, sensor infrastructure, classifies the approaches according to the sensors used
(i.e. video, passive, or wearable sensors). Recently, researchers have made a great
effort to develop nonintrusive and accurate video sensors to overcome the previous
limitations. However, the complexity and cost of these solutions are problematic in
both hardware and activity modeling fields.
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Fig. 4. Taxonomy for human activity recognition (Part II).

At last, scalability is a criterion that considers adaptation to changes in a routine,
the accommodation of a given behavior to other users, and the scalability of the learned
activities to other environments. In our opinion, this issue is essential to make com-
mercial applications out of ubiquitous spaces. However, the goal of the environment,
the sensor technologies required for each application, and the best inference and recog-
nition model in each case are limitations that are difficult to address. The integration
of semantics within these systems as a new abstraction layer could help overcome this
challenge [Riboni and Bettini 2011b; Gómez-Romero et al. 2011].

3. ONTOLOGIES FOR HUMAN BEHAVIOR RECOGNITION

Data-driven approaches for activity recognition suffer from ad hoc static models, data
scarcity, and scalability [Chen and Nugent 2009]. Semantic models can fulfill the needs
of context-aware personalized activity-based environments where multimodal sensor
technologies are constantly being introduced. Simple data systems can be modeled
through key-value and markup models such as CC/PP [Klyne et al. 2004], while more
complex domains require more sophisticated formalisms such as object-role-based mod-
els, spatial models of context, or ontologies (see Section 1.2). In general, expressiveness
requirements in human behavior and environment representation include the ability
to represent hierarchical structures, complex relationships among context instances,
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and complex definitions based on simpler ones, usually using restrictions that may be
spatial or temporal. Ontologies have shown, in the literature, to be one of the most
promising tools to achieve these goals.

An ontology is a “formal specification of a shared conceptualization” [Borst 1997].
One of the main advantages of using ontologies is their way to represent and share
knowledge by using common vocabulary. As providers of a format for exchanging
knowledge, they promote interoperability, knowledge reuse, and information integra-
tion with automatic validation. They separate declarative and procedural knowledge,
making the modularity of the knowledge base (KB) [Bobillo and Straccia 2011] easier.
Ontologies allow information to become not only human but also machine readable and
processable.

To be more specific, let us show an example of an ontological activity modeling
using the expressiveness of OWL 2 language. The activity WalpurgisParty as a friendly
meeting in which all the participants are wearing a white hat can be written as an OWL
2 axiom as follows:

Example 1: WalpurgisParty � FriendlyGathering � ∀hasActor.(Person � ∃isWearing.
WhiteHat.)

FriendlyGathering � Activity� ≥ 2hasActor.Friend.,

where a FriendlyGathering is an activity having at least two actors who are friends.
Not only the power of representation is key in ontologies. Reasoning capability is

another important requirement for a knowledge-based activity recognition system. It
is used to derive implicit information from explicit context data. For instance, the user’s
current activity can be inferred based on his or her current location, posture, used ob-
jects, and surrounding people. Reasoning can also automatically detect inconsistencies
in the KB [Riboni and Bettini 2011b]. Logical reasoning consists of deduction, abduc-
tion, and subsumption to extract a minimal set of covering models of interpretation
from the activity model KB based on a set of observed actions, which could explain
the observations [Chen and Nugent 2009]. For example, the simple statement “Two
people working in the same project and institution are colleagues” may be formulated
as follows, to infer which people are colleagues in the system:

Example 2: Person(?x) ∧ Person(?y) ∧ worksInProject(?x, ?p) ∧ worksInProject
(?y, ?p) ∧ worksForInstitution(?x, ?i)∧ worksForInstitution(?y, ?i) → isColleagueWith
(?x, y?).

Description logics (DL) are the most used languages to model formal ontologies. DL
reasoning supports tasks such as subsumption, satisfiability, equivalence and disjoint-
ness of classes, consistency, classification, instance retrieval, and realization [Riboni
and Bettini 2011b]. DL reasoning can support incremental progressive activity recogni-
tion and assistance as the activity unfolds. Ontology-based activity recognition provides
a number of advantages [Chen and Biswas 2009]. We can make further (fine-grained)
inferences and it is easier to draw decisions to disclose other higher-level behaviors. It
provides state-based modeling and a more robust reasoning. Since sometimes a math-
ematical description of a behavior (e.g., morning routine) cannot be trivially provided,
ontology-based reasoning allows extra pieces of data to be used for behavior disclosure.
Through the detection of low-level events reflecting the state of each individual entity,
ontology-based reasoning can assert when a task or entity is different or the same
as another one. However, to achieve this, the domain-specific knowledge needs to be
unambiguously defined.

Other benefits are the ability to discriminate importance and urgency of activities
through semantic descriptions [Chen and Biswas 2009], support for coarse-grained
and fine-grained activity assistance, and the possibility for data fusion and semantic
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reasoning [Chen and Nugent 2009], including activity learning, activity recognition,
and activity assistance. When the conceptualization of activities and their interrela-
tionships on ontological activity models encodes rich domain knowledge and heuris-
tics in a machine-understandable way, a higher degree of automation is enabled for
knowledge-based intelligent processing [Chen and Nugent 2009]. In addition, as new
context sources are constantly being introduced in ubiquitous environments, data-
driven approaches (e.g., supervised learning) require to retrain the complete model
again, before being able to adapt to changes in the modeled activity. Furthermore, to
rebuild the updated model, data collection with the new context data sources is re-
quired. However, knowledge-based methods allow previous activity recognition models
to be used; updating only the affected context rules is enough to recognize the adapted
activity.

Despite their advantages, a major limitation is the lack of support for imperfect
information, since it is not inherent to OWL 2. Previous experience when defining
complex activities has also shown some limitations (e.g., on the tree model property
[Riboni and Bettini 2011b]). Adhering to this OWL 2 property guarantees decidability
on reasoning problems but also limits the expressiveness, requiring every predicate
(in an object property) to contain a quantified variable.3 On the other hand, most rule-
based languages do not impose such forced restrictions [Riboni and Bettini 2011b].

