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Body Movements for Affective Expression: A
Survey of Automatic Recognition and Generation

Michelle Karg, Ali-Akbar Samadani, Rob Gorbet, Kolja Kiihnlenz, Jesse Hoey, and Dana Kuli¢

Abstract—Body movements communicate affective expressions and, in recent years, computational models have been developed to
recognize affective expressions from body movements or to generate movements for virtual agents or robots which convey affective
expressions. This survey summarizes the state of the art on automatic recognition and generation of such movements. For both
automatic recognition and generation, important aspects such as the movements analyzed, the affective state representation used,
and the use of notation systems is discussed. The survey concludes with an outline of open problems and directions for future work.

Index Terms—Movement analysis, recognition of affective expressions, generation of affective expressions

1 INTRODUCTION
AFFECTIVE computing aims to enhance human-computer
interaction (HCI) and human-robot interaction (HRI)
through affective communication to create a more intuitive,
engaging, and entertaining interaction. During the interac-
tion, affective states can be expressed and recognized
through facial expressions, speech, body movements, and
physiological parameters. Automatic recognition of human
affective expressions and generation of expressive behavior
for virtual avatars and robots are key challenges in this
research area. Several surveys address detection of affective
states in general [1], [2], [3], [4], [5], through facial or/and
audio expressions [6], [7] and generation of affective expres-
sions [4], [8]. As facial expressions and speech dominate
during face-to-face interaction, these are the modalities that
have been predominantly studied in communication of non-
verbal behavior, psychology, and computer science to date
[2], [9], [10], [11]. Yet, there exists evidence from communi-
cation of nonverbal behavior and psychology research that
body movements also convey affective expressions, e.g.,
[12], [13], [14], [15]. Considering body movement as a
modality for affective computing is particularly suitable in
situations where the affective state is estimated from a dis-
tance [16], to retrieve expressions which are less susceptible
to social editing [17], and to communicate affective states
which are easier conveyed through movement [18].

M. Karg, A.-A. Samadani, and D. Kuli¢ are with the Department of Elec-
trical and Computer Engineering, University of Waterloo, Canada, 200
University Avenue West, Waterloo, ON N2L 3G1, Canada.

R. Gorbert is with the Centre for Knowledge Integration, University of
Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3GI,
Canada.

K. Kiihnlenz is with the Dept. of EE and CS, Coburg University of Applied
Sciences and Arts, Germany.

J. Hoey is with the David R. Cheriton School of Computer Science, Univer-
sity of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G,
Canada.

Manuscript received 21 June 2013; revised 23 Oct. 2013; accepted 28 Oct.
2013.; date of publication 11 Nov. 2013; date of current version 13 Mar. 2014.
Recommended for acceptance by A. Batliner.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/T-AFFC.2013.29

<+

A recent survey [19] reviews the literature on affect rec-
ognition from body posture and movement, and discusses
the main challenges in affect recognition from body pos-
ture and movement, including inter-individual differences,
impact of culture and multi-modal recognition, and the
challenges in collecting appropriate data sets and ground
truth labeling. Computational models have been devel-
oped for both automatic recognition and generation of affect-
expressive movements." A large body of work has
emerged in recent years developing these computational
models; this survey is intended to synthesize the findings
of these studies, and to identify key contributions and
open research questions. Two significant characteristics of
these computational models are 1) the representation of
movements in physical space and time, and 2) the repre-
sentation of affect.

To provide a comprehensive overview of affect-
expressive movements studied to date in HCI/HRI, we
introduce a suitable movement categorization and sum-
marize works studying similar movements. We discuss
the use of movement notation systems in automatic rec-
ognition and generation of affect-expressive movements.
Movement notation systems, commonly used in the
dance community, can provide a systematic approach
for the choice of movement descriptors and facilitate
knowledge transfer between communication, psychology,
and computer science. This elaboration on the move-
ments studied to date and the use of movement notation
systems for both automatic recognition and generation
provides complementary information to the previous
survey discussing the importance of postural and
dynamic features for automatic recognition [19].

A categorical or dimensional approach can be used for
representing affective states. For both automatic recognition
and generation studies, we analyze the set of considered
affective states and their representation. We report on the
common results regarding the expressiveness of affective

1. In this work, we introduce the term affect-expressive movement to
mean that subset of expressive movements whose purpose is to convey
affect.
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states and whether these results can be linked to psychologi-
cal studies. This detailed analysis facilitates the selection of
a suitable representation for affective states [19].

The outline of the paper is as follows: Section 2 briefly
summarizes relevant background information on the defini-
tion, expression, and representation of affective states in
HCI/HRI. Section 3 introduces a movement categorization
for summarizing the state of the art in recognition and gen-
eration of affect-expressive movements, and discusses
movement notation systems and their utility for affect-
expressive movement analysis. Selected studies on human
perception of affect-expressive movements are discussed in
Section 4. Studies on automatic recognition of affect-expres-
sive movements are summarized in Section 5. Section 6 pro-
vides an overview of generative models to synthesize
affect-expressive movements for virtual agents or robots.
Current achievements are summarized in Section 7 and
open questions are discussed. Concluding remarks are
drawn in Section 8.

2 AFFECT: DEFINITION, EXPRESSION, AND
REPRESENTATION IN HCI/HRI

Affective phenomena (broadly termed affect [20]) include
emotions, feelings, moods, attitudes, temperament, affec-
tive dispositions, and interpersonal stances [1], [21], [22],
[23]. A categorization of these terms based on event focus,
intrinsic and transactional appraisal, synchronization,
rapidity of change, behavioral impact, intensity, and dura-
tion is provided in [22], [23], [24], e.g., emotions change
rapidly, are short-term and intense, whereas mood covers a
longer time-span and changes more slowly. Among the
affective phenomena, emotions are those most widely stud-
ied in HCI and HRI [21, p. 4]. Scherer defines emotion as
“an episode of interrelated, synchronized changes in the
states of all or most of the five organismic subsystems in
response to the evaluation of an external or internal stimu-
lus event as relevant to major concerns of the organism”
[22]. The five subsystems are: cognitive (for evaluation),
physiological (for regulation), motivational (for preparation
of an action), subjective feeling, and motor expression (for
communication) [22]. Theories of emotion expression are
often based on facial expressions; fewer studies have been
conducted that investigate the extent to which existing the-
ories predict and explain bodily expressions of emotion
[25], [26], [27], [28]. Effective emotional communication
requires both the ability to send or encode one’s own emo-
tion in an appropriate and comprehensible manner and the
ability to receive or decode the emotions of others [21]. For
virtual agents and robots, these two skills refer to auto-
matic generation and recognition of emotional expressions,
respectively. These two modules can be integrated into
higher-level computational models which cover the gener-
ation of appropriate emotions, and relations to cognitive
and motivational subsystems [29].

The terms affect and emotion have been used inconsis-
tently, often interchangeably, in the field of HCI/HRI, and
both terms can be found in studies on automatic recognition
and generation of affect-expressive movements. Here, we
are concerned with body movements that can convey both
short-term emotions and long-term moods, e.g., depression

influences the kinematics of walking [30]. When covering
both long-term and short-term affective phenomena, we use
the broader term affective states in this survey. Within this
survey, we use the term emotion when studies explicitly
address emotions.

Automatic recognition of affective states is based on
observing expressions. Humans can control their expres-
sions to a certain extent, e.g., using display rules to
achieve a social goal [11, p. 72]. This gives rise to the pos-
sibility of a difference between the internal experience
and external expression. This possible discrepancy is most
widely studied for the communication of emotions. The
communication of emotions can be either spontaneous or
strategic [11], [14], [31]. Spontaneous communication is
involuntary and the content is non-propositional,’
whereas strategic or symbolic communication is goal-ori-
ented and the content is propositional [11], [31]. Consider-
ing automatic recognition, it is important to note that an
observed expression may not necessarily be the observ-
able manifestation of an internal state, but rather, dis-
played to achieve a social goal. Within the scope of this
survey, which focuses on HCI and HRI studies, this differ-
ence is not further explored as most studies on automatic
recognition and generation assume a correspondence
between the expressed and internally felt state.

Evidence from psychology indicates that affective states
are expressed in body movements [15], [33], [34], [35], [36].
During daily human-human interaction, humans pay atten-
tion to expressive body and activity cues almost as often as
to expressive facial, indirect verbal, and context cues [33].
A recent study highlights the utility of bodily cues for the
discrimination between intense positive and negative emo-
tions [18]. Gelder et al. suggest that bodily cues are particu-
larly suitable for communication over larger distances,
whereas facial expressions are more suitable for a fine-
grained analysis of affective expressions [35]. Studies com-
paring bodily expression versus facial expressions are sum-
marized in [19], and Kleinsmith and Bianchi-Berthouze
conclude that bodily expressions are an important modal-
ity for non-verbal communication in HCI/HRI. Even
though the expression and recognition of affective states
from gestures and body motion is relatively unexplored in
comparison to studies on facial expression and physiology
[37], these modalities are advantageous 1) for perception
from a distance, because bodily expressions are more easily
visible from a distance than subtle changes in the face [16],
[35], [38], 2) to analyze types of expressions which are less
susceptible to social editing, because people are often less
aware of their bodily than their facial expressions [17], [39],
and 3) to convey affective states which are more easily
expressed through movement, e.g., intense positive or neg-
ative emotions [18].

