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Software defects are expensive in quality and cost. The accurate prediction of defect-prone software modules can help direct 

test effort, reduce costs, and improve the quality of software. Machine learning classification algorithms is a popular approach 

for predicting software defect. Various types of classification algorithms have been applied for software defect prediction. 

However, no clear consensus on which algorithm perform best when individual studies are looked at separately. In this research, 

a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models 

within the field of software defect prediction. For the purpose of this study, 10 classifiers are selected and applied to build 

classification models and test their performance in 9 NASA MDP datasets. Area under curve (AUC) is employed as an accuracy 

indicator in our framework to evaluate the performance of classifiers. Friedman and Nemenyi post hoc tests are used to test for 

significance of AUC differences between classifiers. The results show that the logistic regression perform best in most NASA 

MDP datasets. Naïve bayes, neural network, support vector machine and k* classifiers also perform well. Decision tree based 

classifiers tend to underperform, as well as linear discriminant analysis and k-nearest neighbor. 
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1. INTRODUCTION 

A software defect is an error, failure, or fault in a 

software [1], that produces an incorrect or unexpected 

result, or causes it to behave in unintended ways. It is a 

deficiency in a software product that causes it to perform 

unexpectedly [2]. Software defects or software faults are 

expensive in quality and cost. Moreover, the cost of 

capturing and correcting defects is one of the most 

expensive software development activities [3]. Recent 

studies show that the probability of detection through 

defect prediction models may be higher than the 

probability of detection through software reviews [4]. The 

accurate prediction of defect‐prone software modules can 

certainly assist testing effort, reduce costs and improve the 

quality of software [5].  
                                                      
1 Email: romi@brainmatics.com 

Classification algorithm is a popular machine learning 

approach for software defect prediction. It categorizes the 

software code attributes into defective or not defective, 

which is collected from previous development projects. 

Classification algorithm is also able to predict which 

components are more likely to be defect-prone, supports 

better targeted testing resources and therefore, improved 

efficiency. For prediction modeling, software metrics are 

used as independent variables and fault data is used as the 

dependent variable [6]. A wide range of classification 

techniques have already been proposed in the predicting 

software defect. Since 1990, more than 20 classification 

algorithms have been applied and proposed as the best 

method for predicting the software defect, including 
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logistic regression (LR) [7], decision trees (DT) [8], neural 

network (NN) [9], naive bayes (NB) [10], and etc. 

While many studies individually report the comparative 

performance of the modelling techniques they have used, 

no clear consensus on which perform best emerges when 

individual studies are looked at separately. Bibi et al. [11] 

report that regression via classification (RvC) works well. 

Hall et al. [5] suggests that studies using support vector 

machine (SVM) techniques perform less well. These may 

be underperforming as they require parameter optimization 

for best performance. Models based on C4.5 seem to 

underperform if they use imbalanced data [12] [13], as the 

algorithm seems to be sensitive to this. NB and LR, in 

particular, seem to be the techniques used in models that 

are performing relatively well overall [10] [14]. NB is a 

well understood algorithm that is in common use. Studies 

using random forests (RF) have not performed as well as 

might be expected [5], although many studies using NASA 

dataset use RF and report good performances [15]. 

However, models seem to have performed best where the 

right technique has been selected for the right set of data. 

No particular classifiers that performs the best for all the 

datasets [14]. 
However, we need to develop more reliable research 

procedures before we can have confidence in the 

conclusion of comparative studies of software prediction 

models [15] [14] [4]. In this research, we propose a 

comparison framework, which aims to benchmark the 

performance of a wide range of classification models 

within the field of software defect prediction.  

This paper is organized as follows. In section 2, the 

proposed comparison framework are explained. The 

experimental results of classification models comparison 

are presented in section 3. Finally, our work of this paper 

is summarized in the last section. 

  

2. PROPOSED COMPARISON FRAMEWORK 

The proposed framework is shown in Figure 1. The 

framework is comprised of 1) a dataset 2) a classification 

algorithms, 3) a model validation, 4) a model evaluation 

and 5) a model comparison.  

