

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1945–1950, 2014

1945 Adv. Sci. Lett. Vol. 20, No. 10-12, 2014 doi:10.1166/asl.2014.5640

Copyright © 2014 American Scientific Publishers Advanced Science Letters

All rights reserved Vol. 20, 1945-1950, 2014

Printed in the United States of America

A Comparison Framework of Classification Models

for Software Defect Prediction

Romi Satria Wahono1,2, Nanna Suryana Herman2, Sabrina Ahmad2
1Faculty of Computer Science, Dian Nuswantoro University, Indonesia

2Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka

Software defects are expensive in quality and cost. The accurate prediction of defect-prone software modules can help direct

test effort, reduce costs, and improve the quality of software. Machine learning classification algorithms is a popular approach

for predicting software defect. Various types of classification algorithms have been applied for software defect prediction.

However, no clear consensus on which algorithm perform best when individual studies are looked at separately. In this research,

a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models

within the field of software defect prediction. For the purpose of this study, 10 classifiers are selected and applied to build

classification models and test their performance in 9 NASA MDP datasets. Area under curve (AUC) is employed as an accuracy

indicator in our framework to evaluate the performance of classifiers. Friedman and Nemenyi post hoc tests are used to test for

significance of AUC differences between classifiers. The results show that the logistic regression perform best in most NASA

MDP datasets. Naïve bayes, neural network, support vector machine and k* classifiers also perform well. Decision tree based

classifiers tend to underperform, as well as linear discriminant analysis and k-nearest neighbor.

Keywords: Software Defect Prediction, Machine Learning, Classification Model, Comparison Framework

1. INTRODUCTION

A software defect is an error, failure, or fault in a

software [1], that produces an incorrect or unexpected

result, or causes it to behave in unintended ways. It is a

deficiency in a software product that causes it to perform

unexpectedly [2]. Software defects or software faults are

expensive in quality and cost. Moreover, the cost of

capturing and correcting defects is one of the most

expensive software development activities [3]. Recent

studies show that the probability of detection through

defect prediction models may be higher than the

probability of detection through software reviews [4]. The

accurate prediction of defect‐prone software modules can

certainly assist testing effort, reduce costs and improve the

quality of software [5].

1 Email: romi@brainmatics.com

Classification algorithm is a popular machine learning

approach for software defect prediction. It categorizes the

software code attributes into defective or not defective,

which is collected from previous development projects.

Classification algorithm is also able to predict which

components are more likely to be defect-prone, supports

better targeted testing resources and therefore, improved

efficiency. For prediction modeling, software metrics are

used as independent variables and fault data is used as the

dependent variable [6]. A wide range of classification

techniques have already been proposed in the predicting

software defect. Since 1990, more than 20 classification

algorithms have been applied and proposed as the best

method for predicting the software defect, including

Adv. Sci. Lett. 20 1945–1950, 2014 RESEARCH ARTICLE

1946

logistic regression (LR) [7], decision trees (DT) [8], neural

network (NN) [9], naive bayes (NB) [10], and etc.

While many studies individually report the comparative

performance of the modelling techniques they have used,

no clear consensus on which perform best emerges when

individual studies are looked at separately. Bibi et al. [11]

report that regression via classification (RvC) works well.

Hall et al. [5] suggests that studies using support vector

machine (SVM) techniques perform less well. These may

be underperforming as they require parameter optimization

for best performance. Models based on C4.5 seem to

underperform if they use imbalanced data [12] [13], as the

algorithm seems to be sensitive to this. NB and LR, in

particular, seem to be the techniques used in models that

are performing relatively well overall [10] [14]. NB is a

well understood algorithm that is in common use. Studies

using random forests (RF) have not performed as well as

might be expected [5], although many studies using NASA

dataset use RF and report good performances [15].

However, models seem to have performed best where the

right technique has been selected for the right set of data.