3.1. Ontologies for Human Activity Representation

There is a broad variety of ontologies and vocabularies to model context in smart
environments. Users are the central part, as well as what happens in their surround-
ings. The following ontologies show general user-centered approaches to model human
activities:

—The CoBrA-Ont [Chen et al. 2003] ontology is an extension from SOUPA (Standard
Ontologies for Ubiquitous and Pervasive Applications). It defines people, places, and
activities. It was designed to reason within the CoBrA (Context Broker Architecture)
infrastructure and defines key ontology categories such as action, agent, time (instant
and interval), space, device, and so forth. One application scenario is the eBiquity
group meeting ontology that models video presentations, recorded discussions, and
other media material from meetings and their coordination by agents and actors.
CoBrA specially takes care of places, distinguishing between atomic and compound
places, depending on their containment property, defined as a spatial capability
of subsuming other physical locations. It also distinguishes (person and software)
agents, with their respective home pages, email addresses, and so forth. Each agent
has his or her respective role (e.g., speaker or audience role, activity context, and
location). CoBrA integrates a privacy policy language for user privacy protection
that extends the Rei policy language.4 User privacy is considered by restricting the
sharing of contextual information acquired by hidden sensors or agents.

—The CoDAMoS [Preuveneers et al. 2004] ontology defines four main core entities:
user, environment, platform, and service. The aim behind this ontology design was
to provide application adaptation, automatic code generation, code mobility, and
generation of device-specific user interfaces. Resources are especially modeled (mem-
ory, network, power, storage resources), as well as service profiles, groundings, and

3For example, “an internal meeting is a meeting in which all actors are colleagues among themselves” is
impossible to express in OWL 2 without giving up decidability. To solve this, restricting the activity definition
to a specific domain is needed, for example, “an internal meeting of company X is a meeting in which all
actors are employees of X” [Riboni and Bettini 2011b].
4Rei defines a set of ontology concepts for modeling rights, prohibitions, obligations, and dispensations in
the domain of security.
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different kinds of software (middleware, OS, rendering engine or virtual machine).
Two levels of granularity offered are tasks and activities. Users can have a mood or
be located in absolute or relative locations with different environmental variables
(Figure 2).

—The Delivery Context Ontology [Cantera-Fonseca and Lewis 2009] (W3C) provides a
formal model of environment characteristics in which different devices interact with
concrete services. This ontology includes device characteristics, the software used to
access the service, and the network (and network bearer) providing the connection,
among others. Other entities modeled in this ontology are environment, hardware
(battery, memory. . .), tactile input or text input types, cameras, aspect ratio, software
(web browsers, script language, page markup restrictions), character set, Bluetooth
profiles, location, unit conversions, and physical quantities (measures from Coulomb
to inches).

—SOUPA ontology [Chen et al. 2005] (Standard Ontology for Ubiquitous and Perva-
sive Applications) is divided into two main blocks called SOUPA-Core and SOUPA-
Extensions. They are used in the CoBrA architecture. SOUPA-Core defines general
concepts to appear in different scenarios, for example, person, agent, policy (right,
prohibition, obligation, dispensation, each of them with an associated actor and
action), actions (preconditions and effects), events, geo-spatiality, space (locations’
longitude, latitude, and altitude), time, and MoGATU BDI ontology (belief, desire
and intention, goals, plans for agents). A policy in SOUPA is a set of rules defined by
a policy creator, which is to be enforced by some policy enforcer. SOUPA-Extensions
support particular concepts in narrower domains (e.g., home, office, entertainment).
Extension ontologies demonstrate how to expand SOUPA-Core ontologies to define a
set of vocabularies that support peer-to-peer data management in pervasive comput-
ing environments. Some examples of these ontologies consider instant time and inter-
vals, spaces ((subsumed) spatial regions, geopolitical entities to which policies apply),
a region connection calculus ontology, meeting ontology with event (re)schedules and
cancellations, and user contact preferences. The EasyMeeting infrastructure facili-
tates typical user activities in meetings, such as setting up presentations, controlling
services via speech, and adjusting lighting (light action control ontology) and back-
ground music, based on the state of the meeting. They also offer the priority ontology,
which is established for a set of desires and intentions of an agent, and the ontology
to describe conditional beliefs.

—The mIO! ontology [Villalon et al. 2010] is a network ontology, developed using
the NeOn methodology, that represents user context to configure, discover, execute,
and enhance different services in which the user may be interested. The NeOn
methodology basically considers the reuse, merge, matching, and re-engineering of
ontological resources. Eleven modular ontologies define the mIO! core: user (groups,
organizations, their employment status, skills, mobility pattern, and online identi-
ties; reuses FOAF ontology as a whole), role (knowledge about profiles, preferences;
reuses ontologies such as Reco for user preferences), environment (environmental
conditions; reused from CoDAMoS), location (spatial entities and area and distance
units from SOUPA, location coordinates, buildings, countries), time (temporal units
and entities, instants, intervals, reuses W3C Time ontology), service (from business
to mIO! services, with digital signature, input and output parameters, its compo-
nents and functionalities), provider (wide categorization of simple and aggregated
service providers, from business to software services), device (taxonomy categoriza-
tion and “componency” pattern, charging mode, compatibility with standards, e.g.,
glucose meter, pulse oximeter, anemometer, etc.), interface (types, I/O modalities
and characteristics), source (aggregated or not: user, device, service, etc.), and net-
work (communication networks, network topologies, operators and administrators,
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accessibility, price, coverage, etc.; network types and modes reused from Delivery
Context ontology).

—The human activity recognition ontology [Riboni et al. 2011] from the PalSPOT
project models individual and social activities. The types of interaction are
modeled as acknowledgment, asking for opinion, comment, negative/positive
opinion, proposal, or request of information. Activity granularity is slightly
shown (basically, only one activity level); however, an extensive taxonomy is
available for personal, physical, and professional activities, traveling activi-
ties, postures, and activities using different kinds of devices or artifacts. An
interval-based representation of activities models the overlapping of these in
time. Other entities are indoor (corridor, arcade, elevator, etc.) and outdoor (prom-
enade, sidewalk, rails, etc.) communication routes. Symbolic locations (indoor,
outdoor, pedestrian or not) and time granularity are provided. The PalSPOT
ontology is used within the context aggregation middleware CARE [Agostini
et al. 2009], which maps context data to ontological classes and properties and inter-
acts with the COSAR system [Riboni and Bettini 2011a], which retrieves information
about simple human activities using hybrid ontological/statistical reasoners.

—CONON (CONtext ONtology) [Wang et al. 2004] defines general concepts in an up-
per ontology such as location (indoor, outdoor, with different environmental features
and variables, weather conditions), activity, person, or computational entity (such
as devices with a status—phone, TV, DVD player, etc.). CONON allows extensions
in a hierarchical way by adding domain-specific concepts, where different intelligent
environments are modeled (home, office, vehicle, etc.). Activities (with start and end
time) are divided into deduced (dinner, movie) and scheduled (party, anniversary)
activities. The status of indoor spaces entities (e.g., curtain, door, window) is also
represented. Some domain-specific ontologies are the home domain (e.g., sleeping,
showering, cooking, watching TV, having dinner) and office domain ontologies. Rea-
soning categories employed are DL ontology reasoning and user-defined reasoning
using first-order logic (through customized rules).

