1192

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

A Survey on Human Activity Recognition using
Wearable Sensors

Oscar D. Lara and Miguel A. Labrador

Abstract—Providing accurate and opportune information on
people’s activities and behaviors is one of the most important
tasks in pervasive computing. Innumerable applications can be
visualized, for instance, in medical, security, entertainment, and
tactical scenarios. Despite human activity recognition (HAR)
being an active field for more than a decade, there are still key
aspects that, if addressed, would constitute a significant turn in
the way people interact with mobile devices. This paper surveys
the state of the art in HAR based on wearable sensors. A general
architecture is first presented along with a description of the
main components of any HAR system. We also propose a two-
level taxonomy in accordance to the learning approach (either
supervised or semi-supervised) and the response time (either
offline or online). Then, the principal issues and challenges are
discussed, as well as the main solutions to each one of them.
Twenty eight systems are qualitatively evaluated in terms of
recognition performance, energy consumption, obtrusiveness, and
flexibility, among others. Finally, we present some open problems
and ideas that, due to their high relevance, should be addressed
in future research.

Index Terms—Human-centric sensing; machine learning; mo-
bile applications; context awareness.

I. INTRODUCTION

URING the past decade, there has been an exceptional

development of microelectronics and computer systems,
enabling sensors and mobile devices with unprecedented char-
acteristics. Their high computational power, small size, and
low cost allow people to interact with the devices as part of
their daily living. That was the genesis of Ubiquitous Sensing,
an active research area with the main purpose of extracting
knowledge from the data acquired by pervasive sensors [1].
Particularly, the recognition of human activities has become a
task of high interest within the field, especially for medical,
military, and security applications. For instance, patients with
diabetes, obesity, or heart disease are often required to follow
a well defined exercise routine as part of their treatments [2].
Therefore, recognizing activities such as walking, running,
or cycling becomes quite useful to provide feedback to the
caregiver about the patient’s behavior. Likewise, patients with
dementia and other mental pathologies could be monitored
to detect abnormal activities and thereby prevent undesirable
consequences [3]. In tactical scenarios, precise information on
the soldiers’ activities along with their locations and health
conditions, is highly beneficial for their performance and

Manuscript received 5 December 2011; revised 13 April 2012 and 22
October 2012.

The authors are with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL 33620 (e-mail:
olarayej@mail.usf.edu, labrador@cse.usf.edu).

Digital Object Identifier 10.1109/SURV.2012.110112.00192

safety. Such information is also helpful to support decision
making in both combat and training scenarios.

The first works on human activity recognition (HAR) date
back to the late *90s [4], [5]. However, there are still many
issues that motivate the development of new techniques to
improve the accuracy under more realistic conditions. Some
of these challenges are (1) the selection of the attributes to
be measured, (2) the construction of a portable, unobtrusive,
and inexpensive data acquisition system, (3) the design of
feature extraction and inference methods, (4) the collection of
data under realistic conditions, (5) the flexibility to support
new users without the need of re-training the system, and
(6) the implementation in mobile devices meeting energy and
processing requirements [6].

The recognition of human activities has been approached
in two different ways, namely using external and wearable
sensors. In the former, the devices are fixed in predetermined
points of interest, so the inference of activities entirely depends
on the voluntary interaction of the users with the sensors. In
the latter, the devices are attached to the user.

Intelligent homes [7]-[11] are a typical example of external
sensing. These systems are able to recognize fairly complex
activities (e.g., eating, taking a shower, washing dishes, etc.),
because they rely on data from a number of sensors placed in
target objects which people are supposed to interact with (e.g.,
stove, faucet, washing machine, etc.). Nonetheless, nothing
can be done if the user is out of the reach of the sensors
or they perform activities that do not require interaction with
them. Additionally, the installation and maintenance of the
sensors usually entail high costs.

Cameras have also been employed as external sensors for
HAR. In fact, the recognition of activities and gestures from
video sequences has been the focus of extensive research [12]—
[15]. This is especially suitable for security (e.g, intrusion
detection) and interactive applications. A remarkable example,
and also commercially available, is the Kinect game con-
sole [16] developed by Microsoft. It allows the user to interact
with the game by means of gestures, without any controller
device. Nevertheless, video sequences certainly have some
issues in HAR. The first one is privacy, as not everyone is
willing to be permanently monitored and recorded by cameras.
The second one is pervasiveness because video recording
devices are difficult to attach to target individuals in order to
obtain images of their entire body during daily living activities.
The monitored individuals should then stay within a perimeter
defined by the position and the capabilities of the camera(s).
The last issue would be complexity, since video processing
techniques are relatively expensive, computationally speaking.
This fact hinders a real time HAR system to be scalable.
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TABLE I
TYPES OF ACTIVITIES RECOGNIZED BY STATE-OF-THE-ART HAR
SYSTEMS.
Group Activities
Ambulation Walking, running, sitting, standing still, lying,
climbing stairs, descending stairs, riding escalator, and
riding elevator.
Transportation Riding a bus, cycling, and driving.

Phone usage Text messaging, making a call.

Daily activities | Eating, drinking, working at the PC, watching TV,
reading, brushing teeth, stretching, scrubbing, and

vacuuming.

Exercise/fitness | Rowing, lifting weights, spinning, Nordic walking,
and doing push ups.
Military Crawling, kneeling, situation assessment, and opening
a door.
Upper body Chewing, speaking, swallowing, sighing, and moving
the head.

The aforementioned limitations motivate the use of wear-
able sensors in HAR. Most of the measured attributes are
related to the user’s movement (e.g., using accelerometers
or GPS), environmental variables (e.g., temperature and hu-
midity), or physiological signals (e.g., heart rate or elec-
trocardiogram). These data are naturally indexed over the
time dimension, allowing us to define the human activity
recognition problem as follows:

Definition 1 (HAR problem (HARP)): Given a set S =
{So,...; Sk—1} of k time series, each one from a particular
measured attribute, and all defined within time interval I =
[ta, tw], the goal is to find a temporal partition (Iy, ..., I,_1) of
I, based on the data in S, and a set of labels representing the
activity performed during each interval I; (e.g., sitting, walk-
ing, etc.). This implies that time intervals I; are consecutive,

r—1
non-empty, non-overlapping, and such that |J I; = I.
=0

This definition is valid assuming that jactivities are not
simultaneous, i.e., a person does not walk and run at the same
time. A more general case with overlapping activities will be
considered in Section VI. Note that the HARP is not feasible
to be solved deterministically. The number of combinations
of attribute values and activities can be very large (or even
infinite) and finding transition points becomes hard as the
duration of each activity is generally unknown. Therefore,
machine learning tools are widely used to recognize activities.
A relaxed version of the problem is then introduced dividing
the time series into fixed length time windows.

Definition 2 (Relaxed HAR problem): Given (1) a set W =
{Wo, ..., Win—1} of m equally sized time windows, totally or
partially labeled, and such that each W; contains a set of time
series S; = {S;0,...,Si,k—1} from each of the k£ measured
attributes, and (2) a set A = {ay, ..., a,—1} of activity labels,
the goal is to find a mapping function f : S; — A that can
be evaluated for all possible values of S;, such that f(.S;) is
as similar as possible to the actual activity performed during
Wi;.

Notice this relaxation introduces some error to the model
during transition windows, since a person might perform more
than one activity within a single time window. However, the
number of transitions is expected to be much smaller than the
total number of time windows, which makes the relaxation
error insignificant for most of the applications.
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Fig. 1. General data flow for training and testing HAR systems based on
wearable sensors.

The design of any HAR system depends on the activities to
be recognized. In fact, changing the activity set A immediately
turns a given HARP into a completely different problem. From
the literature, seven groups of activities can be distinguished.
These groups and the individual activities that belong to each
group are summarized in Table I.

This paper surveys the state of the art in HAR making use of
wearable sensors. Section II presents the general components
of any HAR system. Section III introduces the main design
issues for recognizing activities and the most important solu-
tions to each one of them. Section IV describes the principal
techniques applied in HAR, covering feature extraction and
learning methods. Section V shows a qualitative evaluation of
state-of-the-art HAR systems. Finally, Section VI introduces
some of the most relevant open problems in the field providing
directions for future research.

II. GENERAL STRUCTURE OF HAR SYSTEMS

Similar to other machine learning applications, activity
recognition requires two stages, i.e., training and testing (also
called evaluation). Figure 1 illustrates the common phases
involved in these two processes. The training stage initially
requires a time series dataset of measured attributes from
individuals performing each activity. The time series are
split into time windows to apply feature extraction thereby
filtering relevant information in the raw signals. Later, learning
methods are used to generate an activity recognition model
from the dataset of extracted features. Likewise, for testing,
data are collected during a time window, which is used to
extract features. Such feature set is evaluated in the priorly
trained learning model, generating a predicted activity label.

