
53

Memory Encryption: A Survey of Existing Techniques

MICHAEL HENSON and STEPHEN TAYLOR, Dartmouth College

Memory encryption has yet to be used at the core of operating system designs to provide confidentiality of
code and data. As a result, numerous vulnerabilities exist at every level of the software stack. Three general
approaches have evolved to rectify this problem. The most popular approach is based on complex hardware
enhancements; this allows all encryption and decryption to be conducted within a well-defined trusted bound-
ary. Unfortunately, these designs have not been integrated within commodity processors and have primarily
been explored through simulation with very few prototypes. An alternative approach has been to augment
existing hardware with operating system enhancements for manipulating keys, providing improved trust.
This approach has provided insights into the use of encryption but has involved unacceptable overheads and
has not been adopted in commercial operating systems. Finally, specialized industrial devices have evolved,
potentially adding coprocessors, to increase security of particular operations in specific operating environ-
ments. However, this approach lacks generality and has introduced unexpected vulnerabilities of its own.
Recently, memory encryption primitives have been integrated within commodity processors such as the Intel
i7, AMD bulldozer, and multiple ARM variants. This opens the door for new operating system designs that
provide confidentiality across the entire software stack outside the CPU. To date, little practical experimen-
tation has been conducted, and the improvements in security and associated performance degradation has
yet to be quantified. This article surveys the current memory encryption literature from the viewpoint of
these central issues.
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BACKGROUND AND MOTIVATION

Encryption has been an important part of secure computing for decades, first in the DoD
and national agencies and then publicly beginning with DES and public-key encryption
in 1977 [Mel and Baker 2001]. As public use of computers continued to grow, so did
the need to secure sensitive information. In 1991, Phil Zimmerman released the first
version of Pretty Good Privacy (PGP), allowing anyone to encrypt e-mail and files. In
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Fig. 1. System with full disk encryption but vulnerable code and data.

1995, Netscape developed the Secure Sockets Layer (SSL) protocol, combining public
and private-key encryption to protect online financial transactions.

Full Disk Encryption (FDE) in commodity computer systems is a more recent in-
novation that provides confidentiality of all data stored on disk. Recent advances to
the overall speed of processors, thanks to the march of Moore’s law, and hardware-
based encryption have resulted in several commercially viable FDE implementations.
Software approaches to FDE include TrueCrypt, PGPDisk, FileVault, and Bitlocker.
In addition, multiple hard drive manufacturers offer Self-Encrypting Drives (SEDs) in
which encryption is handled entirely by the hard drive microcontroller. Several factors
have resulted in increasing adoption of FDE technologies [Brink 2009]. Regulations,
such as Sarbanes-Oxley and the Health Insurance Portability and Accountability Act
(HIPAA), have increased the requirement for privacy. The advent of mobile computing
and widespread movement of information over the Internet have raised concerns re-
garding physical access to data. Finally, numerous data breaches have been publicized,
raising awareness of vulnerabilities.

Unfortunately, even with FDE, systems exhibit a major weakness in that data and
code stored in memory are unencrypted (i.e., stored in the clear), as shown in Figure 1.
This weakness has been exploited to gather encryption keys, passwords, passphrases,
and other personal information from memory, thereby diminishing, or in some cases
nullifying, the value of FDE [Halderman et al. 2008]. Since code is also stored in
memory, it is possible to inject a wide variety of malicious implants into both user
process and operating system kernels. Even applications designed specifically with
security in mind have been shown to be vulnerable. For example, cryptographic libraries
have been designed to prevent access to keys by zeroizing (or overwriting with zeros)
a key after it has been used. This zeroizing of code is sometimes removed by compiler
optimization because it appears superfluous, reintroducing the vulnerability [Chow
et al. 2004].

To exploit memory vulnerabilities, numerous attack vectors have been developed.
In a cold boot attack, for example, memory is frozen using a refrigerant and then re-
moved from the computer. It is then quickly placed into a specially designed system
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that reads out its content, targeting encryption keys and other sensitive information.
Although this approach is novel, the idea of recovering encryption keys from memory
has been described as early as 1998 [Kaplan 2007]. Even without cooling, some infor-
mation persists in RAM for several minutes [Halderman et al. 2008]. However, cooling
slows down the rate of data loss, reducing recovery errors [Chhabra and Solihin 2011].
Some approaches, such as the DMA-firewire attack, deliberately bypass FDE to enable
forensic analysis. Unfortunately, these techniques are equally accessible to criminal
organizations and other attackers, as well as legitimate law enforcement. Similar re-
sults are available via simple software attacks involving buffer overflows [Rabaiotti and
Hargreaves 2010]. One particularly effective attack, bus-snooping and injecting, allows
information to be captured or inserted via the bus lines between system components
[Boileau 2006]. This exploitation method has been used to undermine the Xbox gaming
system. This system was specifically designed to provide a secure chain of trust for
enforcing Digital Rights Management (DRM). Bus-snooping was used to capture keys
as they transited between read-only-memory and the CPU. These keys were then used
to decrypt the secure boot loader undermining the entire chain of trust. Subsequently,
low-cost “mod” chips were developed that can be soldered into the gaming system bus,
allowing a user to bypass DRM restrictions and play pirated games [Steil 2005]. Alter-
natively, the same chips can be used to run various operating systems on the gaming
system, allowing it to be used for illicit purposes [Rabaiotti and Hargreaves 2010].

Fortunately, access to information in conventional dynamic RAM presents an adver-
sary with only a fleeting opportunity to obtain sensitive information between power
cycles. However, dynamic RAM is being augmented or replaced with new nonvolatile
alternatives—flash memory, magnetic RAM, and ferro-electric RAM—that provide sev-
eral benefits, including energy efficiency and tolerance of power failure. Flash memory
has been used to augment traditional RAM in the Vista and Windows 7 “ready boost”
feature, whereas the other two technologies are potential RAM replacements. Unfor-
tunately, these nonvolatile memories allow information and attacks to persist indefi-
nitely [Enck et al. 2008]. Interestingly, Microsoft has anticipated the security issues
associated with persistent memory and designed the ready boost feature to encrypt
all contents of flash, making it difficult for forensics investigators to recover useful
data [Hayes and Qureshi 2009]. If these memories are adopted in future architectures,
without adequate attention to encryption, there is the potential that memory-based
attacks will become more prevalent.

In effect, FDE has pushed the vulnerabilities associated with persistent data stored
on disk down into the next level of the memory hierarchy, which has proven equally
vulnerable. The key concept by which vulnerabilities were mitigated on disk was en-
cryption: encrypting the disk provided confidentiality preventing access to sensitive
information. By migrating the same solution down into RAM, it will be possible to
circumvent similar attacks at this lower level of the memory hierarchy.

The typical threat model assumed in the memory encryption literature involves hard-
ware and/or software attack. Attackers are often assumed to have physical access to
the vulnerable system where sensitive information can be captured in various ways.
The primary goal of attackers is to steal secret information or code. Memory modifi-
cation is sometimes discussed, although usually as a means to force a system to leak
confidential information. Examples of these attackers range from those motivated by
financial gain, such as bank employees capturing ATM pin numbers and criminals
copying and distributing software (DRM) to those motivated by more nefarious goals
such as reverse engineering or stealing intelligence from autonomous military vehicles.

Software attacks involve corrupt processes or the operating system itself. Since the
operating system typically controls memory arbitration, it must either be trusted and
considered part of the Trusted Computing Base (TCB) or dealt with in another way.
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This is handled in different ways in the literature, with many adding a secure, trusted
kernel to the list of assumptions of the work. Other approaches include only hardware
in the TCB, treating the operating system as any other untrusted process. A hybrid
approach includes some portion of a trusted kernel or a trusted hypervisor along with
hardware support.