—The Pervasive Information Visualization Ontology (PiVOn) is a formal context model
[Hervás et al. 2010] composed by four independent ontologies (users, environment,
devices, and services), which describes intelligent environments. Some properties of
the main elements in the user ontology are location, identity, activity, and time. The
context is analyzed from the perspective of the 5 Ws Theory5 to design context-aware
systems. The result can be summarized in a two-dimensional taxonomy of context
elements: the first one defined by the four main categories of the context (user, en-
vironment, device, and service) and the second by the 5 Ws. Events in the ontology
have reminders, schedule, and are part of a user agenda. They involve contacts
(FOAF) from the user, who can be in user situations, and possibly accompanied by
some other user(s). Users perform tasks (which can have subtasks) that have a goal
and use some services. Tasks have types, roles, significance levels, progress, time
and space issues, and attention levels. User situations also play a role and belong to
the user availability, a state of mind, or a task. The device ontology determines the
types of devices (autonomous, dependent, sensor, actuator), the services provided by
a device, the owner of the device, status, location, its hardware and software profiles,
communication hardware profile, its use and compatibilities, and so forth. The en-
vironment ontology represents the colocation of objects, near (inFrontOf , on, under,
behind), includedIn, associated, and so forth. Spaces are modeled with the area they
are located in (building, wing, floor) and its purpose, structure, and capacity. The
visualization service ontology includes, for each service, an associated visualization

5A journalism principle regarded as basic in information gathering (What, Who, Where, When, Why).
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service (displayed by devices), which contains content. The content has a visual form
and is transformed into data. The visual form has different types of scalability pa-
rameters (filtering, pagination, complexity, latency). A prototype scenario is modeled
on an academic conference.

—The Situation Ontology [Yau and Liu 2006] is divided into situation and context lay-
ers. Situation is defined as a set of contexts in the application over a period of time
that affects future system behavior. A context is any instantaneous, detectable, and
relevant property of the environment, system, or users, such as location or available
bandwidth. The ontology considers atomic and composite situations. The latter are
composed by temporal, conjunction, disjunction, and negation situations. Composite
situations can integrate atomic situations through Boolean context operators that act
over context value domains. Similarly, a temporal situation has temporal operators
over time periods. Regarding context, the Situation Ontology is classified into device,
user, and environment context. An entity can satisfy a situation by having related
context data, with a certain context value (e.g., float temperature value), within a
context domain value (e.g., available-memory context). Context value domains are
provided with data context operations. An example of a smart conference scenario
could specify the situation ReadyForMeeting as the conjunction of two atomic sit-
uations: InConferenceRoom and LightOn, where the InConferenceRoom situation
location-context value is the same as crLocation, and the LightOn situation is repre-
sented as “the lightContext value is true.”

3.2. Ontologies for Context and Environment Representation

We described, in the previous section, a set of ontologies that focus on the user. In this
section, we describe a series of very helpful concrete domain ontologies to describe the
context and the environment where human activities occur:

—Location: PlaceTime.com6 (URIs for places and times) contains instants and intervals
in the Gregorian calendar and points in the WGS 84 datum, utilizing the RDFIG
Geo vocabulary. Other vocabularies useful in object and human location tracking are
WGS84 Geo Positioning7 or GeoNames.8

—Time ontology,9 developed by the W3C Semantic Web Best Practices and Deployment
Working Group (SWBPD), describes temporal content and properties of web pages
and web services. It also provides topological relations among instants and intervals,
durations, datetimes, and world time zones.

—User profile and preferences: People can be modeled with the FOAF ontology.10 User
Agent Profile (UAProf)11 specification relates capabilities and preference information
for wireless devices. The CC/PP (Composite Capabilities/Preference Profile) model
[Klyne et al. 2004] is a W3C initiative that suggests an infrastructure (and vocabu-
lary) to describe device capabilities and user preferences. The representation model
can guide the adaptation of the content presented to the device, considering software
terminals, hardware terminals, applications such as a browser, data types, protocols,
and specification conformance of products (documents, producers, and consumers
on the web). The hierarchical structure of components is divided into three areas:
hardware, software, and application.12 Also, a W3C Delivery Context Ontology and

6http://placetime.com.
7http://schemapedia.com/schemas/geo.
8http://www.geonames.org/.
9http://www.w3.org/TR/owl-time/.
10Friend of a Friend Vocabulary: http://xmlns.com/foaf/spec/.
11http://www.w3.org/wiki/UAProfIndex.
12UAProf and CC/PP are encoded in RDF/S. http://www.w3.org/TR/CCPP-struct-vocab/.
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a glossary of terms for device independence exists (with discontinued maintenance).
The ontologies in the semantic desktop Gnowsis project focus on use cases such as
tagging a file, email, or a website.13 The User Action Ontology in Nepomuk (Social
Semantic Desktop) describes desktop events and their Calendar Ontology (NCAL)
adapts the W3C ICALTZD ontology.14

—Online behavior, such as in social communities: The SIOC (Semantically Inter-
linked Online Communities)15 ontology describes information from online commu-
nities (e.g., message boards, wikis, weblogs, etc.) on the semantic web. A natural
extension to SIOC for online behavior is the Open University Behavior Ontology
(OUBO), which allows user behavior to be captured over time and facilitates role in-
ference in a way that a user’s role in a given context can be derived through semantic
rules [Rowe et al. 2013].

—Content extraction: The Image Annotation W3C16 ontology for semantic image an-
notation and retrieval can be used for deep multimedia analysis (e.g., image-based
context recognition). The Nepomuk Multimedia Ontology (NMM) also defines meta-
data for multimedia files, and the EXIF ontology describes digital camera images
and image management software.17

—The ASC (Aspect-Scale-Context) model [Strang et al. 2003] includes concepts such
as aspects, scales, and context information, each aggregating one or more scales.
Although useful to describe measurement units, it cannot describe more abstract
context information, like user activities. The DAML-based Context Ontology Lan-
guage (CoOL), derived from the model, can be used to enable context awareness and
contextual interoperability.

4. DOMAIN-BASED CLASSIFICATION FOR ONTOLOGY EVALUATION

Now that the main ontologies for human behavior representation have been described
in Section 3, we provide an evaluation of all relevant design aspects to select and de-
velop new tools to improve the construction of competitive human activity recognition
systems. There exist a large number of different scenarios deployed within heteroge-
neous ubiquitous spaces, as well as different technologies and approaches. Thus, the
diversity of systems makes reaching a consensus in evaluation tools quite difficult.
A lack of evaluation tools prevents the use of a well-formed hierarchical system clas-
sification, since there is no widely accepted model to be reused in different domain
applications [Villalon et al. 2010].