No particular classifiers that performs the best for all the

datasets [14].
However, we need to develop more reliable research

procedures before we can have confidence in the

conclusion of comparative studies of software prediction

models [15] [14] [4]. In this research, we propose a

comparison framework, which aims to benchmark the

performance of a wide range of classification models

within the field of software defect prediction.

This paper is organized as follows. In section 2, the

proposed comparison framework are explained. The

experimental results of classification models comparison

are presented in section 3. Finally, our work of this paper

is summarized in the last section.

2. PROPOSED COMPARISON FRAMEWORK

The proposed framework is shown in Figure 1. The

framework is comprised of 1) a dataset 2) a classification

algorithms, 3) a model validation, 4) a model evaluation

and 5) a model comparison.

2.1 Dataset

One of the most important problems for software fault

prediction studies is the usage of nonpublic (private)

datasets. Several companies developed fault prediction

models using proprietary data and presented these models

in conferences. However, it is not possible to compare

results of such studies with results of our own models

because their datasets cannot be reached. The use of public

datasets makes our research repeatable, refutable, and

verifiable [16]. Recently, state-of-the-art public datasets

used for software defect prediction research is available in

NASA Metrics Data (MDP) repository [17].

The data used in the proposed framework are collected

from the NASA MDP repository. NASA MDP repository

is a database that stores problem, product, and metrics data

[17]. Each NASA dataset is comprised of several software

modules, together with their number of faults and

characteristic code attributes. After preprocessing,

modules that contain one or more errors were labeled as

fault-prone, whereas error-free modules were categorized

as not-fault-prone. Besides line of codes (LOC) counts, the

NASA MDP datasets include several Halstead attributes

[18] as well as McCabe complexity measures [19]. The

former estimates reading complexity by counting operators

and operands in a module, whereas the latter is derived

from a module’s flow graph. Some researchers endorse the

static code attributes defined by McCabe and Halstead as

defect predictors in the software defect prediction. McCabe

and Halstead are module-based metrics, where a module is

the smallest unit of functionality. Static code attributes are

used as defect predictors, since they are useful,

generalizable, easy to use, and widely used.

Model Validation

Classification Algorithms

Statistical

Classifier

Dataset

NASA MDP Datasets

LR

LDA

NB

Nearest

Neighbor

k-NN

K*

Neural

Network

BP

Support

Vector

Machine

SVM

Decision

Tree

C4.5

CART

RF

10 Fold Cross Validation

Model Evaluation

Area Under Curve

(AUC)

Model Comparison

Difference Test

CM1 KC1 KC3 MC2 MW1

PC1 PC2 PC3 PC4

Friedman Test

Post Hoc Test

Nemenyi Test

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1945–1950, 2014

1947

Fig. 1. Proposed Comparison Framework of

Classification Models for Software Defect Prediction

In this research, we use nine software defect datasets

from NASA MDP. Individual attributes per dataset,

together with some general statistics and descriptions, are

given in Table 1. These datasets have various scales of

LOC, various software modules coded by several different

programming languages including C, C++ and Java, and

various types of code metrics including code size,

Halstead’s complexity and McCabe’s cyclomatic

complexity.

Table 1. Characteristics of NASA MDP Datasets

2.2 Classification Algorithms

The proposed classification framework aims to

compare the performance of a wide range of classification

models within the field of software defect prediction. For

the purpose of this study, 10 classifiers have been selected,

which may be grouped into the categories of traditional

statistical classifiers (LR, LDA, and NB), nearest

neighbors (k-NN and K*), NN, SVM, and decision tree

(C4.5, CART, and RF). The selection aims at achieving a

balance between established classification algorithms used

in software defect prediction.

2.3 Model Validation

We use a stratified 10-fold cross-validation for learning

and testing data. This means that we divide the training

data into 10 equal parts and then perform the learning

process 10 times. As shown in Table 2, each time, we chose

another part of dataset for testing and used the remaining

nine parts for learning. After, we calculated the average

values and the deviation values from the ten different

testing results. We employ the stratified 10-fold cross

validation, because this method has become the standard

and state-of-the-art validation method in practical terms.