Affective states can be represented using a set of distinct
categorical labels, or a dimensional model. Categorical labels
describe affective states based on their linguistic use in
daily life. Different sets of categorical labels can be chosen
depending on the study. Most frequently, happiness,

2. One can apply an analysis “true or false?” to a proposition. [31,
p- 7 referring to [32]].
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Fig. 1. The PAD model.

sadness, fear, and anger are included, a subset of the basic
emotions [40]. A basic emotion is defined by a set of neural
correlates in the brain, a specific set of bodily expressions,
and a motivational component for action tendencies [40]. A
popular set of basic emotions contains anger, happiness,
sadness, surprise, disgust, and fear [41], [42].

An affective state is represented in a dimensional model as
a point on a continuum spanned by a set of independent
dimensions. A popular example is a circumplex model,
where similar affective states are arranged to lie adjacent to
each other on a circle, and dissimilar affective states are
arranged to lie opposite each other [43]. A common model
applied in affective computing is the PAD-model, with the
dimensions pleasure (or valence), arousal, and dominance [44].
Arousal corresponds to the level of activation, mental alert-
ness, and physical activity. Dominance represents the
amount of control over others and the surroundings versus
feeling controlled by external circumstances. Categorical
labels can be mapped to the continuous PAD space, e.g.,
happiness, amusement, and contentment are related to high
pleasure, whereas anger, fear, and sadness are related to
low pleasure [45], [46], [47], [48], as qualitatively illustrated
in Fig. 1.° A dimensional representation may relate more to
the underlying physiological changes [26] and Barrett sug-
gests that categorical labels are a result of subjective catego-
rization of emotions using conceptual knowledge, e.g.,
similar to color perception [49].

Most studies on affect recognition to date use categori-
cal labels, while fewer studies have applied a dimensional
representation [2]. Challenges for dimensional affect rec-
ognition include unbalanced data sets, differences in the
inter-observer agreement on the dimensions, and handling
of categories which are not covered by the dimensions or
overlap with other categories in a dimensional approach
[2]. Recent works in HCI/HRI have investigated the use
of a dimensional representation and further exploration of
the utility of dimensional representations in HCI/HRI is
advised [4], [7].

3. Categorical terms for each octant in the PAD space in Fig. 1 are
selected based on pleasure, arousal, and dominance ratings in [48].

3 AFFECT-EXPRESSIVE MOVEMENTS

Affective states can be expressed through body movements
in various ways, e.g., by whole-body gestures, arm gestures,
or modulation of functional movements. To refer to this set
of movements and given the discussion in Section 2, we
introduce the term affect-expressive movements, because
expressions and not internal experiences are analyzed and
among these only expressions that are related to affect. In
this section, we introduce a categorization of movements
for summarizing the current state of the art in automatic
recognition and generation of affect-expressive movements.
Next, a representative review of movement notation sys-
tems is presented. We focus on movement notation systems
that have been applied to study affective expressiveness
and discuss a set of criteria to evaluate the suitability of the
notation systems for computational analysis of affect-
expressive movements.

3.1 Categorization of Affect-Expressive Movements
The current state of the art on automatic generation and rec-
ognition of affect-expressive movements analyzes a large
variety of body movements. An affective state can be
expressed via modulation of a single movement or by
selecting from a library of different movements. For
instance, anger can be communicated via modulation of a
movement, e.g., increasing the walking speed, or through
selecting a specific movement type, e.g., making a fist. Stud-
ies discussed in this survey analyze affective expressiveness
either through modulation of a single movement, use of dif-
ferent movement types, or a combination of both. Consider-
ing the definition of a gesture as “a movement of part of the
body, especially a hand or the head, to express an idea or
meaning” [50], gestures generally combine type selection
with movement modulation. We consider that postures are
snapshots of movements, and not separate entities.

We introduce the following categorization for the large
variety of movements studied to date:

o Communicative movements cover a broad range of
movements, which are performed in daily life and
may convey affective states, e.g., gestures [38], [51],
[52], [53]. A communicative movement can select
from a library of movement types to express an affec-
tive state and may be accompanied by a modulation
level.

e The objective of functional movements is to perform a
task unrelated to the expression of affect, e.g., walk-
ing or knocking [54], [55], [56]. In contrast to the for-
mer category, affective states can only be expressed
through modulation of a functional movement and
expressiveness is secondary to function.

e Artistic movements, such as choreographed [57] and
non-choreographed dancing [58], can display exag-
gerated expressions and can consist of movement
types which do not occur during daily life. Artistic
movements vary in terms of movement type to
express an affective state and may be accompanied
by a modulation level. For choreographed artistic
movements, different affective states are expressed
only by modulation, because the movement type is
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specified by the choreography, e.g., choreographed
dancing [57].
e Abstract movements are used neither to explicitly

accomplish a task nor to communicate a meaning
(e.g., lifting the arms [59]). Expressivity of a move-
ment can be analyzed independently of a possible
symbolic meaning of the movement itself and move-
ment types can be selected which do not necessarily
occur during daily life.

Affective states can also be conveyed by a lack of movement

(e.g., freezing in terror). However, this type of response is

rarely addressed in HCI/HRI studies to date, and is therefore

omitted from the rest of the paper.

3.2 Movement Notation Systems

In computational human movement analysis, movements
are commonly represented in terms of joint angle trajecto-
ries (e.g., [60]), or derived discrete or time-series features
(e.g., maximum velocity [59]). Movement analysis based
on these kinematic features is usually computationally
expensive due to the high-dimensional nature of the
movement trajectories and more importantly, does not
necessarily capture expressive qualities which are critical
for affect-expressive movement analysis. Movement nota-
tion systems provide an efficient tool for systematic and
compact representation of movements that capture both
structural characteristics and expressive qualities of the
movements. As FACS* pushed forward the research on
computational analysis of facial expressions, movement
notation systems could also advance the computational
analysis of affect-expressive movements by providing an
objective and systematic movement representation.

A good movement notation system achieves the follow-
ing criteria proposed by Guest [62]: universality (capability
of coding all forms of movement), comprehensiveness (cov-
ering every aspect of a movement), movement analysis
(anatomically and physiologically sound movement cod-
ing), versatility in movement description (truthful represen-
tation of intention and expressivity in addition to structure),
flexibility in application, logicality (consistent presentation
of similar actions using logically related symbols and
codes), visuality (readable visual presentation), legibility
(distinctive and discrete coding symbols or categories), and
practicability (ease of use and integrability with modern
technologies). Expanding on the criteria proposed by Guest,
in order to limit coders” bias, the notation systems should
not need any contextual assumption or perceptual inference
for notating an observed movement. A comparison between
notation systems can be found in [63], [64]. However, a
more recent categorization by Burgoon et al. enables a more
systematic comparison between the notation systems and
their utilities [14]. Burgoon et al. divide movement notation
systems into functional’ and structural approaches [14]. We
focus on notation systems that are primarily designed for

4. Face action coding system (FACS) provides a comprehensive set
of action units that can be used to objectively describe any type of facial
movement [61].

5. In Section 3.1, functional movements are discussed, which should
not be confused with functional movement notation systems discussed
here.

coding bodily movements and do not discuss notation sys-
tems that use bodily movements only as a peripheral indica-
tors of affective expressions (e.g., SPAFF [65]).

Functional approaches describe the communicative func-
tion of a displayed movement using verbal labels. The
Ekman and Friesen formulation of kinesic behaviours into
five categories (emblems, illustrators, affective displays,
regulators, and manipulators) is an example of a functional
notation system [9].

Structural approaches are primarily concerned with the
question of what bodily movements look like and provide
detailed notation of posture and movement dynamics
[14].As a result, they provide sufficient structural and
expressive details for movement replication, and are more
appropriate for computational affect-expressive movement
analysis.

Inspired by linguistic notation systems, Birdwhistell pro-
posed a structural movement notation system that parallels
phonemic transcription in linguistics [66]. Birdwhistell
referred to non-verbal communicative body movements as
kinesics [66], and introduced kine (the smallest perceivable
body motion, e.g., raising eye brows), kineme (a group of
movements with a same social meaning, e.g., one nod, two
nods, three nods), and kinemorphs (a combination of kine-
mes forming a gesture) followed by kinemorphic classes and
complex kinemorphic constructs, which are analogous to
sentences and paragraphs in linguistics. Birdwhistell used
motion qualifiers and action modifiers that define: 1) the
degree of muscular tension involved in executing a move-
ment, 2) duration of the movement, and 3) the range of the
movement. The kinegraph is introduced as a tool for notating
individual kines and their direction at different body sec-
tions. The Birdwhistell system is capable of micro analysis
of body movements as its kines capture barely perceivable
body motion ranging from 1/50 to 3 seconds in duration
[66]. Birdwhistell emphasizes the importance of context for
inferring the meaning of an observed movement. A Bird-
whistell-inspired annotation was used to extract semantic
areas in emoticons® for automatic recognition of their
expressed emotions [67].