One of the main assumptions in the memory encryption literature is that the pro-
cessor provides a natural boundary within which sensitive information can reside—it
is a fundamental component of the TCB in most approaches. All components outside
of the processor are assumed to be vulnerable to include RAM and its interconnections
(data and address bus), other I/O devices, and so forth. Most schemes attempt to pro-
tect RAM and the data bus, and several also target the address bus [Duc and Keryell
2006; Dallas Semiconductor 1997], whereas other external components are not nor-
mally considered. A subset of the memory encryption literature additionally adds the
cache-to-cache connections as a consideration when protecting multiprocessor systems.

Although the security of systems employing memory encryption is enhanced, attacks
on the devices are still possible by etching away the chip walls with acid to reveal
internal bus lines for microprobing, or electromagnetic and power analyses among other
side channels [Ravi et al. 2004; Kocher et al. 1999]. For systems relying on software-
based encryption, key expansion tables (e.g., Advanced Encryption Standard [AES]) are
subject to cache attacks; a malicious process tracks and times cache accesses [Osvik
et al. 2006]. The typical target of all of these attacks is the encryption key hidden within
the chip boundary. Most of these approaches increase the attacker workload by an order
of magnitude, require expert knowledge, and cannot be exploited remotely (excluding
cache attacks) over a network [Suh et al. 2007]. Moreover, although tamper-resistant
mechanisms are already available that significantly increase the barrier to entry [Chari
et al. 1999], protecting circuits from invasive and side-channel attacks is an open
research area that is not addressed in the main body of memory encryption literature.
Protections such as FDE are equally available to criminals and well-intentioned users
[Casey et al. 2011]. Disk encryption has been used to protect information on criminal
activity and prevent successful prosecution. Some of the techniques identified to aid
law enforcement (e.g., DMA-firewire attack) in the capture of key material on suspect
machines would be thwarted by memory encryption—memory encryption could be used
to further protect criminal activity. This article explores efforts to realize protection of
confidentiality through memory encryption in the context of next-generation operating
systems.

FULL MEMORY ENCRYPTION IN OPERATING SYSTEMS DESIGN

In general, encryption is used to provide four basic properties of protection: confiden-
tiality, integrity, authentication, and nonrepudiation. In trusted computing and op-
erating system security, these properties are realized through authenticated booting,
ensuring that program code is not changed before it is loaded into memory, memory
authentication, ensuring that program code is not changed during use, and attestation,
ensuring that hardware and software have not been altered. Trusted software compo-
nents, which make up part of the TCB, are booted and verified producing a chain of
trust, without which the security mechanisms could be compromised before the system
is initialized. Whereas a few of the works discuss the implementation of these other
mechanisms, most assume that these components are functional and focus on the over-
head of memory encryption in the steady state. Other important assumptions often
include mechanisms for secure code delivery, key creation and escrow, interprocess
communication, and I/O protection, among others. Memory authentication is often
closely associated with memory encryption solutions; however, a thorough survey of
memory authentication mechanisms is available [Elbaz et al. 2009].
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Memory encryption is solely concerned with the confidentiality of data and code
during execution, with the express purpose of increasing attacker workload associated
with crafting exploits and stealing sensitive information. It is interesting to note,
however, that memory encryption would also hamper attempts to inject code, generally
assumed to require memory authentication. An adversary lacking an encryption key
would be unable to successfully change an encrypted binary, as decryption would result
in corrupt code and likely program termination [Barrantes et al. 2003]. Early work
associated with Full Memory Encryption (FME) was dominated by the desire to provide
DRM and particularly to prevent the theft of intellectual property associated with
program source code. This is still the primary purpose in some systems (e.g., gaming
systems); however, more recently, these techniques have become recognized as a method
for removing vulnerabilities and protecting system users.

There are two general approaches to providing confidentiality with encryption that
are commonly used in computer architectures based on symmetric- or public-key en-
cryption techniques. Symmetric key encryption, based on a shared secret (key), is
generally held to be more efficient (i.e., on the order of 1,000 times faster) but does
not provide nonrepudiation and requires a nontrivial trusted key distribution scheme
[Kaplan 2007]. Three common algorithms are typically used to realize this approach
based on DES, Triple-DES, and AES. Public-key encryption involves the use of two
interlocking keys, one held privately and the other published, from which all four prop-
erties of protection, including nonrepudiation, can be realized. This scheme has the
advantage that public keys can be distributed across open networks. A broad variety of
books are available that describe these core ideas; Mel and Baker [2001] is particularly
accessible. In light of the speed and complexity involved in public-key encryption, it
is unsurprising that the memory encryption literature typically uses symmetric key
cryptography. However, delivery of encrypted code over the network may be facilitated
using the public-key model [Kgil et al. 2005].

Unfortunately, computer users have consistently demonstrated an aversion to any
form of increased response time, even when associated with increased security. Studies
suggest that delays of longer than 150ms are perceptible to users [Muller et al. 2011].
FDE has only become viable because overheads have been reduced to acceptable levels.
Achieving similar levels of acceptable performance for memory encryption offers a far
more significant challenge: there is an existing, growing, and well-documented speed
gap between processors and memory—improvements in processor speed are outpacing
improvements in memory speed by an average of 18% per year [Hennessy and Patterson
2006]. Adding encryption latency to this already strained interface may require an
overhaul of the basic fetch-decode-execute cycle employed by processors.

Added to the complexities of any memory encryption solution is the fact that, unlike
the hard disk where data is sequentially stored for access, memory is used in a broad
variety of dynamic access patterns. Numerous decisions must be made concerning the
granularity of encryption in operating systems. For example, a running program will
utilize RAM during execution for both stacks and heap space. The stack is accessed
so frequently that adding encryption/decryption overhead to stack operations might
prove prohibitive. Unfortunately, during context switches, registers containing sensi-
tive information are normally saved to the stack in external memory. Additionally, the
heap size, for any given program, is not normally known a priori. The complexities
of memory mapped input-output peripherals result in an inability to cache mapped
regions. This naturally presents a challenge if the overarching concept involves de-
crypting memory only after it is brought onto to the processor chip. It is not clear if the
entire memory should be encrypted with a single key, or if shared libraries, individual
programs, and/or data should be encrypted independently using separate keys. Alter-
natively, should individual functions or cache blocks be used as the unit of encryption?
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All of these decisions incur a trade-off between the number of keys that must be
securely stored versus the degree of protection and overlapping in operations that can
be realized.

The literature on memory encryption is largely concerned with three core approaches
based on hardware enhancements, operating system enhancements, and specialized
industrial applications. These approaches are explored in the sections that follow. Un-
fortunately, almost all of the hardware and operating system enhancements have only
been implemented through simulation or emulation, and as a result, the claims have
yet to be validated and quantified on practical systems.

MONOLITHIC PROCESSOR ENHANCEMENTS

The general scope of hardware enhancements includes a number of approaches that
have added specialized encryption units and/or key storage mechanisms to existing
processor designs. In addition, several efforts have proposed inserting hardware into
the system bus to leverage legacy code and hardware. Although the first patents de-
tailing memory encryption were executed in 1979 [Best 1979, 1981, 1984], and the first
paper detailing their use was published in 1980 [Best 1980], the body of in-depth aca-
demic research related to general-purpose memory encryption has occurred primarily
in the past decade.