Some tests have also shown that the use of stratification

improves results slightly [20].

Table 2. Stratified 10 Fold Cross Validation
n-validation Dataset’s Partition

1

2

3

4

5

6

7

8

9

10

2.4 Model Evaluation

We apply area under curve (AUC) as an accuracy

indicator in our experiments to evaluate the performance

of classifiers. AUC is area under ROC curve. Lessmann et

al. [15] advocated the use of the AUC to improve cross-

study comparability. The AUC has the potential to

significantly improve convergence across empirical

experiments in software defect prediction, because it

separates predictive performance from operating

conditions, and represents a general measure of

predictiveness. Furthermore, the AUC has a clear statistical

interpretation. It measures the probability that a classifier

ranks a randomly chosen fault-prone module higher than a

randomly chosen non-fault-prone module. Consequently,

any classifier achieving AUC well above 0.6 is

demonstrably effective for identifying fault-prone modules

and gives valuable advice as to which modules should

receive particular attention in software testing.

A rough guide for classifying the accuracy of a

diagnostic test using AUC is the traditional system,

presented by Gorunescu [21]. In the proposed framework,

we added the symbols for easier interpretation and

understanding of AUC (Table 3).

Table 3. AUC value, Its Meaning and Symbols
AUC Meaning Symbol

0.90 - 1.00 excellent classification
0.80 - 0.90 good classification
0.70 - 0.80 fair classification
0.60 - 0.70 poor classification
 < 0.60 failure

2.5 Model Comparison

There are three families of statistical tests that can be

used for comparing two or more classifiers over multiple

datasets: parametric tests (the paired t-test and ANOVA),

non-parametric tests (the Wilcoxon and the Friedman test)

and the non-parametric test that assumes no

Code Attributes
NASA MDP Dataset

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LOC counts LOC_total √ √ √ √ √ √ √ √ √

LOC_blank √ √ √ √ √ √ √ √

LOC_code_and_comment √ √ √ √ √ √ √ √ √

LOC_comments √ √ √ √ √ √ √ √ √

LOC_executable √ √ √ √ √ √ √ √ √

number_of_lines √ √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √

difficulty √ √ √ √ √ √ √ √ √

effort √ √ √ √ √ √ √ √ √

error_est √ √ √ √ √ √ √ √ √

length √ √ √ √ √ √ √ √ √

level √ √ √ √ √ √ √ √ √

prog_time √ √ √ √ √ √ √ √ √

volume √ √ √ √ √ √ √ √ √

num_operands √ √ √ √ √ √ √ √ √

num_operators √ √ √ √ √ √ √ √ √

num_unique_operands √ √ √ √ √ √ √ √ √

num_unique_operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic_complexity √ √ √ √ √ √ √ √ √

cyclomatic_density √ √ √ √ √ √ √ √

design_complexity √ √ √ √ √ √ √ √ √

essential_complexity √ √ √ √ √ √ √ √ √

Misc. branch_count √ √ √ √ √ √ √ √ √

call_pairs √ √ √ √ √ √ √ √

condition_count √ √ √ √ √ √ √ √

decision_count √ √ √ √ √ √ √ √

decision_density √ √ √ √ √ √ √ √

edge_count √ √ √ √ √ √ √ √

essential_density √ √ √ √ √ √ √ √

parameter_count √ √ √ √ √ √ √ √

maintenance_severity √ √ √ √ √ √ √ √

modified_condition_count √ √ √ √ √ √ √ √

multiple_condition_count √ √ √ √ √ √ √ √

global_data_complexity √ √

global_data_density √ √

normalized_cyclomatic_complexity √ √ √ √ √ √ √ √

percent_comments √ √ √ √ √ √ √ √

node_count √ √ √ √ √ √ √ √

Programming Language C C++ Java C C C C C C

Number of Code Attributes 37 21 39 39 37 37 36 37 37

Number of Modules 344 2096 200 127 264 759 1585 1125 1399

Number of fp Modules 42 325 36 44 27 61 16 140 178

Percentage of fp Modules 12.21 15.51 18 34.65 10.23 8.04 1.01 12.44 12.72

Adv. Sci. Lett. 20 1945–1950, 2014 RESEARCH ARTICLE

1948

commensurability of the results (sign test). Demsar

recommends the Friedman test for classifier comparisons,

which relies on less restrictive assumptions [22]. Based on

this recommendation, in our framework Friedman test is

employed to compare the AUCs of the different classifiers.