The Laban system is another prominent example of a
structural movement notation system, which was developed
for writing and analyzing both the structure and expressivity
of movements in dance choreography [68], [69]. The Laban
notation system has four major components: Body, Space,
Effort, and Shape. Body indicates the active body parts, and
the sequence of their involvement in a movement. Space
defines where in space a movement is happening, and the
directions of the body and body parts. Laban Effort and
Shape components provide a comprehensive set of descrip-
tors for a qualitative characterization of a movement [70].
Effort describes the inner attitude toward the use of energy
along four bipolar components: Space, Weight, Time, and
Flow, with their extremes being Indirect/Direct, Light/
Strong, Sustained/Sudden, and Free/Bound, respectively.
Shape consists of Shape Flow, Directional, and Shaping/
Carving, all of which describe dynamic changes in the

6. An emoticon is a string of symbols used in text communication to
express users’ emotions [67].
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movement form [70]. Labanotation is the Laban notation tool
that makes use of a set of abstract geometric symbols to
notate an observed movement. Computational Laban analy-
sis has been carried out for movement recognition (e.g., [71]),
and generation (e.g., [72]), and to relate Laban components
to low-level movement features, e.g., velocity and accelera-
tion [73], [74], [75] and different affective expressions [76].

Delsarte [77] classifies emotion as a form of expression in
gestures and divides the body into zones within which men-
tal, moral, and vital components are defined. He identifies
nine laws that contribute to the meaning of a movement:
altitude, force, motion (expansion, contraction), sequence,
direction, form, velocity, reaction, and extension. The Del-
sarte system has been used for automatic generation of
affect-expressive full-body [78] and hand and arm [79]
movements. In [79], participants’ perception of a set of Del-
sarte-generated hand and arm movements displayed on an
animated agent was shown to be consistent with the Del-
sarte model prediction.

Recently, Dael et al. proposed BAP (body action and pos-
ture), a structural notation system for a systematic descrip-
tion of temporal and spatial characteristics of bodily
expression of emotions that, analogous to FACS, introduces
141 behavioural categories for coding action, posture, and
function of an observed body movement [25]. BAP seg-
ments body movements into localized units in time and
describes them at three levels: anatomical (articulation of
different body parts), form (direction and orientation of the
movements), and functional (behavioural classes catego-
rized in kinesics emblems, illustrators, manipulators). BAP
anatomical and form variables are Boolean (0 for absence
and 1 for presence), while functional variables are ordinal
(1 for very subtle and 5 for very pronounced). BAP was
developed using the GEMEP corpus of emotion portrayals.
Since the movements are captured from the knees upwards
in GEMEP, the current version of BAP does not code whole
body postures and leg movements. BAP also does not code
dynamic movement characteristics such as velocity, acceler-
ation, and energy. BAP reliability has been demonstrated by
assessing intercoder agreement (two coders) on occurrence,
temporal precision, and segmentation of posture and action
units [25]. To the best of our knowledge, there is a single
report on the application of BAP for computational analysis
of affect-expressive movements, in which BAP behavioural
categories are employed for recognition of 12 affective states
encoded in 120 movements demonstrated by 10 actors [37].
Recently, AutoBAP has been proposed for automatic anno-
tation of posture and action units based on BAP anatomical
and form (and not functional) coding guidelines [80].

For automated affect-expressive movement recognition
and generation, there is a need for consistent and quantita-
tive description of movements, leading to a preference for
structural notation systems that provide a fixed number of
distinct movement descriptors (legibility criterion). These
descriptors should be mappable to measurable movement
characteristics, e.g., joint position, velocity, or they should
be readily quantifiable. Furthermore, such a mapping (or
quantification) should be reversible for generation studies
in which low-level movement trajectories are needed to pro-
duce a desired affect-expressive movement. The reversible
map enables modifying low-level motion trajectories for a

given set of specified quantitative descriptors characterizing
a desired affective expression [72].

Despite their proven suitability for movement coding,
except for BAP, the structural notation systems do not
explicitly provide quantitative measures, which is perhaps
the main barrier to their application in computational move-
ment analysis. In addition, the extensive attention to micro-
analysis (e.g., Birdwhistell system [66]), and the need for
special training (e.g., Laban system) hamper their adoption
in affective computing. Furthermore, some notation systems
require the coder to infer the meaning or function of an
observed movement, e.g., Delsarte [77]. However, the corre-
spondence between movements and affective expressions is
not transcultural and transcontextual and there may be idio-
syncratic, gender-specific, or age-specific differences in
affect-expressive movements [81]. Such movement/affec-
tive expression discrepancies result in a drawback for the
notation systems that code the meaning or function of an
observed movement. In addition, the amount and intensity
of an affect-expressive movement is important for computa-
tional analysis; hence, the preference for structural notation
systems that code such information. A table summarizing
the characteristics of the prominent structural notation sys-
tems is provided in the supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/T-AFFC.2013.29.

4 HumAN PERCEPTION OF AFFECT-EXPRESSIVE
MOVEMENTS

Various psychological studies indicate that humans are not
only capable of recognizing the intended action [82], but
also gender [83], identity [84], and affective state [13], [28],
[82], [85] from body movements. In general, the perception
of affective state is multimodal, e.g.,, sound and body
movements both influence the affective interpretation of
music [86].

Many researchers have tested the human perception of
affective state through dance and body movements, using a
variety of stimuli including both full-light (FL) and point-
light (PL) videos [85], [87], [88], [89], and reported above
chance recognition rates. Research on the capacity of
humans to recognize affective states helps to develop a bet-
ter understanding of human perception of affect-expressive
movements, and can offer insight into whether movements
of full-body or isolated body parts are capable of communi-
cating affective expressions. Furthermore, perceptual stud-
ies can inform computational analysis by identifying the
movement features most salient to affective perception in
human observers.

In this section, an overview of the affect-expressive
movement perception literature is presented to motivate
and support the computational analysis of affect-expressive
movements covered in the following sections.

4.1 Full Body Movements and Gait

Boone and Cunningham [87] report the following six
movement cues used by participants for the perception of
affect-expressive dance movements: changes in tempo
(anger), directional changes in face and torso (anger), fre-
quency of arms up (happiness), duration of arms away
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from torso (happiness), muscle tension (fear), the duration
of time leaning forward (sadness). Camurri et al. suggest
that the duration of the movement, quantity of the move-
ment (the amount of observed movement relative to the
velocity and movement energy represented), and contrac-
tion index (measured as the amount of body contraction/
expansion) play key roles in the perception of affect from
dance movement [88].

Studies from psychology indicate that affective states can
be expressed during walking and recognized above chance
level by human observers (e.g., videos [90], [91], animation
[54], [92]). These studies show that affective states modulate
gait parameters and kinematics such as walking speed,
shoulder and elbow range of motion, and head orientation
[30], [90], [91], [92]. For instance, sadness and depression
are characterized by reduced walking speed, arm swing,
and vertical head movements as well as slumped postures
and larger lateral body sway [30]. In gait-based analysis
using the PAD model, human observers recognize differen-
ces in arousal better than differences in pleasure [54].

4.2 Upper Body Movements

There are fewer works on affect perception from individual
body parts in isolation from the rest of the body. There are
situations where only individual body parts are observable
due to occlusion of the rest of the body (e.g., the head and
hands movements in a video call). Furthermore, there is
interest to display affect-expressive movements on embodi-
ments that, due to kinematic constraints, are incapable of
full-body movements and rather display only isolated limb
movements (e.g., [93], [94]). Therefore, it is important to
explore expression and perception of affect through indi-
vidual body parts.

Ekman and Friesen suggest that head orientation is an
indicator of gross affective state (i.e., positive versus nega-
tive) as well as intensity of emotion [10]. Busso et al. con-
ducted a user study using the PAD model to evaluate the
perception of affect from head motion during affective
speech [95]. They report that head motion corresponding to
different affective states is characterized by distinct motion
activation, range, and velocity.

There is evidence that hand and arm movements are
most significant for distinguishing between affective states
[12], [36], [96]. Different affective states conveyed with hand
and arm movements are recognized above chance level (FL
videos of hand and arm movements [97], [98], [99], [100], PL
animation of affective drinking and knocking movements
[28], animated anthropomorphic and non-anthropomorphic
hand models displaying abstract movements [101], [102]).
Velocity, acceleration, and finger motion range are fre-
quently reported as important hand and arm movement
features for distinguishing different affective states [28],
[100]. For instance, in [100], happy movements were charac-
terized by indirect arm trajectories, angry movements were
forceful and fast, whereas sad movements were slow and
weak. Perceived arousal was found to be correlated with
velocity, acceleration, and jerk (rate of change of accelera-
tion) of the arm movement [28]. Affective state is also
recognized above chance level during sign language com-
munication, even for observers who do not understand the
language being signed [98], [99].