We have also identified a generic data acquisition archi-
tecture for HAR systems, as shown in Figure 2. In the
first place, wearable sensors are attached to the person’s
body to measure attributes of interest such as motion [17],
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Fig. 2. Generic data acquisition architecture for Human Activity Recognition.

location [18], temperature [19], ECG [20], among others.
These sensors should communicate with an integration device
(ID), which can be a cellphone [21], [22], a PDA [19], a laptop
[20], [23], or a customized embedded system [24], [25]. The
main purpose of the ID is to preprocess the data received from
the sensors and, in some cases, send them to an application
server for real time monitoring, visualization, and/or analysis
[20], [26]. The communication protocol might be UDP/IP or
TCP/IP, according to the desired level of reliability.

Notice that all of these components are not necessarily
implemented in every HAR system. In [27]-[29], the data
are collected offline, so there is neither communication nor
server processing. Other systems incorporate sensors within
the ID [30]-[32], or carry out the inference process directly
on it [31], [33]. The presented architecture is rather general
and the systems surveyed in this paper are particular instances
of it.

III. DESIGN ISSUES

We have distinguished seven main issues pertaining to
human activity recognition, namely, (1) selection of attributes
and sensors, (2) obtrusiveness, (3) data collection protocol,
(4) recognition performance, (5) energy consumption, (6) pro-
cessing, and (7) flexibility. The main aspects and solutions
related to each one of them are analyzed next. In Section
V, the systems surveyed in this paper will be evaluated in
accordance to these issues.

A. Selection of attributes and sensors

Four groups of attributes are measured using wearable sen-
sors in a HAR context: environmental attributes, acceleration,
location, and physiological signals.

1) Environmental attributes: These attributes, such as tem-
perature, humidity, audio level, etc., are intended to provide
context information describing the individual’s surroundings.
If the audio level and light intensity are fairly low, for instance,
the subject may be sleeping. Various existing systems have
utilized microphones, light sensors, humidity sensors, and
thermometers, among others [19], [25]. Those sensors alone,
though, might not provide sufficient information as individuals
can perform each activity under diverse contextual condi-
tions in terms of weather, audio loudness, or illumination.

Therefore, environmental sensors are generally accompanied
by accelerometers and other sensors [3].

2) Acceleration: Triaxial accelerometers are perhaps the
most broadly used sensors to recognize ambulation activ-
ities (e.g., walking, running, lying, etc.) [27]-[29], [34]-
[36]. Accelerometers are inexpensive, require relatively low
power [37], and are embedded in most of today’s cellu-
lar phones. Several papers have reported high recognition
accuracy 92.25% [29], 95% [38], 97% [35], and up to
98% [39], under different evaluation methodologies. However,
other daily activities such as eating, working at a computer, or
brushing teeth, are confusing from the acceleration point of
view. For instance, eating might be confused with brushing
teeth due to arm motion [25]. The impact of the sensor
specifications have also been analyzed. In fact, Maurer et
al. [25] studied the behavior of the recognition accuracy as
a function of the accelerometer sampling rate (which lies
between 10 Hz [3] and 100 Hz [24]). Interestingly, they found
that no significant gain in accuracy is achived above 20 Hz
for ambulation activities. In addition, the amplitude of the
accelerometers varies from +2g [25], up to +6g [39] yet +2g
was shown to be sufficient to recognize ambulation activities
[25]. The placement of the accelerometer is another important
point of discussion: He et al. [29] found that the best place to
wear the accelerometer is inside the trousers pocket. Instead,
other studies suggest that the accelerometer should be placed
in a bag carried by the user [25], on the belt [40], or on
the dominant wrist [23]. In the end, the optimal position
where to place the accelerometer depends on the application
and the type of activities to be recognized. For instance, an
accelerometer on the wrist may not be appropriate to recognize
ambulation activities, since accidental arm movements could
generate incorrect predictions. On the other hand, in order
to recognize an activity such as working at the computer,
an accelerometer on the chest would not provide sufficient
information.

3) Location: The Global Positioning System (GPS) en-
ables all sort of location based services. Current cellular
phones are equipped with GPS devices, making this sensor
very convenient for context-aware applications, including the
recognition of the user’s transportation mode [37]. The place
where the user is can also be helpful to infer their activity
using ontological reasoning [31]. As an example, if a person
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is at a park, they are probably not brushing their teeth but
might be running or walking. And, information about places
can be easily obtained by means of the Google Places Web
Service [41], among other tools. However, GPS devices do
not work well indoors and they are relatively expensive in
terms of energy consumption, especially in real-time tracking
applications [37]. For those reasons, this sensor is usually
employed along with accelerometers [31]. Finally, location
data has privacy issues because users are not always willing
to be tracked. Encryption, obfuscation, and anonymization are
some of the techniques available to ensure privacy in location
data [42]-[44].

4) Physiological signals: Vital signs data (e.g., heart rate,
respiration rate, skin temperature, skin conductivity, ECG,
etc.) have also been considered in a few works [3]. Tapia et
al. [23] proposed an activity recognition system that combines
data from five triaxial accelerometers and a heart rate monitor.
However, they concluded that the heart rate is not useful in a
HAR context because after performing physically demanding
activities (e.g., running) the heart rate remains at a high level
for a while, even if the individual is lying or sitting. In a
previous study [26] we showed that, by means of structural
feature extraction, vital signs can be exploited to improve
recognition accuracy. Now, in order to measure physiological
signals, additional sensors would be required, thereby increas-
ing the system cost and introducing obtrusiveness [19]. Also,
these sensors generally use wireless communication which
entails higher energy expenditures.

B. Obtrusiveness

To be successful in practice, HAR systems should not
require the user to wear many sensors nor interact too often
with the application. Furthermore, the more sources of data
available, the richer the information that can be extracted from
the measured attributes. There are systems which require the
user to wear four or more accelerometers [23], [27], [45],
or carry a heavy rucksack with recording devices [19]. These
configurations may be uncomfortable, invasive, expensive, and
hence not suitable for activity recognition. Other systems are
able to work with rather unobtrusive hardware. For instance, a
sensing platform that can be worn as a sport watch is presented
in [25]; Centinela [26] only requires a strap that is placed on
the chest and a cellular phone. Finally, the systems introduced
in [33], [37] recognize activities with a cellular phone only.

Minimizing the number of sensors required to recognize
activities is beneficial not only for comfort, but also to
reduce complexity and energy consumption as less amount
of data would be processed. Maurer et al. [46] performed an
interesting study with accelerometers and light sensors. They
explored different subsets of features and sensors, as well as
different sensor placements. They concluded that all sensors
should be used together in order to achieve the maximum
accuracy level. Bao et al. [27] carried out another study in
the same matter, placing accelerometers on the individual’s
hip, wrist, arm, ankle, thigh, and combinations of them. Their
conclusions suggest that only two accelerometers (i.e., either
wrist and thigh or wrist and hip) are the sufficient to recognize
ambulation and other daily activities.
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C. Data collection protocol

The procedure followed by the individuals while collecting
data is critical in any HAR. In 1999, Foerster et al. [5]
demonstrated 95.6% of accuracy for ambulation activities
in a controlled data collection experiment, but in a natural
environment (i.e., outside of the laboratory), the accuracy
dropped to 66%! The number of individuals and their physical
characteristics are also crucial factors in any HAR study.
A comprehensive study should consider a large number of
individuals with diverse characteristics in terms of gender, age,
height, weight, and health conditions. This is with the purpose
of ensuring flexibility to support new users without the need
of collecting additional training data.

D. Recognition performance

The performance of a HAR system depends on several
aspects, such as (1) the activity set, (2) the quality of the
training data, (3) the feature extraction method, and (4) the
learning algorithm. In the first place, each set of activities
brings a totally different pattern recognition problem. For ex-
ample, discriminating among walking, running, and standing
still [47], turns out to be much easier than incorporating more
complex activities such as watching TV, eating, ascending,
and descending [27]. Secondly, there should be a sufficient
amount of training data, which should also be similar to the
expected testing data. Finally, a comparative evaluation of
several learning methods is desirable as each dataset exhibits
distinct characteristics that can be either beneficial or detri-
mental for a particular method. Such interrelationship among
datasets and learning methods can be very hard to analyze
theoretically, which accentuates the need of an experimental
study. In order to quantitatively understand the recognition
performance, some standard metrics are used, e.g., accuracy,
recall, precision, F-measure, Kappa statistic, and ROC curves.
These metrics will be discussed in Section IV.

E. Energy consumption

Context-aware applications rely on mobile devices, such
as sensors and cellular phones, which are generally energy
constrained. In most scenarios, extending the battery life
is a desirable feature, especially for medical and military
applications that are compelled to deliver critical information.
Surprisingly, most HAR schemes do not formally analyze
energy expenditures, which are mainly due to processing,
communication, and visualization tasks. Communication is
often the most expensive operation, so the designer should
minimize the amount of transmitted data. In most cases, short
range wireless networks (e.g., Bluetooth or Wi-Fi) should
be preferred over long range networks (e.g., cellular net-
work or WiMAX) as the former require lower power. Some
typical energy saving mechanisms are data aggregation and
compression yet they involve additional computations that
may affect the application performance. Another approach
is to carry out feature extraction and classification in the
integration device, so that raw signals would not have to
be continuously sent to the server [31], [48]. This will be
discussed in Section III-F. Finally, since all sensors may not
be necessary simultaneously, turning off some of them or
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reducing their sampling/transmission rate is very convenient
to save energy. For example, if the user’s activity is sitting or
standing still, the GPS sensor may be turned off [37].

