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The Instruction-Set Extension Problem: A Survey
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The extension of a given instruction-set with specialized instructions has become a common technique used
to speed up the execution of applications. By identifying computationally intensive portions of an application
to be partitioned in segments of code to execute in software and segments of code to execute in hardware, the
execution of an application can be considerably speeded up. Each segment of code implemented in hardware
can then be seen as a specialized application-specific instruction extending a given instruction-set. Although
a number of approaches exist in literature proposing different methodologies to customize an instruction-
set, the description of the problem consists only of sporadic comparisons limited to isolated problems. This
survey presents a unique detailed description of the problem and provides an exhaustive overview of the
research in the past years in instruction-set extension. This article presents a thorough analysis of the
issues involved during the customization of an instruction-set by means of a set of specialized application-
specific instructions. The investigation of the problem covers both instruction generation and instruction
selection and different kinds of customizations are analyzed in a great detail.
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1. INTRODUCTION

In the past years, electronic devices have been steadily penetrating the market, fea-
turing not only an ubiquitous nature but also a plethora of functionalities. During the
years, these functionalities have been implemented by using different kinds of com-
puter architectures which can be categorized according to their degree of flexibility into
two main groups: the general-purpose computing group and the application-specific
computing group [Bobda 2007; Guo 2006].

1.1. General-Purpose Computing

General-purpose architectures have been widely used and studied in the past decades.
This type of architectures provides a high degree of flexibility in terms of application
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domains. “Additionally, many tools have become available on the market and have al-
lowed programmers to map many different applications onto this type of architectures
virtually effortlessly” [Guo 2006].

The general-purpose computing group is based on the Von Neumann computing
model. The general structure of a Von Neumann machine consists of a memory for
holding both program instructions and data (Harvard architectures contain two paral-
lel accessible memories for holding the program instructions and the data separately),
a control unit used to store the addresses of the instructions to execute, and an arith-
metic and logic unit used to execute the instructions [Bobda 2007].

A program targeting a Von Neumann machine is coded as a set of instructions to
be executed sequentially. The execution of an instruction is realized in five steps:
(1) fetching the instruction from the program memory, (2) decoding the instruction to
determine which operation has to be executed and which operands are required, (3)
reading the operands from the memory, (4) executing the instruction, and (5) writing
the result of the operation back to the data memory. This execution model results in
a high performance overhead for each individual operation, which turns into energy
overhead. In this sense, the general-purpose computing group is considered to be the
most flexible hardware at the cost of a general high-energy consumption [Bobda 2007;
Guo 2006].

Over the years, different techniques to increase the level of parallelism have been
introduced at instruction level: for instance, techniques such as instruction pipelin-
ing, superscalar execution, out-of-order execution, and register renaming. Parallelism
has also been exploited at other levels: bit-level, data-level, and loop-level parallelism.
Although the level of parallelism has been increased over the years, it is still rela-
tively limited for highly parallelizable applications, which become poor candidates for
implementation on these architectures.

1.2. Application-Specific Computing

In the context of application-specific computing, three main categories can be iden-
tified: Application-Specific Integrated Circuits (ASICs), Application Domain-Specific
Processors (ADSPs), and Application-Specific Instruction-set Processors (ASIPs).

ASICs are circuits designed for a specific application such as the processor in a
TV set top box. Being designed for a specific use, ASICs are able to satisfy spe-
cific constraints and to reduce energy consumption, using an appropriate architec-
ture designed for the targeted application, compared with general purpose architec-
tures which are designed for a generic use. In an ASIC, the entire application has
been hard-wired and the software component is usually represented by runtime con-
figurable parameters. However, energy saving comes at the cost of low flexibility and
programmability: for each new functionality or application, the hardware has to be re-
designed and built. Today designing and manufacturing an ASIC is a time-consuming
and expensive process [Keutzer et al. 2002]. The increasing NonRecurring Engineer-
ing (NRE) costs, due to the high mask and testing costs associated with manufacturing,
together with factors such as Deep SubMicron effects (DSM), increased feature sets,
and heterogeneous integration contribute to increase the production costs. Addition-
ally, this long process has to deal with the shrinking time-to-market which sometimes
makes the choice of an ASIC not suitable.

ADSPs and ASIPs are processors having a partially customizable instruction-set
which can be tuned towards the specific requirements of an application (ASIPs) or a
domain of applications (ADSPs) by extending the basic instruction-set with dedicated
instructions. Digital signal processors are an example of ADSP. “These processors are
specialized for accelerating computation of repetitive, numerically intensive tasks in
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Fig. 1. Positioning of different computer architectures in terms of flexibility. GPP + RH represents a recon-
figurable architecture composed by a GPP and a Reconfigurable Hardware (RH).

the digital-signal processing area such as, for example, multimedia and image process-
ing” [Bobda 2007]. A typical application-specific instruction implemented on a DSP
processor is the Multiply ACcumulate (MAC) instruction which can be performed on
huge set of data concurrently. A MAC instruction performed on a common Von Neu-
mann machine would have to access the memory to load/store the intermediate result.
As a result, by using specialized hardware that directly perform addition after mul-
tiplication without having to access the memory a considerable amount of time can
be saved. If the processor has to be used only for one application, ASIPs can be used
instead of ADSPs. From an optimization point of view, ASIPs can be better optimized
than ADSPs. This happens because modifications to the latter have to benefit all the
applications in a specific domain, whereas in the former case only one application is
taken into consideration [Arnold 2001].

The customizable instruction-set of ADSPs and ASIPs introduce more flexibility
in the design even though the number of different instruction-set customizations is
usually relatively limited and, therefore, the execution of different applications can be
inefficient [Fornaciari et al. 1999].

The aforementioned architectures can then be positioned in terms of flexibility as
depicted in Figure 1. The flexibility of a General-Purpose Processor (GPP) can be
further extended by using a reconfigurable hardware, as described in the next section.

1.3. Reconfigurable Computing

Ideally, we would like to combine the flexibility of a general purpose system with the
high performance of an application-specific system. The last two decades have seen a
new emerging class of architectures, the so-called reconfigurable architectures. Time-
to-market and reduced development costs have became increasingly important and
have paved the way for reconfigurable architectures. Reconfigurable devices, including
the most widely used Field-Programmable Gate Arrays (FPGAs)1, consist of

“arrays of programmable logic cells interconnected using a set of routing
resources which are also reconfigurable. In this way, custom digital circuits
can be mapped onto the reconfigurable hardware by computing the logic
functions of the circuit within the logic blocks and the reconfigurable routing
is used to connect the logic blocks together to form the necessary circuit”
[Compton and Hauck 2002].

Reconfigurable architectures are typically formed with a combination of a conven-
tional processor, like a General-Purpose Processor (GPP), and a reconfigurable device.
Part of the operations are executed by the host processor while the rest of the opera-
tions are executed by the reconfigurable device2. A reconfigurable architecture is an
architecture able to adapt to the application: the structure of the architecture can
change at start-up time or even at runtime to match the applications.

1Xilinx (http://www.xilinx.com/) and Altera (http://www.altera.com/) are currently the main producers of
FPGAs devices on the market.
2As described later in Section 5, it is also possible to embed the processor into the reconfigurable device
either as a hard core or as a soft core implemented on resources of the reconfigurable hardware itself.
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Reconfigurable architectures present three main advantages compared with the ar-
chitectures previously described: first, changing an existing architecture, rather than
defining a completely new one, allows to reuse its associated compiler which has to
be partially modified and not redesigned from scratch [Pozzi 2000]. Second, reconfig-
urable architectures can serve a much wider range of applications, being an extension
of GPP (or a processor, in the general case) (see Figure 1). Examples are data encryp-
tion, data compression, and genetic algorithms. Third, reconfigurable architectures
can be used for rapid prototyping. “Rapid prototyping allows a device to be tested in
real hardware before its final production” [Bobda 2007]. In this way, considerable
amounts of development and debugging efforts can be eliminated and the time-to-
market can be reduced. Additionally, the design remains flexible until the product
enters the market and even after, allowing to ship a product that meets the minimum
requirements and add features after deployment [Bobda 2007].