4.3 Gender Differences in Perception

The effect of gender on the perception of bodily expression
of affect is largely unexplored. Differences in the percep-
tion of affect-expressive movements may exist due to the
gender of the demonstrator and/or observer. In general,
reports on gender differences in the perception of affective
state mainly focus on facial expressions. There are various
and sometimes contradicting findings on the abilities of
men and women in decoding facial expressions [103].
Women perceive affective states through facial expressions
more accurately than men [104], [105], [106]. Men are
found to be superior in recognizing angry facial expres-
sions, e.g., [107], [108], [109], whereas women are found to
be better at perceiving happy facial expressions, e.g., [110],
[111] and sad facial expressions, e.g., [109]. However, in a
recent study on decoding affect-expressive movements,
male observers outperformed female observers in recogniz-
ing happy movements, whereas the female observers were
better at recognizing angry and neutral knocking move-
ments [112]. In another study, no significant gender differ-
ences in the perception of affective hand and arm
movements were observed [97].

Other studies investigate the role of the demonstrator’s
gender in the perception of affect-expressive movements. In
a user study, participants tended to apply social stereotypes
to infer the gender of a point-light display throwing a ball
with different emotions. Angry movements were judged to
be demonstrated by men and sad movements were more
likely to be attributed to women [113]. Similarly, the percep-
tion of fearful gait is facilitated if the walker is female [114],
due to kinematic similarities between fearful gait and natu-
ral female gait.

These sometimes conflicting findings illustrate the
important role that gender might play in the perception and
demonstration of affect-expressive movements, and empha-
size the importance of considering gender in studying
affect-expressive movements. For computational affect-
expressive movement analysis, to remove (or control) the
potential role of gender, databases should contain a bal-
anced number of male and female demonstrators, and the
reliability of the databases should be evaluated with both
male and female observers.

4.4 Embodiment

The embodiment of an artificial agent expressing an affec-
tive state can be physical (robotic agent) or virtual (ani-
mated agent). Physical and virtual embodiments can be
further subdivided into anthropomorphic (human-like kine-
matics and appearance, e.g., physical anthropomorphic
[115], virtual anthropomorphic [116]) and non-anthropo-
morphic (non-human-like kinematics and appearance, e.g.,
physical non-anthropomorphic [117], virtual non-anthropo-
morphic [102]).

It is well known that humans can perceive affective states
from non-anthropomorphic demonstrators. For example,
humans can perceive life-like affective states from the move-
ment of abstract geometrical shapes [118]. However, there
are conflicting reports on the role of embodiment in percep-
tion. In some studies, the perception of affect-expressive
movements was not influenced by non-anthropomorphic
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appearance [101] and kinematics [117] of demonstrators,
whereas other studies have shown that non-anthropomor-
phic kinematics and appearance of display embodiment
may influence the affect-expressive movement perception
[102], [119], [120]. For instance, in a recent study [102], the
non-anthropomorphic appearance was found to signifi-
cantly affect participants’ ratings of affect-expressive move-
ments demonstrated on animated human-like and frond-
like embodiments.

Movement features salient to the perception of affect
from animated geometric agents include absolute velocity,
relative angle, relative velocity, relative heading, relative
vorticity, absolute vorticity and relative distance [121]. The
arousal component of perceived affect-expressive move-
ments displayed on embodiments with non-anthropomor-
phic kinematics [117], [122] and appearance [102] is found
to be correlated with the velocity and acceleration of the
movements. In [122], the valence component of perceived
affect-expressive movements, displayed by an interactive
device with non-anthropomorphic kinematics, is related to
the smoothness of the movements.

In a recent study, the impact of the embodiment on the
participants” perception of affect-expressive movements
varied between male and female participants [123]. For
instance, male participants correctly recognized arousal and
valence characteristics of angry movements regardless of
the embodiment, whereas female participants associated
less arousal and less-negative valence to the non-anthropo-
morphic embodiment displaying the angry movements.

There are also conflicting reports on differences between
perceiving affective states from physical embodiments (e.g.,
robot) and virtual embodiments depicted in video or anima-
tion. Some studies report no significant differences [124],
[125], whereas significant differences between the percep-
tion of affect-expressive movements from videos of an actor
and his animated replicates are reported in [116]. Therefore,
the embodiment of affective displays may influence their
interaction with human users and merits further exploration
to identify the role of display embodiment in the perception
of demonstrated social, behavioural, and affective cues.

5 AUTOMATIC RECOGNITION OF
AFFECT-EXPRESSIVE MOVEMENTS

Although affective phenomena have been studied for over a
century and a half by psychologists [126], [127], it was only
in the 1990s that research into systems capable of automatic
recognition of affective states attracted the interest of engi-
neers and computer scientists [128]. Early research was con-
ducted on facial expressions and identified as challenges,
among others, the subconscious nature of the perception of
affective expressions as well as contextual, interpersonal,
and intercultural differences in expressing and perceiving
affect [6], [7]. Automatic recognition of facial expressions
has been investigated for both person-dependent and per-
son-independent recognition” of acted facial expressions of

7. Person-dependent recognition refers to the case where both training
and test data come from the same individual, and person-independent
recognition refers to the case where the training and test data come
from different individuals.

basic emotions. Most recent works move towards the recog-
nition of spontaneous expressions, representing affective
states as dimensions rather than distinct categories, and
multi-modal recognition based on facial expressions, lin-
guistic and non-linguistic components of speech, and body
movements [2], [4], [6], [7]. While recognition from body
movements is not as mature as facial expression recogni-
tion, most of the challenges described above for automatic
recognition of facial expressions have been investigated in
individual case studies for body movements.

In the following, we summarize the type of sensors
recording the movements, the consideration of acted, eli-
cited, or natural expressions, and the components of an auto-
matic recognition system for affect-expressive movements.
Then, we provide an overview on the current achievements
on analyzing upper-body and whole-body movements.

5.1 Sensors for Recording Affect-Expressive
Movements
The following approaches have been applied to record

expressive motions:

e Computer vision [38], [52], [58], [59], [100], [129],
[130], [131], [132], [133], [134].
e Motion capture [51], [53], [54], [55], [56], [135], [136],
[137], [138].

e Pressure sensors [139], [140].
Optical motion capture data provides high resolution data
which facilitates recognition. However, optical motion track-
ing is limited to methodological studies, while wireless inertial
motion tracking [53], [138], data gloves, bend sensors, pressure
sensors, or computer vision algorithms are used to record
movements in a naturalistic environment. Most studies that
approach real-world scenarios are based on computer vision
and track regions of the hands, the head, the shoulders, the
neck, the upper body, or the complete body [38], [59], [129],
[141]. A framework for extracting a minimum representation
of affective states from the position and dynamics of the head
and hands from video data is provided in [132]. To circumvent
the difficulties that accompany computer vision algorithms
(e.g., different lighting, background conditions, viewing angle,
and occlusions), other approaches suitable for HCI include
inertial motion tracking [53], [138] or, for seated postures,
instrumenting the seat and the back of the chair with pressure
sensors [139], [140]. These sensors are especially suitable to
insure privacy by avoiding the use of video data from which
the user’s identity might be easily retrieved.

5.2 Acted, Elicited, or Natural Expressions
Automatic recognition of affective states from facial
expression is moving towards the use of databases that
consist of natural expressions [2], [4], [6], [7]. A similar
trend is observed for affective body movements. Early
studies are based on acted or elicited affective expres-
sions. Recent work has considered the recording of natu-
ral expressions during HCI [53], [139], [142]. Still, the
number of such studies is small in comparison to works
on facial expression.

Most studies rely on data from acted or elicited affective
expressions. Dancers demonstrate the movements in [57],
[58], [100] and non-professional actors in [51], [59], [131].
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Affective expressions are either elicited by a human-com-
puter conversation [129], or by imagining a scenario. The
scenario is either a short story [38], [56], [143] or one of a
person’s own memories [54], [55]. A small number of stud-
ies investigate natural expressions during HCI. The scenar-
ios are playing a computer game [53], playing a video game
[142], and using an automatic tutoring system [139]. Klein-
smith et al. discuss advantages and disadvantages of
recording acted and elicited expressions and conclude that
works on acted and elicited expressions provide useful
insights, but that more studies are necessary which con-
sider natural expressions for real-world HCI/HRI applica-
tions [19].

Furthermore, the data sets differ regarding annotation.
Ground truth is considered to be the affective expression
which actors are asked to act, the intended elicited expres-
sion, e.g., [54], [56], or the affective state which is most fre-
quently labeled by observers, e.g., [142], [144]. This aspect is
discussed extensively in [19], and Kleinsmith et al. intro-
duce a novel approach for reliably estimating the affective
expression for a small number of annotators [142]. When
moving towards natural expressions, a reliable estimate for
the ground truth is necessary and recognition algorithms
need to be developed which can handle label uncertainty
and multiple labels for an expression.

A table listing the available affect-expressive movement
databases is provided in the supplementary material, avail-
able online.

5.3 Components of an Automatic Recognition
System for Affect-Expressive Movements

Developing an automatic recognition system for affect-

expressive movements consists of the following four steps

(e.g., [56], [57], [129], [132]):

1. Estimation of motion trajectories from sensor data,

2. temporal segmentation (based on time windows or

movement primitives),

3. construction of a feature set and dimensionality

reduction (when necessary),

4.  detection of affective expression.