The Friedman test is based on the average ranked (R)

performances of the classification algorithms on each

dataset.

Let 𝑟𝑖
𝑗 be the rank of the j-th of 𝐶 algorithms on the i-th

of D datasets. The Friedman test compares the average

ranks of algorithm 𝑅𝑗 =
1

𝐷
∑ 𝑟𝑖

𝑗𝐷
𝑖−1 . Under the null-hypothesis,

which states that all the algorithms are equivalent and so

their ranks 𝑅𝑗 should be equal. The Friedman statistic is

calculated as follows, and distributed according to χ𝐹
2 with

𝐶 − 1 degrees of freedom, when D and C are big enough.

χ𝐹
2 =

12𝐷

𝐶(𝐶 + 1)
[∑ 𝑅𝑗

2

𝐷

𝑗

−
𝐶(𝐶 + 1)2

4
]

If the null-hypothesis is rejected, we can proceed with

a post-hoc test. The Nemenyi test is used when all

classifiers are compared to each other. The performance of

two classifiers is significantly different if the

corresponding average ranks differ by at least the critical

difference, given by

𝐶𝐷 = 𝑞𝛼√
𝐶(𝐶 + 1)

𝐷

where critical values 𝑞𝛼 are based on the Studentized range

statistic.

3. EXPERIMENTAL RESULTS

The experiments were conducted using a computing

platform based on Intel Core i7 2.2 GHz CPU, 16 GB RAM,

and Microsoft Windows 7 Professional 64-bit with SP1

operating system. The development environment is

Netbeans 7 IDE, Java programming language, and

RapidMiner 5.2 library. We used the default parameter

settings provide my RapidMiner 5.2 library.

We conducted experiments on 9 NASA MDP datasets

by using 10 classification algorithms. Table 4 reports the

AUCs of all classification algorithms. The last column of

Table 4 reports the mean rank 𝑅𝑗 of each classifier over all

datasets, which constitutes the basis of the Friedman test.

Table 4. AUC of 10 Classification Models on 9 Datasets

The best classification model on each dataset is

highlighted with boldfaced print. Table 4 shows that LR

algorithm has the highest Friedman score (R). In statistical

significance testing the P-value is the probability of

obtaining a test statistic at least as extreme as the one that

was actually observed, assuming that the null hypothesis is

true. One often "rejects the null hypothesis" when the P-

value is less than the predetermined significance level (α),

indicating that the observed result would be highly unlikely

under the null hypothesis. In this case, we set the statistical

significance level (α) to be 0.05. It means that there is a

statistically significant difference if P-value < 0.05. From

the experimental result, P-value is 0.0001, this is lower

than the significance level α=0.05, thus one should reject

the null hypothesis, and it means that there is a statistically

significant difference. Consequently, one may proceed

with a Nemenyi post hoc test to detect which particular

classifiers differ significantly.

Nemenyi post hoc test calculates all pairwise

comparisons between different classifiers and checks

which models’ performance differences exceed the critical

difference. The results of the pairwise comparisons are

shown in Table 5, which critical difference (CD) value is

4.5154.

Table 5. Pairwise Comparisons of Nemenyi Post Hoc Test

P-value results of Nemenyi post hoc test are shown in

Table 6. P-value < 0.05 results are highlighted with

boldfaced print, which mean that there is a statistically

significant difference between two classifiers, in a column

and a row.

