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This paper presents a survey on zoning methods for handwritten character recognition. Through the
analysis of the relevant literature in the field, the most valuable zoning methods are presented in terms
of both topologies and membership functions. Throughout the paper, diverse zoning topologies are
presented based on both static and adaptive approaches. Concerning static approaches, uniform and
non-uniform zoning strategies are discussed. When adaptive zonings are considered, manual and
automatic strategies for optimal zoning design are illustrated as well as the most appropriate zoning
representation techniques. In addition, the role of membership functions for zoning-based classification
is highlighted and the diverse approaches to membership function selection are presented. Concerning
global membership functions, the paper introduces order-based approaches as well as fuzzy approaches
using border-based and ranked-based fuzzy membership values. Concerning local membership func-
tions, the recent parameter-based approaches are described, in which the optimal membership-function
is selected for each zone of the zoning method. Finally, a comparative analysis on the performance of
zoning methods is presented and the most interesting approaches are focused on in terms of topology
design and membership function selection. A list of selected references is provided as a useful tool for
interested researchers working in the field.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Handwriting characters recognition is a very complex task
since different writing styles and handwriting variability can
produce extreme differences in characters [38,60]. Additionally,
the need to develop multilingual systems means coping with
the specificities of a large variety of alphabets with different
characteristics and degrees of complexity, as is the case of English,
Latin, Arabic, Chinese and Indian scripts discussed in the compre-
hensive surveys of Plamondon and Srihari [45], Arica and Yarman-
Vudal [2], Lorigo and Govindaraju [37], Nagy [40], Pal and
Chauduri [43], respectively.

No matter what alphabet is considered, the feature extraction
process plays a fundamental role in handwritten character recog-
nition. Thousands of different features have been considered, such
as features based on coefficients derived from mathematical
transforms, moment-based features, graph-based features, geo-
metrical features, projection, histograms, intersections, contour-
based features, gradient-based features and so on. The outstanding
survey by Trier et al. [64] offers an overview on the large variety of
different types of features that have been considered in literature.
ll rights reserved.
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Whatever feature type is used, zoning methods have been
widely adopted to derive useful information on the local char-
acteristics of patterns. In general, by letting B be a pattern image, a
zoning method ZM can be generally considered as a partition of B
into M sub-images (M integer, M41), named zones (i.e. ZM¼{z1,
z2,…, zM}), each one providing local information on patterns
[35,64].

In the past, zoning methods were widely implemented for both
analysis and recognition of handwritten characters. When zoning
is used for pattern analysis, the main goal is to investigate the
mechanism of human perception. In this case, the pattern image is
partitioned into zones and the relevance of the information carried
out from each zone is evaluated, in the context of human
recognition processes [61,62]. When zoning is used for the synth-
esis of recognition systems, the main goal of a zoning method is to
derive useful information on the local characteristics of patterns.
This approach, which has also been exploited in many commercial
OCR systems specifically devoted to the recognition of machine-
printed characters [5], is widely used in the context of hand-
written character recognition. This is due to its ability to extract
useful information for recognition aims, reducing the effects of
variability of handwritten characters [56]. Static zoning methods
use standard partitions of the pattern image, obtained using both
regular and non-regular grids. More recently, zoning design has
been considered as an optimization problem and adaptive zoning
design techniques have been proposed, in which zoning topology
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is obtained as the result of optimization problems [14,20,50].
Along with the developments in the design of zoning topologies,
several advances have also been registered in membership func-
tion design. Standard membership functions use the winner-
takes-all strategy. In this case, each feature has influence only on
the zone in which it is has been found. Other membership
functions have also been defined, according to global or local
strategies [21,27]. Recently, Impedovo et al. [16] presented and
discussed some of the most important advancements in the field.

This paper presents a complete survey on zoning techniques for
handwritten character recognition. Through the paper, the main
aspects of zoning design are addressed, based on zoning topology
and membership function selection. The paper is organized as
follows. Section 2 discusses the topologies of zoning methods.
Both static and adaptive topologies are considered, and the most
valuable zoning representation techniques are highlighted. Section
3 deals with the membership function selection for zoning-based
classification. Global and local membership functions are dis-
cussed in this Section, as well as new membership functions based
on fuzzy strategies and parameter-based approaches. Section 4
presents a comparative analysis of the zoning methods, based on
the most valuable results published in the literature. Section 5
reports the conclusion of this paper.
2. Topologies

The taxonomy of zoning methods is shown in Fig. 1, when
topologies are considered. Zoning topologies can be classified into
two main categories: Static and Adaptive. Static topologies are
designed without using priori information on feature distribution
Fig. 1. Zoning meth

Fig. 2. Uniform
in pattern classes. In this case, zoning design is performed
according to experimental evidences or on the basis of intuition
and experience of the designer. Conversely, adaptive topologies
can be considered as the results of optimization procedures for
zoning design. In this case, a variety of information can be used to
design the topology most profitable for the specific classification
problem.
2.1. Static topologies

Zoning methods based on static topologies use simple grids
that are superimposed on the pattern image. In the simplest case,
they use u� v regular grids, determining uniform partitions of the
pattern image into regions of identical shape.

Fig. 2 shows some examples of uniform topologies, based on
regular grids 2�2 (Fig. 2a), 3�2 (Fig. 2b), 3�3 (Fig. 2c), 4�4
(Fig. 2d), 5�5 (Fig. 2e). For example, Suen et al. [61,62] use 2�2,
3�2, 1�2 and 2�1 grids for zoning design and present a model
to evaluate the distinctive parts of handwritten characters. A
uniform topology obtained by a 3�2 regular grid is used by
Blumenstain et al. [4] for handwritten character recognition and
by Morita et al. [39], who derive contour-based features for digit
recognition. Oliveira et al. [42] adopt a 3�2 grid and extract
contour-based features from each zone. Koerich [30] and Koerich
and Kalva [31] examined the input image dividing the handwritten
character according to a 3�2 regular grid. The same grid is used
by Verma et al. [68] for character recognition using a back-
propagation neural network. A 3�3 regular grid for zoning design
is used by Baptista and Kulkarni [3] who extract geometrical
feature distribution from each zone, and by Singh and Hewitt
ods: topologies.

zonings.