Steps 1 and 2 address human movement analysis in gen-
eral. Step 1 reconstructs a description of the movements,
e.g., joint angle trajectories, from sensor data. For this pur-
pose, various sensors can be used, see Section 5.1; the
motion reconstruction approach used depends on the sen-
sor data. Step 2 partitions the continuous time series data
into short-duration segments for subsequent analysis. Many
studies investigating affect-expressive movements use pre-
segmented data, which are either manually segmented or
only individual movement segments are recorded. Only a
small number of studies include automatic segmentation,
e.g., based on the quality of movement [57] or motion
energy [56]. For training and evaluation of the classifier,
these segments need to be labeled.

A large variety of features can be constructed from move-
ment data. Most approaches transform the time series data
describing the motions to a set of time-independent varia-
bles using descriptive measures. In [60], functional
dimensionality reduction is used to extract relevant features
directly from time-series data. In general, the following

three approaches are commonly used for constructing the
feature space: 1) A set of hand-selected features is created
describing human movement and when necessary this set is
reduced to relevant features by dimensionality reduction,
e.g., [38], [51], [52], [53], [54], [55], [129]. This approach is not
grounded in psychological theories about affective expres-
sions and is particularly suitable when the sensor data can-
not easily be related to a kinematic or shape-based model of
human motion, e.g., for pressure sensors integrated in a seat
[139]. 2) In the second approach, features are selected based
on findings from perceptual studies in psychology [54]. 3)
The third approach utilizes a notation system to create a set
of high-level descriptors as features [57], [58], [59], [100],
[138], [141]. These three approaches are not mutually exclu-
sive and can be combined to find a comprehensive feature
set, e.g., in [57]. Across the three approaches, movement
speed is commonly selected as a feature in most studies.

Step 4 maps low-level motion features or high-level
descriptors to affective states. Classifiers such as Support
Vector Machine, Naive Bayes, Nearest Neighbor, or Multi-
Layer Perceptron are used for categorical labels. When a
dimensional representation is used, each dimension is either
categorized into low, neutral, and high and a classifier is
trained, or regression techniques are applied, e.g., support
vector regression. Each technique can be applied for either
person-independent or person-dependent recognition.
Reported recognition rates from several studies are summa-
rized in the supplementary material, available online.

To date, only a small number of studies have made use of
movement notation systems [59], [100], [131], [138], [141].
The lack of use of the notation systems can be explained by
1) a lack of quantification of the notation systems, 2) a lack
of awareness of the notation systems, which are most com-
monly used in the dance community and psychology, in
engineering and computer science, and 3) a lack of system-
atic and quantitative mapping between the components of
the notation system and affective states. The majority of the
approaches map kinematic motion features directly to affec-
tive states or dimensions. This approach provides reliable
recognition rates when only movement data is available,
comparable recognition rates to facial expressions or speech
in multi-modal scenarios, and improves overall accuracy in
multi-modal systems when combined with other modalities
[38], [129], [141], [145].

An additional challenge when developing systems that
automatically analyze affective expressions is that expres-
sions differ between individuals in both intensity and qual-
ity. Factors contributing to these differences are, among
others, differences in early child development, personality,
life history of a person, gender, and culture [14], [15], [146],
[147]. Inter-individual differences in the expressiveness and
movement performance lead to noticeable decreases in
accuracy for person-independent recognition [51], [54], [56],
[59]. This difference is particularly large for functional
movements where expressiveness is secondary to function
[54], [56]. For a group of known users during HCI/HRI, the
recognition accuracy can be improved when the algorithm
is adapted and trained for each user. An approach to cir-
cumvent person-specific training would be to cluster affect-
expressive movements in sets of expression styles. Persons
who express affective states in a similar style are grouped
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into a cluster and a form of style-specific recognition is
developed which is between person-dependent and person-
independent recognition. Kleinsmith and Bianchi-Berthouze
discuss the dependence of affective expressions on the cul-
ture [19]. As nonverbal behavior differs between cultures
[14], [15], this aspect needs to be considered when recording
databases, annotating databases, developing algorithms,
and transferring a system to a different cultural area.

5.4 Upper Body Movements

Abstract and functional movements have been investigated in
studies using optical motion capture. Pre-defined abstract
movements are studied to analyze recognition of affective
states based only on modulation of the specified movement,
e.g., arm-lowering motions [100], both raising and lowering
the arm [59], and closing and opening the hand [102]. The
results of these studies [59], [100], [102] support the hypoth-
esis that information about affective states can be retrieved
from the way a motion is performed and recognition is not
only limited to the detection of expressive gestures. This
result is relevant for functional movements, where expres-
siveness is only possible through trajectory modulation,
e.g., knocking [56].

Studies that approach naturalistic scenarios are mostly
based on computer vision. Estimation of head pose and ges-
ture types using computer vision is covered in the surveys
[148] and [149]. To generalize to a wide range of move-
ments, classifiers for recognition of affective states are
trained on a variety of communicative movements, which
include gestures, head motions, torso movements, or combi-
nations of them. These movements can vary in type selec-
tion and style. Considering a set of four affective states,
Glowinski et al. suggest that the discriminative features
may be features describing movement style rather than spe-
cific gesture types [132]. This facilitates recognition, because
learning a complete set of possible gesture types that might
occur during an interaction can be avoided. It has not yet
been investigated whether this finding holds also for dis-
criminating between a larger set of affective states.

Recognition of affective states from observing only head
movements is investigated in [150], [151], [152], [153]. Using
only a small set of possible movement types (e.g., nodding,
shaking, tilting, no movement, leaning forward and back-
ward) and the way they are performed (modulation), results
in person-dependent recognition rates above chance level.
Person-independent recognition rates above chance level
are reported when combining head movements with arm
gestures or observing only arm gestures and torso move-
ments, e.g., [38], [53]. By observing only torso movement
during HCI, e.g., by instrumenting the seat and the back of
the chair in front of the computer with pressure sensors, it is
possible to classify the two-class case whether a specific
affective state is expressed or not, but the recognition rate
for distinguishing between several affective states is low
[139]. Hence, the most promising approach to achieve robust
person-independent recognition is to create a feature set that
captures head movements, torso motion, and arm gestures.

Several studies investigate multi-modal systems which
combine the recognition of affective states from body move-
ments, facial expressions, and speech [38], [52], [129], [131],
[141], [153]. For example, [38] uses both body movements
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and facial expression to recognize affect, and finds that rec-
ognition accuracy is improved over either modality alone.
The results of these studies indicate that gestures and upper
body movements are suitable modalities for multi-modal
systems to recognize affective states and improve recogni-
tion accuracy of the overall system. Furthermore, it might
be easier for a vision-based system to model and recognize
affective states from a combination of gestures and head
motions than from atomic movements in the face [38].

5.5 Gait, Dance and Whole-Body Gestures

Many of the studies on recognition of affective states from
whole-body movements use optical motion capture pro-
viding high accuracy of the reconstructed joint angles [51],
[54], [55], [60], [135], [136], [137]. Naturalistic scenarios are
approached in [57], [58], [131], [142] using computer-
vision or body-worn sensors for motion recording. The
state of the art can be subdivided into works considering
functional movements such as walking, artistic movements
such as choreographed and non-choreographed dancing,
and those analyzing communicative movements such as
whole-body gestures.

For walking, the primary task is locomotion; affective
expression through variations in the walking style is sec-
ondary. Gait databases are characterized by highly dimen-
sional, temporally dependent, and highly variable data
vectors. Efficient dimensionality reduction is essential,
achieved, e.g., by an adapted blind source separation algo-
rithm which considers joint-specific time delays [137]. Rec-
ognition rates for person-dependent training are higher
than person-independent training [54], [55], [136]. There-
fore, a two-stage approach is proposed in [54], which con-
sists of first identifying the person and then applying
person-dependent recognition of affective expressions. Con-
versely, identifying a person by his/her walking style is
affected by expressiveness; accuracy for identification
decreases by about 10 percent when the affective state dif-
fers between the training and test set [54].

The recognition of emotions from dance movements is
studied in [57], [58]. Basic emotions are recognized in both
studies without the need to relate a set of specific expressive
gestures to each emotion. This is necessary to allow the
dancers to perform any motion and not restrict the dancers
to a set of motions.

Gestures communicate information about affective states
and/or emphasize words during verbal interaction (i.e.,
kinesic regulators). This makes them especially suitable for
recognizing affective states. A set of acted, expressive whole-
body gestures are considered in [51] and [144]. Even though it
can be expected that the expression of affective states by ges-
tures has common characteristics among subjects, inter-indi-
vidual variations are sufficiently large to influence
recognition accuracy [51]. Kessous et al. [131] use the Eye-
sWeb software [154] to extract features from whole-body
gestures and accuracy is larger than for features extracted
from facial expressions or speech in their study. The highest
recognition rate is achieved by feature-level fusion of the
three modalities (gesture, facial expression, and speech)
[131]. Dimensionality reduction of high-dimensional whole-
body gestures is directly applied to the time series data using
both supervised and unsupervised techniques in [60].