In Baumgartner and Retschitzegger [2006], an evaluation framework for upper on-
tologies on situation and context awareness is provided. They analyze four ontologies:
SAW (situation awareness ontology within SAWA project [Matheus et al. 2005]), sit-
uation ontology [Yau and Liu 2006], SOUPA [Chen et al. 2005], and CONON [Wang
et al. 2004]. The evaluation framework focuses on top-level concepts, SAW concepts,
and modeling characteristics of upper ontologies, such as universality or articulation.
Top-level concepts evaluated are object, attribute, relation and role, event, and situ-
ation, while SAW-specific concepts consider space and time, thematic roles, situation
types, and situations as objects. Even though none of the ontologies fulflils all or at
least most of the overall criteria, we can affirm that SAWA satisfies the modeling of
most concepts, followed by situation ontology, SOUPA, and CONON.

13http://gnowsis.opendfki.de/.
14http://oscaf.sourceforge.net/ncal.html.
15http://rdfs.org/sioc/spec.
16http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/.
17Shared-Desktop-Ontologies (SDO): http://oscaf.sourceforge.net/.
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Other examinations evaluate different ontologies focusing on licensing (open or free
to use), maturity (showing evidence of use), structure (modularity, design), granularity
of time and space, vagueness, and security [Semy et al. 2004], or availability, existence
of management tools, expressiveness, and so forth [Feliu and Cabré 2002; Baldauf et al.
2007].

The taxonomy proposed in Abdualrazak et al. [2010] to evaluate a wide variety of
pervasive computing systems presents some evaluation criteria that consists of the
concepts Architecture, Application Purpose, Autonomy, Integration, Interaction, Intelli-
gence, and Service Availability. The infrastructure defines the architecture and design.
The application purpose describes, among other features, the quality of context, its
reliability, fault tolerance, security, privacy, and effectiveness. Autonomicity considers
how a pervasive computer system is initialized, how it evolves, how it automatically
tackles failures adjusting to users, how it integrates new resources, and how it fends
off attacks. The interaction criterion, on the other hand, identifies human-to-machine
and machine-to-machine presentation capabilities. Intelligence criteria measure the
proactiveness of the AmI technique as well as the quality of context and adaptability
to changes. At last, Service Availability categorizes the pervasive service based on the
ability to be “anywhere anytime” (e.g., discovery, deployment, mobility, etc.).

4.1. Evaluation of Ontologies for Human Activity Recognition

Despite the fact that general ontology evaluation methods exist, none of them is focused
on the field of human activity recognition. In this work, we focus on specific features
related with human behavior modeling in accordance with their environment. Our
starting point is the previous study in Villalon et al. [2010], where different ontologies
are compared with respect to their support for modeling different domains. Once we
have made an in-depth analysis of the most relevant ontologies in Section 3, we have
detected essential subdomains to properly model everyday human activities at different
levels. These evaluation criteria are available in Tables I and II. When a subdomain is
modeled in any way in the ontology, X is marked. However, if that domain is highlighted
or specially treated in the ontology, this is marked with an increasing number of Xs
(XX, XXX).

When considering human activity representation, basic and obvious variables such as
user, role, location, environment, time, context sources, and proper behavior granularity
levels are needed. Indoor and outdoor spaces need to be taken into account within the
environment. The role of a user determines one facet of his or her objectives, which
means he or she can have different roles at different times of the day. This is another
reason to consider time as an essential entity; for example, each event can have a
unique timestamp associated to it. Also, the origin of the context information source
can be crucial to determine its origin or further inferences. Since activity recognition
is incremental, some kind of basic atomic actions, as well as more generic activities
and/or behaviors, should be specified. It is out of atomic events, happening in a certain
order, that a given activity can be specified and, therefore, recognized. It is also in this
way that higher-level context can be inferred out of single sensor events, and so on.

Regarding the supply of assistance, as well as the interaction with the environment,
taxonomies on services, devices, interfaces, networks, and providers must be taken into
account, not only for modeling how to provide users help or support after a human
activity has been recognized, but also for proper service grounding and context-aware
user adaptation. In this domain, the mIO! ontology is the best candidate to completely
support service, network, device, and interface supply.

Another element required to model human activity is social interaction, including
message exchange among people, but also messages from the system to the user, and
vice versa. Also, the availability of the ontology is important, as is its maintenance,
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Table I. Subdomains Addressed by Available Context Ontologies (Ontology Set I)

Delivery
Context

CC/PP CoBrA-Ont CoDAMoS [Cantera- SOUPA
Ontology/ [Klyne [Chen et al. [Preuveneers Fonseca and [Chen et al.
Subdomain et al. 2004] 2003] et al. 2004] Lewis 2009] 2005]

Device X X X X
Environment X X X
Interface XX

(I. Restrictions)
Location XXX X X X
Network X XX
Provider
Role X X
Service X X
Context Source
Time X X XX
User X X X X
Imprecision/
Uncertainty
Management
Message
Behavior
Granularity

Action X
(Task,
Activity)

Behavior Model
Social
Interaction
Implementation
Available

X X X X

Other Specific
Domains
Modeled

Capabilities,
profiles

Privacy policy,
agents,
compound
places,
Easy-
Meeting
(eBiquity
Group
Meeting
Ontology)

Platform
(Hardware,
OS),
hardware
resources
and
software
types,
service
(profile,
model, and
grounding)

Hardware and
software
(APIs,
Bluetooth),
physical
quantities,
unit
conversions

Policy (also
in
privacy),
Easy
Meeting

scalability, and so forth. The more available and visible an ontology is, the more testing
and usage will follow, encouraging also its evolution and adaptation to more concrete
and real-life domains. In our evaluation, extra features modeled in the analyzed on-
tologies are also highlighted (e.g., OS features, hardware/software platforms, and other
more specific domains).