The higher cost/performance ratio for reconfigurable architectures has led re-
searchers to look for methods and properties to maximize the performance. Each par-
ticular configuration can then be seen as an extension of the instruction-set of the
host processor. The identification, definition, and implementation of those operations
that provide the largest performance improvement constitutes a major challenge and
represents the so-called instruction-set extension problem.

In this article, we present a survey of current research in instruction-set exten-
sion, investigating the issues regarding the customization of an instruction-set under
specific requirements. The main objective is to provide a detailed overview of all the
aspects involved in the customization of an instruction-set. It does not seek to cover
every technique and research project in instruction-set extension. Instead, it provides
an overview of all relevant aspects of the problem and it compensates for the lack of a
general view of the problem in the existing literature, which only consists of sporadic
comparisons limited to isolated issues involved.

2. INSTRUCTION-SET EXTENSIONS

The customization of an instruction-set presents, among others, many advantages:
first,

“the application code can be more densely encoded, resulting in a code size
reduction; second, the total number of instructions that have to be executed
may be reduced, which results in a lower power consumption and third,
the execution of the application can be more efficient in terms of increased
performance using the customized instruction” [Arnold 2001].

Although the focus of this article is on presenting in detail how to generate and se-
lect custom instructions for extending a given instruction-set, the issue concerning the
efficient implementation of the selected instructions in hardware has to be addressed
as well. Later in the article, we give an overview of different architectures that inte-
grate custom instructions for application acceleration.

The identification process of new specialized instructions is usually subject to dif-
ferent constraints such as power consumption, area, code size, cycle count, operating
frequency, etc. Additionally, not all the instructions suitable for a hardware imple-
mentation can be selected for being implemented in hardware, due to the ever-limited
hardware resources in the general case. The issues involved are diverse and range
from the isomorphism problem and the covering problem, well-known computation-
ally complex problems, to the function’s study necessary for the guide/cost function
involved in the generation and selection of custom instructions. Equally important is
the selection problem addressed by different techniques such as branch-and-bound and
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dynamic programming. The proposed solutions are either exact, whenever appropri-
ate and possible or, given that the problems involved are known to be computationally
complex, heuristics that are used in those cases where the solution is not computable
in a feasible time. In the next sections, we overview the current state-of-the-art in
instruction-set customization, describing in detail all the issues involved.

The instruction-set customization problem represents a well-specified topic where
results and concepts from many different research fields are required. Graph theory
is one of the dominant approaches and it seems to provide the right analytical frame-
work. Thinking about the data-flow or control-flow graphs of an application3, it is
easy to imagine an application represented by a directed graph, where nodes repre-
sent operations and edges represent data dependencies, and the required new complex
instructions are represented by subgraphs having particular properties. Thus, the
problem turns into the identification of methods for the recognition of certain types of
subgraphs.

The remainder of this article is presented as the following. Section 3, after present-
ing a motivational example, overviews the different instruction-set customizations.
Degree of customization, granularity of the instructions, and degree of automation of
the process are presented in detail. Section 4 elaborates on the customization process
and provides a detailed account of the problems involved in the customization. In-
struction generation and selection, properties of the custom instructions, and exist-
ing solutions are presented to better understand the problem. Section 5 proposes a
selected overview of the main architectural approaches that integrate custom logic
for application acceleration. Finally, Section 6 presents concluding remarks and open
issues worthy of further research and investigation in the context of instruction-set
customization.

3. DIFFERENT TYPES OF CUSTOMIZATIONS

Instruction-set customization can be pursued by following different approaches in the
type of customization, which can be complete or partial, and in the granularity of the
instructions, which can be fine-grain or coarse-grain. We introduce a motivational
example to informally outline the main idea of the instruction-set extension.

3.1. Motivational Example

In Figure 2(a), we present a data-flow subgraph extracted from the ADPCM applica-
tion as implemented in the MediaBench benchmark suite [Lee et al. 1997]. Nodes rep-
resent the primitive operations, namely the instructions belonging to the instruction-
set and the edges representing the data dependencies.

A custom instruction is represented by a subgraph of the data-flow graph. The
main idea is to identify different clusters of basic operations within the graph, which
can be implemented as single instructions to atomically execute in hardware. They
become new specialized instructions extending the basic instruction-set and they allow
to speed up the execution of an application. Although different criteria can be used to
identify custom instruction, all instructions, as we will see in the next sections, can be
divided in single-output and multiple-output. Additionally, an instruction can perform
one or more parallel independent calculations at the same time, which means that all
instructions can be divided into two sets: connected and disconnected instructions (see
Section 4.3.1). Figure 2 presents an example of different custom instructions generated
as in Alippi et al. [1999] and Galuzzi et al. [2006, 2007a].

3These are the directed graphs that show, respectively, the data dependencies and the control dependencies
among a number of functions.
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Fig. 2. Motivational example. The data-flow subgraph extracted from ADPCM decoder and different custom
instructions: (a) maximal connected single-output instructions [Alippi et al. 1999], (b) disconnected multiple-
input multiple-output instructions [Galuzzi et al. 2006], and (c) connected multiple-input multiple-output
instructions [Galuzzi et al. 2007a].
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In Figure 2(a), the nodes of the graph are partitioned in maximal single-output sub-
graphs (the dashed boxes) as described in Alippi et al. [1999]. Each cluster is a con-
nected single-output subgraph. Considering each of these subgraphs fused as a single
complex multiple-input and single-output instruction, it is possible to draw the graphs
in Figure 2(b) and 2(c), where each node represents one of the clusters identified in
Figure 2(a). Following the clustering methodology proposed in Galuzzi et al. [2006],
the nodes of the graph are further combined in multiple-input multiple-output discon-
nected subgraphs, the dashed boxes in Figure 2(b). Following the method proposed in
Galuzzi et al. [2007a], the nodes of the graph are further combined in multiple-input
and multiple-output connected subgraphs, the dashed boxes in Figure 2(c).

Additionally, we can roughly calculate the performance gain for these instructions4.
Let’s now assume that the hardware latency for a node ni in Figure 2(a) to be li. When
k nodes at the same level are combined together, the execution time of the cluster in
hardware is maxi=1..k li. The performance gain in this case is

∑
i=1..k(li) − maxi=1..k(li).

If, successively, we combine nodes through the levels of the graph, the overall perfor-
mance gain increases. Let’s assume that α1, ..., αh are the levels of the nodes belonging
to a cluster. The overall performance gain in this case is

αh∑

j=α1

(
∑

ij

lij − max
ij

(lij)). (1)

This means, for example, that using the custom instruction in Figure 2(b) there is a
performance gain of l5 + l6 − max(l5, l6).

Roughly speaking, the identification of custom instructions partitions an application
in segments of code which are implemented in software and segments of code which
are implemented in hardware. For this reason, many authors naturally associate this
problem to the hardware-software codesign problem or hardware-software partitioning
problem [Bı̀nh et al. 1995; Niemann and Marwedel 1996, 1997; De Micheli and Gupta
1997; Baleani et al. 2002; Arató et al. 2003; Huynh et al. 2007], which consists of
concurrently balancing, at design time, the presence of hardware and software.

3.2. Types of Customizations

The identification of custom instructions for instruction-set extension can be catego-
rized according to the following.