350 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL.4, NO.4, OCTOBER-DECEMBER 2013

Work on static postures considers snapshots of movements
as the input signal and excludes dynamic information. The
discriminability of affective postures is studied in, e.g.,
[142], [144]. Feature extraction and classification do not pro-
cess temporal information. These studies show that, in addi-
tion to the dynamic characteristics of movement, postural
configurations contain information about the affective state.
In most studies, postural cues are not explicitly separated
from dynamic cues. Hence, recognition of affective expres-
sions from body movements is usually based on a feature set
combining postural and dynamic movement information.

6 GENERATION OF AFFECT-EXPRESSIVE
MOVEMENTS

This section reviews the research on the generation of
affect-expressive movements for virtual agents for HCI
and robots for HRI It is believed that the character of the
virtual agent or robot becomes more believable if emo-
tional body language stylizes the movements [116]. Both
facial and bodily expressions have been investigated for
human-like, zoomorphic, or cartoon-like virtual and physi-
cal embodiments [152], [155], [156], [157], [158]. Affect-
expressive movements are particularly suitable for simpli-
fied humanoids without sophisticated hardware for dis-
playing facial expressions. For virtual agents, bodily and
facial expressions have been combined in a few studies,
providing an enhancement of the character’s expressive-
ness [155]. The generation of affective expressions for
robotic heads and virtual faces can utilize the FACS [155],
[156], [157], [159]. Such a standardization facilitates the
development of automatic generation of affect-expressive
movements as it provides engineers and computer scien-
tists with a common psychologically-accepted framework
and enables a systematic comparison between results of
different studies. Unfortunately, such a coding system has
not been developed and evaluated for the generation of
expressive body movements with respect to generalization
across a variety of different movements and embodiments.

Automatic generation of affect-expressive movements
includes the following steps:

Selection of desired affective state.
Movement type selection.

Movement modulation.

Trajectory generation (when necessary).
. Robotics: Motor commands.

The movement type is either selected based on the
desired affective state (step 1) or to accomplish a functional
task. Modulation of the movement type (step 3) adds affec-
tive expressiveness to a functional or abstract movement
and enhances expressiveness for communicative or artistic
movements. When step 2 and 3 provide key poses, step 4
generates smooth trajectories for each joint, which link the
joint angle configurations from the start, the intermediate,
to the end frames. These trajectories are used directly to con-
trol the joints of a virtual agent. An additional step 5 is
required for real robots to translate these trajectories into
motor commands. The desired movement type and its mod-
ulation (step 2 and 3) can be either designed by artists,
dancers, photographers, and other experts, e.g., [160], [161],

G L=

Fig. 2. Generation of affect-expressive movements is studied for a wide
variety of embodiments, e.g., for an artificial hand or a frond-like struc-
ture [102], a real or animated hexapod [162], and a humanoid [163].

or automatically generated by a computational model. The
latter approach is preferable in affective computing because
it facilitates replication and generalization for different sit-
uations and different embodiments. This section focuses on
summarizing the approaches which provide explicit compu-
tational models for relating desired affective states to move-
ment features.

6.1 State of the Art

The animation industry has extensive experience develop-
ing believable character movement. Animators at Walt Dis-
ney studios have proposed a set of 12 design principles to
create believable characters [164], [165], [166]. Out of these
12 design principles, four are associated with the expression
of affective states and can be relevant for enhancing the
believability of a virtual agent or robot [164], [165], [166],
[167], [168]. Experienced animators recommend that only
one clearly defined affective state is expressed at a time.
Expressing an affective state can be a secondary action,
when it is started before or after the primary action, e.g., dis-
playing happiness while drinking. These two principles
consider that the attention of the observer may be drawn to
only one action at a time and a simultaneous secondary
action may be easily missed by the observer. Third, appro-
priate timing, such as fast or slow movement, influences the
expression. And fourth, exaggeration can be utilized to
enhance the visibility of an expression. The former two prin-
ciples influence the selection of the affect-expressive move-
ment; timing and exaggeration influence the generation of
the specific motion path for the selected expression. In the
following, different approaches are summarized for a
computational model which generates affect-expressive
movements. Models for generation have been applied to a
wide variety of embodiments, see Fig. 2.

6.1.1 Virtual Agents

Studying bodily expressiveness with animations has the
advantage that the full range of possible joint angles can be
investigated, whereas hardware limitations can decrease
the range of possible movements for physical embodiments
such as robots. Using animations also facilitates the evalua-
tion of a computational model. A model can be easily tested
regarding its generalizability to different embodiments and
to different movements. Perceptual user studies are com-
monly used to evaluate the computational model [102],
[169], [170]. An alternative is to compare the generated
motion trajectories to recorded affect-expressive movement
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trajectories [171]. The computational model relies on a rela-
tionship between movement features and affective states.
This relationship can be designed manually from motion
capture templates [171], [172], or extracted by machine
learning [102].

For example, the motion of an animated figure can be
described by a Fourier series for each joint angle over time.
Unuma et al. propose a model which continuously transi-
tions between two behaviors, e.g., neutral and sadness [172].
The transition is controlled by linear interpolation between
the models of the two behaviors. A template for each affec-
tive state and each movement needs to be recorded with
optical motion tracking to obtain the Fourier series. Amaya
et al. also rely on optical motion capture for affect-expressive
movements [171]. They derive an abstract description for
expressiveness based on the speed and spatial amplitude of
the movement. Other approaches that rely on recording
sample movements with motion capture and interpolating
between these templates describe a movement using radial
basis functions [173], a Hidden Markov Model [174], or non-
linear inverse optimization [175]. Chi et al. extend the num-
ber of movement descriptors by including the Effort and
Shape components of Laban [72]. The Effort and Shape com-
ponents can be varied to achieve expressiveness for virtual
characters. The intention of [72] is to provide animators with
a tool to design affective expressions by high-level descrip-
tors. However, a computational model between the descrip-
tors and affective states is not integrated. A behavior
markup language is proposed in [176], [177], which formu-
lates an XML format for behavior generation for virtual
agents. Each behavior is encoded by the developer and can
have attributes such as duration and amount.

Deriving high-level descriptors for affective expressions
facilitates the transfer to other movements, but requires that
two relations are defined: 1) the relationship between the
movement features and the descriptors and 2) the relation-
ship between the high-level descriptors and affective states.
The studies [169], [170] circumvent the need for the second
relationship by mirroring high-level descriptors of human
affective expressions during HCI. They observe the
human’s gestures with video analysis and use contraction
index, velocity, acceleration, and fluidity as descriptors for
human movements. These descriptors are mapped to spa-
tial extension, temporal extension, power, and fluidity of
the virtual agent. This approach is evaluated in a perceptual
user study for a repetitive hand motion (called beating in
the original text) [169], [178], and choosing different ges-
tures depending on the expressed affective state in [170].

Machine learning can be utilized to automatically derive
a set of descriptors for affect-expressive movements. One
possible approach is proposed in [102], where descriptors
represent the main modes of variation in a collection of
affect-expressive movements, obtained using functional
PCA. These descriptors were then used to generate affect-
expressive movements, which were perceived as intended
by observers in a user study [102].

6.1.2 Robotics

The concept of proximity zones in HRI follows the theory of
proxemics for human-human interaction in psychology [8],
[36]. The distance between human and robot is divided into

intimate (0-0.46 m), personal (0.46-1.22 m), and social (1.22-
3.66 m) proximity zones. Body movements are especially
suitable for conveying affective states during HRI in the per-
sonal and social proximity zone [8]. Several approaches have
been undertaken to automatically generate expressive
motions for robots. They can be subdivided into studies
which utilize Laban to describe affect-expressive movements
and studies which model kinematic parameters directly.

A relationship between motion parameters and affective
state is directly derived in [162], [163], [179]. Beck et al.
obtain a key pose for each affective state, arrange these in
the valence and arousal space, and generate new expres-
sions by blending between the joint angles of the key poses
[163]. In [162], the gait of a hexapod robot is adapted to dis-
play affective states by variations of the gait parameters
step length, height, and time. Values for each parameter cor-
responding to low or high pleasure, arousal, and dominance
are retrieved from a human gait database and are mapped
automatically to the kinematics of the hexapod. To find a
general approach which modifies an arbitrary motion so
that affective nuances are expressed, Nakagawa et al. pro-
pose to divide an arbitrary motion into the velocity and
expansiveness of the motion and a basic posture [179].
Velocity and expansiveness correlate with arousal and the
basic posture relates to the expressed level of valence, with
a contracted posture for low valence and an open posture
for high valence. Evaluation for the movements pointing
and waving shows that the type of motion has an effect on
the expressiveness, and that the observers recognized the
intended affective nuances except for the combination of
high valence and low arousal. The approaches [162], [163],
[179] derive a direct relation between motion parameters
and affective states.

Laban provides a scheme to describe motions, but is
not in itself a computational model for relating affective
states to bodily expression. Several research groups have
proposed the use of Laban to derive a computational
model for the generation of affect-expressive movements.
To derive a computational model, first the relationship
between an affective expression and its Laban-based
movement descriptors needs to be established. This can
be achieved by manually designing a set of possible rela-
tions [94], taking a relation between affective state and
movement from psychological studies, e.g., [180] who
refer to [88], or evaluating the relation for a specific robot
in a user study [158], [181], [182]. In these studies, affect-
expressive movements are modeled either using only the
Effort component [180] or both Effort and Shape compo-
nents [94], [158], [181]. Second, the mapping between the
Laban components and the joint angles and velocities
needs to be specified for the kinematics of the robot.
Reporting this mapping, e.g., in [158], [181], facilitates the
transfer of a published approach for a specific robot to
new studies with similar kinematics.