We can observe that features such as modeling uncertainty, imprecision, and vague-
ness, typical of everyday life (and everyday language), are missing in all human context
ontologies in Tables I and II. Formalization of messages as a way of interaction, as well
as getting feedback from the user, need to be modeled, as they are samples of social
networking or common behavior. In the next section, we will discuss the studied on-
tologies’ response to each mentioned factor when modeling human behavior. Common
specializations, as well as flaws of the existent ontologies, are to be discussed.
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Table II. Subdomains Addressed by Available Context Ontologies (Ontology Set II)

mIO! PalSPOT CONON PiVOn Situation
Ontology/ [Villalon [Riboni et al. [Wang et al. [Hervás et al. Ontology [Yau
Subdomain et al. 2010] 2011] 2004] 2010] and Liu 2006]
Device X X X XX X
Environment X X X X X
Interface X
Location X X X XX X
Network X X
Provider X X (device

service
provider)

Role X X
Service X X XX
Context
Source

X X X (in device
taxonomy)

X (context value
domain)

Time X X X X XX
User X X X X X
Imprecision/
Uncertainty
Management
Message X (schedule

reminder)
Behavior
Granularity

X X X subtasks X (Boolean &
data context
operator,
atomic/
composite
situation)

Behavior
Model
Social
Interaction

X X (companion)

Implementa-
tion
Available

X X

Other
Specific
Domains
Modeled

Games
(Paddle)
as
service

Indoor/outdoor
communica-
tion routes,
vehicles,
traveling,
device/
artifact
usage,
Snapshot
ontology for
ADLs

Home & office
domain,
scheduled/
deduced
activities,
furniture
status

Spaces,
visualiza-
tion
services,
agenda,
schedule,
reminder,
task
progress

Context value
domain, time
period &
operators,
Boolean context
operator,
atomic/
composite
situation,
academic
conference

4.2. Discussion

There are very heterogeneous methods for analyzing human activity. They specialize
on a wide range of scenarios to be tracked, set of activities monitored, used methodology
and algorithms, and further specific features such as interaction with other users or
scalability of the method. These scenarios are usually surveillance, monitoring of public
facilities (train stations, subways, airports), UAV18 surveillance, patient monitoring, or
smart homes.

18Unmanned aerial vehicles.
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The sources of context information are varied and the evaluation of activity recog-
nition systems is complex because there is no standard taxonomy of human activi-
ties providing, for example, confusion matrices for each classifier’s activities and their
respective precision and recall. The way in which the methods execute the data collec-
tion and labeling processes is also relevant when it comes to the assessment of different
approaches [Brush et al. 2010]. Additionally, it is not easy to model every context cat-
egory precisely and generally enough. This is due to the reality that ontology-based
activity recognition has also some drawbacks (e.g., it requires good knowledge engi-
neering skills to model the domain). Besides, expressiveness limitations are found in
OWL DL, mainly related to the lack of support for temporal reasoning. Directly with
OWL, it is not possible to perform interval-based (i.e., overlapping) temporal reason-
ing, which is crucial for capturing complex temporal relations between activities. Even
if ontology-based reasoning has a set of added advantages (discussed in Section 3
and Chen and Biswas [2009]), ontological reasoning can be computationally expensive
[Riboni et al. 2011]. Thus, the design of an appropriate and complete ontology is cru-
cial for ontology-based human activity modeling. As an example, we can mention that
different data-driven approaches excel at different concrete aims (e.g., dealing with
missing sensor readings). However, this works well when task models are small and
manageable; otherwise, an ontology approach seems more efficient [Naeem and Bigham
2007]. This is just an example that shows that the size of the problem, specific domain,
and concrete task are decisive issues to consider when selecting an ontology.

Some kind of different levels in action, activity, or behavior granularity can be seen
only in CoDAMoS, PalSPOT, CONON, PiVOn, and Situation Ontology. While ontolo-
gies like CoBrA-Ont only consider atomic actions, CoDAMoS includes a distinction
between tasks and activities. PalSPOT also considers two levels of events with actions
(e.g., moving arm) and activities (traveling, walking, bathing). However, activity gran-
ularity in the CONON ontology occurs only at a unique activity level, differentiating
among scheduled and deduced activities. At last, PiVOn includes a recursive subtask
structure, while Situation Ontology allows a different approach of granularity based
on Boolean and data context operators as well as atomic and composite situations.
We could argue that PiVOn’s approach is perhaps one of the most flexible solutions
to accommodate an infinite number of behavior granularity levels. However, having a
hierarchical categorization of activities helps in modularizing and inferring different
abstraction levels. This is due to the fact that, as we mentioned earlier, it is important
to know the tasks happening but also the intention, behavior, or meaning associated
to these events.

Looking at the human–computer interaction side, devices, interfaces, network, and
services are represented in a large amount of ontologies. However, modeling messages
in human interaction is only seen in a reduced form, with agenda schedule reminders,
in PiVOn. There are no clear ways of modeling the communication back from the system
to the user and vice versa. That is, the kinds of interfaces that should be used in each
moment and the time to communicate with the user are aspects that should also be
context aware. Social interaction (i.e., human–human) is only modeled in PalSPOT and
consists of a varied taxonomic distinction among acknowledgment, asking and giving
opinion, comment, proposal, or request for information. For this matter, PiVOn looks
at the social interaction aspect by considering the companion of a user while executing
a given task.

If we were to highlight what each analyzed ontology stands out for, we could say
that mIO! stresses its modeling on device interaction, PalSPOT on the user activity in
the environment and with others, CONON on activity planning and services, PiVOn
on location and device-based services, and Situation Ontology on temporal context
operations. CC/PP enhances device and network capabilities, while CoBrA masters
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Fig. 5. Overall ranking for the most representative human activity ontologies for the proposed evaluation
criteria.

Table III. Ontology Pitfall Evaluation

Ontology #Triples #Classes Pitfalls
Pitfall
Rate

CoDAMoS 1291 106 143 P8 — P10 — 4 P11 — 33 P13 — P22 0.141
CoBrA 4144 88 5 P4 — 186 P8 — 22 P11 — 3 P12 — 67 P13

— P22 — 4 P24 — 5 Suggestions
0.071

PalSPOT
locont-2.0

5302 199 P4 — P5 — 251 P8 — P11 — 22 P13 — 2 P19
— P22 — 10 Suggestions

0.055

SOUPA_policy 1304 30 12 P8 — 3 P11 — 7 P13 — 1 Warning 0.025
Delivery-
ContextAll

22573 134 P4 — 37 P11 — 97 P13 — P22 — P24 — 4
Sugg

0.006

CCPPschema-
20030226

19 134 Free of bad practice detectable by OOPS!
Pitfall Scanner

0

locations. CoDAMoS brings out roles and (hardware and software) services; Delivery
Context treats (hardware and software) interfaces and networks; and SOUPA, time,
locations, and policies.