Complete Customization vs. Partial Customization. The previous example shows three dif-
ferent clustering methods which extend a given instruction-set with different kinds
of specialized instructions: single-output instructions and connected or disconnected
multiple-output instructions. The customization of an instruction-set can be catego-
rized in two main approaches. As the name suggests, complete customization involves
the whole instruction-set which is tuned towards the requirements of an application or
a domain of applications [Holmer 1993; Huang and Despain 1994a, 1994b; Van Praet
et al. 1994]. Partial customization involves the extension of an existing instruction-set
by means of a limited number of instructions [Alomary 1996; Arnold and Corporaal
2001; Atasu et al. 2003a; Choi et al. 1998, 1999; Faraboschi et al. 2000; Kastner et al.
2002; Liem et al. 1994; Wang et al. 2001]. In both cases, the goal is to design an
instruction-set that contains the most important operations needed by one or more
applications to maximize the performance of execution. By extending an instruction-
set rather than designing a completely new one, it is possible, for example, to reuse its

4In this example, we consider a performance gain over a single issue, in-order CPU.
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associated compiler which has to be partially modified and not redesigned from scratch
[Pozzi 2000].

Fine Granularity vs. Coarse Granularity. Irrespective of the type of customization, com-
plete or partial, we can distinguish two approaches related to the granularity at which
code is considered: fine-grain and coarse-grain5. The first one works at operation level
and implements small clusters of operations in hardware [Arnold and Corporaal 2001;
Atasu et al. 2003a, 2005; Choi et al. 1999]. The second one operates at loop or proce-
dure level and identifies critical loops or procedures in the application, and displaces
them from software to hardware as a whole [Athanas and Silverman 1993; Geurts
1995, 1997; Hauser and Wawrzynek 1997; Razdan et al. 1994; Wirthlin and Hutchings
1995]. The main differences are in terms of speedup and flexibility: although a coarse-
grain approach can produce a large speedup, its flexibility is limited. This appears
given that this approach is often performed on a per-application basis and it is difficult
that other applications have the same loop or procedure as critical part. Consequently
many researchers prefer either a fine-grain approach, even if it limits the achievable
speedup compared to the coarse-grain one, or a mix of coarse- and fine-grain tech-
niques, when these do not interfere with each other [Arnold 2001]. For example, in
Figure 2, the custom instructions have a fine granularity.

Automatic Extension vs. Maual Extension. An important issue related to the extension
of an instruction-set is the degree of human effort required to identify and implement
the instruction-set extensions. Although human ingenuity in manual creation of cus-
tom capabilities creates high-quality results, performance and time-to-market require-
ments, as well as the growing complexity of the design, can benefit from an automatic
design flow for the use of these new capabilities [Atasu et al. 2003a, 2005; Bonzini and
Pozzi 2007b; Borin et al. 2004; Clark and Zhong 2005; Clark et al. 2002, 2003; Cong
et al. 2004; Huynh et al. 2007; Peymandoust et al. 2003; Sun et al. 2004]. Moreover, the
selection of multiple custom instructions from a large set of candidates involves com-
plex trade-offs and can be difficult to be performed manually, making often “the design
efforts more time consuming and expensive than the design of an ASIC” [Clark 2007].
There also are commercial products available for automatic instruction-set customiza-
tion. Examples are Tensilica’s Xtensa LX 2 processor and the MIPS Pro series.

Up to now, we described the different types of instruction-set customizations. Then,
an important issue arises: How can we extend a given set of instructions with custom
instructions? Given an application, the design process involves first the identification
of segments of code to speed up. Second, the segments are analyzed for the genera-
tion of custom instructions and, then, a subset of the most profitable instructions is
selected for hardware implementation based on hardware limitations. Thus, the cus-
tomization process can mainly be divided in two phases: instruction generation and
instruction selection. Given an application or part of an application code, instruction
generation consists of clustering of basic operations (such as add, or, load, etc.) (the
ones belonging to the instruction-set) or of mixed operations into larger and more com-
plex operations. The custom instructions can cover the application entirely or partially.
Once the new instructions are identified, they pass through a selection process which
selects a subset of the most profitable ones. Instruction generation and selection are
performed with the use of a function called cost function or guide function, which takes
into account different constraints and guides the identification and selection of the new
instructions.

5The word granularity in this context does not have to be confused with the granularity of a reconfigurable
device, which refers to the size of the reconfigurable blocks.
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In the next sections, instruction generation and instruction selection are analyzed
in detail.

4. THE CUSTOMIZATION PROCESS

The generation of new instructions relies on the concept of template. A template is a set
of program statements that is a candidate for implementation as a custom instruction.
As mentioned before, an application can be described with graphs, such as the data-
flow graph and the control-flow graph. In this context, a template is equivalent to
a subgraph where nodes represent operations and edges represent dependencies. A
collection of different templates constitutes a library of templates.

4.1. Custom Templates vs. Predefined Templates

A template can be, for example, the multiply accumulate (MAC) operation, a very
common operation in signal processing areas. An approach which looks at methods to
automatically identify parts of the code to move from software to hardware can make
use of templates from preexisting libraries, as in the case of the MAC operation, or it
can build a custom library of templates for the application or domain of applications
under consideration.

When preexisting templates are used, the used templates represent the instruction-
set extensions. The general two-step process, instruction generation and instruction
selection for the identification of custom instructions, is reduced to a single step
in which the application is analyzed to find recurrences of the given templates. It
is similar to the graph isomorphism problem [Chen 1996; Fortin 1996; Messmer
and Bunke 1995]. Many approaches assume the existence of predefined libraries of
templates [Cheung et al. 2003a; Clark et al. 2003; Liem et al. 1994; Sreenivasa Rao
and Kurdahi 1992]. However, this is not always the case and many authors develop
their own templates [Arnold and Corporaal 2001; Atasu et al. 2003a; Athanas and
Silverman 1993; Choi et al. 1999; Kastner et al. 2001; Pozzi et al. 2006a; Razdan et al.
1994]. In the general case, custom templates are generated through an incremental
clustering. A node is selected as a seed and, iteratively, nodes are merged together
following different policies.

One of the main goals in designing a method to extend a given instruction-set with
dedicated instructions is to make the method, in a certain way, suitable to be applied on
different architectures. Unfortunately, this concept has to deal with the effective im-
plementation of the instruction-set on the architecture, which can have specific hard-
ware limitations. For example, if the architecture allows operations with no more
than one output, a custom instruction with multiple outputs cannot be implemented
in hardware, making unusable the custom instruction identified. For this reason, the
generation of custom instructions is subject to specific constraints.

4.2. The Cost Function

The generation of custom instructions makes use of a function, called cost function (or
guide function). The cost function guides the search for the identification of the custom
instructions which satisfy specific metrics (or constraints). The main metrics are listed
here.

(1) Number of inputs and outputs. The size of a custom instruction can be limited by
imposing limitations on the total number of inputs and/or outputs. This constraint
is generally architecture dependent;

(2) Area. Depending on the architecture and on the implementation choices, each
operation requires a certain amount of area when implemented in hardware. The
cost function considers the area of a cluster as the sum of the operations included
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in the cluster. When hardware resources are limited, the cost function continues
or stops clustering based on the available hardware resources;

(3) Power or energy consumption. Power consumption is an important parameter for
the design of efficient custom instructions. Based on the power consumption, the
cost function can include or exclude a node from the custom instruction. One of
the large power consumers is the memory system. For this reason, many time
limitations to the number of memory accesses are introduced to limit the total
power consumption of the custom instruction.

Additionally, the cost function can take into consideration.

(1) Latency. A custom instruction speeds up the execution of an application if, when
moved to hardware, it reduces the total latency. The combination of different opera-
tions, as described in Section 3.1, can lead to fewer cycles to execute the operations
in conjunction than they do individually;

(2) Instruction scheduling. “If all inputs of an instruction are supposed to be available
at issue time and all results are produced at the end of the instruction execution”
[Ienne and Leupers 2006], it is required that a feasible scheduling exists for the
custom operation when it is fused into a single instruction that is atomically exe-
cuted in hardware. This constraint is usually identified with the convexity of the
instruction, a topic that is explained in more detail in the next sections.