6.2 Influence of Embodiment on Expressiveness

Virtual agents and robots can differ in their embodiment.
Perceptual user studies have shown that differences in the
embodiment can lead to differences in the perception of
affective states, and that the embodiment-specific impact
on perception limits the range of affective states that can
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be conveyed through movement (see Section 4.4). The
results from perceptual user studies indicate that a general
computational model for generation of affective expres-
sions needs to consider the influence of embodiment on
expressiveness. Individual case studies have addressed
this influence for a virtual versus a physical robot [162],
different appearances [94], and anthropomorphic versus
non-human like appearance [102]. Each study evaluated a
single aspect in a user study and the interplay between
aspects has not been investigated.

Matsumaru investigates the perception of affective states
for a teddy bear robot and a black-suited teddy bear robot
performing the same expressive motion [182]. Their results
show that the perception of anger and disgust depend on
the appearance (regular versus black-suited) of the robot
whereas the perception of joy, sadness, surprise, and fear
did not depend on the appearance. Differences in human
perception are also reported for generated affect-expressive
movements displayed on a virtual hand with human-like or
frond-like appearances (Fig. 2), e.g., sad movements dis-
played on the frond-like hand were perceived as happy
movements [102]. However, Saerbeck and Bartneck find no
difference in expressiveness between an iCat and a Roomba
robot when the motion characteristics acceleration and cur-
vature are altered to convey affective expressions [117].
These studies show that differences in the kinematics and
the appearance can lead to differences in the perception of
affect-expressive movements.

7 DiIscCuSSION

In the following, we summarize the key issues for automatic
recognition and generation of affect-expressive movements.
We elaborate what movements have been investigated,
whether affective states are represented as categorical labels
or dimensions, and what movement features and computa-
tional models are used. We conclude by outlining future
research directions.

7.1 What Movements Have Been Investigated?
The perception of affective states from bodily motions has
been studied in psychology for a variety of affect-expressive
movements: functional movements, e.g., [28], [54], [90], [91],
[92], [183], communicative movements, e.g., [98], [99], artis-
tic movements, e.g., [85], [87], [88], [184], and abstract move-
ments, e.g., [13], [89], [100], [102]. Perceptual studies mostly
focus on analyzing the full body and less attention has been
directed to affective expression through individual body
parts in isolation from the rest of the body [95], [102].
Motivated by these results from psychological studies,
several machine learning algorithms have been developed
to recognize affect-expressive movements. Algorithms learn
either to detect an affective state for one specific movement
or for various movements. In the latter case, the training
data contains several movements for the same affective state
and the approach attempts to generalize across different
movements. Several studies analyze communicative move-
ments, e.g., upper-body gestures [38], [51], [52], [53], and
demonstrate that affective states can be recognized from
gestures. A small number of studies analyze the recognition
of affective states from artistic movements [57], [58], and

abstract movements [59], [100]. The results of [57], [59],
[100] indicate that affective states can be retrieved not only
from different movement types for each affective state but
also from the way a movement is performed. Functional
movements such as walking and knocking have been inves-
tigated in [54], [55], [56]. As the primary task is walking or
knocking, affective expression is secondary and it is dis-
played mainly by modulation of the functional movement.
These variations can be retrieved from high-resolution
motion-capture data.

The generation of affect-expressive movements is often
confined to a small set of movement types as exemplars for
each affective state. Abstract movements, e.g., hand move-
ments [102], and functional movements, e.g., drinking,
knocking, kicking [171], clapping [169], have been studied
for computer animations. Implementations on robots mainly
focus on upper-body movements, e.g., [94], [158], [179].
Exceptions are studies on the functional movements gait
[162] and planar locomotion [180]. Evaluation of the gener-
ated affect-expressive movements show a strong relation-
ship between movement type and style for expressiveness.
Modulation of the same movement can lead to different
affective expressions [102], [162]. Some affective states may
be more easily conveyed by a set of specific movements,
e.g., happiness by waving. This is supported by the results
of [158], [169], [178], [179], [181] for arm movements. On the
other hand, some movements may be unsuitable for convey-
ing certain affective states, e.g., anger in a study-specific con-
versational gesture [169]. Mancini et al. hypothesize that the
movement type can signal a particular affective state so
strongly that a different affective state can be difficult to
communicate [169]. Possible explanations for this interac-
tion are that some movements are only performed during
certain affective states in everyday life, the meaning of the
movement type dominates for some movements, and some
movements cannot be modified to express certain affective
states. More detailed research on the role of movement type
and style on the expressiveness would facilitate the generali-
zation of algorithms for automatic recognition and genera-
tion across different movements.

7.2 Affective Dimensions or Categorical Labels ?
Most perceptual studies on affect-expressive movements
use a set of categories representing the affective states.
Fewer studies investigate perception of affective dimensions
through body movements. Similarly, the majority of the pro-
posed approaches for automatic recognition and generation
of affect-expressive movements refer to a set of categorical
labels and only a few utilize a dimensional approach.

When using categorical labels, a subset of the basic emo-
tions is predominantly studied, particularly happiness, sad-
ness, and anger for both automatic recognition and
generation. This is in accordance with results from percep-
tual user studies in psychology, which show that the basic
emotions anger, sadness, and happiness are conveyed
through body movements [13], [90]. Often, the discrimina-
tion between anger and sadness, which differ mainly in
arousal, is more accurate than the discrimination of states
which differ mainly in valence (recognition: [54], [56], [59],
generation: [180], [182]). An exception is [51], where joy and
anger are most easily distinguishable. Only a few studies
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investigate fear [51], [100], [132]. Sawada et al. [100] analyze
the complete set of Ekman’s basic emotions and find that
surprise, disgust, and fear are difficult to express by simple
arm movements. The observation that some affective states
are less easily conveyed by body movement or movements
of individual body parts is also supported by perceptual
user studies in psychology, e.g., [89], [91], [92]. These find-
ings highlight the importance of both appropriate move-
ment and body part selection to facilitate communication.
For some affective states, other contextual cues or modali-
ties (e.g., facial expression) might also be needed.

A smaller number of studies utilize a dimensional
approach for representation (automatic recognition: [54],
[129], [132], [138], [142], [144], [150], [151], generation:[162],
[163], [179]). They typically all use the dimensions of
valence and arousal. Each dimension is either categorized
[54], [144] or a regression model is applied to model contin-
uous values for valence and arousal [129], [138], [150]. Better
discrimination of arousal compared to valence is reported
for automatic recognition in [54], [138]. The few studies on
generative models using a dimensional approach report
similar results: differences in valence are harder to commu-
nicate by modifying the functional movement walking than
differences in arousal [162], and the combination of high
valence and low arousal may not be clearly represented in
affect-expressive movements [163], [179].

7.3 What Movement Features and Computational
Models Are Used?

The set of possible features which can be calculated from
movement data is large; calculated feature sets differ largely
among the studies. The feature sets can be derived heuristi-
cally, by dimensionality reduction techniques, or from find-
ings of psychological studies. Most studies include speed as
a feature. The contribution of speed to the perception of
affective states is confirmed by perceptual studies in psy-
chology, e.g., [88], [91], [92]. Furthermore, a feature or multi-
ple features describing the spatial extent of a movement is
included in the majority of the studies.

The computational models can be divided into direct
models which directly relate movement features to affective
states, and two-stage models which first model the relation
between descriptors and affective states, and second model
the relation between movement features and descriptors,
e.g., fluidity. Several studies utilize a movement notation
system for designing a two-stage model (Laban: e.g., [57],
[58], [59], [138], [158], [182], BAP: [37]). Considering the
generation of affect-expressive movements, the use of a
movement notation system facilitates generalization across
different movements and embodiments. The recently pro-
posed BAP system provides a more detailed categorization
of body movements than the Laban system, and its
applicability to affect-expressive movements has been
shown in [37].

Experimental evaluation of a computational model for
generation of affect-expressive movements through user
studies is essential. The design of such user studies varies
widely across the works on generative models. Recommen-
dations on designing and conducting human studies in HRI
are summarized in [185].

7.4 Directions for Future Work

To enhance generalization across individual movements
and move towards integration into interactive scenarios, the
following future directions are suggested:

7.4.1 A Notation System for Affect-Expressive
Movements

Movement features and descriptors vary largely across
studies on automatic recognition and generation. A psycho-
logically accepted and validated notation system that relates
affective states to bodily expression would provide a com-
mon basis facilitating interdisciplinary research. Develop-
ing computational models on such a common framework
enables comparison between different studies, provides a
foundation for the choice of movement features and
descriptors, and facilitates the fusion with other modalities
to convey affective states. From the computational perspec-
tive, it is desired that such a framework describes which
movement features represent specific affective states, what
influence cultural and inter-individual differences have on
bodily expression, and how the embodiment influences
expressiveness. The first approaches towards this direction
have been undertaken, utilizing the Laban or BAP move-
ment notation system.