 

2.1 Dataset 

One of the most important problems for software fault 

prediction studies is the usage of nonpublic (private) 

datasets. Several companies developed fault prediction 

models using proprietary data and presented these models 

in conferences. However, it is not possible to compare 

results of such studies with results of our own models 

because their datasets cannot be reached. The use of public 

datasets makes our research repeatable, refutable, and 

verifiable [16]. Recently, state-of-the-art public datasets 

used for software defect prediction research is available in 

NASA Metrics Data (MDP) repository [17]. 

The data used in the proposed framework are collected 

from the NASA MDP repository. NASA MDP repository 

is a database that stores problem, product, and metrics data 

[17]. Each NASA dataset is comprised of several software 

modules, together with their number of faults and 

characteristic code attributes. After preprocessing, 

modules that contain one or more errors were labeled as 

fault-prone, whereas error-free modules were categorized 

as not-fault-prone. Besides line of codes (LOC) counts, the 

NASA MDP datasets include several Halstead attributes 

[18] as well as McCabe complexity measures [19]. The 

former estimates reading complexity by counting operators 

and operands in a module, whereas the latter is derived 

from a module’s flow graph. Some researchers endorse the 

static code attributes defined by McCabe and Halstead as 

defect predictors in the software defect prediction. McCabe 

and Halstead are module-based metrics, where a module is 

the smallest unit of functionality. Static code attributes are 

used as defect predictors, since they are useful, 

generalizable, easy to use, and widely used. 
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Fig. 1. Proposed Comparison Framework of 

Classification Models for Software Defect Prediction 

In this research, we use nine software defect datasets 

from NASA MDP. Individual attributes per dataset, 

together with some general statistics and descriptions, are 

given in Table 1. These datasets have various scales of 

LOC, various software modules coded by several different 

programming languages including C, C++ and Java, and 

various types of code metrics including code size, 

Halstead’s complexity and McCabe’s cyclomatic 

complexity. 

 

Table 1. Characteristics of NASA MDP Datasets 

 
 

 

2.2 Classification Algorithms 

The proposed classification framework aims to 

compare the performance of a wide range of classification 

models within the field of software defect prediction. For 

the purpose of this study, 10 classifiers have been selected, 

which may be grouped into the categories of traditional 

statistical classifiers (LR, LDA, and NB), nearest 

neighbors (k-NN and K*), NN, SVM, and decision tree 

(C4.5, CART, and RF). The selection aims at achieving a 

balance between established classification algorithms used 

in software defect prediction. 

 

2.3 Model Validation 

We use a stratified 10-fold cross-validation for learning 

and testing data. This means that we divide the training 

data into 10 equal parts and then perform the learning 

process 10 times. As shown in Table 2, each time, we chose 

another part of dataset for testing and used the remaining 

nine parts for learning. After, we calculated the average 

values and the deviation values from the ten different 

testing results. We employ the stratified 10-fold cross 

validation, because this method has become the standard 

and state-of-the-art validation method in practical terms. 

Some tests have also shown that the use of stratification 

improves results slightly [20]. 

 

Table 2. Stratified 10 Fold Cross Validation 
n-validation Dataset’s Partition 

1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

 

2.4 Model Evaluation 

We apply area under curve (AUC) as an accuracy 

indicator in our experiments to evaluate the performance 

of classifiers. AUC is area under ROC curve. Lessmann et 

al. [15] advocated the use of the AUC to improve cross-

study comparability. The AUC has the potential to 

significantly improve convergence across empirical 

experiments in software defect prediction, because it 

separates predictive performance from operating 

conditions, and represents a general measure of 

predictiveness. Furthermore, the AUC has a clear statistical 

interpretation. It measures the probability that a classifier 

ranks a randomly chosen fault-prone module higher than a 

randomly chosen non-fault-prone module. Consequently, 

any classifier achieving AUC well above 0.6 is 

demonstrably effective for identifying fault-prone modules 

and gives valuable advice as to which modules should 

receive particular attention in software testing. 