One of the earliest papers, often referenced by others of this genre, highlights an
Execute-Only Memory (XOM) architecture [Lie et al. 2000]. This architecture was
designed to combat software piracy and combines aspects of both public and symmetric
key encryption. Public-key encryption is used to deliver binary code to the XOM chip,
which maintains a unique private key. This allows vendors to encrypt the code for
a particular system and ensures that it cannot be reused on another system. The
header associated with the code includes a symmetric key embedded within it, used
to segment memory into unique compartments at the granularity of a process. In
order to map compartments to encryption keys, each compartment is tagged. A single
null compartment is created to hold all unencrypted processes and libraries. This
compartment enables communication between encrypted processes while allowing all
processes to use shared libraries.

The XOM architecture assumes several hardware enhancements to existing proces-
sors. Special microcode is required to store the unique private key in a private on-chip
memory. A symmetric-key encryption unit is added to the processor, together with a
special privileged mode of operation for encryption. A hardware trap on instruction
cache misses provides a segue into this encryption mode for encrypted code. When a
cache miss occurs, the instruction is decrypted before being loaded into the processors
instruction register. Although the authors state that encryption could be accomplished
in software, they acknowledge that this would be very expensive in terms of over-
head. Since many of the papers that follow XOM include similar hardware, only the
differences or unique contributions of the other systems will be discussed.

XOM encrypts memory in a straightforward manner commonly known by the en-
cryption community as electronic codebook mode but referred to in the literature as
direct encryption. Each code block is decrypted after it is read from memory, by the
encryption unit, and encrypted before it is written back to memory. Kgil et al. [2005]
propose an additional chip enhancement targeted at improving the security of direct
encryption, called ChipLock. This involves storing a small trusted part of an operating
system kernel, called TrustCode, in a Read-Only Memory (ROM), termed TrustROM.
Additional instructions are added to enable secure communication between the trusted
and untrusted parts of the operating system. The TrustCode intercepts all system calls
for memory access and performs encryption without the knowledge of the untrusted
portion of the operating system. Symmetric keys are assigned at the granularity of the
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Fig. 2. Redundancies in 128-bit sections of a small selection of program binary code.

process as in XOM, with additional keys for shared libraries and the concept of a null
bit for applications that are not encrypted.

Rogers et al. [2005] attempt to improve on direct encryption using an alternative
mechanism, prefetching, which had already been improving the CPU-memory perfor-
mance gap for decades. Prefetching uses stream buffers to capture spatial locality in
programs by copying additional contiguous blocks of memory into local cache after
each miss. These buffers are especially good at speeding up programs that exhibit
spatial locality and contiguous access, such as scientific applications [Hennessy and
Patterson 2006]. An alternative prefetching technique is also used that involves corre-
lation tables to capture and reuse temporal locality—that is, complex and/or noncon-
tiguous sequences of memory access.

In another direct encryption scheme, Hong et al. [2011] perform a trade-off analysis
on the use of sensitive (encrypted) versus frequently accessed (unencrypted) data in
embedded Scratch Pad Memories (SPMs). SPMs are software controlled SRAMs, as
opposed to caches, which are typically controlled by hardware. There are numerous
papers discussing both static and dynamic policies for SPM utilization to reduce power
consumption and memory access latency. DynaPoMP was the first to consider parti-
tioning the SPM into distinct areas with an area dedicated to sensitive code and data.
The authors vary the size of the two partitions in an attempt to find the most efficient
ratio. There is a common assumption that an encryption unit and special instructions
are available in hardware.

Unfortunately, direct encryption schemes involve a one-to-one mapping between
blocks of unencrypted and encrypted code. As a result, encrypted code portrays a
similar statistical distribution as the unencrypted code, allowing a significant amount
of information to be gleaned from frequency analysis [Chhabra et al. 2010]. Based on
the typical AES encryption block size of 128 bits, programs tend to exhibit multiple
redundancies that would lead to information leakage as shown in Figure 2.

After XOM, a number of papers attempt to mitigate this statistical weakness using
a One-Time Pad (OTP) [Suh et al. 2003; Shi et al. 2004; Yang et al. 2005; Yan et al.
2006; Suh et al. 2007; Duc and Keryell 2006]. A traditional OTP is simply a source
of random data that is used exactly once to encrypt a particular communication. This
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Fig. 3. Pseudo–one-time pad or counter-mode encryption.

is a form of symmetric-key cryptography since both the sender and receiver require
the pad. Although variously referred to as Pseudo–One-Time Pads (POTPs) in the lit-
erature, this is more commonly known in the encryption community as counter-mode
encryption. In computing, OTPs are created by encrypting a unique seed, typically pro-
ducing a pad of 128 bits in length (i.e., the size of an AES encryption block) as shown in
Figure 3. A fixed initialization vector (Nonce) is concatenated with a counter producing
a unique seed. The seed is encrypted with a unique key generating the pad, which is
then exclusively or’ed (XOR) with the plaintext to produce the cipher text. In memory
encryption schemes, the counter is stored either internally, in a cached table that maps
to a memory address, or unencrypted within the encrypted memory itself (i.e., RAM)
since counter secrecy is not required [Yan et al. 2006]. When a memory reference oc-
curs, the pad is regenerated, using the counter (and optionally some other component
such as the virtual address) and initialization vector, then exclusively or’ed with the
encrypted data to produce the original plaintext. Since the encryption operation no
longer depends upon the data in memory, this regeneration can be overlapped with the
memory read, decreasing the performance impact of decryption.

Although Aegis is an OTP approach, it was originally proposed as a direct encryption
scheme in 2003. Suh et al. [2007] propose the OTP approach, perhaps illustrating the
shift away from direct encryption in the community. One interesting contribution from
this paper is the method of creating the unique key. The chip-specific encryption key
is created by physically unclonable functions [Suh et al. 2003]. These functions make
use of unique timing characteristics of “identical” models of the hardware to create
the unique keys. Aegis is one of several approaches to include the idea of a small,
protected security kernel that is separate from the rest of the untrusted operating
system. Unfortunately, this kernel measures 74K lines of code for virtual memory
management alone [Chhabra et al. 2011].

In Yang et al. [2005], the authors look to reduce the execution overhead of using OTPs
by adding a sequence number cache (SNC) onto the chip below the L2 cache. Sequence
numbers, in this paper, correspond to the counters used in Figure 3. However, the
initialization vector is unique per cache block and corresponds to the virtual address.
Since the addresses are unique across memory, the pads (and thus the ciphertext) will
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be spatially unique. The counters are updated upon each write to memory ensuring
temporal uniqueness (i.e., pads used for a single location will not be the same over
time). The authors suggest that a reasonable addition to a chip would be an SNC of
64KB. Based on this limitation, two policies for using the SNC are described. In the
first, only the portion of memory corresponding to the number of available sequence
numbers stored in the SNC can be encrypted. The amount of protected memory is
therefore limited by the SNC size. In the second method, additional memory lines are
encrypted, and sequence numbers that do not fit in the cache are stored in plaintext
in memory. Level-two cache is increased in both methods by 4% in order to store the
virtual memory addresses used to index into the SNC, since only physical addresses
are typically available above the level-one cache.

Yan et al. [2006] present split counter-mode encryption, in which they introduce major
and minor page counters. In this scheme, a 4KB page has one 64-bit major counter and
64 7-bit minor counters (one per 64-byte cache line). Concatenating the page major
counter with the cache line minor counter forms the overall counter. This counter
is further concatenated with the memory block’s virtual address and an initialization
vector to form the unique seed. The vector can be unique per process, group of processes,
or system based on security requirements.

In CryptoPage [Duc and Keryell 2006], the authors again attempt to enhance the
OTP encryption scheme. In this case, they modify the Translation Look-aside Buffer
(TLB) and page table structures, adding information for pad computation. Since the
TLB and/or page table structures are always accessed before a memory read, the
authors claim that the pad generation latency can be almost completely removed. This
scheme is implemented on top of the HIDE memory obfuscation technique, whereby
access patterns are permuted in memory at designated times [Zhuang et al. 2004].