However, there are some limitations to the application of
the current notation systems for computational affect-
expressive movement analysis. Except for BAP, the existing
notation systems do not provide a validated set of behavioral
action units with defined boundaries and phase relation-
ships such as those of FACS. The adoption of a notation sys-
tem such as BAP for systematic coding of nuances in bodily
expression of emotion could drive forward the research in
computational analysis of affect-expressive movements. To
the best of our knowledge, there is only one study on validat-
ing the reliability of BAP, and that study is conducted by
BAP’s authors [25]. More experiments are needed to verify
BAP intercoder consistency in coding bodily movements
either as a whole or movements of individual body parts.
Furthermore, to enable the application of the movement
notation systems in computational movement analysis, mea-
surable physical correlates (e.g., velocity) of the notation
descriptors (e.g., Laban Effort components [75]) need to be
identified and used for quantifying the descriptors.

7.4.2 Representation of Affective States: Choice of
States and Dimensions

Automatic recognition and generation have used either a
dimensional or categorical representation of affective states.
Choosing an appropriate representation also includes the
consideration of how detailed the representation should be
and which affective states should be covered [1]. To date,
most studies include the categories of anger, happiness, and
sadness, or the dimensions of pleasure and arousal.
Findings from psychology indicate that body movements
are not limited to conveying only basic emotions [97] and
future studies may consider including affective states
beyond basic emotions. This is also motivated by individual
studies in HCI/HRI investigating additional affective states
including mood and feelings (recognition: frustration, ela-
tion, panic, amusement, relief, despair, interest, irritation,
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pride, boredom, confusion, delight, flow, frustration, inno-
cence, and laughter types [59], [130], [131], [132], [139],
[186]; generation: pride, disgust, surprise, fear, relaxation,
and nervousness [94], [158], [163], [180], [182]). It is further
of interest which affective phenomena are reliably conveyed
by body movements. Affect-expressive movements may
also provide the utility to detect affective states which are
less clearly conveyed through other modalities or which can
only be reliably recognized by observing more than a single
modality, e.g., pride, which human observers can only
decode reliably using both facial and bodily cues [27]. Tak-
ing a multi-modal approach opens the opportunity to con-
sider a broader range of affective states which have
relevance for HCI/HRI.

Considering a dimensional representation, it may be ben-
eficial to include additional dimensions beyond pleasure
and arousal, and future work may address determining the
appropriate choice of dimensions that are most relevant for
HCI/HRI applications. Individual studies on automatic rec-
ognition and generation indicate that also other dimensions
may be expressed and perceived from body movements
(automatic recognition: dominance/power, potency, avoid-
ance, expectation, intensity and interest [53], [54], [140],
[144], [150]; generation: dominance [162]). Adding the
dimensions potency and expectation (unpredictability) is
motivated by the studies [187], [188], which emphasize that
the two dimensions pleasure and arousal are not sufficient
to describe a large variety of emotions. Furthermore, Cowie
et al. recommends that engagement is an essential dimen-
sion for HCI/HRI, but it is rarely studied in psychology
[24, p. 17] or used, e.g., as evaluation parameter in [152].

7.4.3 Generalization for Different Embodiments

A computational model for the generation of affect-expres-
sive movements has not been proposed which generalizes
across different kinematics and appearances. Developing
such a model remains a future research area. Its evaluation
can be performed for either physical robots or virtual
agents. A user study on affect-expressive movements com-
paring the perception of affective walking styles for a physi-
cal robot and its virtual animation and similar user studies
on facial expressions show that the expressiveness of a robot
and of its animated display differ only slightly [124], [125],
[162]. This enables an evaluation of computational models
for a large variety of kinematics and appearances in virtual
environments, where animations can be more easily modi-
fied than the hardware design of a real robot. When the
kinematics/dynamics and the appearance of the animation
and a physical robot are the same, results on the perfor-
mance of the computational model in terms of expressive-
ness of the animated robot can be transferred to the physical
robot and design guidelines for developing the hardware of
the real, affect-expressive robot can be provided.

7.4.4  The Benefit of Integrating Context Knowledge

Context knowledge summarizes information about the
environment, interaction partners (e.g., information about
gender, personality traits, and culture), current activities,
and interactions. The current approaches for automatic rec-
ognition and generation of affect-expressive movements

largely do not take context knowledge into account. A
future direction is the development of adaptive systems to
select appropriate movements through interaction with the
user. A robot may learn to choose from a set of affect-
expressive movements these motions which most likely
match the expectations of the current interaction partner.
Furthermore, analyzing the context when a movement is
performed may lead to more robust recognition of affective
states. When the context is considered, actions can indicate
affective states, such as freezing during a conversation. Tak-
ing the context into account enhances automatic recognition
and generation of affect-expressive movements by inter-
preting whether taken actions express an affective state, rea-
soning how probable the expressed affective state is in the
current scenario, minimizing the risk that movements are
misinterpreted as affective expressions even though they
are only functional, and adapting the behavior of a virtual
agent or robot to the expectations of a user.

Multi-modal recognition provides a methodology to
detect affective states conveyed through movements in the
context of other modalities, e.g., [38], [52], [129], [131], [141],
[153]. Combining several modalities, such as conveying
affective states through facial expressions, speech, and
bodily expressions provides more reliable estimates for
automatic recognition and enhances believability and con-
gruency for generation. This also provides a methodology
to include affective expressions which are difficult to
express by a single modality, e.g., pride [27].

7.4.5 Integration into Interactive Scenarios

The long term goal of research on affective expressions is to
integrate the automatic recognition and generation of affect-
expressive movements into HCI/HRI scenarios. Key chal-
lenges include dealing with expressions that are natural
and variable in duration and intensity, and of integrating
these two modules into higher-level cognitive and interac-
tion models.

Acted expressions may differ from natural expressions
occurring during HCI/HRI interaction [2]. The transition
from acted or elicited expressions to natural expressions
can be guided by results of psychological studies on affec-
tive expressions in daily life and during human-human
interaction, e.g., only a small number of expressions are per-
ceived as intense, most are intermediate, and some are not
emotional in a natural scenario [24]. This study indicates
that machine learning algorithms need to consider different
intensities of affective expressions. This has been done by
qualifying categorical labels with a level of intensity (e.g.,
strong happy, weak happy) [188], and, for the dimensional
representation, moving towards regression techniques [129]
or by adding intensity as an additional dimension [188].
Furthermore, affect-expressive movements can vary in
duration, and onsets and offsets of a movement can be
indistinct. Considering automatic recognition, this influen-
ces the length of the segmentation windows: the expression
of very brief emotions can be missed with large windows;
but short windows may result in analyzing incomplete
movements. Here, analyzing individual movements can be
avoided by generalization across different movements, e.g.,
by general motion descriptors, [38], [131], [132]. The use of a
movement notations system can provide guidance for
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choosing such motion descriptors, e.g., the Effort and Shape
components of Laban.

When moving towards HCI/HRI scenarios, it is often
required to integrate automatic recognition of affective
states and/or generation of affective expressions into
higher-level cognitive models. Cognitive models can
include, e.g., perception of context cues, motivational pro-
cesses, emotion generation processes, and action selection
processes. When integrating generative models into a cogni-
tive system, the interface protocol should specify parame-
ters for intensity, duration, and repetition of an affective
expression [176], [177]. Furthermore, generative models can
be shaped by personality traits, e.g., angry and happy char-
acters have preferences for different expressions [152].

Furthermore, the interaction between several individuals
or between a virtual agent/robot and individuals can be
modeled. Here, psychological theories on human-human
nonverbal interaction can provide valuable guidance [14],
[189], [190], [191]. This is closely related to social signal
processing in HCI/HRI [192], [193]. Most of the reviewed
approaches detect the affective state of one individual.
Extensions to the interaction and relation of several subjects
or analysis of group behavior should be considered. An
example considering affect-expressive movements is the
study by Varni et al., who propose a real-time algorithm to
analyze the synchronization of affective behavior, empathy,
and the emergence of functional roles in a social group dur-
ing music performances and music listening [194].

8 CONCLUDING REMARKS

To date, essential achievements have been made to enable
automatic recognition and generation of affect-expressive
movements in HCI and HRI for a limited set of specific
movements, primarily in laboratory settings. For both rec-
ognition and generation, communicative, functional, artis-
tic, and abstract movements have been studied. However,
only a small subset of all possible movements, i.e., gestures,
walking, waving, and head movements, have been explored
in detail. In these studies, affective states are represented
either by categorical labels or a dimensional approach. A
few studies demonstrate that affective states beyond basic
emotions and beyond changes in pleasure and arousal can
be communicated through affect-expressive movements.
When modeling the relationship of affective states and
movement features, movement notation systems (Laban,
Delsarte, or BAP) can provide guidance for choosing motion
descriptors. The use of a common movement notation sys-
tem for affect-expressive movements would facilitate the
transfer of knowledge from psychological studies to their
applications in HCI/HRI and the generalization across
movement types and embodiments. Finally, the develop-
ment of agents capable of recognizing and generating
affect-expressive movements during natural, interactive
scenarios, integrating context knowledge and adapting to
individual users remains a key challenge for future work.
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