Fig. 4. Hierarchical zoning.
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[59] that use a modified Hough transform method to extract
features for handwritten digit and character recognition. Phokhar-
atkul et al. [49] present a system for handwritten Thai character
recognition based on Ant-minor algorithm. They use a 4�3
regular grid for zoning design in order to extract closed-loop and
end-point features from the pattern image. A 4�4 regular grid is
used by Cha et al. [8] to extract gradient, structural and concavity
information from the pattern image, and by Negi et al. [41] to
derive the density of pixels in the different zones. Kimura and
Shridhar [28] use a zoning topology based on a 4�4 regular grid
to detect information from contour profiles of the patterns. In each
zone the number of segments on the contour of the pattern with
the same orientation is counted. Four basic orientations are
considered: 01,901,+451,−451.

The same grid is used by Liu et al. [36] to recognize Chinese
characters by a directional decomposition approach. Camastra and
Vinciarelli [7] use a 4�4 regular grid for recognizing isolated
cursive characters extracted from word images. In this case, two
sets of operators are applied to each zone. The operators of the
first set measure the percentage of foreground pixels in the zone
with respect to the total number of foreground pixels in the
character image. The operators of the second set estimate to what
extent the black pixels in the cell are aligned along some direc-
tions. Xiang et al. [70] apply zoning to the recognition of car plates.
They extract pixel density features dividing the character input
image from car plates using a 4�4 regular grid. Sharma and Gupta
[60] use 4�4, 6�6 and 8�8 regular grids to extract pixel density
from the pattern image. Impedovo et al. [17] presented an
optimized clustering technique for handwritten digit recognition
and use a 5�5 regular grid for extracting gradient-based features.
Rajashekararadhya and Ranjan [52–55] use a 5�5 regular grid for
zoning design. For each zone, the average distances from the
character centroid to the pixels in each row/column are considered
as features. A 5�5 regular grid is also used by Vamvakas et al.
[66,67] to compute local density in the character image, whereas
1�10 and 10�1 grids are considered for extracting profile
projection features in the vertical and horizontal directions,
respectively.

Jin and Wei [26] extract directional features for Chinese
character recognition by using 4�4, 8�8, 10�10, 4�9 and
4�16 regular grids. Impedovo et al. [18,19] perform handwritten
numeral recognition by using uniform zoning methods with M
zones, for M¼2 (1�2, 2�1 grids), M¼4 (1�4, 4�1, 2�2 grids),
M¼6 (3�2, 6�1 grids), M¼9 (3�3 grid), M¼16 (4�4 grid).
They use a genetic algorithm to determine the optimal weight
vector to balance local decisions by using M zones.

In other cases the pattern image is non-uniformly partitioned
into regions of different shape. This is the case of slice-based,
shape-based and hierarchical zoning methods. For instance, Taka-
haski [63] uses vertical, horizontal and diagonal grids to split the
Fig. 3. Slice-based z
pattern images into slice-zones and determines for each zone the
orientation histograms detected from pattern contours. Vertical
zoning is obtained by a 1�4 grid (Fig. 3a), horizontal zoning is
obtained by a 6�1 grid (Fig. 3b) and two oriented 6�1 grids are
used for diagonal zonings: +451 (Fig. 3c) and −451 (Fig. 3d). Two
slice-based zonings obtained by 1�3 and 4�1 regular grids are
also considered in the work of Phokharatkul et al. [49] to extract
features according to a histogram-based approach for the recogni-
tion of handwritten Thai characters.

More recently, Roy et al. [56,57] propose novel shape-based
zoning techniques using circular ring and convex hull ring parti-
tioning criteria. In this case, a set of circular rings is defined as
concentric circles whose center is the center of the minimum
enclosing circle of the character. Similarly, convex hull rings are
also constructed from the convex hull shape of the character. The
radii of the rings of the sets are defined according to an arithmetic
progression. In this case, to make the system rotation invariant,
the features are mainly based on angular information of the
external and internal contour pixels of the character.

Hierarchical zoning methods are generally used for multi-
resolution feature extraction strategies. For instance, Park et al.
[44] present a character recognition methodology (named Hier-
archical OCR) based on a multiresolution and hierarchical feature
space. Features at different resolutions, from coarse to fine-
grained, are implemented by means of a recursive classification
scheme (Fig. 4).
oning methods.
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In this case a variable size rectangular grid is used to define
sub-images for the quin (quad) tree. The bounding box of a
character image is divided into four rectangular regions (Fig. 4a).
After the center of the mass of the contour has been determined, a
vertical and horizontal line through the center of the mass will
delineate the four regions. The quin tree structure is similar with
an additional fifth subregion which is located in the central area
formed by joining the centers of the other four subregions
(Fig. 4b). Subsequent layers are successively constructed using
the same method.

2.2. Adaptive topologies

Adaptive zoning topologies are designed according to the result
of optimization procedures. In the past, manual approaches used
perception-oriented strategies to support human experts in the
process of zoning design. More recently, automated approaches
have been proposed, based on the optimization of well-defined
cost functions and zoning representation techniques.