Additional metrics can be introduced to guide the generation of custom instruc-
tions. The five aforementioned metrics are general and common to the majority of the
approaches for custom instruction generation. Additional specific constraints related
to the targeted architecture can also be considered. An exhaustive outline of different
metrics used for the generation of custom instruction is presented in Holmer [1993,
Chapter 4].

4.3. Instruction Generation

The analysis of the application for the generation of custom instructions is a design
space exploration which aims at identifying instructions that can be selected for hard-
ware implementation. We can detect two problems involved in instruction generation:
the complexity of the exploration and the shape of the graph.

The Complexity of the Exploration. Given a graph that represents an application, in the
most general case, each node of the graph can either be included or excluded from
a candidate instruction. This means that there is an exponential number of potential
candidates which turns into an exponential complexity of the design space exploration.
The cost function, taking into consideration different constraints, reduces the number
of candidates to a limited number. Several techniques have been proposed to handle
the high computational complexity of the exploration. This can mainly be tackled in
two ways: (1) by reducing the design space to explore (for example, by either using
heuristics instead of exact algorithms or by limiting the size of the problem) or (2) by
introducing specific constraints.

Many efficient heuristics have been proposed with very good runtimes when com-
pared to exact solutions. The use of heuristics, even though it can efficiently reduce
the design space explored, also turns into the generation of nonoptimal or even feasible
solutions. Heuristics are often used with no theoretical guarantee.

An alternative way is to limit the size of the problem. For example, the approach
presented in Atasu et al. [2003a] generates optimal sets of custom instructions. Even
though the approach still has a worst exponential case runtime, for graphs of limited
size, the solution is provided in a timely manner.
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The introduction of additional constraints can reduce the number of candidates for
hardware implementation, but has the drawback that every time a node is evaluated
for inclusion or exclusion from a candidate instruction, all constraints have to be ver-
ified. Therefore, a reduction of candidates turns into a growth of the computational
time due to the multiple analyses.

A way to optimally solve covering problems is by using a branch-and-bound ap-
proach. This approach starts with a search space potentially exponential in size, and
reducing step-by-step the search space. The essence of this approach may be summa-
rized in this way: if it is possible to show at any node in the total enumeration that
the optimal solution cannot occur in any of its descendants, there is no need to con-
sider those descendant nodes. Then, the search can be pruned at that node and the
more we prune in the search space the more computationally manageable the problem
becomes. A limitation on the analysis of unsuccessful branches relies on two aspects
[Coudert 1996; Coudert and Madre 1995]: effective bounds and pruning techniques.
Their combination can significantly improve the efficiency of the covering technique
used to identify the candidate instructions for hardware implementation.

Other covering approaches use dynamic programming, which is a way of decompos-
ing certain hard-to-solve problems into equivalent formats that are more amenable to
solution. Basically a dynamic programming approach solves a multivariable problem
by solving a series of single-variable problems. A drawback of dynamic programming is
that it can only operate on tree-shaped graphs. Thus, the non-tree-shaped graph has
to be decomposed into sets of disjoint trees. Other covering approaches, like Arnold
and Corporaal [2001], use methods based on dynamic programming modified to deal
with non-tree-shaped graphs.

The Shape of the Graph. The subject graph, the directed graph representing the given
application, can be an acyclic or a cyclic graph. Usually, acyclic graphs are considered
during the analysis. This follows from the fact that acyclic graphs can be easily sorted,
for example, by a topological ordering, whereas cyclic graphs cannot. Therefore, for
cyclic graphs, the issue of defining a one-to-one order of the nodes is added to the
problem. Additionally, a cyclic graph can be transformed into an acyclic one if, for
example, the cycles are unrolled.

Alternatively for dealing with cyclic graphs, one can consider the complete loops as
single nodes in the graph. In this way, the graph can be topologically sorted but it
presents two drawbacks: first, the number of custom instructions which is possible
to generate is drastically reduced6. Second, it is difficult for different applications to
share the same loops. This means that the custom instructions generated will speed up
the execution of the given application and will hardly be used to speed up the execution
of other applications.

Given a subject graph, the custom instructions can be generated following different
criteria. When the generation is concluded, a subset of instructions, which maximizes
the performance gain, is usually selected based on the available hardware resources.
In the next sections, we present an overview of the different types of custom instruc-
tions. After that, Section 4.4 continues the analysis of the problem describing the
different methods used to select which instructions are the most suitable to be imple-
mented in hardware within the set of custom instructions generated.

6As mentioned in the previous section, the number of potential instructions is exponential in the number of
nodes of the graph under analysis. By considering complete loops as single nodes, the total number of nodes
in the graph is reduced, which in turn reduces the number of potential instructions.
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4.3.1. Connected Instructions vs. Disconnected Instructions. The custom instructions can
make use of the parallelism provided by the hardware implementation. This can be
realized by looking for instructions which perform parallel independent operations at
the same time. As previously described, in general, when n operations are performed
in parallel, the total execution time is the maximum of the execution times of the con-
sidered operations. This means that a considerable speedup can be gained by identi-
fying disconnected operations which can be clustered together in a custom instruction
[Atasu et al. 2003a; Galuzzi et al. 2006; Yu and Mitra 2007]. Even though disconnected
instructions can provide a high speedup, the majority of the authors look only for con-
nected instructions [Arnold and Corporaal 2001; Baleani et al. 2002; Clark et al. 2003;
Cong et al. 2004; Pozzi et al. 2001, 2002; Yu and Mitra 2004] due to the lower com-
putational complexity of the algorithms. In literature only three works exhaustively
enumerate all feasible (see the next paragraph) connected and disconnected subgraphs
of a given data-flow graph: Yu and Mitra [2004, 2007] list all feasible connected and
disconnected patterns, respectively, while Pozzi et al. [2006b] generate both connected
and disconnected patterns.

4.3.2. Convexity and Schedulable Instructions. When a cluster of operations is fused into
a single custom instruction that is atomically executed in hardware, the instruction
has to be functionally executable. For example, in Figure 2(b), let G∗ be the subgraph
consisting of nodes MM0 and MM1. If G∗ is fused into a single instruction, assuming
that all inputs are available at issue time and all results are produced at the end of the
instruction execution, there exists no feasible scheduling for G∗. This basically means
that there exists a path between the nodes of G∗ which includes nodes not belonging
to G∗ (MM6, in this case). The convexity of a graph is the property that guarantees
that this eventuality does not occur. In this way it is possible to guarantee a feasible
scheduling of the new instructions. Many works in literature generate convex custom
instructions. Examples can be found in Atasu et al. [2003a], Yu and Mitra [2007],
Gutin et al. [2007], and Zhao et al. [2008].

4.3.3. Single-Output Instructions vs. Multiple-Output Instructions. Depending on the target
architecture, limitations on the maximum number of inputs and/or outputs can be in-
troduced during the generation of the custom instructions. This is mainly due to the
length of the instruction encoding and/or the number of ports in the register file [Yu
and Mitra 2007]. Basically, there are two types of clusters that can be identified based
on the number of output values: Multiple-Input Single-Output (MISO) and Multiple-
Input Multiple-Output (MIMO). Accordingly, there are two types of algorithms for the
identification of custom instructions: algorithms for the generation of MISO instruc-
tions and algorithms for the generation of MIMO instructions.