A rough guide for classifying the accuracy of a 

diagnostic test using AUC is the traditional system, 

presented by Gorunescu [21]. In the proposed framework, 

we added the symbols for easier interpretation and 

understanding of AUC (Table 3). 

 

Table 3. AUC value, Its Meaning and Symbols 
AUC Meaning Symbol 

0.90 - 1.00 excellent classification  
0.80 - 0.90 good classification  
0.70 - 0.80 fair classification  
0.60 - 0.70 poor classification  
      < 0.60 failure  

 

2.5 Model Comparison 

There are three families of statistical tests that can be 

used for comparing two or more classifiers over multiple 

datasets: parametric tests (the paired t-test and ANOVA), 

non-parametric tests (the Wilcoxon and the Friedman test) 

and the non-parametric test that assumes no 

Code Attributes 
NASA MDP Dataset 

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

LOC counts LOC_total √ √ √ √ √ √ √ √ √ 

LOC_blank √ √ √ √ √ √  √ √ 

LOC_code_and_comment √ √ √ √ √ √ √ √ √ 

LOC_comments √ √ √ √ √ √ √ √ √ 

LOC_executable √ √ √ √ √ √ √ √ √ 

number_of_lines √  √ √ √ √ √ √ √ 

Halstead content √ √ √ √ √ √ √ √ √ 

difficulty √ √ √ √ √ √ √ √ √ 

effort √ √ √ √ √ √ √ √ √ 

error_est √ √ √ √ √ √ √ √ √ 

length √ √ √ √ √ √ √ √ √ 

level √ √ √ √ √ √ √ √ √ 

prog_time √ √ √ √ √ √ √ √ √ 

volume √ √ √ √ √ √ √ √ √ 

num_operands √ √ √ √ √ √ √ √ √ 

num_operators √ √ √ √ √ √ √ √ √ 

num_unique_operands √ √ √ √ √ √ √ √ √ 

num_unique_operators √ √ √ √ √ √ √ √ √ 

McCabe cyclomatic_complexity √ √ √ √ √ √ √ √ √ 

cyclomatic_density √  √ √ √ √ √ √ √ 

design_complexity √ √ √ √ √ √ √ √ √ 

essential_complexity √ √ √ √ √ √ √ √ √ 

Misc. branch_count √ √ √ √ √ √ √ √ √ 

call_pairs √  √ √ √ √ √ √ √ 

condition_count √  √ √ √ √ √ √ √ 

decision_count √  √ √ √ √ √ √ √ 

decision_density √  √ √ √ √ √ √ √ 

edge_count √  √ √ √ √ √ √ √ 

essential_density √  √ √ √ √ √ √ √ 

parameter_count √  √ √ √ √ √ √ √ 

maintenance_severity √  √ √ √ √ √ √ √ 

modified_condition_count √  √ √ √ √ √ √ √ 

multiple_condition_count √  √ √ √ √ √ √ √ 

global_data_complexity   √ √      

global_data_density   √ √      

normalized_cyclomatic_complexity √  √ √ √ √ √ √ √ 

percent_comments √  √ √ √ √ √ √ √ 

node_count √  √ √ √ √ √ √ √ 

Programming Language C C++ Java C C C C C C 

Number of Code Attributes 37 21 39 39 37 37 36 37 37 

Number of Modules 344 2096 200 127 264 759 1585 1125 1399 

Number of fp Modules 42 325 36 44 27 61 16 140 178 

Percentage of fp Modules 12.21 15.51 18 34.65 10.23 8.04 1.01 12.44 12.72 

 



 

Adv. Sci. Lett. 20 1945–1950, 2014                                               RESEARCH ARTICLE 
 

1948 

commensurability of the results (sign test). Demsar 

recommends the Friedman test for classifier comparisons, 

which relies on less restrictive assumptions [22]. Based on 

this recommendation, in our framework Friedman test is 

employed to compare the AUCs of the different classifiers. 

The Friedman test is based on the average ranked (R) 

performances of the classification algorithms on each 

dataset. 