The perception-oriented approach proposed by Aires et al. [1]
and Freitas et al. [12,13] is based on non-regular grids for zoning
design, resulting in a non-uniform splitting of the pattern image.
The authors consider concavity/convexity features derived from
the analysis of background pixels of the input image. In order to
make the zoning design process less empirical, they define the
zoning grid by using the confusion matrices looking for the
relation between the zones. Fig. 5 shows two examples of non-
uniform zonings obtained with a perception-oriented approach. In
Fig. 5a, the pattern image is partitioned into five zones, according
to a non-symmetrical criterion. In Fig. 5b, the pattern image is
symmetrically partitioned into seven zones.

When automated zoning design is used, zoning topology is
designed according to the result of an optimization process. So far,
two kinds of optimal functions have been considered in literature:
discrimination-based and performance-based. Functions of the
first category consider the discrimination capability of the zoning
topology; functions of the second category consider the classifica-
tion performance associated to the topology.

Valveny and Lopez [65] use a zoning method and divide the
pattern image into five rows and three columns. The size of each
row and column is determined in such a way to maximize the
discriminating capabilities of the diverse zones of the pattern
image. In the work of Impedovo et al. [10] zoning design is
performed according to the analysis of discriminating capability
Fig. 5. Perception-oriented zoning methods.
of each zone, estimated by means of the statistical variance of
feature distributions. Di Lecce et al. [9] designed the zoning
problem as an optimization problem in which the discrimination
capability of each zone is estimated by the Shannon Entropy (E)
defined as:

E¼ ∑
n

i ¼ 1
pi⋅log2

1
pi

ð1Þ

where n being the number of classes and pi the probability that a
feature (i.e. an end-point, a cross-point etc.) occurs in that zone for
the patterns of the i-th class. In this case, the zoning design
process starts from the analysis of the most discriminative points
of the pattern image and continues according to a region-growing
process. Fig. 6 shows two examples of zoning methods, with M¼6
(Fig. 6a) and M¼7 (Fig. 6b), obtained by Shannon Entropy
estimation.

In the adaptive approach proposed by Gatos et al. [15], features
are extracted after adjusting the position of every zone based on
local pattern information. This adjustment is achieved by moving
every zone towards the pattern body. The offset that is used for
adjusting zone position is calculated by maximizing the local pixel
density around the zone.

More recently, zoning has been designed by considering
classification performance. Impedovo et al. [20] define the optimal
zoning as the zoning for which the Cost Function (CF) associated to
the classification is minimum, with

CF Zð Þ ¼ a� Sub Zð Þ þ Rej Zð Þ ð2Þ

where Sub(Z) and Rej(Z) are, respectively, the substitution rate and
the rejection rate when the zoning Z is considered, and coefficient
a is the cost value associated to the treatment of substitutions with
respect to rejections. The authors use Voronoi Tessellation for
zoning description since it provides, given a set of points (named
Voronoi points) in continuous space, a means of naturally parti-
tioning the space into zones, according to proximity relationships
among the set of points.

Fig. 7 shows two Voronoi-based zoning methods of the M¼6
(Fig. 7a) and M¼9 (Fig. 7b) zones, respectively. In addition,
changing the position of the Voronoi points corresponds to the
modification of the zoning method. Therefore, zoning description
with Voronoi Tessellation offers the possibility to easily adapt the
zoning to the specific characteristics of the classification problem.
Impedovo et al. [20] also propose a genetic algorithm for zoning
Fig. 6. Discrimination-based zoning methods.



Fig. 8. Performance-based zoning methods (Template-based).

Fig. 7. Performance-based zoning methods (Voronoi-based).
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design, in which each individual of the genetic population is a set
of Voronoi points (corresponding to a zoning method) and the cost
function associated to the classification is considered as a fitness
function.

Ferrante et al. [11] perform an analysis of Voronoi-based zoning
and estimate the optimal number of zones, depending on the
characteristics of the classification problem. More recently, a new
technique has been proposed to define, in a unique process, the
optimal number of zones of the zoning method along with the
optimal zones, defined through Voronoi diagrams [25]. For the
purpose a new formulation of the zoning design problem has been
considered and a multi-objective genetic algorithm was used for
optimal zoning design [25,47].

Radtke et al. [50,51] present an automatic approach to define
zoning using Multi-Objective Evolutionary Algorithms (MOEAs).
Using the template in Fig. 8a, they define the zones based on fixed
position divisions (dotted lines) that can be turned on and off.
Since each division has two states, it can be controlled by a single
bit indicating whether the division is on or off. The idea is to
provide a self adaptive methodology to define the best zoning
method according to two diverse optimality criteria: an error rate
as low as possible (Eq. 3.1) and a minimal number of non-
overlapping zones (Eq. 3.2):

f error ¼ 1−
ncorrect

nvalidation
ð3:1Þ

f zones ¼ ð1þ ∑
4

i ¼ 0
diviÞ � ð1þ ∑

9

j ¼ 5
divjÞ ð3:2Þ
where, in Eq. (3.1), ncorrect is the number of correct classification
and nvalidation is the size of the validation database; whereas, in Eq.
(3.2), divx is a bit from the coding string (x¼1,2,…,9), determining
the zones turned on and off. A NSGA-II multi-objective selection
operator is used for the optimization procedure. Fig. 8b,c shows
two zoning methods of M¼9 and M¼12 zones, respectively.
Lazzerini and Marcelloni [33] apply a method for fuzzy classifica-
tion and recognition of two-dimensional shapes to handwritten
characters. The character image is partitioned horizontally and
vertically into stripes. For each dimension, a set of weights is
determined that define the importance of each stripe in the
classification process and a genetic algorithm is used to optimize
stripe dimension with respect to the recognition rate.