Multiple-Input Single-Output (MISO). “A single-output constraint allows for simpli-
fying the architecture design by considering only one write port and it allows for
avoiding conflicts in writing” [Pozzi 2000]. A representative example for the gen-
eration of single-output instructions is introduced in Alippi et al. [1999] and Pozzi
et al. [2001] which address the generation of MISO instructions of maximal size,
called MAXMISOs. Figure 2(a) shows an example of an application partitioned in
MAXMISOs. The proposed algorithm exhaustively enumerates all MAXMISOs with
a computational complexity linear with the number of processed elements. Access to
memory, that is, load/store instructions, is not considered.

The approach presented in Cong et al. [2004] targets the generation of MISO
instructions. As previously described, in the most general case, each node of the
graph can either be included or excluded from a candidate instruction turning into an
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exponential number of potential candidates. As a consequence, a heuristic limiting
the total number of input operands and area constraints is introduced to allow an
efficient generation. The difference between the complexities of the two approaches
in Cong et al. [2004] and Alippi et al. [1999] is represented by the properties of
MISOs and MAXMISOs: while the enumeration of the first is similar to the subgraph
enumeration problem, the intersection of MAXMISOs is empty and then MAXMISOs
can be enumerated with linear complexity. A different approach is presented in
Galuzzi et al. [2007b] where, with an iterative application of the MAXMISO clustering
presented in Alippi et al. [1999], MISO instructions with variable number of inputs
are generated with a heuristic of linear complexity in the number of processed
elements. The approaches in Cong et al. [2004] and Galuzzi et al. [2007b] can be
very effective when tight limitations on the total number of inputs are applied. An
other approach presented in Lee et al. [2003b] groups the operations of a given loop
body into single output clusters for an efficient implementation of the operations
onto an ALU array. In Peymandoust et al. [2003], the authors propose polynomial
manipulation-based techniques for the automatic extension of a given instruction-set
with complex single-output instructions.

Multiple-Input Multiple-Output (MIMO). Multiple-output instructions can provide signif-
icant performance improvements compared with single-output instructions, as shown
in Ienne and Leupers [2006, Chaper 7]. There exists an exponential potential number
of candidate MIMO clusters. A number of approaches proposed in literature identify
optimal solutions or use efficient heuristics to reduce the complexity of the solution
generated. In Verma et al. [2002] and Atasu et al. [2003a] the identification algo-
rithm detects an optimal number of convex MIMO subgraphs based on input/output
constraints, area, and convexity, but the computational complexity is exponential and
it has problems of scalability. A similar approach described in Yu and Mitra [2004]
proposes the enumeration of all feasible instructions (MISO and MIMO) based on the
number of inputs, outputs, area, and convexity. The selection problem is not addressed.
Contrary to Atasu et al. [2003a] which has scalability issues if the data-flow graph is
very large or the micro-architectural constraints are too fine, the approach presented in
Yu and Mitra [2004] is quite scalable and can be applied on large data-flow graphs with
relaxed micro-architectural constraints. The limitation to only connected instructions
has been removed in Yu and Mitra [2007], where the authors address the exhaustive
enumeration of connected and disconnected clusters based on the number of inputs,
outputs, and convexity. In Biswas et al. [2004b], the authors present an approach sim-
ilar to the one described in Atasu et al. [2003a] with the inclusion of memory accesses
in the generation of custom instructions.

In Atasu et al. [2008] a similar problem is addressed but the authors enumerate
only maximal convex subgraphs within an application. Additionally, they do not
impose limitations on the number of input and output operands for the custom
instructions. A similar target is presented in Pothineni et al. [2007] and Verma et al.
[2007] where the authors propose similar methods to enumerate maximal convex
subgraphs.

In Atasu et al. [2005] the authors target the identification of convex clusters of oper-
ations under input and output constraints. The clusters are identified with a Integer
Linear Programming (ILP)-based methodology. In Galuzzi et al. [2006], the authors
address the generation of convex MIMO operations in a manner similar to Atasu
et al. [2005], although the identification of the new instructions is rather different
and based on the MAXMISO clustering proposed in Alippi et al. [1999]. While Atasu
et al. [2005] iteratively solve ILP problems for each basic block, Galuzzi et al. [2006]
have one global ILP problem for the entire procedure. Additionally, the convexity is
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addressed differently: in Atasu et al. [2005] the convexity is verified at each iteration,
while in Galuzzi et al. [2006] the convexity is guaranteed by construction.

In Arnold [2001], the author proposes a method to generate instructions with an
arbitrary number of inputs and outputs for VLIW processors. This approach is based
on dynamic programming and removes the requirement of a tree-shaped graph during
the generation of generally small clusters of instructions. In Choi et al. [1999], the au-
thors observe that the number of operations per cluster is typically small and propose
a clustering method which generates custom instructions limited to pair of instruc-
tions without constraining inputs and outputs. In Baleani et al. [2002], the authors
propose a greedy algorithm, called clubbing, which identifies custom instructions with
limited inputs and outputs (3 − 2 in the examples). In Biswas et al. [2004a, 2005], the
authors use the Kernighan-Lin (K − L) min-cut algorithm (see [Lin and Kernighan
1973]), a well-known graph partitioning heuristic, to automatically generate custom
instructions again imposing inputs and outputs constraints.

In Seto and Fujita [2008], “an approach which generates custom instructions with
any numbers of inputs and outputs is presented. Unlike other approaches that gen-
erate a custom instruction from each subgraph, the authors generate a sequence of
multiple custom instructions with high-level synthesis techniques and use resource
sharing among the custom instructions in order to reduce the area usage” [Seto and
Fujita 2008].

As mentioned at the beginning of this section, limitations on inputs and outputs are
architecture dependent. Although a considerable speedup can be achieved by increas-
ing the total number of inputs and/or outputs for the custom instructions, “additional
ports result in increased register file size, power consumption and cycle time” [Atasu
2007]. To overcome the limitations on the operands, a number of techniques has been
proposed which allow for relaxation of the limitations.

In Pozzi and Ienne [2005], the authors propose a solution to the limitation of ac-
tual register-file ports by serializing the register-file accesses and therefore addressing
multicycle read and write. The technique combines register file access serialization
with pipelining in order to obtain the best global solution. In Jayaseelan et al. [2006]
the authors show that, by forwarding paths of the base processor, up to two additional
inputs per custom instruction can be considered without incurring additional costs.

In the following section, the main approaches for the selection of a subset of candi-
dates for hardware implementation are presented.

4.4. Instruction Selection

The main goal of instruction selection is the identification of a subset of custom in-
structions suitable to be implemented in hardware, based on the available hardware
resources. The selection of the instruction can be optimal [Alippi et al. 2001; Atasu
et al. 2003a, 2003b, 2005; Sang et al. 2005] or nonoptimal (heuristic) [Brisk et al.
2004; Cheung et al. 2003b; Pozzi et al. 2006a; Sun et al. 2003] depending on the used
approach.

One of the main problems during the selection of the best candidates is the covering
of the design space: optimal algorithms can be too expensive in terms of computational
cost. Heuristics alone cannot guarantee either optimality or feasibility of the solution.
The selection can follow different policies. The elements can be selected attempting to
minimize the number of distinct templates that are used [Aho et al. 1989; Choi et al.
1999; Guo et al. 2003; Kavvadias and Nikolaidis 2005, 2006; Lam and Srikanthan
2009; Lam et al. 2006], attempting to maximize the number of instances of each tem-
plate [Scharwaechter et al. 2007], or to minimize the number of nodes left uncovered
in the graph [Liao et al. 1995, 1998], or in such a way that the longest path through the
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graph should have minimal delay. Other approaches select instructions based on reg-
ularity or frequency of execution, that is, the repeated occurrence of certain templates
[Arnold and Corporaal 1999; Brisk et al. 2002; Janssen et al. 1996; Peymandoust et al.
2003; Sreenivasa Rao and Kurdahi 1993b,a], or resource sharing [Huang and Malik
2001; Moreano et al. 2002], or the occurrence of specific nodes [Clark et al. 2003; Kast-
ner et al. 2002; Sun et al. 2002; Wolinski and Kuchcinski 2007, 2008] or hardware
reuse through similarity of the clusters that are implemented [Alomary et al. 1993;
Geurts 1995, 1997]. Other appraches try to minimize the power dissipation or con-
sumption [Cheung et al. 2005; Lee et al. 2003a; Strozek and Brooks 2006] or the code
size [Biswas and Dutt 2003a, 2003b; 2005] or the memory accesses [Biswas et al. 2006].