A summary of the human behavior ontology review and its respective coverage in
subdomain modeling can be seen with an estimated evaluation score in Figure 5. The
ranking is constructed in a straightforward way, assuming each evaluation criteria
in Tables I and II as equally important. The histogram, based on a naive ranking
scale, gives an idea of the number of (preselected) subdomains tackled by each context
ontology. Similarly, the score shows a degree of specialization in a given subdomain.
Eighteen categories were used for ontology evaluation (Tables I and II), and each
ontology gets extra points (one per extra X) if a given domain is specially modeled or
remarked. The overall grading is normalized between 0 and 10, according to how many
subdomains are satisfied by the ontology and in what strength.

We are aware that a ranking number does not capture the many dimensions of
an ontology, how it can be improved, or the problems it has [Vrandečić 2010]. Thus,
ontology evaluation technologies rather meet their goals by pointing out if an ontology
is bad, and in what way, instead of telling how good it is. From the structural point
of view, the ontologies could be evaluated as regards their number of pitfalls (i.e., the
number of features that could give problems in ontology-based reasoning). Table III
shows the ontologies, their size in triples, and the recommended pitfalls cases to fix,
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according to OOPS! (OntOlogy Pitfall Scanner) [Poveda-Villalón et al. 2012]. Due to
spatial constraints, we refer the reader to the pitfall catalog19 for an accurate key pitfall
description and suggested solution. Some of the most commonly identified pitfalls are
about creating unconnected ontology elements (P4), missing annotations (P8), missing
domain or range in properties (P11), using different naming criteria in the ontology
(P22), or recursive definitions (P24). We define the Pitfall Rate evaluation parameter
as:

n∑

i=1
#Pi

#T
,

where#Pi is the number of pitfall cases occurring for pitfall type Pi and #T is the
ontology size in number of triples. In this way, the pitfall rate symbolizes the average
number of pitfalls per triple. A higher pitfall rate implies the appearance of a larger
number of anomalies or errors in the ontology.

We are also aware that defining ontology quality is difficult, since it depends on
different approaches. As a result, we can also appreciate that the semantic evaluation
ranking in Figure 5 is independent of the structural evaluation in Table III. The ma-
jority of methods for ontology evaluation concentrate on structural evaluations, in a
similar manner to what validators do. This is because semantic evaluation is subjective
and application and domain dependent. Other methodologies that can help in choosing
the right ontology include ONTOMETRIC [Lozano-Tello and Gómez-Pérez 2004] and
an adaptation of the AHP method,20 to help knowledge engineers choose the appropri-
ate ontology for a given domain. Identified characteristics for the evaluation include
tools, language, content, methodology, and costs [Lozano-Tello and Gómez-Pérez 2004].
Other evaluation methods can be found in Seyed [2012] or COAT21 (Cognitive Ontol-
ogy AssessmenT), but most of the methods do not provide a versatile software interface
such as OOPS’.

Following a methodology to guide ontology development has proven to be useful
[Villalon et al. 2010], just as reusing knowledge resources and attending to good prac-
tices in the ontology development are. However, when searching for an existing ontology
for a given domain, selecting and reusing context ontologies can become difficult due
to the different purposes and requirements for which the ontologies are designed. For
instance, in our domain, a hierarchical classification (of human actions and activities)
for a granular behavior disclosure is required to incrementally infer new information
from a collection of temporally evolving and atomic context data. However, specific
requirements are not always, nor often, supported, and each application scenario will
normally impose different requirements.

Elements such as location and time are essential when managing historical context
data, in order to provide intelligent learning algorithms that can offer services after
recognizing an activity. We believe that the possibility of associating machine-learning
behavioral models to each behavior in the ontology can provide modular and proactive
capabilities without depending on specific implementations of context-aware systems,
but rather having a formulation in the ontological model itself. Some approaches close
to this paradigm are hybrid systems such as COSAR context aggregation and reasoning
middleware and its ontological/statistical hybrid reasoners. Their Derivation of Possible
Activities algorithm, executed by an offline ontological reasoning module, takes an

19OOPS! Pitfall Scanner Catalog: http://oeg-lia3.dia.fi.upm.es/oops/catalogue.jsp.
20Analytical Hierarchy Process, a measurement method based on preferential ordering.
21COAT (Cognitive Ontology AssessmenT) tool: https://code.google.com/p/ontoeval.
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empty ABox and TBox as input to output a matrix of symbolic locations and their
correspondent inferred human activities [Riboni and Bettini 2011a].

Future challenges in human activity ontologies need to further consider the modeling
of imprecise and uncertain information for more accurate representation of everyday
human tasks and human language. This is an aspect that no ontology tackles at the
moment. Another issue to deal with is modeling social interaction, both virtual (for
human-to-computer messages) and physical (for human-to-human messages). As we
mentioned, having an adequate level of action granularity (e.g., actions, tasks, activi-
ties, behaviors, etc.) is crucial for a specialized and incremental discovery. Besides, a
standardized common representation of universal entities, such as time and geograph-
ical indoor and outdoor locations, as well as environmental conditions would greatly
help in these processes. At the same time, relations such as ownership of objects, rights,
services, or privacy and service access are common issues of interest, usually modeled
in different ways. Unfortunately, this causes the reuse and mapping of several het-
erogeneous ontologies to require a long time spent in curating and matching ontology
concepts.

As a concluding remark, we can clearly point out that the integration of different
methodologies (i.e. data-driven and knowledge-based ones) could help overcome cur-
rent limitations in scenarios with several actors, providing semantics to social activi-
ties, user identification according to behavior semantics, and so forth. Current hybrid
approaches such as Gómez-Romero et al. [2011] and Riboni and Bettini [2011a] have
shown that these types of combinations can enhance the response of data-driven ap-
proaches as the environment complexity and the context awareness needs increase. In
addition, knowledge-based approaches also could take advantage of features such as
noise tolerance and uncertainty handling inherent to most used data-driven activity
recognition models.

5. CONCLUSIONS AND FUTURE WORK

Current trends show that tracking and monitoring people is becoming an integral part
of everyday life. Data-based approaches (HMM, Bayesian networks, decision trees, etc.)
appear to stand out in contrast to the newly emergent knowledge-based techniques.
The latter include, among others, information indexing and retrieval, hierarchical
knowledge sources (taxonomies, ontologies, encyclopedias, dictionaries), representa-
tion languages, distributed knowledge, and logical or KB tools. In this article, focused
on knowledge-based techniques, a set of ontologies representing human activity was
described and analyzed from different perspectives.