Lemieux et al. [34] present a hierarchical zoning method in
which floating zones are determined by a genetic programming
approach. Inspired by the approach of Park et al. [44], Gagné and
Parizeau [14] use a tree-based hierarchical zoning for handwritten
character classification. They present a genetic programming
approach for optimizing the feature extraction step of a hand-
written character recognizer. Their recognizer operates on a
hierarchical feature space of orientation, curvature, and center of
mass primitives. The nodes of the hierarchy represent rectangular
zones of their parent node whereas the tree root corresponds to
the entire image. Genetic programming is used to simultaneously
learn the best hierarchy and the best combination of fuzzy
features. For this purpose, they use population-based multi-
objective optimization techniques based on the concept of Pareto
optimality, where solutions are ranked according to a dominance
criterion. Further improvements have led them to use a data-
driven hierarchical topology where zones are recursively defined
around the center of mass of strokes, instead of the absolute center
of a parent region.

Wu and Ma [69] use a 7�7 partitioning criterion and propose
an elastic mesh-based approach in which the overlapped zones are
dynamically defined through mapping the input image to a virtual
normalized image. Non-linear shape normalization based on
weighted dot density is used to absorb pattern variability. Also
the recognition system of Kato and Suzuki [27] for Chinese and
Japanese handwritten characters uses a 7�7 zoning topology with
overlapping zones. A similar approach which uses overlapped
zones to reduce border effects has been proposed by Kimura
et al. [29].
3. Membership functions

Whatever zoning topology is considered, pattern description
should be able to absorb as much as possible intra-class variability
while maintaining inter-class differences. For this reason, the
feature-zone membership function is very important since it
determines the way in which a feature can influence the different
zones of a zoning method [23,32]. As Fig. 9 shows, two categories of
membership functions have been considered in the literature:
global and local. Traditional zoning-based classification approaches
use global membership functions. In this case a single membership
function is adopted globally, i.e. for all zones of the zoning method.
More recently, the use of local membership functions has been
proposed. In this case, a family of membership functions is
considered and for each zone of the zoning method a specific
membership function of the family is used.

3.1. Global membership functions

Two types of global membership functions can be found in the
literature: order-based and fuzzy-based. In both cases, the func-
tions are defined according to the proximity criterion of features to



Fig. 9. Zoning methods: membership functions.

Fig. 10. Feature extraction using regular 3�3 zoning.
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the diverse zones. When order-based membership functions are
considered, the membership values are assigned on the basis of
the values of specific proximity-based functions. In other cases,
fuzzy-based membership functions are utilized, in which fuzzy
membership values are adopted to define the influence of a
feature in each zone. More precisely, let ZM¼{z1, z2,…, zM} be a
zoning method and let f be a feature extracted from the pattern
image. A membership function gives the set of weights wj that
define the influence of feature f on zone j, for j¼1,2,…,M.
According to the type of values used to define influence weights
wj, j¼1,2,…,M, three classes of order-based membership functions
can be defined [21,22]: abstract-level, ranked-level and
measurement-level. When abstract-level membership functions
are considered, the influence values are given in the form of
Boolean values. When ranked-level membership functions are
used, the influence values are integers. When measurement-level
membership functions are used the influence values are real
numbers. Let dj¼dist(pf, pzj) be the distance between position pf
in which feature f is located and center pzj of zone zj, j¼1,2,…,M.
In order to formally define the order-based membership functions,
let.

〈j1; j2;…; jm; jmþ1;…jM〉 ð4Þ
be a sequence of indexes so that
�
 jm∈{1,2,…,M}, ∀m¼1,2,…, M;

�
 jm1≠jm2, ∀m1,m2¼1,2,…M, m1≠m2;
and for which it results

djm1≤djm2;∀m1;m2 ¼ 1;2;…;M: ð5Þ

The sequence of zones 〈j1,j2,…,jm,jm+1,…jM〉 are arranged
according to the increasing order of the distances between the
feature and the centers of the zones. For example, Fig. 10 shows a
uniform zoning based on a regular grid 3�3 of a pattern image of
size 54�72. In this case, P¼{pz1, pz2,…, pzM}¼{(9, 12), (27, 12),
(45, 12), (9, 36), (27, 36), (45, 36), (9, 60), (27,60), (45, 60)} is the set
of centers of the zones and pf¼(1,72) is the position in which
feature f (an end-point, in the example in Fig. 10) is detected. In
this case the list of indexes is 〈j1,j2,…,jm,jm+1,…,jM〉¼〈7, 8, 4, 9, 5, 6,
1, 2, 3〉. Now, when abstract-level membership functions are used,
the influence of f to each zone zj is defined using Boolean values.
Two main functions can then be considered [21]:
�
 The Winner-takes-all (WTA) membership function:
wj ¼ 1 if j¼ j1;wj ¼ 0 otherwise ð6Þ

It is worth noting that the WTA membership function is the
standard membership function used in the literature.
�
 The k-Nearest Zone (k-NZ) membership function:
wj ¼ 1 if j ∈ fj1; j2;…; jkg;wj ¼ 0 otherwise ð7Þ

Fig. 11 reports an example of abstract-level membership func-
tions WTA, 2-NZ and 3-NZ.
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When ranked-level membership functions are used, the influ-
ence of f to each zone zj is defined using integer values:
�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The Ranked-based (R) membership function:
wj ¼M−m if j¼ jm;wj ¼ 0 otherwise ð8Þ
Fig. 12 shows an example of ranked-level membership function.
When measurement-level membership functions are used, the

influence of f to each zone zj is defined using real values:
�
 Linear Weighting Model (L):

wj ¼ 1=dj ð9Þ
�
 Quadratic Weighting Model (Q):

wj ¼ 1=d2j ð10Þ
�
 Exponential Weighting Model (E):

wj ¼ 1=αβ�djðwith α; β parametersÞ ð11Þ
1 2 3 4 5 6 7 8 9

L

Q

E

Fig. 13. Measurement-level membership functions.
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Fig. 14. Border-based fuzzy membership
Fig. 13 shows an example of measurement-level membership
functions (L, Q and E with α¼1.2 and β¼1). Please note that in

Fig. 13 the weights are normalized so that w1+ w2+… wM¼1, for the
sake of clarity.