Table 6. P-value of Nemenyi Post Hoc Test

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 M R

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894 0.797 1.44

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61 0.522 8.33

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838 0.761 3

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.778

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76 0.658 5.33

BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883 0.762 3.22

SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899 0.733 3.33

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723 0.567 7.78

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623 0.599 6.89

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2 0.549 6.89

LR LDA NB k-NN K* BP SVM C4.5 CART RF

LR 0 6.889 1.556 7.333 3.889 1.778 1.889 6.333 5.444 5.444

LDA -6.889 0 -5.333 0.444 -3.000 -5.111 -5.000 -0.556 -1.444 -1.444

NB -1.556 5.333 0 5.778 2.333 0.222 0.333 4.778 3.889 3.889

k-NN -7.333 -0.444 -5.778 0 -3.444 -5.556 -5.444 -1.000 -1.889 -1.889

K* -3.889 3.000 -2.333 3.444 0 -2.111 -2.000 2.444 1.556 1.556

BP -1.778 5.111 -0.222 5.556 2.111 0 0.111 4.556 3.667 3.667

SVM -1.889 5.000 -0.333 5.444 2.000 -0.111 0 4.444 3.556 3.556

C4.5 -6.333 0.556 -4.778 1.000 -2.444 -4.556 -4.444 0 -0.889 -0.889

CART -5.444 1.444 -3.889 1.889 -1.556 -3.667 -3.556 0.889 0 0.000

RF -5.444 1.444 -3.889 1.889 -1.556 -3.667 -3.556 0.889 0.000 0

LR LDA NB k-NN K* BP SVM C4.5 CART RF

LR 1 < 0.0001 0.986 < 0.0001 0.164 0.965 0.949 0.000 0.005 0.005

LDA < 0.0001 1 0.007 1.000 0.526 0.013 0.017 1.000 0.992 0.992

NB 0.986 0.007 1 0.002 0.831 1.000 1.000 0.028 0.164 0.164

k-NN < 0.0001 1.000 0.002 1 0.318 0.004 0.005 1.000 0.949 0.949

K* 0.164 0.526 0.831 0.318 1 0.901 0.927 0.789 0.986 0.986

BP 0.965 0.013 1.000 0.004 0.901 1 1.000 0.046 0.232 0.232

SVM 0.949 0.017 1.000 0.005 0.927 1.000 1 0.058 0.273 0.273

C4.5 0.000 1.000 0.028 1.000 0.789 0.046 0.058 1 1.000 1.000

CART 0.005 0.992 0.164 0.949 0.986 0.232 0.273 1.000 1 1.000

RF 0.005 0.992 0.164 0.949 0.986 0.232 0.273 1.000 1.000 1

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1945–1950, 2014

1949

Fig.2. AUC Mean (M) Comparison of 10 Classification

Models on 9 Datasets

As shown in Table 6, LR outperforms other models in

most datasets. In terms of R value (Table 4) and AUC mean

(M) (Figure 2), LR also has the highest value, followed by

BP, NB and SVM in the second, third and fourth rank.

Based on P-value results (Table 6), actually there is no

significant difference between LR, NB, BP, and SVM

models. This result confirmed Hall et al. [5] result that NB

and LR, in particular, seem to be the techniques used in

models that are performing relatively well in software

defect prediction. SVM actually has excellent

generalization ability in the situation of small sample data

like NASA MDP dataset, but in this experiment SVM

perform less well, as they require parameter optimization

for best performance.

On the other hand, models based on decision tree

approach (C4.5, CART and RF) seem to underperform.

From P-value analysis, there is a significant difference

between LR and the all decision tree based models. This is

may be due to the imbalanced class distribution problem

on software defect datasets. As we know decision tree

learners create biased trees if some classes dominate. LDA

and k-NN models also performing badly and to be failure

in the most datasets. Significant difference table resulted

by Nemenyi post hoc test is shown in Table 7.