One way to address instruction selection is by using Integer Linear Programming
(ILP) and more generally Linear Programming (LP) in combination with an efficient
LP solver. Linear programming addresses the problem of maximizing or minimizing
a linear function over a convex polyhedron specified by linear and nonnegativity con-
straints. In essence, each instruction is associated with a variable which can have an
integer value (ILP), noninteger value (LP), or a boolean value (0 − 1 LP). The instruc-
tions, and then the variables, have to satisfy a certain number of constraints which
are expressed with a system of linear inequalities. The optimal solution is the one
that maximizes or minimizes the so-called objective function. Examples of instruction
selection by using ILP and LP can be seen in Atasu et al. [2005], Atasu et al. [2007],
Galuzzi et al. [2006], Imai et al. [1992], Lee et al. [2002, 2007], Leupers et al. [2006],
Niemann and Marwedel [1996], Yu and Mitra [2005], and Wong et al. [2007].

One way to optimally solve covering problems is by using dynamic programming
or branch-and-bound methods. Exact solutions are proposed in Grasselli and Luccio
[1965] and Brayton and Somenzi [1989]. A method is efficient when it prevents the
exploration of unsuccessful branches at earlier stages of the search. This relies on effi-
cient bounding techniques [Coudert and Madre 1995; Coudert 1996; Liao and Devadas
1997; Li et al. 2005]. In Liao and Devadas [1997] it has been shown that Linear-
Programming Relaxation (LPR)7 can be used to obtain tighter lower bounds than pre-
vious approaches [Coudert and Madre 1995; Coudert 1996]. “Their techniques, derived
from computing a maximal independent set, are based on the idea of solving the LPR-
equivalent of the ILP form of the binate-covering problem for lower-bounding purposes,
and of applying traditional covering-matrix reduction techniques during branch-and-
bound. These new lower bounds require more computation but they allow for early
termination of suboptimal branches” [Liao and Devadas 1997]. In Bı̀nh et al. [1996a,
1996b] the authors propose a branch-and-bound-based algorithm to minimize the area
cost under constraints of schedule length and power consumption.

An additional problem during the selection of the instructions is template overlap-
ping [Cong et al. 2004; Aletà et al. 2004]. For example, in Figure 2(b), the two sub-
graphs containing nodes MM1 and MM6 and nodes MM1 and MM2, respectively,
overlap at node MM1. This is a typical problem when a set of predefined templates is
used. There are two ways of selecting instructions when we deal with overlapping tem-
plates: either by selecting a subset of nonoverlapping templates that maximizes per-
formance or by first replicating the common nodes between the overlapping templates
and then selecting a subset of templates that maximize performance. In this way, at an
additional cost of the replicated nodes, performance can be increased through a greater
number of candidates suitable for hardware implementation. In the general case, after
the generation of a custom instruction, the nodes belonging to the cluster are removed

7The Linear-Programming Relaxation (LPR) of an ILP is the linear program obtained by disregarding the
integrality constraints.
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from the nodes subject to further analysis. Therefore, two disjoint templates do not
overlap [Baleani et al. 2002; Galuzzi et al. 2007a].

Instruction selection, similarly to instruction generation, makes use of a cost func-
tion to guide the selection. Many approaches combine instruction generation and
selection and use a unique cost function to generate and select custom instructions.
As mentioned in Section 4.2, the cost function considers a certain number of metrics
(constraints) to guide the generation. When generation and selection are considered
independently, it is possible to split the constraints between the two functions and
reduce the complexity of the generation/selection process of the custom instruction.
For example, Atasu et al. [2003a] describe an approach for the generation of convex
MIMO operations. The new operations are grown from a single operation/node taken
as a seed and the adjacent nodes are evaluated for inclusion in the cluster. Each node
considered for inclusion or exclusion in/from a cluster needs to satisfy constraints on
the total number of inputs, outputs, and convexity. Testing the convexity of a clus-
ter involves multiple analyses of the nodes in the cluster to verify that for each pair
of nodes in the cluster there is no path connecting the nodes that involves nodes not
belonging to the cluster itself. If the output limit is set to one, each time a node is
evaluated for inclusion or exclusion in a cluster, the convexity constraint is automat-
ically satisfied by the single output of the cluster. This follows by the single-output
property: if the cluster has a single output, for each pair of nodes in the cluster, all the
paths connecting the two nodes belong to the cluster. As a consequence, by reducing
the number of constraints to test from 3 to 2, a considerable amount of the execution
time can be saved.

5. CUSTOM INSTRUCTION INTEGRATION

In this section, we present an overview of the main approaches which integrate custom
instructions. There are several ways in which a processor and a reconfigurable logic
can be coupled. “The tighter the integration, the more frequently the custom logic can
be used within an application. This is mainly due to lower communication overhead”
[Compton and Hauck 2002].

The main methods to couple a processor and a reconfigurable logic are [Atasu 2007;
Pozzi 2000]:

— functional units,
— coprocessors,
— attached or external processing units,
— embedded cores.

In the following sections, these approaches are analyzed in more detail. Addition-
ally, a representative overview of the main approaches proposed in the last years is
presented.

5.1. Functional Units

In this scenario, processor and reconfigurable logic are tightly coupled. The custom
instructions are integrated into the host processor data path in parallel to the basic
execution unit. In this way, “it is possible to make use of the traditional programming
environment extended with the custom instructions” [Compton and Hauck 2002].

Representative examples are the OneChip architecture [Wittig 1995; Wittig and
Chow 1996] which combines an MIPS-like host processor with reconfigurable logic re-
sources to accelerate speed-critical applications. The reconfigurable functional unit
works in parallel with the normal units and no limitations are imposed on the kind
of functions implemented in the reconfigurable logic. The architecture allows dynamic
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scheduling and partial dynamic reconfiguration. Additionally, the functions to be im-
plemented in hardware are manually selected.

An other example is the Chimaera architecture [Hauck et al. 1997, 2004; Ye et al.
2000], in which a reconfigurable functional unit works in parallel with the normal
execution unit, has access to shadow registers (registers which duplicate a subset of the
registers of the base processor in the custom logic area), and is mapped onto an on-chip
FPGA which implements different multioperand functions utilizing partial runtime
reconfiguration to reduce reconfiguration time.

The PRogrammable Instruction-Set Computer (PRISC) architecture [Razdan and
Smith 1994] integrates combinational reconfigurable logic as reconfigurable functional
units with limited inputs and outputs. The system automatically detects sequences of
logic operations which can be implemented as single new instructions. The search is
limited to sequences of operations with two inputs and one output which are executed
in a single cycle and the reconfigurable functional units are partially dynamically re-
configurable.

In Vassiliadis et al. [2006, 2007] an embedded single issue RISC processor tightly
coupled with a coarse-grain Reconfigurable Functional Unit (RFU) is presented.