A different type of global membership functions uses fuzzy
values. Cao et al. [6] use a 3�3 regular grid for zoning design and
consider contour-based feature for character recognition. They
observe that when the contour curve is close to zone borders,
small variations in the contour curve can lead to large variations in
the extracted features. Therefore, they try to compensate for this
by using a fuzzy border. Features detected near the zone borders
are given fuzzy membership values to two or four zones.

A similar approach is proposed by Lajish [32] who uses a non-
overlapped zoning method based on a 3�3 regular grid. For each
zone, see Fig. 14, he considers three boundary regions of different
size (“A”: smaller region, “B”: average region, “C”: larger region) and
set the membership values of a feature according to the degree of
inclusion in the zone or within its boundaries. Fig. 14 shows the
zoning based on the 3�3 regular grid and the fuzzy regions for
each zone type: corner zones (zones 1,3,7,9), peripheral zones
(zones 2,4,6,8) and central zone (zone 5). Membership values for
each feature, extracted from the pattern contour, are set according
to their degree of inclusion in that zone. A feature that is in a zone
is assigned a membership value 1. All features in the fuzzy regions
of type “A” are assigned a membership value 0.75; features in the
fuzzy regions of type “B” are assigned a membership value 0.5;
features in the fuzzy region of type “C” are assigned a membership
value 0.25. A similar membership function is presented by Kato
et al. [27]. They split the pattern image of 64�64 pixels into 7�7
equal subareas of 16�16 pixels, where each subarea overlaps
eight pixels of the adjacent subareas, as Fig. 15a shows. Further-
more, each subarea is divided into four areas A,B,C,D (Fig. 15b): A is
a 4�4 area in the center, B is a 8�8 area exclusive of area A, C is a
12�12 area exclusive of areas A and B, D is a 16�16 area
exclusive of A,B,C, and D. In this case, the weights are 4,3,2,1 for
the areas A,B,C,D, respectively (Fig. 15c).
3 4

Fuzzy

function in non-overlapped zoning.
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Pirlo et al. [46] use ranked-based fuzzy membership. In this
case the fuzzy membership function is any weighting function
defined through a set of weights FM¼{μ1, μ2,…, μm,…,μM}, μm
being the weight for the zone corresponding to the m-th position
of the sequence in (4) (and therefore the m-zone closest to the
feature) and for which it follows that:
μm≥0; m¼ 1;2;…;M ð12aÞ

μm≥μmþ1; m¼ 1;2;…;M−1 ð12bÞ

μ1 þ μ2 þ⋯þ μm þ⋯þ μM ¼ 1 ð12cÞ
The selection of the best suited fuzzy membership for a given
zoning-based classification problem most certainly involves
detecting optimal weights μm, m¼1,2,…M, which maximize the
classification performance. For this purpose, a real-coded genetic
algorithm has been proposed to find, in a single optimization
procedure, the optimal fuzzy membership function together with
the optimal zoning described by Voronoi Tessellation. Fig. 16
shows an example of optimal zoning (Fig. 16a) and optimal fuzzy
membership function (Fig. 16b) for handwritten digit recognition.
3.2. Local membership functions

The use of local membership functions derives from the
consideration that different parts of the character can exhibit
features with diverse statistical distributions. Therefore, each zone
of the character requires a specific membership function. Impe-
dovo and Pirlo [24,48] present a new class of parameter-based
membership functions, based on exponential models, and select
the most profitable set of parameters for each zone of the zoning
method. When parameter-based membership functions are used,
a set of specialized functions is considered, one for each zone of
the zoning method. The influence of feature f on zone zj is defined
using real values as follows:

wj ¼ 1=αβj�dj
j ðαj; βj parametersÞ ð13Þ

Therefore, as Fig. 17 shows, in this case the problem of optimal
zoning design is faced by defining both the optimal topology
(Voronoi Diagrams are considered for this purpose) (Fig. 17a) and
the optimal parameters of the membership functions for each
zone (Fig. 17b).
4. Zoning methods: a comparative analysis

The comparison of zoning method performance for handwrit-
ten character recognition is a difficult task since there are
differences in experimental methodology and settings, as well as
differences in the databases used. In order to attempt such a
comparison, an analysis of some of the most valuable zoning
methods was carried out in two separate steps, considering
topologies and membership functions. Concerning zoning topolo-
gies, Table 1 reports some of the most relevant results presented in
the literature. All examples in Table 1 used the standard WTA
membership function (see Eq. (6)). Blumenstein et al. [4] used two
feature sets based on direction-based features and transition-
based features, respectively. In addition, they used a Back-
Propagation Network (BPN) and a Radial Basis Functions Network
(RBFN) for classification. Patterns from the CEDAR database were
considered for their tests. More precisely, the first dataset (DS-1)
consists of characters automatically segmented from words in the
CEDAR database (CITIES/BD directory). DS-1 contains 18,655 lower
case (LC) and 7175 upper case (UC) training patterns; 2240 LC and
939 UC testing patterns. When DS-1 was considered the best
result was achieved by direction-based features. In this case, BPN
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provided a recognition rate of 69.78% and 80.62% for LC and UC
characters, respectively; RBFN provided a recognition rate of
70.63% for LC characters and 79.98% for UC characters. The second
dataset (DS-2) consists of pre-segmented characters from the
CEDAR database (BINANUMS/BD & BL directories). DS-2 contains
19,145 characters for training and 2183 characters for testing.
When DS-2 was used, the best recognition rate, equal to 85.48%,
occurred when RBFN and transition features were considered.
Conversely, the best recognition rate was 83.65% when BNP and
direction-based features were used.