 

Let 𝑟𝑖
𝑗 be the rank of the j-th of 𝐶 algorithms on the i-th 

of D datasets. The Friedman test compares the average 

ranks of algorithm 𝑅𝑗 =  
1

𝐷
∑ 𝑟𝑖

𝑗𝐷
𝑖−1 . Under the null-hypothesis, 

which states that all the algorithms are equivalent and so 

their ranks 𝑅𝑗  should be equal. The Friedman statistic is 

calculated as follows, and distributed according to χ𝐹
2  with 

𝐶 − 1 degrees of freedom, when D and C are big enough. 

 

χ𝐹
2 =  

12𝐷

𝐶(𝐶 + 1)
[∑ 𝑅𝑗

2

𝐷

𝑗

−
𝐶(𝐶 + 1)2

4
] 

 

If the null-hypothesis is rejected, we can proceed with 

a post-hoc test. The Nemenyi test is used when all 

classifiers are compared to each other. The performance of 

two classifiers is significantly different if the 

corresponding average ranks differ by at least the critical 

difference, given by 

𝐶𝐷 =  𝑞𝛼√
𝐶(𝐶 + 1)

𝐷
 

 

where critical values 𝑞𝛼 are based on the Studentized range 

statistic. 

 

3. EXPERIMENTAL RESULTS 

The experiments were conducted using a computing 

platform based on Intel Core i7 2.2 GHz CPU, 16 GB RAM, 

and Microsoft Windows 7 Professional 64-bit with SP1 

operating system. The development environment is 

Netbeans 7 IDE, Java programming language, and 

RapidMiner 5.2 library. We used the default parameter 

settings provide my RapidMiner 5.2 library. 

We conducted experiments on 9 NASA MDP datasets 

by using 10 classification algorithms. Table 4 reports the 

AUCs of all classification algorithms. The last column of 

Table 4 reports the mean rank 𝑅𝑗 of each classifier over all 

datasets, which constitutes the basis of the Friedman test.  

 

Table 4. AUC of 10 Classification Models on 9 Datasets 

 
 

The best classification model on each dataset is 

highlighted with boldfaced print. Table 4 shows that LR 

algorithm has the highest Friedman score (R). In statistical 

significance testing the P-value is the probability of 

obtaining a test statistic at least as extreme as the one that 

was actually observed, assuming that the null hypothesis is 

true. One often "rejects the null hypothesis" when the P-

value is less than the predetermined significance level (α), 

indicating that the observed result would be highly unlikely 

under the null hypothesis. In this case, we set the statistical 

significance level (α) to be 0.05. It means that there is a 

statistically significant difference if P-value < 0.05. From 

the experimental result, P-value is 0.0001, this is lower 

than the significance level α=0.05, thus one should reject 

the null hypothesis, and it means that there is a statistically 

significant difference. Consequently, one may proceed 

with a Nemenyi post hoc test to detect which particular 

classifiers differ significantly. 

Nemenyi post hoc test calculates all pairwise 

comparisons between different classifiers and checks 

which models’ performance differences exceed the critical 

difference. The results of the pairwise comparisons are 

shown in Table 5, which critical difference (CD) value is 

4.5154. 

 

Table 5. Pairwise Comparisons of Nemenyi Post Hoc Test 

 
 

P-value results of Nemenyi post hoc test are shown in 

Table 6. P-value < 0.05 results are highlighted with 

boldfaced print, which mean that there is a statistically 

significant difference between two classifiers, in a column 

and a row. 

 

Table 6. P-value of Nemenyi Post Hoc Test 

 
 