“Two architectural enhancements are presented: partial predicated exe-
cution, used to remove control dependencies and expose larger clusters
of operations as candidates for execution in the RFU, and virtual opcode,
used to alleviate the opcode space explosion and increase the number
of candidate for execution in the RFU. The main characteristic of this
architecture is that the communication overhead between the control
unit and the datapath is eliminated. The elimination is achieved by an
efficient integration of the reconfigurable functional unit, which optimally
exploits the processor’s pipeline structure. The reconfigurable functional
unit executes a set of instructions with no data dependencies in parallel,
increasing in this way the overall speed up”

An other architecture, Processor Reconfiguration through Instruction-Set Metamor-
phosis (PRISM − I) is presented in Athanas and Silverman [1993]. In this system,
entire functions inside the application can be mapped onto reconfigurable hardware.
Special instructions, embedded in the object code, control the interaction between what
is executed in hardware and what is executed in software. The system starting from
generic C code generates FPG A configurations in a semiautomatic process. Due to the
limitations of the FPG A technology at that time, processor and FPG A were located
into separate chips making the interface between them relatively slow. This, together
with an initialization overhead for the reconfigurable component, considerably limited
the class of applications addressable by the system, which moreover is more suitable
for a coarse-grained customization.

5.2. Coprocessors

In this scenario, the custom instructions are integrated as a coprocessor “which di-
rectly access to the main processor through a local bus or dedicated pins of the main
processor” [Atasu 2007]. Coprocessors are, in general, able to perform many com-
putations without constantly communicating with the main processor: the processor
sends the data directly to the coprocessor or it provides information on where the
data are located in the memory. Usually processor and coprocessor can work simulta-
neously. Additionally, the low-latency, high-bandwidth connection between processor
and coprocessor allows accessing the custom logic more frequently. In literature, many
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approaches follow this type of integration. Coprocessors can be divided into fine- and
coarse-grain category [Atasu 2007].

The Garp architecture [Hauser and Wawrzynek 1997] belongs to the first category
and is used to accelerate specific loops or subroutines. This system integrates on the
same die a standard MIPS-II-like host processor with a reconfigurable coprocessor.
When a reconfigurable function is called, the main processor activates the coprocessor
to execute the operation. The coprocessor accesses both the processor main memory
and cache memory and does not require processor intervention during the execution
of the operations. For this reason, the processor is suspended when the coprocessor is
activated. The reconfigurable array can be partially reconfigured as it is organized in
rows.

The Molen architecture presented in Vassiliadis et al. [2001, 2004] is composed by
a GPP, the core processor, which controls the execution and the (re)configuration of a
reconfigurable coprocessor, tuning the latter for specific applications by implementing
application-specific instructions. The instructions are decoded by an arbiter deter-
mining which unit is targeted. The instructions are partitioned in basic instructions
executed by the core processor, and application-specific instructions implemented on
the reconfigurable processor. The communication overhead is comparable to Athanas
and Silverman [1993] but the configurations are defined as part of the processor de-
sign itself instead of being determined by compilation. Moreover, Molen has a high
degree of freedom in the definition of the programmable array structure and can ex-
ploit commercial FPGAs, taking advantage of the technology development in this field
while maintaining the basic architectural framework unchanged.

An other architecture is presented in Iseli and Sanchez [1995] and Iseli [1996],
Spyder, a coprocessor with several reconfigurable execution units working in parallel,
based on a VLIW processor architecture. Other examples are the PRISM-II [Wazlowski
et al. 1993] and the NAPA architecture [Rupp et al. 1998].

The REconfigurable Multimedia ARray Coprocessor (REMARC) [Miyamori and
Olukotun 1998] is part of the coarse-grain category. A reconfigurable coprocessor
that consists of a global control unit and 64 programmable logic blocks called
nano-processors is designed to accelerate multimedia applications, such as video
compression, decompression, and image processing. Each 16-bit unit has an entry
instruction RAM, ALUs, data RAM, instruction, and several other registers. The
reconfigurable array operates on the coprocessor data registers and a control unit
transfers data between these registers and the processor. The architecture allows
dynamic reconfiguration.

In Lu et al. [1999], the authors present MORPHOSYS, a system which integrates
a reconfigurable array of processing cells, a MIPS-like host processor, and an efficient
memory interface unit designed to speed up video compression, data encryption, and
target recognition.

The ADRES architecture [Mei et al. 2003] tightly couples a VLIW processor with
a coarse-grain reconfigurable matrix into one single architecture. Processor and re-
configurable matrix cannot execute concurrently and this allows sharing of resources
between them. The reconfigurable cells composing the reconfigurable matrix include
ALU-like configurable functional units and local register files. Other examples are the
Reconfigurable Pipelined Datapath (RaPiD) architecture [Ebeling et al. 1996] which
aims at speeding up highly regular, computation-intensive tasks using deep pipelines,
and the Pleiades Architecture [Rabaey 1997] which is designed for speeding up com-
munication, speech coding, and video coding.

Coarse-grain reconfigurable logic usually has the advantage of providing faster
reconfiguration times, fewer configuration bits, and faster clock speed in the re-
configurable logic. Coarse-grain configurable architectures are more suitable for
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data-intensive applications in the multimedia and communication domains, while
fine-grain architectures are better for bit-level computation [Huang et al. 2004].

Commercial products include, for example, Cascade by Criticalblue8, an automated
coprocessor synthesis solution used to accelerate the execution of compiled binary ex-
ecutable software code offloaded from the Central Processing Unit (CPU) by creating
a loosely coupled programmable coprocessor.

5.3. Attached or External Processing Units

When custom instructions are integrated as attached or external processing units,
communications between host processor and processing units is achieved through a
general-purpose bus interface. In this case,

“performance is affected by the high communication overhead due to the
bandwidth and latency limitations of the general purpose bus. For this rea-
son, this type of organization is used for applications which have a high
computation to communication ratio, such as stream-based applications”
[Atasu 2007]. This means that “a significant amount of processing can be
done by the processing unit without the intervention of the main processor”
[Compton and Hauck 2002].

An example is PipeRench [Goldstein et al. 1999], a reconfigurable fabric used as
an attached processor designed to accelerate pipelined applications. The architecture,
partially dynamically reconfigurable, consists of an interconnected network of process-
ing elements organized in pipeline stages. Each processing element consists of regis-
ters and ALUs. An intermediate language is used to generate the fabric configurations.

The SONIC architecture [Haynes et al. 1999, 2000] consists of a set of processing
elements, called Plug-In Processing Elements (PIPEs), interconnected by a bus. Each
PIPE contains a reconfigurable processor, a scalable router that also formats video
data, and a frame-buffer memory. The architecture is designed to exploit parallelism
in video image processing algorithms.

Splash [Gokhale et al. 1991] and Splash2 [Buell et al. 1996] are attached processors
using FPGAs as their processing elements (32 and 17, respectively). The FPGAs, each
coupled with a RAM, are connected as a linear array through a crossbar switch that
introduces larger flexibility than that of a simple linear array.

5.4. Embedded Cores

In this case, the processor is embedded in the reconfigurable hardware [Atasu 2007;
Todman et al. 2005]. The processor is embedded either as a hard core or as a soft core
implemented on resources of the reconfigurable hardware itself which can be used to
extend the core with specialized instructions. In the former category, there are com-
mercial products as the Altera’s Excalibur and the Xilinx Virtex II which embed an
ARM922T core and a PowerPC 405 core, respectively, and the Atmel FPSLIC which
embeds a 20 MIPS AVR 8-bit RISC core. The Altera Nios and Nios II and the Xilinx
MicroBlaze and PicoBlaze belong to the latter category. When hard cores are com-
pared with soft cores, they present advantages and drawbacks. First, hard cores are
more area efficient, leaving additional logic for other uses, and second they are usually
faster. Third, hard cores are less flexible and fourth, hard cores do not allow for an
arbitrary choice of the number of cores.

Many other architectures have been proposed and a number of surveys exist. Ex-
haustive reviews are presented in Barat and Lauwereins [2000], Barat et al. [2002],

8http://www.criticalblue.com/criticalblue products/cascade.shtml
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Compton and Hauck [2002], Hartenstein [2001a, 2001b], Radunovic and Milutinovic
[1998], and Vassiliadis and Soudris [2007]. We refer the interested reader to the afore-
mentioned surveys, where the classification of the architectures is also presented in
terms of granularity of the reconfigurable logic blocks and in terms of different cou-
pling approaches.