Singh and Hewitt [59] used a Linear Discriminant Analysis
(LDA) technique and a Nearest Neighbor (NN) classifier to recog-
nize numerals and characters of the CEDAR database. They used
feature information related to oriented segments, extracted
through the Hough Transform. The best results were obtained by
the uniform 3�3 zoning topology. When numerals are considered
the recognition rate is 93.9% by LDA and 88.3% by NN. Conversely,
when characters were used, the best recognition rate was 76.3% by
LDA and 62.7% by NN.

Sharma and Gupta [58] used pixel density information as
features whereas classification was performed by a k-nn technique
(k¼1). 10,000 training patterns and 5400 test patterns were used
for the experimental test. The best results were achieved with a
uniform 4�4 zoning, for which a 99.89% recognition rate was
registered.

Rajashekararadhya and Ranjan [53] used a uniform 5�5
zoning for handwritten character recognition. A distance-based
feature set was considered and a k-nn classifier, a feed-forward
backpropagation neural network classifier and support vector
machine classifiers were used. The approach, applied to the MNIST
database, using 5000 training digits and 1000 testing digits, led to
a recognition rate of 97.2% using the SVM classifier. When 12,000
training samples and 3000 testing samples of the ISI Bangla digit
database were considered, the authors achieved a recognition rate
of 95.47%.

Impedovo et al. [23] used uniform zonings based on 2�2,
3�3, 4�4, 5�5 regular grids for handwritten digit classification.
For the experimental tests, they considered a set of geometrical
feature and a k-nn classifier (k¼1). 18,468 numerals from the BR
directory of the CEDAR database were used for learning and 2213
numerals from the BS directory for the test. At the best, a
recognition rate of 87.8% was achieved, when the uniform 5�5
zoning was used.

Roy et al. [57] used contour-based angular information as
features and considered two shape-based zoning techniques. The
first one used seven circular hull rings, the second one used seven
convex hull rings. Classification was performed by a Support
Vector Machine (SVM). For the experimental tests, carried out in
the domain of touching characters, a suitable dataset of 8250
characters was considered. The recognition rate was equal to
98.44% using k-fold cross validation (k¼5).

Freitas et al. [13] used a perception-oriented approach to
zoning design. They considered a set of concavity/convexities
features, obtained by labeling the background pixels of the input
image, and a feed-forward Multi-Layer Perceptron (MLP) for class-
modular classification. The experiments were carried out using the
IRONOFF database of handwritten characters, which was com-
posed of 26 classes of uppercase characters. The database, which
consisted of 10,510 images, was divided into the training, valida-
tion and testing sets, containing 60%, 20% and 20% of the images,
respectively. Using non-symmetrical zoning topologies and a
metaclass strategy, they achieved a recognition rate of 90.4%.

Impedovo et al. [10] used a discriminate-based criterion for
zoning design. They considered a set of geometrical features for
numeral recognition and a Statistical Classifier (STC). The experi-
mental results were carried out on the CEDAR database. In particular,
they used 18,468 numerals of the BR directory for learning and 2213
numerals of the BS directory for testing. When M¼9 zones were
considered the recognition rate was equal to 82.5%.

Di Lecce et al. [9] optimized zoning topology in order to define
zones with maximum discrimination capability estimated with
Shannon entropy. A STC was used and a set of nine geometric
features has been considered. In the experimental test, in which
18,468 numerals for testing (CEDAR database, BR directory) and
2671 numerals for test (CEDAR database, BS directory) were used,
a recognition rate of 84.4% was registered.

Impedovo et al. [20] used a Voronoi-based optimal zoning
topology and a statistical classification technique for the recogni-
tion of handwritten digits and characters. They considered two
geometrical feature sets containing nine and 57 types of features,
respectively. For the experimental test, they considered the CEDAR
database of handwritten digits and the ETL database of hand-
written characters. In particular, concerning handwritten digits,



Table 1
Performance vs zoning topologies.

Topology Features Classification Performances CEDAR MNIST ISI IRONOFF UNIPEN Proprietary Notes

Static 3�2 Uniform
(Blumenstein et al.
[4])

Direction-
based,
transition-
based

BPN, RBFN DS-1: RR¼69.78% (LC),
80.62% (UC) (BPN);
RR¼70.63% (LC), 79.78
(UC) (RBFN)DS-2:
RR¼83.65 (BPN), RR¼
85.48 (RBFN)

n DB: CEDAR:DS-1: LS:
18,655 (LC), 7175 (UC);
TS: 2240 (LC), 939 (UC)
DS-2: LS: 19,145, TS: 2183

3�3 Uniform
(Singh and Hewitt
[59])

Oriented
segments
(Angle
threshold:
7201)

NN, LDA DS-1: RR¼93.9% (LDA),
88.3% (NN) DS-2:
RR¼76.3% (LDA), 62.7%
(NN)

n DB: CEDARDS-1:
numeralDS-2: characters

4�4 Uniform
(Sharma and Gupta
[58])

Density
features

k-NN RR¼ 99.89% n LS: 10,000 digits TS: 5400
digits

5�5 Uniform
(Rajashekararadhya
and Ranjan [53])

Distance-
based
features

SVM DS-1: RR¼97.2% DS-2:
RR¼95.47%

n n DS-1: DB: MNIST, LS:
5000 digits; TS: 1000
digitsDS-2: ISI Database:
LS: 12,000 digits; TS:
3000 digits

2�2, 3�2; 3�3,
4�4, 5�5 Uniform
(Impedovo et al.
[23])