F. Processing

Another important point of discussion is where the recog-
nition task should be done, whether in the server or in the
integration device. On one hand, a server is expected to have
huge processing, storage, and energy capabilities, allowing
to incorporate more complex methods and models. On the
other hand, a HAR system running on a mobile device should
substantially reduce energy expenditures, as raw data would
not have to be continuously sent to a server for processing.
The system would also become more robust and responsive
because it would not depend on unreliable wireless commu-
nication links, which may be unavailable or error prone; this
is particularly important for medical or military applications
that require real-time decision making. Finally, a mobile HAR
system would be more scalable since the server load would
be alleviated by the locally performed feature extraction and
classification computations. However, implementing activity
recognition in mobile devices becomes challenging because
they are still constrained in terms of processing, storage, and
energy. Hence, feature extraction and learning methods should
be carefully chosen to guarantee a reasonable response time
and battery life. For instance, classification algorithms such
as Instance Based Learning [32] and Bagging [49] are very
expensive in their evaluation phase, which makes them not
convenient for mobile HAR.

G. Flexibility

There is an open debate on the design of any activity
recognition model. Some authors claim that, as people perform
activities in a different manner (due to age, gender, weight,
and so on), a specific recognition model should be built for
each individual [30]. This implies that the system should be re-
trained for each new user. Other studies [26] rather emphasize
the need of a monolithic recognition model, flexible enough to
work with different users. Consequently, two types of analyses
have been proposed to evaluate activity recognition systems:
subject-dependent and subject-independent evaluations [23].
In the first one, a classifier is trained and tested for each
individual with his/her own data and the average accuracy
for all subjects is computed. In the second one, only one
classifier is built for all individuals using cross validation
or leave-one-individual-out analysis. It is worth to highlight
that, in some cases, it would not be convenient to train the
system for each new user, especially when (1) there are
too many activities; (2) some activities are not desirable for
the subject to carry out (e.g., falling downstairs); or (3) the
subject would not cooperate with the data collection process
(e.g., patients with dementia and other mental pathologies).
On the other hand, an elderly lady would surely walk quite
differently than a ten-years-old boy, thereby challenging a
single model to recognize activities regardless of the subject’s
characteristics. A solution to the dichotomy of the monolithic
vs. particular recognition model can be addressed by creating
groups of users with similar characteristics. Additional design
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considerations related to this matter will be discussed in
Section VI.

IV. ACTIVITY RECOGNITION METHODS

In Section II, we have seen that, to enable the recognition of
human activities, raw data have to first pass through the pro-
cess of feature extraction. Then, the recognition model is built
from the set of feature instances by means of machine learning
techniques. Once the model is trained, unseen instances (i.e.,
time windows) can be evaluated in the recognition model,
yielding a prediction on the performed activity. Next, the most
noticeable approaches in feature extraction and learning will
be covered.

A. Feature extraction

Human activities are performed during relatively long pe-
riods of time (in the order of seconds or minutes) compared
to the sensors’ sampling rate (which can be up to 250 Hz).
Besides, a single sample on a specific time instant (e.g., the
Y-axis acceleration is 2.5g or the heart rate is 130 bpm) does
not provide sufficient information to describe the performed
activity. Thus, activities need to be recognized in a time
window basis rather than in a sample basis. Now, the question
is: how do we compare two given time windows? It would be
nearly impossible for the signals to be exactly identical, even if
they come from the same subject performing the same activity.
This is the main motivation for applying feature extraction
(FE) methodologies to each time window: filtering relevant
information and obtaining quantitative measures that allow
signals to be compared.

In general, two approaches have been proposed to extract
features from time series data: statistical and structural [50].
Statistical methods, such as the Fourier transform and the
Wavelet transform, use quantitative characteristics of the data
to extract features, whereas structural approaches take into
account the interrelationship among data. The criterion to
choose either of these methods is certainly subject to the nature
of the given signal.

Figure 3 displays the process to transform the raw time
series dataset (which can be from acceleration, environmental
variables, or vital signs) into a set of feature vectors. Each
instance in the processed dataset corresponds to the feature
vector extracted from all the signals within a time window.
Most of the approaches surveyed in this paper adhere to this
mapping.

Next, we will cover the most common FE techniques for
each of the measured attributes, i.e., acceleration, environmen-
tal signals, and vital signs. GPS data are not considered in this
section since they are mostly used to compute the speed [19],
[37] or include some knowledge about the place where the
activity is being performed [31].

1) Acceleration: Acceleration signals (see Figure 4) are
highly fluctuating and oscillatory, which makes it difficult
to recognize the underlying patterns using their raw values.
Existing HAR systems based on accelerometer data employ
statistical feature extraction and, in most of the cases, either
time- or frequency-domain features. Discrete Cosine Trans-
form (DCT) and Principal Component Analysis (PCA) have
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A time window in the raw training dataset
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Fig. 3. An example of the mapping from the raw dataset to the feature dataset.
w is the window consecutive; s; is the sampling rate for the group of sensors
i, where sensors in the same group have the same sampling rate; f; is each
of the extracted features. Each instance in the processed dataset corresponds
to the set of features computed from an entire window in the raw dataset.

also been applied with promising results [35], as well as
autoregressive model coefficients [29]. All these techniques
are conceived to handle the high variability inherent to ac-
celeration signals. Table II summarizes the feature extraction
methods for acceleration signals. The definition of some of the
most widely used features [36] are listed below for a given
signal Y = {y1, ..., yn }.
o Central tendency measures such as the arithmetic mean
y and the root mean square (RMS) (Equations 1 and 2).
« Dispersion metrics such as the standard deviation o, the
variance 05, and the mean absolute deviation (MAD)
(Equations 3, 4, and 5).
o Domain transform measures such as the energy, where
F;; is the i-th component of the Fourier Transform of Y
(Equation 6).

1)

)

3)

“)
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TABLE II
SUMMARY OF FEATURE EXTRACTION METHODS FOR ACCELERATION
SIGNALS.
Group Methods
Time Mean, standard deviation, variance, interquartile range
domain (IQR), mean absolute deviation (MAD), correlation between
axes, entropy, and kurtosis [19], [23]-[25], [27], [36], [45].
Frequency | Fourier Transform (FT) [27], [36] and Discrete Cosine
domain Transform (DCT) [51].
Others Principal Component Analysis (PCA) [35], [51], Linear
Discriminant Analysis (LDA) [36], Autoregresive Model
(AR), and HAAR filters [28].
TABLE III
SUMMARY OF FEATURE EXTRACTION METHODS FOR ENVIRONMENTAL
VARIABLES.
Attribute Features
Altitude Time-domain [19]
Audio Speech recognizer [53]
Barometric pressure | Time-doimain and frequency-domain [52]
Humidity Time-domain [19]
Light Time-domain [46] and frequency-domain [19]
Temperature Time-domain [19]

1 n
MAD(Y) = | ——=> |y ©)
i=1
Z?:l Fi2
Energy(Y) = = 6)

2) Environmental variables: Environmental attributes,
along with acceleration signals, have been used to enrich
context awareness. For instance, the values from air pressure
and light intensity are helpful to determine whether the in-
dividual is outdoors or indoors [52]. Also, audio signals are
useful to conclude that the user is having a conversation rather
than listening to music [19]. Table III summarizes the feature
extraction methods for environmental attributes.

3) Vital signs: The very first works that explored vital sign
data with the aim of recognizing human activities applied
statistical feature extraction. In [23], the authors computed
the number of heart beats above the resting heart rate value
as the only feature. Instead, Parkka et al. [19] calculated time
domain features for heart rate, respiration effort, SaO5, ECG,
and skin temperature. Nevertheless, the signal’s shape is not
described by these features. Consider the situation shown in
Figure 5. A heart rate signal S(¢) for an individual that was
walking is shown with a bold line and the same signal in
reverse temporal order, S’(t), is displayed with a thin line.
Notice that most time domain and frequency domain features
(e.g., mean, variance, and energy) are identical for both signals
while they may represent different activities. This is the main
motivation for applying structural feature extraction.

In a time series context, structure detectors are intended
to describe the morphological interrelationship among data.
Given a time series Y'(¢), a structure detector implements
a function f(Y(t)) = Y(¢) such that Y(t) represents the
structure of Y'(¢) as an approximation. In order to measure
the goodness of fit of Y'(#) to Y (t), the sum of squared errors
(SSE) is calculated as follows:
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SSE=Y" (Y(t) - Y(t))z )

The extracted features are the parameters of Y(t) which, of
course, depend on the nature of the function. Table IV contains
some typical functions implemented by structure detectors.
The authors found that polynomials are the functions that best
fit physiological signals such as heart rate, respiration rate,
breath amplitude, and skin temperature [26]. The degree of
the polynomial should be chosen based upon the number of
samples to avoid overfitting due to the Runge’s phenomenon
[54].