In Address Independent Seed Encryption (AISE) [Rogers et al. 2007], the authors
propose to use a logical identifier, rather than the virtual or physical block address, as
the major counter portion of the seed. This scheme closely resembles split mode coun-
ters [Yan et al. 2006]. It is claimed that using an address independent seed enables
common memory management techniques, such as virtual addressing, paging, and in-
terprocess sharing. Chhabra et al. [2011] propose to build a secure hypervisor upon
the AISE substrate. The hypervisor implements memory cloaking, whereby the operat-
ing system only has access to the encrypted pages of applications. The authors suggest
that this cloaking will protect processes from vulnerabilities in the insecure underlying
operating system, with an order of magnitude fewer lines of code than in Aegis.

Nagarajan et al. [2007] propose compiler-assisted memory encryption for embedded
processors assuming some limited hardware support. They claim that the current
counter-mode solutions require too much silicon space for small- and medium-size
embedded processors. The compiler supports memory encryption by introducing special
instructions to calculate OTPs prior to loads and stores, and assumes the existence of
additional process-unique registers used to store the counters. Space for the unique
key and global counter is also provided inside the CPU and the availability of a crypto
unit is assumed. The compiler attempts to ensure that the counter used for a store is
still available for successive loads from the same memory location. A global counter
must be available for those loads and stores that do not match one of the process-
unique counter registers. The authors claim that since frequently executed loads and
stores exhibit highly accurate counter matching, 8 special hardware registers with 32
counters are sufficient for reasonable performance.

MULTIPROCESSOR ENHANCEMENTS

Chhabra et al. [2010] compare a Symmetric Multi-Processor (SMP) and a Distributed
Shared Memory (DSM) design; they also provide a quick look at monolithic memory
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Fig. 4. SMP architecture with memory encryption support.

encryption. Whereas the efficiency of memory-to-cache confidentiality is the primary
concern for monolithic processors, multiprocessor systems must also protect cache-to-
cache traffic. In SMPs, the shared bus between caches and memory can be used as a
way to coordinate messages between processors. This sharing is not available in DSM
systems, which must use message passing. Additionally, DSM systems can be observed
more easily than monolithic chips via interconnect wires that are exposed at the back
of server racks [Rogers et al. 2008].

Shi et al. [2004] use OTP encryption both for memory-to-cache and cache-to-cache
transfers, as shown in Figure 4. In this approach, sequence numbers (counters) are
incremented in lockstep in each separate processor, resulting in a claim of “very low”
overhead for cache-to-cache encryption. A hardware mechanism in the processors en-
sures that the sequence numbers begin differently after each reboot. Besides the typical
crypto engines placed within each processor core, a separate crypto-unit is embedded in
the north bridge memory controller for memory-to-cache transfers. For these transfers,
64-bit sequence numbers are stored in RAM, reducing the available memory by 25%.

SENSS [Zhang et al. 2005] utilizes OTPs for memory-to-cache transfers and AES
cipher block chaining (CBC) mode for cache-to-cache transfers. This alternative to
direct encryption divides the clear text into blocks and encrypts the first block with
an initialization vector; subsequent blocks are chained together such that the output
of the previous block is XOR’d with the input of the next before being encrypted. CBC
implies sequential access since each block depends upon each previous block. RAM is
typically accessed in a fairly random pattern, so this mode of operation is impractical
except on a very small scale (e.g., per cache block). CBC is acceptable for cache-to-cache
transfers, as only one previous encrypted block must be stored at each processor (i.e.,
there is no requirement for access to previously encrypted blocks). The authors propose
a Secure Hardware Unit (SHU), located at each processor, comprising an encryption
unit with associated storage for keeping track of communication. This storage includes
memory for a group processor matrix and group information table. The group processor
matrix is used by each SHU to determine if broadcast messages should be read. The
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matrix is only 640 bytes in size, assuming a maximum of 32 processors. The information
table contains the secret information for communicating between groups, such as the
symmetric key and pads, and is estimated at 149KB. An additional 11 bus lines are used
for control signals and to pass group i.d. numbers. In Jannepally Sohoni [2009], the
SENSS scheme is improved using Galois Counter-Mode (GCM) AES, which provides
both encryption and authentication simultaneously.

In I2SEMS, Lee et al. [2007] create a scheme that is claimed to be applicable to
both SMP and DSM systems. They propose a global counter cache that assigns differ-
ent sections of the overall counter space to processors (akin to assigning blocks of IP
addresses to groups of computers). The blocks of counters are also broadcast to all pro-
cessors so that they can begin precomputation of pads. Each processor has a keystream
(pad) queue, keystream cache, and keystream pool. The queue and cache both contain
pads for encryption. The queue has new pads, whereas the cache contains pads that
have been used previously. The authors claim that pads may be reused as long as the
plaintext has not been modified and that their scheme scales well to large numbers of
processors since more than 25% of pads are reused. The keystream pool holds pads for
incoming data; the pads are chosen based on prediction with the aid of the broadcast
scheme.

The first paper to exclusively address DSM systems was by Rogers et al. [2006],
who again make use of counter-mode encryption. Since the memory-to-cache scheme
is similar to those already discussed, we only focus on the cache-to-cache scheme.
The authors propose three methods for managing the pad counters: private, shared,
and cached counter stream. In the first private method, tables are kept within each
processor with separate counters for send and receive operations to/from every other
processor in the system. Although this technique allows for nearly perfect pad hit rates,
and therefore very low overhead, it suffers from large storage needs (180KB in each
processor for a 1,024-processor DSM). The second shared scheme aims to reduce the
storage requirement by eliminating half of the table. Instead of keeping track of send
counters for each processor, only one counter is kept for sending pads. This results in
increased execution overhead, since messages are less likely to arrive contiguously and
therefore must be recomputed. The final cached scheme takes advantage of the intu-
ition that processors in DSM systems often communicate in cliques [Lee et al. 2007].
The overall table size is thus reduced to a quarter of the private scheme’s memory with
minimal impact on execution overhead. In a subsequent paper, Rogers et al. [2008]
identify the previous scheme as a two-level approach, since remote memory requests
will first be decrypted by the owning processor and then re-encrypted for cache-to-cache
transmission to another processor. In the new scheme, a single mechanism is used for
both memory-to-cache and cache-to-cache transfers bypassing the unnecessary decryp-
tion and re-encryption. The associated hardware includes a 32-entry buffer (1KB) for
counter prediction and a 32-entry mask buffer that stores a bit vector of recent data
block accesses (512 bytes).

BUS INSERTS

Another area of active research involves placing specialized encryption hardware out-
side of the CPU. The locations include the memory bus (i.e., externally between system
memory and the CPU) and within RAM. The primary goal of this approach is to in-
crease the likelihood that this solution will be adopted, since re-engineering of commod-
ity processors is not required. One such approach, SecBus [Su et al. 2009a] shown in
Figure 5, can be located at the front end of the memory controller. The authors state that
this method of modification is required in many user markets when embedding new
functionality into systems with legacy CPUs. SecBus is essentially a cryptographic
coprocessor with internal storage and bus manager. The Page Security Parameters
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Fig. 5. SecBus hardware augmentation model.

Entry (PSPE) includes information to map pages to corresponding Security Policy (SP),
which includes a confidentiality mode, integrity mode, and secret key. SecBus includes
the ability to choose between multiple encryption modes based on the type of memory
(i.e., code or data).