Geometrical
features

k-NN RR¼76.5% (2�2),
RR¼77.9% (3�2),
RR¼79.8% (3�3), RR¼
76.4% (4�4), RR¼87.8%
(5�5)

n DB: CEDAR LS: 18,468
digits (BR Directory), TS:
2213 digits (BS Directory)

Non-uniform:
shape-based (Roy
et al. [57])

Contour-
based
Feature

SVM RR¼98.44% n DB: 8250 characters

Dynamic Manual:
perception-oriented
(Freitas et al. [13])

Concavities/
convexities

MLP RR¼90.4% n DB: IRONOFF, 10,510
characters

Automated:
discriminant-based
(Impedovo et al.
[10])

Geometric
Features

STC RR¼82.5% n DB: CEDAR, LS: 18,468
digits (BR Directory), TS:
2213 digits (BS Directory)

Automated:
discriminant-based
(Di Lecce et al. [9])

Geometric
features

STC RR¼84.4% n DB: CEDAR, LS: 18,468
digits (BR Directory), TS:
2671 digits (BS Directory)

Automated:
Voronoi-based
(Impedovo et al.
[20])

FS1:
9 Geometric
features FS2:
57
Geometric
features

STC DS-1: RR¼96% (FS1,
M¼9), 91% (FS2, M¼9)
DS-2: RR¼85% (FS1,
M¼25), 92% (FS2,
M¼25)

n DS-1: DB: CEDAR, LS:
18,467 digits (BR
Directory), TS: 2189 digits
(BS Directory) DS-2: DB:
ETL, LS: 29,770 characters,
TS: 7800 characters.

Automated:
template-based
(Radtke et al. [51])

Concavities/
Contour/
pixel
distribution

NN RR¼95% n DB: NIST – SD19_hsf-
0123: LS: 50,000 digits,
TS: 10,000 digits

Automated:
hierarchical (Gagnè
and Parizeau [14])

Orientation-
and
curvature-
based
features

MLP RR¼96.37% n DB: UNIPEN LS: 15,953
characters (Train R01/
V07), TS : 8598 characters
(DevTest-R02/V02)

The asterisks indicate the database (Cedar, Mnist, ISI, etc..) to which the results reported in table are referred.
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18,467 patterns for learning (BR directory) and 2189 patterns for
the test (BS directory) were used. In this case, the most profitable
Voronoi-based zoning was M¼9 which led to a 96% recognition
rate by the first feature set and 91% by the second feature set.
Concerning handwritten characters, 29,770 patterns for learning
(1145 samples for each class) and 7800 patterns for the test (300
samples for each class) were used. At the best, the recognition rate
was 85% and 92% for the first and the second feature set,
respectively, when M¼25 zones were used.

Radke et al. [51] used a template-based adaptive zoning and
considered features to be a set of concavities, contour-based
information and pixed distribution. For the experimental results,
they considered a Nearest Neighbor (NN) classifier and a database
of 50,000 training patterns and 10,000 test patterns, extracted
from the NIST SD-19 hsf-0123 handwritten digit database. At the
best, a recognition rate of 95% was achieved, using a zoning
method based on M¼6 zones.

Gagné and Parizeau [14] used genetic programming for optimiz-
ing simultaneously the best hierarchical topology and the best set of
fuzzy features. The recognizer used a back-propogation Multi-Layer
Perceptron (MLP) as a classifier and operated in a hierarchical
feature space. They used orientation and curvature-based primitives
that included three randomly generated parameters (center, core
and boundary) specifying a symmetric trapezium fuzzy set. Experi-
ments were conducted on the dataset of isolated digits of the
UNIPEN database. The training data were from UNIPEN Train-R01/
V07, consisting of 15,953 characters; the testing data were from
DevTest-R02/V02, consisting of 8598 characters. At the best, they
obtained an average recognition rate equal to 96.37%, using k-fold
cross validation (k¼10).
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In conclusion, Table 1 shows that adaptive topologies usually
lead to superior recognition rates with respect to static
approaches. This result has also been confirmed by some papers
in the literature that compare in detail static vs adaptive zonings
using the same experimental context. Ferrante et al. [11] and
Impedovo et al. [20] have shown that, no matter how many zones
are considered, the Voronoi-based optimal zoning will outperform
uniform zoning methods. Radke et al. [50] have shown that an
adaptive zoning method can provide the best trade-off between
zone number and error rate. Also Gagné and Parizeau [14] have
demonstrated that an adaptive approach can outperform human-
designed hierarchical zonings.

Table 2 compares some relevant results obtained using different
membership functions for zoning-based classification. Impedovo
et al. [23] analyzed the performance of order-based membership
functions in the context of handwritten digit recognition. To this
purpose, they considered uniform zoning topologies and a set
of geometrical features. For the experimental tests, they used
18,467 learning patterns and 2189 testing patterns from the CEDAR
database. The results, obtained by a Distance-based Classifier (DBC),
demonstrated that the performance of a zoning method stro-
ngly depends on the membership function used. More precisely,
the best recognition rate was achieved using the uniform zoning
method based on a 5�5 regular grid. In this case, the classification
rates were equal to 87.8%, 85.4%, 85%, 85% 86.7% and 87.8%, when
the WTA (Eq. (6)), 2-NZ, (Eq. (7)), R (Eq. (8)), L (Eq. (9)), Q (Eq. (10))
and E (Eq. (11)), with α¼1.1, β¼1) were considered, respectively.
They also showed that, in general, exponential membership func-
tion E (with α¼1.1, β¼1) provided the best recognition results,
equal to 87.8%, on average.