6. CONCLUSIONS

In this article, we presented an overview of the issues involved in the customization of
an instruction-set by means of a set of specialized instructions for a given application
or domain of applications. The problems, analyzed in detail, consider different types
of customizations and instructions and both instruction generation and selection.

The problems involved, as described in the article, are computational complex prob-
lems. Hardware/software partitioning, equivalent to instruction-set customization un-
der certain assumptions, is proven NP-hard in the general case [Arató et al. 2003].
Optimal solutions have been proposed by many authors and a plethora of efficient
heuristics have been proposed to find near-optimal solutions when the computational
complexity of the problem becomes unmanageable and exact solutions cannot be found
in a timely manner.

As things stand, one of the major issues in the generation of custom instructions
is represented by the degree of human effort required to identify and implement the
instruction-set extensions. As described in the article, human ingenuity in manual
creation of custom capabilities creates high-quality results. In spite of that, the com-
plexity of the problem as well as the time-to-market requirements led researchers to
look for automatic or partially automatic methods for identifying custom instructions.
As a result, quality results are produced through a balance of human intervention and
automatic methods in the generation of the instructions. However, future approaches
will substantially minimize the amount of human effort due to the increasing complex-
ity of the designs.

An additional limitation in the current state-of-the-art in instruction-set extension
is the limited number of input and output operands of the custom instructions. This
limitation, which is architecture dependent, has been relaxed in the last years by us-
ing methods proposed to overcome severe limitations on the number of operands, as
mentioned in Section 4.3.3. As a result, new methodologies, by making use of these
techniques, will be able to generate and select many more instructions, which in turn
will allow a better customization of the instruction-set.

In the last years, many low-power and power-aware architectures have been pro-
posed. While the former minimize power consumption while satisfying performance
constraints, the latter maximize performance parameters while satisfying power con-
straints. The current state-of-the-art in instruction-set customization shows that very
few methods exist which take into consideration power issues during the generation
of custom instruction. As power consumption/reduction/optimization have become one
of the main topics of research, we will see more and more methods appearing for gen-
erating custom low-power or power-aware instructions which will be trade off between
their size (by limiting the size of the instruction, the power consumption is limited
as well) and their frequency of execution (a limited number of executions reduces the
power consumption).

One of the main issues in instruction-set customization is also represented by the
degree of specialization of the custom instructions. If the instructions are too spe-
cialized, instruction reuse becomes hard. This is experienced because it is uncommon
that applications from different domains perform the same complex calculations. Vice
versa, if a custom instruction is used by many different applications, the requirement
to speed up different applications from different domains turns into the generation
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of custom instructions of limited size. Therefore, the custom instructions are limited
to few operations per instruction, which, in turn, can reduce performance. This is a
practical issue which is common to every approach and which will be always present:
a method for the generation of custom instructions will always be a trade-off between
the level of specialization of the instructions and the speed up that they can provide.

Finally, in the last years, multicore systems have become ubiquitous. Many archi-
tectures integrate two or more cores in the same hardware to increase performance
of execution exploiting the available parallelism. Multicore architectures can provide
high performance, run at lower clock speed than single-core architectures, and can re-
duce power consumption. Multicore systems can be homogeneous or heterogeneous.
The former implement identical copies of the same core: same frequencies, cache sizes,
functions, etc. Examples are the Intel Core 2 Duo and the Advanced Micro Devices
Athlon 64 X 2. Heterogeneous systems integrate different cores which can have dif-
ferent functions, frequencies, memory models, etc. Examples are the CELL Processor
used in Sony’s PlayStation 3 game console and the Tilera TILE64. Existing methods
for the customization of an instruction-set typically consider a single core and a sin-
gle instruction-set. Nevertheless, in the future, we envision that instruction-set cus-
tomization will take advantage of the multicore architecture by extending each core
with a set of specialized instructions. In this way, a considerable amount of applica-
tions from different domains such as graphics, audio, cryptography, communications,
mathematics, or biology and more, will be efficiently executed on the architecture.
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VERMA, A. K., ATASU, K., VULETIĆ, M., POZZI, L., AND IENNE, P. Nov. 2002. Automatic application-
specific instruction-set extensions under microarchitectural constraints. In Proceedings of the 1st Work-
shop on Application Specific Processors (WASP-1).

VERMA, A. K., BRISK, P., AND IENNE, P. 2007. Rethinking custom ise identification: A new processor-
agnostic method. In Proceedings of the International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES’07). 125–134.

WANG, A., KILLIAN, E., MAYDAN, D., AND ROWEN, C. 2001. Hardware/software instruction set config-
urability for system-on-chip processors. In Proceedings of the 38th Conference on Design Automation
(DAC’01). 184–188.

WAZLOWSKI, M., AGARWAL, L., LEE, T., SMITH, A., LAM, E., ATHANAS, P., SILVERMAN, H., AND GHOSH,
S. 1993. Prism-ii compiler and architecture. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines. 9–16.

WIRTHLIN, M. J. AND HUTCHINGS, B. L. 1995. Disc: The dynamic instruction set computer. In Proceedings
of the International Society of Optical Engineering SPIE. Field Programmable Gate Arrays (FPGAs) for
Fast Board Development and Reconfigurable Computing. vol. 2607. 92–103.

WITTIG, R. AND CHOW, P. 1996. OneChip: An FPGA processor with reconfigurable logic. In Proceedings of
the IEEE Symposium on FPGAs for Custom Computing Machines. 126–135.

WITTIG, R. D. 1995. Onechip: An fpga processor with reconfigurable logic. M.S. thesis, Department of Elec-
trical and Computer Engineering, University of Toronto.

WOLINSKI, C. AND KUCHCINSKI, K. 2007. Identification of application specific instructions based on sub-
graph isomorphism constraints. In Proceedings of the IEEE International Application -specific Systems,
Architectures and Processors. 328–333.

WOLINSKI, C. AND KUCHCINSKI, K. 2008. Automatic selection of application-specific reconfigurable proces-
sor extensions. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’08).
1214–1219.

WONG, S., VASSILIADIS, S., AND COTOFANA, S. 2007. Instruction set extension generation with considering
physical constraints. In Proceedings of the International Conference on High Performance Embedded
Architectures and Compilers. 291–305.

YE, Z. A., MOSHOVOS, A., HAUCK, S., AND BANERJEE, P. 2000. CHIMAERA: A high-performance archi-
tecture with a tightly-coupled reconfigurable functional unit. In ACM SIGARCH Comput. Archit. News
(Special Issue: Proceedings of the 27th annual international symposium on Computer architecture ISCA),
225–235.

YU, P. AND MITRA, T. 2004. Scalable custom instructions identification for instruction-set extensible proces-
sors. In Proceedings of the 2004 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES’04). 69–78.

YU, P. AND MITRA, T. 2005. Satisfying real-time constraints with custom instructions. In Proceedings of the
3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’05). 166–171.

YU, P. AND MITRA, T. 2007. Disjoint pattern enumeration for custom instructions identification. In Proceed-
ings of the 17th IEEE International Conference on Field Programmable Logic and Applications (FPL’07).
Amsterdam, The Netherlands, –.

ZHAO, K., BIAN, J., DONG, S., SONG, Y., AND GOTO, S. 2008. Fast custom instruction identification algo-
rithm based on basic convex pattern model for supporting asip automated design. IEICE Trans. Fun-
dam. Electron. Comm. Comput. Sci. E91-A, 6, 1478–1487.

Received May 2008; revised September 2009; accepted January 2010

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 2, Article 18, Publication date: May 2011.