4) Selection of the window length: In accordance to Def-
inition 2, dividing the measured time series in time windows
is a convenient solution to relax the HAR problem. A key
factor is, therefore, the selection of the window length because
the computational complexity of any FE method depends
on the number of samples. Having rather short windows
may enhance the FE performance, but would entail higher
overhead due to the recognition algorithm being triggered
more frequently. Besides, short time windows may not provide
sufficient information to fully describe the performed activity.
Conversely, if the windows are too long, there might be more
than one activity within a single time window [37]. Different
window lengths have been used in the literature: 0.08s [30],
Is [37], 1.5s [55], 3s [56], 5s [51], 7s [57], 12s [26], or up
to 30s [23]. Of course, this decision is conditioned to the
activities to be recognized and the measured attributes. The
heart rate signal, for instance, required 30s time windows
in [23]. Instead, for activities such as swallowing, 1.5s time
windows were employed.
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TABLE IV
COMMON FUNCTIONS IMPLEMENTED BY STRUCTURE DETECTORS.
Function Equation Parameters
Linear F(t)y=mt+b {m, b}
Polynomial | F(t) = ag + a1t + ... + an—1t"" ' | {ao,...,an—-1}
Exponential F(t) = alb|t + ¢ {a,b,c}
Sinusoidal F(t)=ax*xsin(t+b) +c {a,b,c}

Time windows can also be either overlapping [23], [26],
[27], [58] or disjoint [37], [55], [56], [51]. Overlapping time
windows are intended to handle transitions more accurately,
although using small non-overlapping time windows, misclas-
sifications due to transitions are negligible.

5) Feature selection: Some features in the processed
dataset might contain redundant or irrelevant information that
can negatively affect the recognition accuracy. Then, imple-
menting techniques for selecting the most appropriate features
is a suggested practice to reduce computations and simplify
the learning models. The Bayesian Information Criterion
(BIC) and the Minimum Description Length (MDL) [49] have
been widely used for general machine learning problems. In
HAR, a common method is the Minimum Redundancy and
Maximum Relevance (MRMR) [59], utilized in [20]. In that
work, the minimum mutual information between features is
used as criteria for minimum redundancy and the maximal
mutual information between the classes and features is used
as criteria for maximum relevance. In contrast, Maurer et
al. [46] applied a Correlation-based Feature Selection (CFS)
approach [60], taking advantage of the fact that this method
is built in WEKA [61]. CFS works under the assumption that
features should be highly correlated with the given class but
uncorrelated with each other. Iterative approaches have also
been evaluated to select features. Since the number of feature
subsets is O(2™), for n features, evaluating all possible subsets
is not computationally feasible. Hence, metaheuristic methods
such as multiobjective evolutionary algorithms have been
employed to explore the space of possible feature subsets [62].

B. Learning

In recent years, the prominent development of sensing
devices (e.g., accelerometers, cameras, GPS, etc.) has fa-
cilitated the process of collecting attributes related to the
individuals and their surroundings. However, most applications
require much more than simply gathering measurements from
variables of interest. In fact, additional challenges for enabling
context awareness involve knowledge discovery since the raw
data (e.g., acceleration signals or electrocardiogram) provided
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TABLE V
CLASSIFICATION ALGORITHMS USED BY STATE-OF-THE-ART HUMAN
ACTIVITY RECOGNITION SYSTEMS.

Type Classifiers References
Decision tree C4.5 and ID3 [20], [25], [27], [45]
Bayesian Naive Bayes and [20], [23], [27], [48]

Bayesian Networks

Instance Based k-nearest neighbors [20], [25]

Neural Networks Multilayer Perceptron [66]

Domain transform Support Vector

Machines

[29], [34], [35]

Fuzzy Logic Fuzzy Basis Function [24], [36], [67]

and Fuzzy Inference

System
Regression methods | MLR, ALR [26], [31]
Markov models Hidden Markov Models [68], [69]
and Conditional
Random Fields
Classifier ensembles | Boosting and Bagging [26], [56]

by the sensors are often useless. For this purpose, HAR
systems make use of machine learning tools, which are helpful
to build patterns to describe, analyze, and predict data.

In a machine learning context, patterns are to be discovered
from a set of given examples or observations denominated
instances. Such input set is called training set. In our specific
case, each instance is a feature vector extracted from signals
within a time window. The examples in the training set may
or may not be labeled, i.e., associated to a known class (e.g.,
walking, running, etc.). In some cases, labeling data is not
feasible because it may require an expert to manually examine
the examples and assign a label based upon their experience.
This process is usually tedious, expensive, and time consuming
in many data mining applications [63]-[65].

There exist two learning approaches, namely supervised and
unsupervised learning, which deal with labeled and unlabeled
data, respectively. Since a human activity recognition system
should return a label such as walking, sitting, running, etc.,
most HAR systems work in a supervised fashion. Indeed, it
might be very hard to discriminate activities in a completely
unsupervised context. Some other systems work in a semi-
supervised fashion allowing part of the data to be unlabeled.

1) Supervised learning: Labeling sensed data from individ-
vals performing different activities is a relatively easy task.
Some systems [23], [46] store sensor data in a non-volatile
medium while a person from the research team supervises the
collection process and manually registers activity labels and
time stamps. Other systems feature a mobile application that
allows the user to select the activity to be performed from a
list [26]. In this way, each sample is matched to an activity
label, and then stored in the server.

Supervised learning (referred to as classification for
discrete-class problems) has been a very productive field,
bringing about a great number of algorithms. Table V sum-
marizes the most important classifiers in Human Activity
Recognition and their description is included below.

o Decision trees build a hierarchical model in which at-
tributes are mapped to nodes and edges represent the
possible attribute values. Each branch from the root to
a leaf node is a classification rule. C4.5 is perhaps the
most widely used decision tree classifier and is based on
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the concept of information gain to select the attributes
that should be placed in the top nodes [70]. Decision
trees can be evaluated in O(logn) for n attributes, and
usually generate models that are easy to understand by
humans.

e Bayesian methods calculate posterior probabilities for
each class using estimated conditional probabilities from
the training set. The Bayesian Network (BN) [71]
classifier and Naive Bayes (NB) [72] (which is a specific
case of BN) are the principal exponents of this family
of classifiers. A key issue in Bayesian Networks is
the topology construction, as it is necessary to make
assumptions on the independence among features. For
instance, the NB classifier assumes that all features are
conditionally independent given a class value, yet such
assumption does not hold in many cases. As a matter of
fact, acceleration signals are highly correlated, as well as
physiological signals such as heart rate, respiration rate,
and ECG amplitude.

o Instance based learning (IBL) [49] methods classify an
instance based upon the most similar instance(s) in the
training set. For that purpose, they define a distance
function to measure similarity between each pair of
instances. This makes IBL classifiers quite expensive
in their evaluation phase as each new instance to be
classified needs to be compared to the entire training
set. Such high cost in terms of computation and storage,
makes IBL models not convenient to be implemented in
a mobile device.

o Support Vector Machines (SVM) [73] and Artificial Neu-
ral Networks (ANN) [74] have also been broadly used
in HAR although they do not provide a set of rules
understandable by humans. Instead, knowledge is hidden
within the model, which may hinder the analysis and
incorporation of additional reasoning. SVMs rely on
kernel functions that project all instances to a higher di-
mensional space with the aim of finding a linear decision
boundary (i.e., a hyperplane) to partition the data. Neural
networks replicate the behavior of biological neurons
in the human brain, propagating activation signals and
encoding knowledge in the network links. Besides, ANNs
have been shown to be universal function approximators.
The high computational cost and the need for large
amount of training data are two common drawbacks of
neural networks.

o Ensembles of classifiers combine the output of several
classifiers to improve classification accuracy. Some ex-
amples are bagging, boosting, and stacking. Classifier
ensembles are clearly more expensive, computationally
speaking, as they require several models to be trained
and evaluated.

2) Semi-supervised learning: Relatively few approaches
have implemented activity recognition in a semi-supervised
fashion, thus, having part of the data without labels [63],
[64], [75]-[77]. In practice, annotating data might be difficult
in some scenarios, particularly when the granularity of the
activities is very high or the user is not willing to cooperate
with the collection process. Since semi-supervised learning is a
minority in HAR, there are no standard algorithms or methods,
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but each system implements its own approach. Section V-C
provides more details on the state-of-the-art semi-supervised
activity recognition approaches.

3) Evaluation metrics: In general, the selection of the
classification algorithm for HAR has been merely supported
by empirical evidence. The vast majority of the studies use
cross validation with statistical tests to compare classifiers’
performance for a particular dataset. The classification results
for a particular method can be organized in a confusion matrix
M, «n, for a classification problem with n classes. This is a
matrix such that the element M;; is the number of instances
from class ¢ that were actually classified as class j. The
following values can be obtained from the confusion matrix
in a binary classification problem:

o True Positives (TP): The number of positive instances that
were classified as positive.

o True Negatives (TN): The number of negative instances
that were classified as negative.

o False Positives (FP): The number of negative instances
that were classified as positive.

o False Negatives (FN): The number of positive instances
that were classified as negative.