Enck et al. [2008] designed a Memory Encryption Control Unit (MECU) to again be
placed on the memory bus between the processor and RAM. The goal of MECU is to
provide the same guarantees of security provided by the volatility of traditional RAM
when utilizing nonvolatile main memory. MECU uses an OTP scheme with internal
storage for the array of counter seeds and the encryption engine. A secret key and mas-
ter counter, which tracks the greatest overall counter, are stored on a removable smart
card. In order to reduce the storage requirement, the encryption chunk granularity is
increased from one cache line to n, where n is 256 in the common case but can grow to
the entire memory for experimentation.

With the same goal as Enck et al. [2008], Chhabra et al. [2011] propose placing the
cryptographic engine and other required hardware in nonvolatile RAM modules. Their
scheme keeps most of the RAM encrypted with a smaller group of frequently accessed
pages in plaintext in a similar fashion to Hong et al. [2011]. The authors claim that by
doing this, the remainder of the RAM can be encrypted at power-down within 5 seconds,
paralleling traditional RAM volatility.

OPERATING SYSTEM ENHANCEMENTS

Similar to the bus insert method for enabling memory encryption, software-only ap-
proaches seek to provide solutions that can be implemented without major changes to
applications or commodity hardware to increase the likelihood of adoption.

Chen et al. [2008] propose an operating system controlled memory bus encryption
technique for systems that offer SPMs or cache locking that is software controllable.
Both types of memory are available in some embedded processors including the Intel
XScale series. A new symmetric key is generated each time the system is booted, and
random vectors (32 bits generated using /dev/urandom and padded with 0’s) are used
to initialize AES encryption at the granularity of a page. The vectors are then placed in
memory with the pages. This scheme requires a 0.4% space overhead when used with
1KB pages. When a page fault occurs for a secure process, a specially crafted handler
moves the encrypted page into the chip boundary and decrypts it there, placing it
into the cache, which is then locked to prevent leakage of sensitive data. The locked
region holds several pages of data and encryption variables. In order to facilitate
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this special handling, a Boolean status variable is added to each process descriptor
residing in kernel address space. The authors note that the scheme is appropriate
when embedded systems designers can tolerate a significant performance overhead for
protected processes.

In Cryptkeeper, Peterson [2010] modifies the virtual memory manager and partitions
RAM into two parts: the plaintext Clear and the encrypted Crypt. Essentially, this
technique aims to reduce the amount of sensitive data available at any time in memory.
All pages initially start in the clear, and the number of Free Clear Pages (FCP) is
reduced with each allocation. The least recently used pages are encrypted and moved
to the Crypt when the limit of FCP runs low. This operates under the assumption
that the number of high-use pages will be small, and therefore most infrequently used
pages will be encrypted. This has the unfortunate side effect of maintaining all of the
important pages in the clear. A prototype Cryptkeeper system was designed based on
the Linux 2.6.24 kernel. The kernel page structure was extended to include information
indicating whether a page is in the Clear or Crypt portions of memory.

SPECIALIZED INDUSTRIAL DEVICES

Industry offers several solutions for memory encryption, including low-frequency spe-
cialized processors for ATM use, expensive tamper-resistant coprocessors for financial
transactions, proprietary gaming systems, and, more recently, enabling technologies in
commodity processors to enhance trust.

The Dallas Semiconductor 5002FP secure processor is an 8051-compliant proces-
sor and runs at a maximum frequency of 16MHz [Dallas Semiconductor 1997]. The
processor encrypts memory addresses to prevent traffic analysis on the memory bus
in addition to data. The device uses spare processor cycles to place dummy memory
accesses on the bus since analysis of memory access patterns can reveal useful infor-
mation (e.g., encryption keys or sensitive algorithms) to attackers [Gao et al. 2006].
All external memory is encrypted via a proprietary encryption algorithm with a 64-bit
secret key that is stored in a tamper-protected, battery-maintained static RAM. Plain-
text code is uploaded via serial port, and a firmware monitor encrypts it and stores
it in external RAM. The 5002FP is commonly used in credit card (i.e., point of sale)
terminals, automated teller machines, and pay-TV decoders [Yang et al. 2005]. A newer
version (DS5250) includes a larger 1KB instruction cache, which, according to Dallas
Semiconductor, reduces the effect of memory encryption on execution speed, providing
a 2.5X performance improvement. The newer processor runs at a maximum frequency
of 25MHz.

Another active area of secure hardware used in industry is the cryptographic co-
processor, such as the IBM PCI-4758. These coprocessors include an impressive array
of technology, including a secure processing environment, microprocessor, custom en-
cryption and random number generation hardware, and shields and sensors (to help
protect against destructive attacks) [Howgrave-Graham et al. 2001]. However, they are
generally limited to IBM server platforms under customized contracts and tend to be
used for financial and banking systems. A modified version of CP/Q message-passing
kernel runs on the system, providing a subset of typical features. The secure module
is encased in a flexible mesh of overlapping conductive lines meant to prevent any
physical intrusion. If such intrusion is detected, the system responds by zeroizing the
internal RAM, which holds the secret key. The stated purpose of the IBM secure copro-
cessor is to offload computationally intensive cryptographic processes (e.g., specialized
financial transactions) from the host server.

Although mostly constrained for use in playing games and other entertainment
media (unless compromised), gaming systems are some of the most capable (e.g.,
fast processor speed and relatively large storage) to incorporate memory encryption
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techniques. As an example of these systems, the Xbox 360 provides encrypted/signed
bootup and executables, partially encrypted RAM, and an encrypted hypervisor
[Steil and Domke 2008]. These mechanisms are provided via a Microsoft proprietary
processor with 64KB of internal RAM, random number generation, and encryption
as opposed to the “off the shelf” processor used in the original Xbox. Although it is
possible to use the Xbox as a general-purpose platform, this requires compromising
the system’s security measures first. Alternatively, the Sony Playstation 3 includes
many of the same security mechanisms of the Xbox 360 but allows the end user to
partition the hard drive for use with a chosen (e.g., Linux) operating system. However,
the proprietary security mechanisms of the Playstation 3 are not available to the
additional operating system [Conrad et al. 2010].

The Trusted Computing Group (TCG) designed the Trusted Platform Module (TPM)
based on the IBM 4758 secure coprocessor [Vandana 2008]. The TPM provides secure
key storage and the capability for platform measurements for chain-of-trust booting.
The current specification for the TPM calls for it to be attached to a typical mother-
board via the Low Pin Count (LPC) bus. The TPM provides nonvolatile storage for
encryption keys and an encryption engine including support for RSA, SHA-1 hashing,
and random number generation. The LPC bus is limited in speed, and the crypto-
graphic engine on the TPM is not meant to be a cryptographic accelerator. More than
350 million TPMs were deployed as of 2010 and can be found in many laptops and
general-purpose computers (disabled by default) [Dunn et al. 2011]. On its own, the
TPM would not be powerful enough to provide general memory encryption with accept-
able overhead. However, the TPM may be used to provide secure key storage between
power cycles. Unfortunately, a small weakness still exists in that keys must be sent in
the clear over the LPC bus to the CPU, allowing a bus snooping attack to capture them
[Simmons 2011]. Other interesting methods to store encryption keys have been de-
scribed recently in schemes targeted at preventing cold-boot attacks on FDE. For ex-
ample, Muller et al. [2011] describe TRESOR, a technique for utilizing CPU debug
registers for encryption key storage. In order to protect against memory attacks on the
key, the decryption routines are carefully written in assembly to avoid using the stack,
heap, or data segment during decryption. By utilizing Advanced Encryption Standard–
New Instructions (AES-NI), TRESOR was shown to perform better than software-based
FDE (17.04MB/s vs. 14.67MB/s) with the additional protection. A similar approach is
taken in Simmons [2011] except that registers used for performance counting are tar-
geted for master key storage with multiple encrypted keys being stored in RAM.