Lajish [32] used fuzzy-zoning technique and a normalized
vector distance measure. Class-modular Back-propagation Neural
Networks (BNN) were used for classification together with a
region-based fuzzy membership function. The experiments were
conducted on 44 basic Malayalam handwritten characters. Two
datasets of 15,752 samples were used for training and testing and
a recognition rate of 78.87% was obtained.

Kato and Suzuki [27] used a hierarchical partitioning topology
based on a 7�7 regular grid and direction-based features along
with a region-based fuzzy membership function. Two Distance
Based Classifiers (DBC) using a city block distance and an asym-
metric Mahalanobis distance were used for rough and fine
Table 2
Performance vs membership functions.

Membership function Features Classification Performanc

Abstract-level ranked-level
measurement-level
(Impedovo et al. [23])

Geometric
features

DBC RR¼87.8% (
NZ), 85% (R)
87.8% (E)

Fuzzy : border-based (Lajish
[32])

Fuzzy distance
features

BNN RR¼ 78.87%

Fuzzy: Border-based (Kato
et al. [27])

Fuzzy
direction
-based
features

DBC (City-Block Dist.,
Asymmetric
Mahalanobis Dist.)

RR¼99.42%

Fuzzy: border-based
(Lazzerini and Marcelloni
[33])

Fuzzy
distribution-
based features

SBC RR¼79.57%
75.86% (test

Fuzzy: border-based (Wu and
Ma [69])

Projection-
based features

DBC RR¼96.42%

Fuzzy: ranked-based (Pirlo
et al. [46])

Geometric
features

STC DS-1: RR¼9

parameter-based (Impedovo
et al. [24])

Geometric
features

NN RR¼92%

DB, Database; LS, Learning Set; TS, Test set; RR, Recognition rate.
The asterisks indicate the database (Cedar, Mnist, ISI, etc..) to which the results reporte
classification, respectively. The experimental tests were carried
out on the ETL9B database that contained 3036 kinds of characters
(2965 Chinese character classes (Kanji) and 71 Japanese character
classes (Kana)). In this case, a 99.42% recognition rate was
obtained.

Lazzerini and Marcelloni [33] used a region-based fuzzy mem-
bership function along with a stripe-based fuzzy partitioning of
the pattern image. A Similarity Based Classifier (SBC) was con-
sidered for pattern classification and a genetic algorithm was used
to optimize the partitions with respect to the recognition rate. The
experimental results were performed on the dataset of characters
of the NIST database hsf_4 (containing the segmented handprinted
characters of 500 writers), that was a partition of the NIST SD19
database. An average recognition rate of 79.57% and 75.86% was
obtained, respectively, on the training set and on the test set,
when k-fold cross validation was considered (k¼10).

Wu and Ma [69] used direction-based features extracted
from the contour of the pattern image. They adopted a fuzzy
border-based membership function and a hierarchical over-
lapped elastic meshing, based on a 7�7 sub-division of the
pattern image. For the experiments, they used the ETL9B
database. For each character feature in training, vectors were
extracted from training patterns and their mean vector was
stored as a reference for classification. An average recognition
rate equal to 96.42% was obtained when a minimum Euclidean
Distance-based Classifier (DBC) was used for classification. Pirlo
et al. [46] used a ranked-based fuzzy membership function for
the recognition of handwritten numerals and characters. The
recognizer adopted a statistical-based classifier (SBC) and used a
set of geometrical features along with a Voronoi-based optimal
zoning topology. For the experimental test, they used 18,468
digits from the CEDAR database and 29,770 characters from the
ETL database. The k-fold cross validation (k¼10) led, at the best,
to a recognition rate equal to 95% for digits and 93% for
characters, respectively, for M¼9 and M¼25.

Impedovo et al. [24] used parameter-based membership func-
tions and Voronoi-based topology for the recognition of hand-
written numerals extracted from the CEDAR database. Digit
classification was performed by a Nearest Neighbor (NN) classifier
and used a set of geometric features. The best results occurred for
M¼9 (being M the number of zones). In this case, using a k-fold
cross validation technique (with k¼10), the recognition rate was
es CEDAR NIST ETL Proprietary Notes

WTA), 85.4% (2-
, 85% (L), 86.7% (Q),

n DB: CEDAR LS: 18,467
digits, TS: 2213 digits

n LS: 15,752 characters, TS:
15,752 characters

n DB: ETL9B 607,200
characters

(learning set),
set)

n DB: NIST 19 – SD19 – hsf_4

n n DB: ETL9B 607,200
characters

5% DS-2: RR¼93% n DS-1: DB: CEDAR, 18,468
digits, DS-2: DB: ETL,
29,770 characters
DB: CEDAR, 18,468 digits

d in table are referred.
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equal to 92% and the improvement with respect to standard order-
based membership functions was up to 77%.

In conclusion, Table 2 shows that membership functions plays a
fundamental role in zoning-based classification. When order-
based membership functions were considered, WTA and
Measurement-level functions based on the exponential model
provided the best result [23]. Better results were also achieved
by new fuzzy membership functions, both region-based [27,69]
and ranked-based [46].
5. Conclusion

This paper has presented an overview on zoning methods. In the
first part of the paper, the problem of zoning topologies has been
addressed. Starting from the description of standard topologies,
based on static partitioning criteria, the most sophisticated techni-
ques for adaptive topology design have been illustrated. In the
second part, aspects concerning membership function selection have
been discussed and overviews of the most valuable membership
functions proposed in the literature have been presented. Succes-
sively, a comparative analysis has been presented in terms of both
topologies and membership functions. The results demonstrated that
recent zoning approaches, based on adaptive topologies and fuzzy
membership functions, could significantly outperform standard zon-
ing methods. In addition, automated techniques for zoning design
based on the optimization of cost functions associated to classifica-
tion has been shown to offer the possibility of designing the best
zoning for the requirements of a specific application.
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