The accuracy is the most standard metric to summarize
the overall classification performance for all classes and it is
defined as follows:

N B TP+ TN )
Y = TP Y TN+ FP+ FN

The precision, often referred to as positive predictive value,
is the ratio of correctly classified positive instances to the total
number of instances classified as positive:

TP
Precision = ——— 9
TP+ FP ©)

The recall, also called true positive rate, is the ratio of
correctly classified positive instances to the total number of
positive instances:

TP
TP+ FN

The F-measure combines precision and recall in a single
value:

Recall = (10)

Precision - Recall

F — measure =2 -

(1)

Precision + Recall

Although defined for binary classification, these metrics can
be generalized for a problem with n classes. In such case, an
instance could be positive or negative according to a particular
class, e.g., positives might be all instances of running while
negatives would be all instances other than running.

4) Machine learning tools: The Waikato Environment for
Knowledge Analysis (WEKA) [61] is certainly the best known
tool in the machine learning research community. It contains
implementations of a number of learning algorithms and it
allows to easily evaluate them for a particular dataset using
cross validation and random split, among others. WEKA
also offers a Java API that facilitates the incorporation of
new learning algorithms and evaluation methodologies on
top of the pre-existing framework. One of the limitations of
current Machine Learning APIs such as WEKA [61] and the
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Java Data Mining (JDM) platform [78] is that they are not
fully functional in current mobile platforms. In that direction,
the authors proposed MECLA [48], a mobile platform for
the evaluation of classification algorithms under the Android
platform.

V. EVALUATION OF HAR SYSTEMS

In order to evaluate the state-of-the-art HAR systems, it is
required to first define a taxonomy that allows to compare and
analyze them within groups that share common characteristics.
To the best of our knowledge, no comprehensive taxonomy
has been proposed in the literature to encompass all sorts
of activity recognition systems. In such direction, this paper
presents a new global taxonomy for HAR and a new two-level
specific taxonomy for HAR with wearable sensors (see Figure
6). As it was mentioned in Section I, the nature of the sensors
(i.e., either wearable or external) marks the first criterion to
classify HAR systems. Hybrid approaches also appear as an
emerging class of systems which intend to exploit the best of
both worlds [79] by combining external and wearable sensors
as sources of data for recognizing activities.

In this survey, we have categorized HAR systems that rely
on wearable sensors in two levels. The first one has to do
with the learning approach, which can be either supervised or
semi-supervised. In the second level, according to the response
time, supervised approaches can work either online or offline.
The former provide immediate feedback on the performed
activities. The latter either need more time to recognize
activities due to high computational demands, or are intended
for applications that do not require real-time feedback. This
taxonomy has been adopted as the systems within each class
have very different purposes and associated challenges and
should be evaluated separately. For instance, a very accurate
fully supervised approach might not work well in a semi-
supervised scenario, whereas an effective offline system may
not be able to run online due to processing constraints.
Furthermore, we found a significant number of systems that
fall in each group, which also favours the comparison and
analysis.

Other criteria such as the type of sensors, the feature
extraction approach, and the learning algorithm are not useful
to build a taxonomy of HAR. Instead, they are design issues
that should be addressed by the researcher. Finally, although
the set of recognized activities clearly generates different types
of HAR systems, incorporating it in the taxonomy would lead
to an excessive granularity as most systems define a particular
set of activities.
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The qualitative evaluation encompasses the following as-
pects:

o Recognized activities (Table I)
o Type of sensors and the measured attributes (Section
III-A)
« Integration device
¢ Level of obtrusiveness, which could be low, medium, or
high.
o Type of data collection protocol, which could be either a
controlled or a naturalistic experiment.
o Level of energy consumption, which could be low,
medium, or high.
o Classifier flexibility level, which could be either user-
specific or monolithic.
o Feature extraction method(s)
o Learning algorithm(s)
e Overall accuracy for all activities
To the best of our knowledge, current semi-supervised
systems have been implemented and evaluated offline. Thus,
only three categories of HAR systems are considered, namely,
online (supervised), supervised offline, and semi-supervised
(offline) HAR systems. Albeit a large number of systems are
present in the literature, we have selected twenty eight of
them based on their relevance in terms of the aforementioned
aspects.

A. Online HAR systems

Applications of online activity recognition systems can
be easily visualized. In healthcare, continuously monitoring
patients with physical or mental pathologies becomes crucial
for their protection, safety, and recovery. Likewise, interac-
tive games or simulators may enhance user’s experience by
considering activities and gestures. Table VII summarizes the
online state-of-the-art activity recognition approaches. The
abbreviations and acronyms are defined in Table VI. The most
important works on online HAR are described next.

1) eWatch: Maurer et al. [25] introduced eWatch as an
online activity recognition system which embeds sensors and
a microcontroller within a device that can be worn as a sport
watch. Four sensors are included, namely an accelerometer,
a light sensor, a thermometer, and a microphone. These are
passive sensors and, as they are embedded in the device,
no wireless communication is needed; thus, eWatch is very
energy efficient. Using a C4.5 decision tree and time-domain
feature extraction, the overall accuracy was up to 92.5% for
six ambulation activities, although they achieved less than 70%
for activities such as descending and ascending. The execution
time for feature extraction and classification is less than
0.3 ms, which makes the system very responsive. However, in
eWatch, data were collected under controlled conditions, i.e.,
a lead experimenter supervised and gave specific guidelines
to the subjects on how to perform the activities [25]. In
Section III-C, we reviewed the disadvantages of this approach.

2) Vigilante: The authors proposed Vigilante [48], a mobile
application for real-time human activity recognition under
the Android platform. The Zephyr’s BioHarness BT [80]
chest sensor strap was used to measure acceleration and
physiological signals such as heart rate, respiration rate, breath
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TABLE VI
LIST OF ABBREVIATIONS AND ACRONYMS.

3DD 3D Deviation of the acceleration signals
ACC Accelerometers

AMB Ambulation activities (see Table I)
ANN Artificial Neural Network

ALR Additive Logistic Regression classifier
AR Auto-Regressive model coefficients

AV Angular velocity

BN Bayesian Network classifier
CART Classification And Regression Tree

DA Daily activities (see Table I)

DCT Discrete Cosine Transform

DT Decision Tree-based classifier
DTW Dynamic Time Warping

ENV Environmental sensors

FBF Fuzzy Basis Function

FD Frequency-domain features

GYR Gyroscope
HMM Hidden Markov Models

HRB Heart Rate Beats above the resting heart rate
HRM Heart Rate Monitor

HW Housework activities (see Table I)
KNN k-Nearest Neighbors classifier
LAB Laboratory controlled experiment
LDA Linear Discriminant Analysis

LS Least Squares algorithm

MIL Military activities
MNL Monolithic classifier (subject independent)
NAT Naturalistic experiment

NB The Naive Bayes classifier

NDDF Normal Density Discriminant Function
N/S Not Specified
PCA Principal Component Analysis
PHO Activities related to phone usage (see Table I)
PR Polynomial Regression
RFIS Recurrent Fuzzy Inference System
SD Subject Dependent evaluation
SFFS Sequential Forward Feature Selection
SI Subject Independent evaluation
SMA Signal Magnitude Area
SMCRF | Semi-Markovian Conditional Random Field
SPC User-specific classifier (subject dependent)
SP1 Spiroergometry
TA Tilt Angle
TD Time-domain features
TF Transient Features [26]
TR Transitions between activities
UB Upper body activities (see Table I)
VS Vital sign sensors

waveform amplitude, and skin temperature, among others. In
that work, we proposed MECLA, a library for the mobile
evaluation of classification algorithms, which can also be
utilized in further pattern recognition applications. Statistical
time- and frequency-domain features were extracted from
acceleration signals while polynomial regression was applied
to physiological signals via least squares. The C4.5 decision
tree classifier recognized three ambulation activities with an
overall accuracy of 92.6%. The application can run for up
to 12.5 continuous hours with a response time of no more
than 8% of the window length. Different users with diverse
characteristics participated in training and testing phases,
ensuring flexibility to support new users without the need to
re-train the system. Unlike other approaches, Vigilante was
evaluated completely online to provide more realistic results.
Vigilante is moderately energy efficient because it requires
permanent Bluetooth communication between the sensor strap
and the phone.
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TABLE VII
SUMMARY OF STATE-OF-THE-ART IN ONLINE HUMAN ACTIVITY RECOGNITION SYSTEMS.
Reference Activities Sensors D Obtrusive  Experiment  Energy  Flexibility  Process- Features Learning Accuracy
ing
Ermes [45] AMB (5) ACC (wrist, ankle, PDA High N/S High SPC High TD, FD DT 94%
chest)
eWatch [25] AMB (6) ACC, ENV (wrist) Custom Low LAB Low MNL Low TD, FD C4.5, NB 94%
Tapia [23] EXR (30) ACC (5 places), HRM  Laptop High LAB High Both High TD, FD, HB C4.5, NB 86% (SD), 56%
(8D
Vigilante [48] AMB (3) ACC and VS (chest) Phone Medium NAT Medium MNL Low TD, FD, PR, C4.5 92.6%
TF
Kao [24] AMB, DA (7) ACC (wrist) Custom Low N/S Medium MNL Low TD, LDA FBF 94.71%
Brezmes [32] AMB (5) ACC (phone) Phone Low N/S Low SPC High TD, FD KNN 80%
COSAR [31] AMB, DA ACC (watch, phone), Phone Low NAT Medium MNL Medium TD COSAR 93%
(10) GPS
ActiServ [30], [33] AMB, PHO ACC (phone) Phone Low N/S Low SPC High g,crﬁ RFIS 1% - 98%
(1) !