Intel has recently filed several patents for processors incorporating memory encryp-
tion, perhaps indicating a move toward support in commodity processors [Gueron et al.
2012; Gueron et al. 2013]. The patents describe a new processor with hardware in-
cluding a memory encryption engine and on-chip storage for counters. The hardware
described in the application modifies the AES-XTS tweak mode of operation. XTS stands
for XEX-based tweaked codebook mode with ciphertext stealing, and this mode is typ-
ically used for disk encryption [Martin 2010]. A tweak is similar to an initialization
vector and is an additional input to a cipher designed to protect against similarities
in ciphertext. For disk encryption, the tweak tends to be the sector number. In Intel’s
patents, the tweak is extended to include a time stamp or counter value along with the
memory address. The counter is updated each time a cache line is written, providing
protection against a replay attack where a chunk of memory is copied and inserted
back into memory at a later time.

COMMODITIZED SECURITY HARDWARE

Most of the approaches in the memory encryption literature assume that several com-
ponents are necessary for secure, efficient performance: a way to generate and securely
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store encryption keys (i.e., not in RAM), and hardware to accelerate encryption perfor-
mance. Although not targeted specifically at memory encryption, nascent technology
could be used to form the basis of an encrypted memory solution for general-purpose
systems. One of the developers of IBM’s 4758 cryptographic coprocessor has suggested,
for example, that a general-purpose system with hardware support (e.g., a TPM) could
theoretically be turned into a somewhat less secure but more pervasive and less expen-
sive version of the 4758 [Smith 2004]. Encryption engines have been added to Intel’s
core i5 and i7, AMD’s bulldozer, and various embedded processors [Muller et al. 2011].
For X86 systems, Intel’s AES-NI includes six instructions to speed up key expansion
and encryption. Intel states that the new instructions can provide a two- to three-
time performance improvement over software-only approaches for nonparallel modes
of operation such as CBC encryption [Gueron 2010]. Further, a 10-fold improvement
can be realized for parallelizable modes including CBC-decrypt and counter mode en-
cryption. As an example of the performance improvements possible, the authors ran
TrueCrypt’s encryption algorithm benchmark test on a MacBook Pro with an Intel
i7 dual-core, 266GHz CPU. Using a 5MB buffer in RAM, the throughput averages
202MB/s without AES-NI support, and 1GB/s with it—approaching the speed required
to overcome encryption overheads on general-purpose systems.

Henson and Taylor [2013a,b] are among the first to take advantage of this commodi-
tization of security hardware for use in implementing memory encryption. The IMX53
development board is used in conjunction with an ARM cortex A8 processor that con-
tains security hardware within its boundary. The hardware consists of encryption and
hashing engines and random number generation as well as facilities for trusted boot-
ing. A small (∼35KB) microkernel called Bear is developed and integrated with the
A8 and security hardware. As the work is implemented on commodity hardware, it
considers many of the details that are not thoroughly addressed in the other surveyed
literature (i.e., simulation work). For example, encryption is explored at process com-
ponent granularity (e.g., stack, heap, code) with analysis of the overhead for encrypting
each component. The work takes advantage of on-chip, Internal RAM (iRAM) as well
as cache to provide the secure processing environment. Outside of this chip boundary,
all code and data are encrypted. Most of the memory encryption functionality is tied to
the context-switching routines in the microkernel. The microkernel fits into the iRAM
and is part of the TCB in this work.

ANALYSIS

Although the primary goal of memory encryption architectures is security, the work
tends to focus on the overheads involved, both in chip area and performance degrada-
tion. This is unfortunate although unsurprising given that most of the work is simu-
lated, and it is within the intricacies of implementation that security vulnerabilities
tend to be found. The analysis here focuses on the data available, including encryp-
tion latencies, performance degradation, simulation environments, operating system
assumptions, overall space requirements, user requirements, and general observations
regarding security.

Since the performance degradation of memory encryption results in less likelihood
of its use, it is an extremely important factor in the comparison of different schemes.
One of the major issues with the body of literature is the lack of a common set of
measurement standards, with explicit assumptions regarding memory access latency,
encryption latency, and so forth. This makes it difficult to directly compare approaches
and draw valid conclusions. Encryption latencies are typically given as the number of
cycles required to encrypt/decrypt a cache line that varies from 16 to 128 bytes, typically
using a value of 64 bytes. The latencies range from 11 to 160 cycles, with 80 being
the most common value (especially in the multiprocessor work). Rogers et al. [2006]
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state that 80-cycle latency is assumed in order not to penalize the direct encryption
scheme (upon which they are trying to improve) since a recent (circa 2006) hardware
implementation required more than 300ns. Cycles and nanoseconds are often used
interchangeably, since many of the systems modeled are based on 1GHz processors. Low
encryption latencies are possible, although at the cost of large die area, making them
appropriate for powerful processors. For example, it is claimed in Suh et al. [2003] that
40 cycle-latency is achievable with four AES units chained together requiring 300,000
gates. In Aegis [Suh et al. 2007], a single AES unit is estimated at 86,655 gates,
which the authors claim is modest when compared to the size of commercial cores.
Unfortunately, the OR1200 soft core used to demonstrate Aegis is only approximately
60,000 gates (meaning that one AES unit is 144% of the original core size).

The methods used for determining performance include mathematical models, sim-
ulation, kernel prototypes, and FPGA prototypes, with various benchmarking suites
used in the latter three. Simulation is performed with (in order of decreasing usage)
SimpleScalar, Simics, SESC, GEMS, SOC designer, RSIM, and M5. Benchmark suites
used include SPEC2000, SPLASH2, Mediabench, EEMBC, and several user-developed
varieties such as one entitled “memeater.” A group of the simulations utilize Sim-
pleScalar, and Duc and Keyell [2006] note that this simulator neglects the impact of
the operating system and other running processes. Besides these limitations, some
authors admit a lack of model fidelity with significant differences between systems
modeled and those targeted. For example, in Chen et al. [2008], an ×86 architecture is
modeled since it happens to be better supported by the simulation tool (Simics) even
though the scheme is actually targeted for embedded-ARM systems. Unfortunately,
even if a system under test were to be modeled perfectly, the simulation tools them-
selves have been shown to sometimes exhibit behavior unlike real systems. In [Muller
et al. [2011], the behavior of CPU registers is interrogated under simulation in QEMU
with the contents surviving soft-boot. This behavior would circumvent the protections
afforded in that work; however, real hardware behaves differently and zeroes out the
registers.

A summary of the featured techniques is presented in Table I to provide an overview
of memory encryption. The table includes basic characteristics of each approach, such
as complexity information including execution and storage overheads. In order to fairly
compare the different schemes, several assumptions were made. For example, the size
of internal storage required is sometimes dependent on the size of RAM, and where pos-
sible, an assumption of 1GB is made. Similarly, an assumption of 32 processors is made
where possible for the multiprocessor approaches. When there is no data available, an
element of the table is left blank. Two values are commonly reported in the litera-
ture with regard to execution overhead: worst case (max) and the average (based on
some suite of benchmark tests) percentage slowdown when compared to nonprotected
execution. Storage overheads typically break down into internal (cache) and external
(RAM) usage (and one example of the increase to overall code size). Operating system
approach indicates whether the authors assumed the existence of a secure kernel (A),
described hardware to protect the processes from an insecure kernel (H), or ignored the
operating system (I) (further discussion of this requirement follows). Finally, slightly
fewer than two-thirds of the authors included memory integrity (I) along with memory
confidentiality (C) mechanisms. Where possible, results (e.g., execution overhead and
storage) are provided for memory encryption only. Maturity indicates how the tech-
nique was evaluated if not a commercial product. Methods appear in the table as they
are presented in the survey and detailed in the approach column: monolithic processor,
multiprocessor, bus insert, or software/direct or counter-mode encryption.