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 M R

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894 0.797 1.44

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61 0.522 8.33

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838 0.761 3

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.778

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76 0.658 5.33

BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883 0.762 3.22

SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899 0.733 3.33

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723 0.567 7.78

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623 0.599 6.89

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2 0.549 6.89

LR LDA NB k-NN K* BP SVM C4.5 CART RF

LR 0 6.889 1.556 7.333 3.889 1.778 1.889 6.333 5.444 5.444

LDA -6.889 0 -5.333 0.444 -3.000 -5.111 -5.000 -0.556 -1.444 -1.444

NB -1.556 5.333 0 5.778 2.333 0.222 0.333 4.778 3.889 3.889

k-NN -7.333 -0.444 -5.778 0 -3.444 -5.556 -5.444 -1.000 -1.889 -1.889

K* -3.889 3.000 -2.333 3.444 0 -2.111 -2.000 2.444 1.556 1.556

BP -1.778 5.111 -0.222 5.556 2.111 0 0.111 4.556 3.667 3.667

SVM -1.889 5.000 -0.333 5.444 2.000 -0.111 0 4.444 3.556 3.556

C4.5 -6.333 0.556 -4.778 1.000 -2.444 -4.556 -4.444 0 -0.889 -0.889

CART -5.444 1.444 -3.889 1.889 -1.556 -3.667 -3.556 0.889 0 0.000

RF -5.444 1.444 -3.889 1.889 -1.556 -3.667 -3.556 0.889 0.000 0

LR LDA NB k-NN K* BP SVM C4.5 CART RF

LR 1 < 0.0001 0.986 < 0.0001 0.164 0.965 0.949 0.000 0.005 0.005

LDA < 0.0001 1 0.007 1.000 0.526 0.013 0.017 1.000 0.992 0.992

NB 0.986 0.007 1 0.002 0.831 1.000 1.000 0.028 0.164 0.164

k-NN < 0.0001 1.000 0.002 1 0.318 0.004 0.005 1.000 0.949 0.949

K* 0.164 0.526 0.831 0.318 1 0.901 0.927 0.789 0.986 0.986

BP 0.965 0.013 1.000 0.004 0.901 1 1.000 0.046 0.232 0.232

SVM 0.949 0.017 1.000 0.005 0.927 1.000 1 0.058 0.273 0.273

C4.5 0.000 1.000 0.028 1.000 0.789 0.046 0.058 1 1.000 1.000

CART 0.005 0.992 0.164 0.949 0.986 0.232 0.273 1.000 1 1.000

RF 0.005 0.992 0.164 0.949 0.986 0.232 0.273 1.000 1.000 1
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Fig.2. AUC Mean (M) Comparison of 10 Classification 

Models on 9 Datasets 

 

As shown in Table 6, LR outperforms other models in 

most datasets. In terms of R value (Table 4) and AUC mean 

(M) (Figure 2), LR also has the highest value, followed by 

BP, NB and SVM in the second, third and fourth rank. 

Based on P-value results (Table 6), actually there is no 

significant difference between LR, NB, BP, and SVM 

models. This result confirmed Hall et al. [5] result that NB 

and LR, in particular, seem to be the techniques used in 

models that are performing relatively well in software 

defect prediction. SVM actually has excellent 

generalization ability in the situation of small sample data 

like NASA MDP dataset, but in this experiment SVM 

perform less well, as they require parameter optimization 

for best performance. 

On the other hand, models based on decision tree 

approach (C4.5, CART and RF) seem to underperform. 

From P-value analysis, there is a significant difference 

between LR and the all decision tree based models. This is 

may be due to the imbalanced class distribution problem 

on software defect datasets. As we know decision tree 

learners create biased trees if some classes dominate. LDA 

and k-NN models also performing badly and to be failure 

in the most datasets. Significant difference table resulted 

by Nemenyi post hoc test is shown in Table 7. 

 

Table 7. Significant Differences of Nemenyi Post Hoc 

Test 

 
  

 

 

 

 

4. CONCLUSION 

A comparison framework is proposed for comparing the 

performance of classification algorithms in the software 

defect prediction. The framework is comprised of 9 NASA 

MDP datasets, 10 classification algorithms, 10 fold cross 

validation model, and AUC accuracy indicator. Friedman 

and Nemenyi are used to test the significance of AUC 

differences between models. The experimental results 

show that the LR perform best in most NASA MDP 

datasets. NB, NN, SVM and k* also perform well, and 

actually there is no statistically significant different 

between them. Decision tree based classifiers tend to 

underperform, as well as LDA and k-NN. 
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