3) Tapia et al.: This system recognizes 17 ambulation
and gymnasium activities such as lifting weights, rowing,
doing push ups, etc., with different intensities (a total of 30
activities). A comprehensive study was carried out, includ-
ing 21 participants and both subject-dependent and subject-
independent studies. The average classification accuracy was
reported to be 94.6% for subject-dependent analysis whereas
a 56% of accuracy was reached in the subject-independent
evaluation. If intensities are not considered, the overall subject-
independent accuracy is 80.6%. This system works with very
obtrusive hardware, i.e., five accelerometers were placed on
the user’s dominant arm and wrist, hip, thigh, and ankle,
as well as a heart rate monitor on the chest. Besides, all
these sensors require wireless communication, involving high
energy consumption. Finally, the integration device is a laptop,
which allows for better processing capabilities, but prevents
portability and pervasiveness.

4) ActiServ: In 2010, Berchtold et al. introduced ActiServ
as an activity recognition service for mobile phones [30],
[33]. The system was implemented on the Neo FreeRunner
phone. They make use of a fuzzy inference system to classify
ambulation and phone activities based on the signals given by
the phone’s accelerometer only. This makes ActiServ a very
energy efficient and portable system. The overall accuracy
varies between 71% and 97%. However, in order to reach
the top accuracy level, the system requires a runtime duration
in the order of days! When the algorithms are executed to
meet a real-time response time, the accuracy drops to 71%.
ActiServ can also reach up to 90% after personalization, in
other words, a subject-dependent analysis. From the reported
confusion matrices, the activity labeled as walking was often
confused with cycling, while standing and sitting could not be
differentiated when the cellphone’s orientation was changed.

5) COSAR: Riboni et al. [31] presented COSAR, a frame-
work for context-aware activity recognition using statistical
and ontological reasoning under the Android platform. The
system recognizes ambulation activities as well as brushing
teeth, strolling, and writing on a blackboard. COSAR gathers
data from two accelerometers, one in the phone and another
on the individual’s wrist, as well as from the cellphone’s GPS.
Since COSAR makes use of the GPS sensor, it was catalogued
as a moderately energy efficient system. COSAR uses an in-

teresting concept of potential activity matrix to filter activities
based upon the user’s location. For instance, if the individual
is in the kitchen, he or she is probably not cycling. Another
contribution is the statistical classification of activities with a
historical variant. For example, if the predictions for the last
five time windows were {jogging, jogging, walking, jogging,
Jjogging}, the third window was likely a misclassification (e.g.,
due to the user performing some atypical movement) and the
algorithm should automatically correct it. The overall accuracy
was roughly 93% though, in some cases, standing still was
confused with writing on a blackboard, as well as hiking up
with hiking down.

6) Kao: Kao et al. [24] presented a portable device for on-
line activity detection. A triaxal accelerometer is placed on the
user’s dominant wrist, sampling at 100 Hz. They apply time
domain features and the Linear Discriminant Analysis (LDA)
to reduce the dimension of the feature space. Then, a Fuzzy
Basis Function learner —which uses fuzzy If-Then rules—
classifies the activities. An overall accuracy of 94.71% was
reached for seven activities: brushing teeth, hitting, knocking,
working at a PC, running, walking, and swinging. The system
reports an average response time of less than 10 ms, which
support its feasibility. All the computations are done in an
embedded system that should be carried by the user as an
additional device. This has some disadvantages with respect
to a mobile phone in terms of portability, comfort, and cost.
Moreover, the size of the time window was chosen to be 160
ms. Given the nature of the recognized activities, this excessive
granularity causes accidental movements when swinging or
knocking to be confused with running, for instance. Such a
small window length also (1) induces more overhead due to
the classification algorithm being triggered very often and (2)
is not beneficial for the feature extraction performance as time
domain features require O(n) computations.

7) Other approaches: The system proposed by Brezmes et
al. [32] features a mobile application for HAR under the Nokia
platform. They used the k-nearest neighbors classifier, which
is computationally expensive and not scalable for mobile
phones as it needs the entire training set —which can be
fairly large— to be stored in the device. Besides, their system
requires each new user to collect additional training data in
order to obtain accurate results. Ermes et al. [45] developed
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an online system that reaches 94% overall average accuracy
but they only applied a subject-dependent evaluation. Besides,
their data were collected from only three subjects, which
inhibits flexibility to support new users.

Discussion: As we have seen, each online HAR system sur-
veyed has its own benefits and drawbacks. Thus, the selection
of a particular approach for a real case study depends on the
application requirements. If portability and obtrusiveness are
the key issues, eWatch would be an appropriate option for
ambulation activities. But if a broader set of activities needs
to be recognized, COSAR should be considered, although it
entails higher energy expenditures due to Bluetooth commu-
nication and the GPS sensor. The system proposed by Tapia
et al. would be a better choice to monitor exercise habits
yet it may be too obtrusive. Overall, most systems exhibit
similar accuracy levels (more than 92%) but since each system
works with a specific dataset and activity set, there is no
significant evidence to argue that a system is more accurate
than the others. Vigilante is the only approach that collects
vital sign information, which opens a broader spectrum of
applications for healthcare purposes. In addition, COSAR
and Vigilante work under the Android platform (reported as
best-selling smartphone platform in 2010 by Canalys [81])
facilitating the deployment in current cellular phones. The
system cost is also an important aspect, especially when the
application’s aim is being scaled to hundreds or thousands of
users. Vigilante, COSAR, eWatch, and the work of Kao et al.
require specialized hardware such as sensors and embedded
computers whereas ActiServ and the system proposed by
Brezmes et al. only need a conventional cellular phone.

B. Supervised Offline Systems

There are cases in which the user does not need to receive
immediate feedback. For example, applications that analyze
exercise and diet habits in patients with heart disease, diabetes,
and obesity, as well as applications that estimate the number
of calories burned after an exercise routine [82], [83] can
work on an offline basis. Another example of an offline HAR
system is an application to discover commercial patterns for
advertisement. For instance, if an individual performs exercise
activities very frequently, they could be advertised on sport
wear items. In all these cases, gathered data can be analyzed
on a daily or even weekly basis to draw conclusions on
the person’s behavior. Table VIII summarizes state-of-the-
art works in supervised offline human activity recognition
based on wearable sensors. The most relevant approaches are
described next.

1) Parkka: The work of Parkka et al. [19] considers seven
activities: lying, rowing, riding a bike, standing still, running,
walking, and Nordic walking. Twenty two signals were mea-
sured, including acceleration, vital signs, and environmental
variables. This requires a number of sensors on the individual’s
chest, wrist, finger, forehead, shoulder, upper back, and armpit.
The integration device is a compact computer placed in a
5 kg rucksack. Therefore, we have classified this system as
highly obtrusive. Time- and frequency-domain features were
extracted from most signals while a speech recognizer [53]
was applied to the audio signal. This entails not only high
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processing demands but also privacy issues due to continuous
recording of the user’s speech. Three classification methods
were evaluated, namely an automatically generated decision
tree, a custom decision tree which introduces domain knowl-
edge and visual inspection of the signals, as well as an artifi-
cial neural network. The results indicate that the best accuracy
was 86%, given by the first method, though activities such as
as rowing, walking, and Nordic walking were not accurately
discriminated. Parkka et al. mentioned that one of the causes of
such misclassification is the lack of synchronization between
the activity performances and annotations.

2) Bao: With more than 700 citations [84], the work of
Bao and Intelle in 2004 [27] brought significant contributions
to the field of activity recognition. The system recognizes
20 activities, including ambulation and daily activities such
as scrubbing, vacuuming, watching TV, and working at the
PC. All the data were labeled by the user in a naturalistic
environment. Five bi-axial accelerometers were initially placed
on the user’s knee, ankle, arm, and hip, yet they concluded
that with only two accelerometers —on the hip and wrist—
the recognition accuracy is not significantly diminished (in
about a 5%). Using time- and frequency-domain features along
with the C4.5 decision tree classifier, the overall accuracy was
84%. Ambulation activities were recognized very accurately
(with up to 95% of accuracy) but activities such as stretching,
scrubbing, riding escalator and riding elevator were often
confused. The inclusion of location information is suggested
to overcome this issues. Such idea was later adopted and
implemented by other systems [31].