Security level refers to the overall security of the memory encryption approach with
the following factors from the table taken into consideration: category, operating system
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approach, encryption algorithm, and partial versus full memory encryption. Specifi-
cally, the five sections are scored with maximum points as follows: category (1), oper-
ating system approach (2), encryption algorithm (2), and encryption level (1). A score
of 6 represents a system capable of addressing a wider range of memory threats than
those with lower scores. For category, no points are given for bus inserts and software
approaches due to inherent weaknesses of these techniques when compared to hard-
ware approaches. The operating system approach is scored as follows: hardware (2),
assumption of secure operating system (1), no discussion (0). The encryption algorithm
used receives 2 points for AES and 1 point for DES or unknown algorithms. We will con-
sider partial/full memory encryption and security level in more detail. Although partial
memory encryption schemes are typically used to decrease both space and execution
overheads, they place the onus for identifying secure components, a nontrivial task, on
application or system designers. Today, an analog can be observed in the adoption of
hard disk encryption technologies, whereby administrators struggling to identify which
files (or parts of files) require encryption are opting instead for FDE [Brink 2009]. Since
it is difficult for end users to properly determine which processes should be encrypted,
partial memory encryption receives 0 points, with FME receiving 1.

A comparative analysis on the relative security of these techniques is nontrivial,
and it is important to note that the analysis in this work favors approaches that aim
to mitigate a wide range of threats over those with a narrower scope. For example,
FME will receive a higher score than an approach to add volatility to magnetic RAM,
making it behave more like traditional RAM. Additional factors to consider when
analyzing these works include consideration of implementation details outside of the
“steady state” such as key escrow, delivery of secure code, interprocess communication,
and so forth, although these are not used for the purposes of scoring.

Each approach is qualitatively evaluated on the five components listed earlier, re-
ceiving a total score ranging from 1 to 6. As an example, the Aegis approach [Suh
et al. 2003] is among the highest security level of the works surveyed (6): the category
is monolithic processor with encryption support built in (+1); the operating system
approach includes both hardware and a small, trusted kernel (+2); the AES encryp-
tion algorithm is used (+2); and FME is provided (+1). Although not part of the score,
much of the additional details required for a fully functional, secure implementation
are discussed in Aegis. It is unsurprising that the approach with the highest security
evaluation is also among the most mature (implemented as an FPGA prototype) since
implementation allows for exploration of security trade-offs. In contrast, operating
system controlled memory encryption [Chen et al. 2008] is classified among the lowest
security levels (3): this approach is software based (+0); assumes that the kernel is
secure (+1); utilizes AES encryption (+2); and targets partial memory encryption (+0).
Additionally, this work lacks sufficient detail for a fully functional system and assumes
that the attacker is a clever outsider.

For direct encryption, the performance overhead ranges from a claimed low of 1% in
Rogers et al. [2005] based on simulation of predecryption to a high of 50% for XOM [Lie
et al. 2000] using mathematical analysis based on a worst-case scenario. Rogers et al.
find an average slowdown for a model of XOM of 21% based on the same 18 SPEC2000
benchmarks used in their own simulation work. In four particular benchmarks (applu,
bt, ft, and mcf), the overall execution time for predecryption is similar to the direct
encryption scheme because prefetching adds mispredicted memory references to bus
traffic, increasing contention. Overhead for OTP-based encryption, in monolithic chips,
ranges from a claimed 1.6% for AISE (SESC and 21 CPU2000 benchmarks) [Rogers
et al. 2007] to up to 50% for the basic model in CryptoPage (SimpleScalar and 10
CPU2000 benchmarks) [Duc and Keryell 2006]. The authors of CryptoPage claim that
only 1% of this overhead is attributable to the memory encryption.
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For multiprocessor systems, the reported overheads range from a low of 4% in
I2SEMS (Simics + GEMS and 4 SPLASH2 benchmarks) [Lee et al. 2007] to a high
of 55% in Shi et al. [2004] (RSIM and 6 SPLASH2 benchmarks). I2SEMS is claimed
to work equally well on both SMP and DSM systems, but the simulation environment
is limited to SMP. Cache-to-cache overheads are very low (especially for SMP systems
that use the shared bus for synchronization) in these multiprocessor schemes. All of
the multiprocessor schemes build upon work in the monolithic memory encryption area
and use the counter- mode (OTP) model.

There are only two models surveyed for hardware insert, and they exhibit very
different performance characteristics. MECU [Enck et al. 2008] is based on the OTP
scheme and exhibits 2.1% and 4.1% overhead based on block sizes of 256 and 4,096 cache
lines, respectively, and SimpleScalar simulation with 5 SPEC2000 benchmarks. SecBus
[Su et al. 2009a] is based on direct encryption and exhibits worst-case slowdowns of
472% based on various EEMBC benchmarks and SoC designer. Besides the method of
encryption, the architectures modeled add to the significant differences in overhead.
Whereas SecBus is simulated on an embedded system with 16KB L1 cache and no L2
cache, MECU is modeled after an x86 system with 32KB L1 and 256KB unified L2.
Clearly, the amount of cache available has a huge impact on performance. If complete
working sets fit into a system’s cache, the penalty for memory encryption includes only
the initial decryption time, which is amortized across the entire duration of the process.

As might be expected, the software-only approaches suffer from impractical over-
heads. Chen et al. [2008] simulated operating system controlled memory encryption
and report from 137% to 850% overhead based on Simics and Mediabench benchmarks.
In Cryptkeeper [Peterson 2010], the overhead to read a page when compared to an un-
protected system is 6,015%. As far as commercial hardware, there is no literature
available reporting the performance degradation of either the Dallas Semiconductor
chips or the IBM cryptographic coprocessors (e.g., PCIXCC). However, these solutions
run at slow overall frequencies (25MHz and 266MHz, respectively) and are not par-
ticularly well suited for general-purpose systems. The IBM PCIXCC coprocessor has a
reported AES-128 throughput of 185MB/s.

In general, the counter-mode methods exhibit less computational overhead than
the direct encryption techniques and are resistant to direct encryption’s statistical
weaknesses. However, the choice of size for the counter is critical since a “wraparound,”
whereby the counter resets to zero, requires a change of key in order that each pad
is only used once (a condition necessary to ensure protection from chosen plaintext
attacks) [Lipman et al. 2000]. In the case where only one key is used, the entire memory
then requires re-encryption. This re-encryption can be costly depending on the size of
memory and results in a temporary freezing of the system, which is unacceptable for
real-time performance [Yan et al. 2006]. Choosing a value too small will result in too
many re-encryptions, but choosing one too large will require unacceptable amounts
of storage space either in cache or memory. For example, in Suh et al. [2003], the
authors suggest that 32 bits is an appropriate size for the counter. However, even at
this size, and based on their simulations, a re-encryption is required every 5.35 hours
on average and every 35 minutes for a particularly memory-intensive program. In Yang
et al. [2005], the authors choose to disregard the problem since the provided security is
assumed to be no weaker than that of the XOM scheme, whereas the wraparound issue
is not considered at all in Suh et al. [2007]. Yan et al. [2006] attempt to address the
counter size versus re-encryption problem with their split-counter encryption scheme.
With larger page counters and multiple smaller per-memory block counters, overruns
result in a much finer granularity of re-encryption (per page instead of per process).
Since some pages are written back to memory more often than others, the overall
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necessity for re-encryption is reduced, since the fastest incrementing counter would
have controlled the entire memory space in previous schemes. Another critical decision
involves where to store the counters.