The contribution of this survey consists in a study on available techniques for hu-
man behavior recognition. We have proposed an evaluation taxonomy for learning
procedures, methods, models, and modeling capabilities. We also presented a set of
upper ontologies designed to represent human activity, as well as domain ontologies
that can serve the same aim in context-aware intelligent environments. A complete
set of evaluation criteria was introduced to assess the current ontologies, having as
the main focus the different subdomains required for human behavior representation,
learning, and inference. The evaluation was performed by analyzing different useful
domains and was concluded by giving an overall score to each ontology. Furthermore,
as the semantic quality of the ontology ultimately depends on the specific domain to
be modeled among other multiple aspects, we analyzed the structural problems, or
pitfalls, found in each ontology. We can confirm that the broader an ontology is, the
more situations will be possible to be modeled, in order to assist the users in their daily
activities, and the less usable the ontology will be in order to achieve a particular goal
[Villalon et al. 2010]. However, the more specific the ontology is, the fewer possibilities
exist for reuse, but the more usable the ontology is.
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As indicated earlier, the size of the problem, specific domain, and concrete task
are key elements when selecting an ontology. However, what can be appreciated from
this survey is that most of the works require a data-intensive-driven first approach to
robustly identify the most basic-level actions or activities. Based on these sets of actions
and activities, recognized first through precisely specified and robust models, further
context assumptions can be integrated into the models to better handle the uncertainty
inherent to the environment context. As in ubiquitous computing applications, it is
not possible to specify all possible cases to recognize human behaviors; the implicit
reasoning capabilities of knowledge-driven methods allow for more flexible and context-
aware models (i.e., more knowledge can be expressed without explicit specification or
knowledge redundancy [Yau and Liu 2006]). The latest research shows the benefits of
introducing hybrid approaches to take advantage of each technique’s best strengths.
Combining ontology-based context reasoning with data-driven algorithms has shown
to be a promising path to be explored. An example is combining ontological reasoning
with computer vision research [Gómez-Romero et al. 2011]. Other works following these
lines, with different (statistical, ontological) reasoning modules [Riboni and Bettini
2011a; Riboni et al. 2011], show that the usage of hybrid approaches with a preliminary
phase on data-intensive methods can ease the way later, when inferring higher-level
activities through knowledge-driven approaches. As time is not a feature inherently
treated in knowledge-driven approaches such as logic-based systems, having hybrid
methods with a first data-driven preprocessing stage appears to be the right direction
to benefit from both data- and knowledge-driven computing paradigms. As ontological
reasoning can be computationally expensive, this type of combination would achieve
the best performance and efficiency from (time-dependent) data-driven methods and
obtain the best adaptation for context awareness in each case.

When considering the real expressive power and usability of the reviewed ontologies,
it is important to note that OWL 2 language is powerful for expressing knowledge,
context information, and relations among entities. However, OWL 2 is insufficient to
model context relations and rules with the form of cyclic relations [Riboni and Bettini
2011b] (e.g., relations such as isColleagueWith in the rule in Section 3, Example 2).
Therefore, the ontologies discussed require an integration with a rule language (such
as SWRL or SPIN22) in order to express more complex and real-life context rules.
The combination of DL with rule-based systems improves the reasoning capabilities.
Rule-based languages enable definition of consistency rules, reducing ambiguity in
the context information and thus maintaining and improving the information quality
[Hervás et al. 2010]. For instance, SWRL (used, e.g., in PiVOn ontology [Hervás et al.
2010]) extends the semantics of OWL and defines antecedent-consequent rules and
built-in (math, comparisons, string, and time) operators. Another example of rule-
based inference support over OWL graphs is the Jena Semantic Web Toolkit,23 used,
for instance, in CONON ontology [Wang et al. 2004]. Another example is Flora-2 object-
oriented knowledge base language,24 the inference engine in CoBrA ontology. It can be
concluded that the final expressivity of the ontology-based application will be a result of
the combination of the elected ontology and its coupling with the chosen rule language,
as an extension of OWL axioms, to express context rules.

A future challenge to be tackled is achieving adaptive processes of ontology evolution
for adapting to natural changes in human behavior and/or environments. Adaptive
activity modeling, such as the semiautomatic model in Chen et al. [2011], evolves from
initial seed activity models through a continuous activity discovery, by using pattern

22SPIN Rules: http://spinrdf.org/.
23Jena Semantic Web toolkit: http://jena.apache.org/.
24FLORA-2: http://flora.sourceforge.net/.
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recognition and ontology-based learning and reasoning. Incremental activity recogni-
tion and the ability to recognize activities with incomplete sensor data are also key
issues to be considered in order to speed the development of assistive technologies. The
importance of embedding machine-learning techniques into the emerging research on
knowledge-driven approaches will be crucial toward activity modeling and recognition.

More attention should be put into modeling uncertainty and fuzziness within OWL 2
[Bobillo and Straccia 2011]. Support for fuzzy linguistic labels would allow a more nat-
ural language-based modeling and, consequently, would improve the model’s usability.
In addition, this new feature included in human behavior ontologies would ease the
integration with certain data-driven approaches as, for instance, statistical methods
for activity recognition. The improvement in modeling of social interaction, both virtual
(with human–computer messages) and physical (with human–human messages) could
come from the integration of semantic tools within data-driven approaches to overcome
their current limitations in this problem.

Equally important is having an adequate level of action granularity (e.g., tasks,
activities, behaviors, etc.) for a specialized and incremental discovery. A formalized
and common representation of universal entities, such as time, geographical indoor
and outdoor locations, and environmental conditions, would greatly help in these pro-
cesses. In our opinion, future works should make further efforts on a human behavior
ontology that aims at filling in the identified missing gaps in the currently available
proposals. Promising directions on behavior ontology development should consider the
representation of imprecise and uncertain information for more accurate modeling of
everyday human tasks and human language.

Another promising research area that should be further studied is change discovery,
that is, (a) changes in a frequent behavior or environment migration and (b) when
a predefined model of behavior is performed by a different user than the one it was
designed for. Works such as Okeyo et al. [2010], focused on the ontology evolution pro-
cess, could be a starting point. The change in an ontology consists here of six phases:
change capturing, change representation, semantics of change, change implementa-
tion, change propagation, and change validation. This strategy allows activity learning
and model evolution through ontology-based activity traces. It also makes it evident
that activity models are key to support reusable, adaptive, and personalized activity
recognition, as well as to improve scalability and applicability of any assistive system.

ACKNOWLEDGMENTS

We acknowledge the support of the TUCS (Turku Centre for Computer Science) graduate school, Hans
Bang Foundation, the University of Granada CEI-BioTIC initiative, the MACMMEN project from the Span-
ish Ministry of Economy and Competitiveness, and the project Development of an Intelligent System for
Behaviour Detection and Control in a Tagged World (TIN2009-14538-C02-01).