3) Khan: The system proposed by Khan et al. [39] not only
recognizes ambulation activities, but also transitions among
them, e.g., sitting to walking, sitting to lying, and so forth. An
accelerometer was placed on the individual’s chest, sampling
at 20Hz, and sending data to a computer via Bluetooth
for storage. Three groups of features were extracted from
the acceleration signals: (1) autoregressive model coefficients,
(2) the Tilt Angle (TA), defined as the angle between the
positive Z-axis and the gravitational vector g, as well as the
(3) Signal Magnitude Area (SMA), which is the summation
of the absolute values of all three signals. Linear Discriminant
Analysis is used to reduce the dimensionality of the feature
vector and an Artificial Neural Network classified activities
and transitions with a 97.76% subject independent accuracy.
The results indicate that the TA plays a key role in the
improvement of the recognition accuracy. This is expected
because the sensor inclination values are clearly different for
lying and standing, in view of the sensor being placed on the
chest.

4) Zhu: The system proposed by Zhu and Sheng [68] uses
Hidden Markov Models (HMM) to recognize ambulation ac-
tivities. Two accelerometers, placed on the subject’s wrist and
waist, are connected to a PDA via serial port. The PDA sends
the raw data via Bluetooth to a computer which processes
the data. This configuration is obtrusive and uncomfortable
as the user has to wear wired links that may interfere with
the normal course of activities. The extracted features are
the angular velocity and the 3D deviation of the acceleration
signals. The classification of activities operates in two stages.
In the first place, an Artificial Neural Network discriminates
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TABLE VIII
SUMMARY OF STATE-OF-THE-ART IN OFFLINE HUMAN ACTIVITY RECOGNITION SYSTEMS.
Reference Activities Sensors Obtrusive ID Experi- Flexibil- Features Learning Accuracy
ment ity
Bao [27] AMB, DA (20) ACC (wrist, ankle, thigh, elbow, High None NAT MNL TD, FD KNN, C4.5, NB 84%
hip)
Hanai [28] AMB (5) ACC (chest) Low Laptop N/S MNL HAAR filters C4.5 93.91%
Parkka [19] AMB, DA (9) ACC, ENV, VS (22 signals) High PC NAT MNL TD, FD DR, KNN 86%
He [29] AMB (4) ACC Low PC N/S MNL AR SVM 92.25%
He [35] AMB (4) ACC (trousers pocket) Low PC N/S MNL DCT, PCA SVM 97.51%
Zhu [68] AMB, TR (12) ACC (wrist, waist) High PC N/S SPC AV, 3DD HMM 90%
Altun [51] AMB (19) ACC, GYR (chest, arms, legs) High None NAT MNL PCA, SFFS BN, LS, KNN, DTW, 87% - 99%
ANN
Cheng [55] UB (11) Electrodes (neck, chest, leg, High PC LAB MNL TD LDA 7% %
wrist)
McGlynn [57] DA (5) ACC (thigh, hip, wrist) Low None N/S SPC DTW DTW ensemble 84.3%
Pham [58] AMB, DA (4) ACC (jacket) Medium N/S N/S Both Relative Energy NB, HMM 97% (SD), 95%
(8D
Vinh [69] AMB, DA (21) ACC (wrist, hip) Medium N/S N/S N/S TD SMCRF 88.38%
Centinela [26] AMB (5) ACC and VS (chest) Medium Cellphone NAT MNL TD, FD, PR, TF ALR, Bagging, C4.5, NB, 95.7%
BN
Khan [39] AMB, TR (15) ACC (chest) Medium Computer NAT MNL AR, SMA, TA, ANN 97.9%
LDA
Jatoba [20] AMB (6) ACC, SPI High Tablet LAB Both TD / FD CART, KNN 86% (SI), 95%
(SD)
Chen [36] AMB, DA, HW ACC (2 wrists) Medium N/S LAB MNL TD, FD FBF 93%
@®)
Minnen [56] AMB, MIL (14) ACC (6 places) High Laptop Both SPC TD, FD Boosting 90%

among stationary (e.g, sitting and standing) and non-stationary
activities (e.g., walking and running). Then, a HMM receives
the ANN’s output and generates a specific activity prediction.
An important issue related to this system is that all the data
were collected from one single individual, which does not
permit to draw strong conclusions on the system performance.

5) Centinela: The authors proposed Centinela, a system
that combines acceleration data with vital signs to achieve
accurate activity recognition. Centinela recognizes five ambu-
lation activities and includes a portable and unobtrusive real-
time data collection platform, which only requires a single
sensing device and a mobile phone. Time- and frequency-
domain features are extracted from acceleration signals while
polynomial regression and transient features [26] are applied
to physiological signals. After evaluating eight different classi-
fiers and three different time window sizes, Centinela achieves
up to 95.7% overall accuracy. The results also indicate that
physiological signals are useful to discriminate among certain
activities. Indeed, Centinela achieves a precision of 100% for
activities such as running and sitting, and slightly improves
the classification accuracy for ascending compared to the cases
that utilize acceleration data only. However, Centinela relies on
classifier ensembles which entail higher computational costs.
And, the presented mobile application runs under the J2ME
platform [85] which is falling into disuse. To overcome these
issues, the authors proposed Vigilante (see Section V-A2).

6) Other approaches: In 2002, Randel et al. [66] intro-
duced a system to recognize ambulation activities which
calculates the Root Mean Square (RMS) from acceleration
signals and makes use of a Backpropagation Neural Network
for classification. The overall accuracy was 95% using user-
specific training but no details are provided regarding the
characteristics of the subjects, the data collection protocol,
and the confusion matrix. The system proposed in [28] uses
HAAR filters to extract features and the C4.5 algorithm for
classification purposes. HAAR filters are intended to reduce
the feature extraction computations, compared to traditional
TD and FD features. However, the study only collected data
from four individuals with unknown physical characteristics,
which might be insufficient to provide flexible recognition of

activities on new users. He et al. [29], [34], [35] achieved
up to 97% of accuracy but only considered four activities:
running, being still, jumping, and walking. These activities
are quite different in nature, which considerably reduces the
level of uncertainty thereby enabling higher accuracy. Chen et
al. [36] introduces an interesting Dynamic LDA approach to
add or remove activity classes and training data online, i.e.,
the classifier does not have to be re-trained from scratch. With
a Fuzzy Basis Function classifier, they reach 93% of accuracy
for eight ambulation and daily activities. Nonetheless, all the
data were collected inside the laboratory, under controlled
conditions. Finally, Vinh et al. [69] use semi-Markovian
conditional random fields to recognize not only activities but
routines such as dinner, commuting, lunch, and office. These
routines are composed by sequences of subsets of activities
from a total set of 20 activities. Their results indicate 88.38%
of accuracy (calculated by the authors from the reported recall
tables).

Discussion: Unlike online systems, offline HAR are not
dramatically affected by processing and storage issues because
the required computations could be done in a server with huge
computational and storage capabilities. Additionally, we do
not elaborate on energy expenditures as a number of systems
require neither integration devices nor wireless communication
so the application lifetime would only depend on the sensor
specifications.

Ambulation activities are recognized very accurately
by [26], [39], [86]. These systems place an accelerometer on
the subject’s chest, which is helpful to avoid ambiguities due
to abrupt corporal movements that arise when the sensor is on
the wrist or hip [46]. Other daily activities such as dressing,
preparing food, using the bathroom, using the PC, and using
a phone are considered in [57]. This introduces additional
challenges given that, in reality, an individual could use the
phone while walking, sitting, or lying, thereby exhibiting
different acceleration patterns. Similarly, in [27], activities
such as eating, reading, walking, and climbing stairs could
happen concurrently yet no analysis is presented to address
that matter. Section VI provides insights to the problem of
recognizing concurrent activities.
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Unobtrusiveness is a desirable feature of any HAR system
but having more sensors enables the recognition of a broader
set of activities. The scheme presented by Cheng et al. [55]
recognizes head movements and activities such as swallowing,
chewing, and speaking but requires obtrusive sensors on the
throat, chest, and wrist, connected via wired links. In tactical
scenarios, this should not be a problem considering that a
soldier is accustomed to carry all sort of equipment (e.g.,
sensors, cameras, weapons, and so forth). Yet, in healthcare
applications involving elderly people or patients with heart
disease, obtrusive sensors are not convenient.

The studies presented in [20], [36], [55] are based on data
collected under controlled conditions while the works in [29],
[34], [35], [57], [58], [69] do not specify the data collection
procedure. This is a critical issue since a laboratory environ-
ment affects the normal development of human activities [5],
[27]. The number of subjects also plays a significant role
in the validity of any HAR study. In [56], [68] only one
individual collected data while in [28], data were collected
from four individuals. Collecting data from a small number
of people might be insufficient to provide flexible recognition
of activities on new users.