Although using cache is obviously faster, it is also problematic because cache re-
sources are typically limited and expensive. If pre-existing cache space is utilized
instead, additional memory references occur since part of processes’ working sets are
forced out of cache (essentially reducing the size of the usable cache, causing capacity
misses). For example, in Yang et al. [2005], the authors state that a 1GB memory space
would require more than 8 million sequence numbers based on cache line granularity
and a cache line size of 128 bytes. Adding a cache that large (∼28MB) is unreasonable,
so the authors suggest adding a much smaller 64KB one. However, this design deci-
sion either limits the security of the system, since a large part of memory would be
unencrypted, or some sequence numbers would be stored in memory. There are 32K
numbers (2 bytes each) stored in the SNC covering 32K L2 cache lines and 4MB of
memory. Although RAM is slower than cache, the seed (which is smaller than a cache
line) is the first memory access and would arrive earlier than the rest of the reference.
Although this does not hide as much latency as using cache, it is an improvement over
the direct encryption scheme. This technique would also render part of RAM unusable,
as it would be utilized for additional storage.

In AISE [Rogers et al. 2007], the authors suggest that all of the previous OTP schemes
are flawed in their use of memory address as part of pad computation. Using virtual
addresses as a component of the input to the pad seeds may lead to a vulnerability,
since separate processes will use the same address tweak as part of the seed (break-
ing the requirement for pad uniqueness). Additionally, using the virtual address for
pad computation can cause problems for shared memory interprocess communication,
since the pads would be different for the various processes even though both need to
access the plaintext. For schemes using the physical address as part of the pad com-
putation, there are other issues when swapping to the backing store. Since pages in
memory that are swapped out are likely to reside at a new physical address when
brought back in, there is a potential for pad reuse or the requirement for a decryption
and re-encryption of a page loaded into a different address.

Industrial implementations have been shown to be vulnerable to attack. Kuhn [1998]
demonstrates what is essentially a brute-force attack on the 5002FP. External hard-
ware is used to control input to the processor and force it to power cycle. After each
power-on, different encrypted “guesses” (possible instructions) are fed to the system,
and the output ports are observed. The 5002FP had been described as the most secure
processor available for commercial users at the time of this successful attack, which
required a personal computer and a device built in a student laboratory for about $300.
One of the reasons the 5002FP is vulnerable to brute-force attack is the small size of
the plaintext. Kuhn notes that encryption performed over whole cache lines (of at least
8 bytes) instead of on single bytes would make the brute-force attack impractical. There
is no known example of a successful attack against the IBM cryptographic coprocessors.
However, these coprocessors tend to be used for highly specialized applications and are
difficult to upgrade [Suh et al. 2007], making them undesirable for general-purpose
computing environments. In fact, one of the designers of the IBM-4758 has noted
his frustration with their expense and modest processing environment [Smith 2004;
Gutmann 2000]. Although the TPM chip has been included in various trusted com-
puting schemes, it is potentially vulnerable to the same types of snooping and bus
injection attacks used against systems with unencrypted memory [Shi et al. 2004;
Suh et al. 2007; Simmons 2011]. In fact, when utilizing the TPM with bitlocker drive
encryption, the secret key is copied into RAM, making it vulnerable to capture via
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cold-boot and other attacks as demonstrated in Halderman et al. [2008]. Since the key
must be in RAM for bitlocker to function properly, the additional protection of the TPM
is potentially nullified.

There are three basic approaches in the literature surveyed with regard to operating
systems. The problem lies in the fact that without a secure (trusted) operating system,
extra protections must be placed in hardware to prevent a compromised system from
breaking the confidentiality of other processes. For example, when processes are con-
text switched by the operating system, the registers and other internal memory will
be in plaintext. The first approach is to explicitly assume the existence of a secure
operating system [Chen et al. 2008; Shi et al. 2004; Yan et al. 2006; Suh et al. 2003;
Su et al. 2009b; Chen and Morris 2003]. Some of the papers taking this first approach
discuss implementation requirements, but none have been developed. In the second
approach, the complexity of the hardware is increased in order to protect all processes
(including the operating system) from each other [Kgil et al. 2005; Yang et al. 2005;
Duc and Keryell 2006; Enck et al. 2008; Lie et al. 2000; Platte et al. 2006; Zhang et al.
2005; Chhabra et al. 2011]. One example of such hardware includes special instruc-
tions and extra registers that are called before context switches [Lie et al. 2000]. The
internal registers are then encrypted strictly by the hardware before the kernel can
intervene and complete the context switch as normal. Although several papers note
the importance of working on a secure kernel to complement secure architectures,
we have found no work to date suggesting the completion of any such effort. In the
third approach, the requirement for a secure operating system is simply not addressed
[Nagarajan et al. 2007; Rogers et al. 2005; Rogers et al. 2007; Hong et al. 2011; Lee
et al. 2007; Jannepally and Sohoni 2009; Rogers et al. 2006; Rogers et al. 2008].

CONCLUSION

This survey has considered the research challenges associated with FME and distin-
guished three primary groups of techniques that attempt to solve those challenges—
hardware enhancements, operating system enhancements, and specialized industrial
devices. Although the concept of memory encryption has existed for more than three
decades, there are still no general-purpose, commercial-off-the-shelf solutions inte-
grated with secure operating systems. However, there is clearly a growing need for
privacy and intellectual property protection on the Internet, as evidenced by the in-
creasing use of FDE, recent policy directives such as the Federal Data Breach Notifica-
tion Act and components of HIPAA [Brink 2009]. Between 2002 and 2007, a reported
773 breaches of U.S. organizations were reported, with a total of 267 million private
records lost. More than 42% of these breaches were a result of lost or stolen hard-
ware, including laptops, PDAs and portable memory devices [Romanosky et al. 2008].
Additionally, it is apparent that at least one major chip maker (Intel) has recognized
this growing need, as two recent patent applications for adding memory encrypting
hardware to processors attests [Gueron et al. 2012; Gueron et al. 2013].

The range of overheads reported in the literature is quite large (1% to 6,015%). The
results on the lower end of the spectrum are possibly overly optimistic given the lack
of fidelity in the simulation frameworks and the lack of standards for comparison. If
standardization could be injected into the validation methodologies through common
AES decryption latency, benchmarks, and so forth, it would enable more meaningful
comparative analyses. Even with standardization, the number of assumptions make
it difficult to be confident that simulation will provide anything more than high-level
information. It ignores the more difficult and interesting implementation issues and
associated security impact based on vulnerability and exploit analysis. Where, in the
few cases available, the literature addresses these low-level issues, it tends to be with
generalization, since there is no chance for practical experimentation or empirical
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evidence [Lie et al. 2000; Shi et al. 2004; Chhabra et al. 2010]. Although the security
of the encryption algorithm or cipher mode is often pointed out, it is commonly the
complexity of the system in which these algorithms run that presents vulnerabilities.
The most developed, although not commercially available, general-purpose technolo-
gies are FPGA soft-core emulations [Suh et al. 2007] and the Linux prototype used in
Cryptkeeper [Peterson 2010]. The industrial devices are mature and practical; however,
they are not general purpose, catering to highly specialized operations. Additionally,
these devices are either of low frequency or expensive and difficult to upgrade [Dallas
Semiconductor 1997; Arnold and Doorn 2004].

Several technologies have been incorporated into general-purpose systems recently,
often without the knowledge of those buying them. These technologies include TPM
chips for storing keys and encryption engines and instructions. Given a system with
these components, it is now possible to experiment with memory encryption, providing
an opportunity to better understand the difficult implementation details and ultimately
provide data on overhead and security enhancement. This data should prove invaluable
for determining the feasibility of memory encryption in general-purpose systems and
for comparing against (and perhaps validating) the results of previous simulation work.

NOTICE

The U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.
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