REFERENCES

Bessam Abdualrazak, Yasir Malik, and Hen-I Yang. 2010. A taxonomy driven approach towards evalu-
ating pervasive computing system. In Proceedings of the Aging Friendly Technology for Health and
Independence, and 8th International Conference on Smart Homes and Health Telematics (ICOST’10).
Springer-Verlag, Berlin, 32–42.

G. Acampora and V. Loia. 2005. Fuzzy control interoperability and scalability for adaptive domotic frame-
work. IEEE Transactions on Industrial Informatics 1, 2 (2005), 97–111.

J. K. Aggarwal and M. S. Ryoo. 2011. Human activity analysis: A review. ACM Computing Surveys. 43, 3,
Article 16 (April 2011), 43 pages. DOI:http://dx.doi.org/10.1145/1922649.1922653

Alessandra Agostini, Claudio Bettini, and Daniele Riboni. 2009. Hybrid reasoning in the CARE middleware
for context awareness. International Journal of Web Engineering and Technology 5, 1 (2009), 3–23.
DOI:http://dx.doi.org/10.1504/IJWET.2009.025011

ACM Computing Surveys, Vol. 46, No. 4, Article 43, Publication date: March 2014.

http://dx.doi.org/10.1145/1922649.1922653
http://dx.doi.org/10.1504/IJWET.2009.025011


43:28 N. D. Rodrı́guez et al.

M. Amoretti, F. Wientapper, F. Furfari, S. Lenzi, and S. Chessa. 2010. Sensor data fusion for activ-
ity monitoring in ambient assisted living environments. In Sensor Systems and Software, Stephen
Hailes, Sabrina Sicari, and George Roussos (Eds.). Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, Vol. 24. Springer, Berlin, 206–221.
DOI:http://dx.doi.org/10.1007/978-3-642-11528-8_15
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M. Ros, M. P. Cuéllar, M. Delgado, and A. Vila. 2013. Online recognition of human activities and adaptation
to habit changes by means of learning automata and fuzzy temporal windows. Information Sciences 220,
20 (2013), 86–101. DOI:http://dx.doi.org/10.1016/j.ins.2011.10.005

Matthew Rowe, Miriam Fernandez, Sofia Angeletou, and Harith Alani. 2013. Community analysis through
semantic rules and role composition derivation. Web Semantics: Science, Services and Agents on
the World Wide Web 18, 1 (2013). Retrieved from http://www.websemanticsjournal.org/index.php/ps/
article/view/293.

Nirmalya Roy, Abhishek Roy, and Sajal K. Das. 2006. Context-aware resource management in multi-
inhabitant smart homes: A Nash H-learning based approach. In Proceedings of the 4th Annual IEEE
International Conference on Pervasive Computing and Communications (PERCOM’06). IEEE Computer
Society, Washington, DC, 148–158. DOI:http://dx.doi.org/10.1109/PERCOM.2006.18

Mohsin Saleemi, Natalia Dı́az Rodrı́guez, Johan Lilius, and Ivan Porres. 2011. A framework for context-aware
applications for smart spaces. In Proceedings of the 4th Conference on Smart Spaces, (ruSMART’11),
Sergey Balandin, Yevgeni Koucheryavi, and Honglin Hu (Eds.). LNCS, St. Petersburg, 14–25. Retrieved
from http://www.springerlink.com/content/d8618k217710th32/.

Salim K. Semy, Mary K. Pulvermacher, Leo J. Obrst, and Mary K. Pulvermacher. 2004. Toward the Use of
an Upper Ontology for U.S. Government and U.S. Military Domains: An Evaluation. Technical Report.
Workshop on Information Integration on the Web (IIWeb-04), in conjunction with VLDB-2004.

Patrice Seyed. 2012. A method for evaluating ontologies—introducing the BFO-rigidity decision tree wizard.
In Proceedings of the 7th International Conference on Formal Ontology in Information Systems (FOIS’12).
191–204.

Geetika Singla, Diane J. Cook, and Maureen Schmitter-Edgecombe. 2010. Recognizing independent and
joint activities among multiple residents in smart environments. Journal of Ambient Intelligence and
Humanized Computing 1, 1 (2010), 57–63. DOI:http://dx.doi.org/10.1007/s12652-009-0007-1

ACM Computing Surveys, Vol. 46, No. 4, Article 43, Publication date: March 2014.

http://dx.doi.org/10.1016/j.imavis.2009.11.014
http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://dx.doi.org/10.1109/MIS.2008.19
http://dx.doi.org/10.1109/MIS.2008.19
http://dx.doi.org/10.1016/j.pmcj.2011.02.001
http://dx.doi.org/10.1016/j.ins.2011.10.005
http://www.websemanticsjournal.org/index.php/ps/article/view/293
http://www.websemanticsjournal.org/index.php/ps/article/view/293
http://dx.doi.org/10.1109/PERCOM.2006.18
http://www.springerlink.com/content/d8618k217710th32/
http://dx.doi.org/10.1007/s12652-009-0007-1


43:32 N. D. Rodrı́guez et al.

Markus Stengel. 2003. Introduction to Graphical Models, Hidden Markov Models and Bayesian Networks.
Tutorial, Toyohashi University of Technology, Japan.

Sakari Stenudd. 2012. A model for using machine learning in smart environments. In Proceedings of the 6th
International Conference on Grid and Pervasive Computing (GPC’11). Springer-Verlag, Berlin, 24–33.
DOI:http://dx.doi.org/10.1007/978-3-642-27916-4\_4

Ljiljana Stojanovic. 2004. Methods and Tools for Ontology Evolution. Ph.D. Dissertation. Karlsruhe Institute
of Technology. Retrieved from http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003270.

Thomas Strang and Claudia Linnhoff-Popien. 2004. A context modeling survey. In Proceedings of the Work-
shop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 - the 6th International
Conference on Ubiquitous Computing.

T. Strang, C. Linnhoff-Popien, and K. Frank. Nov 2003. CoOL: A context ontology language to enable con-
textual interoperability. In Proceedings of the 4th International Conference on Distributed Applications
and Interoperable Systems. IEEE Computer Society, 236–247.

E. Tapia, S. Intille, and K. Larson. 2004. Activity recognition in the home using simple and ubiquitous
sensors. Pervasive Computing 3001 (2004), 158–175.

Shoji Tominaga, Masamichi Shimosaka, Rui Fukui, and Tomomasa Sato. 2012. A unified framework for
modeling and predicting going-out behavior. In Pervasive Computing, Judy Kay, Paul Lukowicz, Hideyuki
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