C. Semi-supervised systems

The systems studied so far rely on large amounts of labeled
training data. Nonetheless, in some cases, labeling all instances
may not be feasible. For instance, to ensure a naturalistic data
collection procedure, it is recommended for users to perform
activities without the participation of researchers. If the user
cannot be trusted or the activities change very often, some
labels could be missed. These unlabeled data can still be useful
to train a recognition model by means of semi-supervised
learning. Some of the most important works in this field are
described next.

1) Multi-graphs: Stikic et al. [63], [64] developed a multi-
graph-based semi-supervised learning technique which propa-
gates labels through a graph that contains both labeled and
unlabeled data. Each node of the graph corresponds to an
instance while every edge encodes the similarities between
a pair of nodes as a probability value. The topology of the
graph is given by the k-nearest neighbors in the feature space.
A probability matrix Z is estimated using both Euclidean
distance in the feature space and temporal similarity [63].
Once the labels have been propagated throughout the graph
(i.e., all instances are labeled), classification is carried out
with a Support Vector Machine classifier that relies on a
Gaussian radial basis function kernel. The classifier also used
the probability matrix Z to introduce knowledge on the level
of confidence of each label. The overall accuracy was up to
89.1% and 96.5% after evaluating two public datasets and
having labels for only 2.5% of the training data.

2) En-co-training: A well-known method in semi-
supervised learning is co-training, proposed by Blum and
Mitchel in 1998 [65]. This approach requires the training set to
have two sufficient and redundant attribute subsets, condition
that does not always hold in a HAR context. Guan et al. [76]
proposed en-co-training, an extension of co-training which
does not have the limitations of its predecessor. The system
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was tested with ten ambulation activities and compared to
three other fully supervised classifiers (the k-nearest neigh-
bors, naive Bayes and a decision tree). The maximum error
rate improvement reached by en-co-training was from 17% to
14% —when 90% of the training data were not labeled. If
20% or more of the training data are labeled, the error rate
difference between en-co-training and the best fully supervised
classifier does not exceed 1.3%.

3) Ali: Ali et al. [75] implemented a Multiple Eigenspaces
(MES) technique based on the Principal Component Anal-
ysis combined with Hidden Markov Models. The system is
designed to recognize finger gestures with a laparoscopic
gripper tool. The individuals wore a sensor glove with two bi-
axial accelerometers sampling at S0Hz. Five different rotation
and translation movements from the individual’s hand were
recognized with up to 80% of accuracy. This system becomes
hard to analyze since no details are provided on the amount
of labeled data nor the evaluation procedure.

4) Huynh: Huynh et al. [77] combined Multiple
Eigenspaces with Support Vector Machines to recognize
eight ambulation and daily activities. Eleven accelerometers
were placed on individuals’ ankles, knees, elbows, shoulders,
wrists, and hip. The amount of labeled training data varied
from 5% to 80% and the overall accuracy was between 88%
to 64%, respectively. Their approach also outperformed the
fully supervised naive Bayes algorithm, which was used as
a baseline. Still, activities such as shaking hands, ascending
stairs and descending stairs were often confused.

Discussion: The next step in semi-supervised learning HAR
would be their online implementation. This would open the
possibility to use the data collected in production stage —
which are unlabeled— to improve the recognition perfor-
mance. Nevertheless, implementing this approach becomes
challenging in terms of computational complexity. This is
because most semi-supervised HAR approaches first estimate
the labels of all instances in the training set and then apply
a conventional supervised learning algorithm. In addition, the
label estimation process is often computationally expensive;
for instance, in [63], [64], a graph with one node per instance
has to be built. In their experiments, the resulting graphs
consisted of up to 16875 nodes, causing the computation of
the probability matrix to be highly demanding in regards to
processing and storage. Other approaches do not seem to be
ready for real scenarios: En-co-training [76] did not report sub-
stantial improvement in the classification accuracy. The system
proposed by Ali et al. [75] was intended for a very specific
purpose but not suitable for recognizing daily activities thereby
limiting its applicability to context-aware applications. Finally,
the system proposed in [77] required eleven sensors, which
introduces high obtrusiveness. Overall, we believe that the
field of semi-supervised activity recognition has not reached
maturity and needs additional contributions to overcome the
aforementioned issues.

VI. FUTURE RESEARCH CONSIDERATIONS

In order to realize the full potential in HAR systems, certain
topics need further investigation. Next, a list of those topics
is included.
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e Activity recognition datasets: The quantitative compari-

son of HAR approaches has been hindered by the fact
that each system works with a different dataset. While in
research areas such as data mining, there exist standard
datasets to validate the effectiveness of a new method,
this is not the case in activity recognition. Each research
group collects data from different individuals, uses a
different activity set, and utilizes a different evaluation
methodology. In that direction, we have included various
datasets publicly open to the research community which
can be used as benchmarks to evaluate new approaches.
Several universities and institutions have published their
datasets in [87]-[90]. Another dataset is provided by
the 2011 Activity Recognition Challenge [91], in which
researchers worldwide were invited to participate.

Composite activities: The activities we have seen so far
are quite simple. In fact, many of them could be part
of more complex routines or behaviors. Imagine, for
example, the problem of automatically recognizing when
a user is playing tennis. Such activity is composed by
several instances of walking, running, and sitting, among
others, with certain logical sequence and duration. The
recognition of these composite activities from a set of
atomic activities would surely enrich context awareness
but, at the same time, brings additional uncertainty.
Blanke et al. [92] provide an overview on this topic and
propose a solution through several layers of inference.

Concurrent and overlapping activities: The assumption
that an individual only performs one activity at a time
is true for basic ambulation activities (e.g., walking,
running, lying, etc.). In general, human activities are
rather overlapping and concurrent. A person could be
walking while brushing their teeth, or watching TV while
having lunch. Since only few works have been reported
in this area, we foresee great research opportunities in
this field. The interested reader might refer to the article
of Helaoui et al. [93] for further information.

Multiattribute classification: The purpose of a HAR
system is, of course, providing feedback on the user’s
activity. But, context awareness may be enriched by
also recognizing user’s personal attributes. A case study
could be a system that not only recognizes an individual
running, but also identifies them as a female between
30 and 40 years old. We hypothesize that vital signs
may have an important role in the determination of these
attributes. To the best of our knowledge, there is no
previous work on this topic.

Cost-sensitive classification: Imagine an activity recog-
nition system monitoring a patient with heart disease
who cannot make significant physical effort. The system
should never predict that the individual is sitting when
they are actually running. But confusions between ac-
tivities such as waking and sifting might be tolerable in
this scenario. Cost-sensitive classification works exactly

in that direction, maintaining a cost matrix C' where
the value Cj; is the cost of predicting activity ¢ given
that the actual activity is j. The values in this matrix
depend on the specific application. In prediction time, the
classifier can be easily adapted to output the activity class
with the smallest misclassification cost. Also, in training
time, the proportion of instances can be increased for the
most expensive classes, forcing the learning algorithm to
classify them more accurately. Additional information on
cost-sensitive classification is available in [3], [49], [94].

Crowd-HAR: The recognition of human activities has
been somehow individualized, i.e., the majority of the
systems predict activities in a single user. Although
information from social networks has been shown ef-
fective to recognize human behaviors [95], recognizing
collective activity patterns can be taken one step further.
If we could gather activity patterns from a significant
sample of people in certain area (e.g., a city, a state,
or a country), that information could be used to esti-
mate levels of sedentarism, exercise habits, and even
health conditions in a target population. Furthermore, this
sort of participatory-human-centric application would
not require an economic incentive method. The users
would be willing to participate in the system as long
as they receive information on their health conditions
and exercise performance, for example. Such data from
thousands or millions of users may also be used to feed
classification algorithms thereby enhancing their overall
accuracy.

Predicting future activities: Previous works have not
only estimated activities but also behavior routines [69].
Based on this information, the system could predict
what the user is about to do. This becomes especially
useful for certain applications such as those based on
advertisements. For instance, if the user is going to have
lunch, he or she may receive advertisement on restaurants
nearby.

Classifier flexibility: People certainly perform activities
in a different manner due to particular physical char-
acteristics. Thus, acceleration signals measured from a
child versus an elderly person are expected to be quite
different. As we have seen in Section III-G, a human
activity recognition model might be either monolithic
or user-specific, each one having its own benefits and
drawbacks. A middle ground to make the most of both
worlds might be creating group-specific classifiers, clus-
tering individuals with similar characteristics such as
age, weight, gender, health conditions, among others.
Then, our hypothesis is that a HAR system would be
more effective having a recognition model for overweight
young men, one for normal male children, another one
for elderly female , and so forth.
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VII. CONCLUSIONS

This paper surveys the state-of-the-art in human activity
recognition based on wearable sensors. A two-level taxonomy
is introduced that organizes HAR systems according to their
response time and learning scheme. Twenty eight systems are
qualitatively compared in regards to response time, learning
approach, obtrusiveness, flexibility, recognition accuracy, and
other important design issues. The fundamentals of feature
extraction and machine learning are also included, as they are
important components of every HAR system. Finally, various
ideas are proposed for future research to extend this field to
more realistic and pervasive scenarios.
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