Table 7. Significant Differences of Nemenyi Post Hoc

Test

4. CONCLUSION

A comparison framework is proposed for comparing the

performance of classification algorithms in the software

defect prediction. The framework is comprised of 9 NASA

MDP datasets, 10 classification algorithms, 10 fold cross

validation model, and AUC accuracy indicator. Friedman

and Nemenyi are used to test the significance of AUC

differences between models. The experimental results

show that the LR perform best in most NASA MDP

datasets. NB, NN, SVM and k* also perform well, and

actually there is no statistically significant different

between them. Decision tree based classifiers tend to

underperform, as well as LDA and k-NN.

REFERENCES

[1] K. Naik and P. Tripathy, Software Testing and Quality Assurance.

John Wiley & Sons, Inc., 2008.

[2] M. McDonald, R. Musson, and R. Smith, “The practical guide to

defect prevention,” Control, pp. 260–272, 2007.

[3] C. Jones, Applied Software Measurement: Global Analysis of

Productivity and Quality, vol. 38, no. 1. McGraw-Hill Inc., 2008,

p. 662.

[4] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.

Bener, “Defect prediction from static code features: current

results, limitations, new approaches,” Autom. Softw. Eng., vol. 17,

no. 4, pp. 375–407, May 2010.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

Systematic Literature Review on Fault Prediction Performance in

Software Engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,

pp. 1276–1304, Nov. 2012.

[6] C. Catal, “Software fault prediction: A literature review and

current trends,” Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636,

Apr. 2011.

[7] G. Denaro, “Estimating software fault-proneness for tuning

testing activities,” in Proceedings of the 22nd International

Conference on Software engineering - ICSE ’00, 2000, pp. 704–

706.

[8] T. M. Khoshgoftaar, N. Seliya, and K. Gao, “Assessment of a New

Three-Group Software Quality Classification Technique: An

Empirical Case Study,” Empir. Softw. Eng., vol. 10, no. 2, pp.

183–218, Apr. 2005.

[9] J. Zheng, “Cost-sensitive boosting neural networks for software

defect prediction,” Expert Syst. Appl., vol. 37, no. 6, pp. 4537–

4543, Jun. 2010.

[10] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static

Code Attributes to Learn Defect Predictors,” IEEE Trans. Softw.

Eng., vol. 33, no. 1, pp. 2–13, Jan. 2007.

[11] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, “Regression

via Classification applied on software defect estimation,” Expert

Syst. Appl., vol. 34, no. 3, pp. 2091–2101, Apr. 2008.

[12] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data Mining

Techniques for Building Fault-proneness Models in Telecom Java

Software,” Proc. 18th IEEE Int. Symp. Softw. Reliab., pp. 215–

224, 2007.

[13] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic

and comprehensive investigation of methods to build and evaluate

fault prediction models,” J. Syst. Softw., vol. 83, no. 1, pp. 2–17,

Jan. 2010.

[14] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A General

Software Defect-Proneness Prediction Framework,” IEEE Trans.

Softw. Eng., vol. 37, no. 3, pp. 356–370, May 2011.

[15] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings,” IEEE

Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496, Jul. 2008.

LR LDA NB k-NN K* BP SVM C4.5 CART RF

LR No Yes No Yes No No No Yes Yes Yes

LDA Yes No Yes No No Yes Yes No No No

NB No Yes No Yes No No No Yes No No

k-NN Yes No Yes No No Yes Yes No No No

K* No No No No No No No No No No

BP No Yes No Yes No No No Yes No No

SVM No Yes No Yes No No No No No No

C4.5 Yes No Yes No No Yes No No No No

CART Yes No No No No No No No No No

RF Yes No No No No No No No No No

Adv. Sci. Lett. 20 1945–1950, 2014 RESEARCH ARTICLE

1950

[16] C. Catal and B. Diri, “Investigating the effect of dataset size,

metrics sets, and feature selection techniques on software fault

prediction problem,” Inf. Sci. (Ny)., vol. 179, no. 8, pp. 1040–

1058, Mar. 2009.

[17] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,

“Reflections on the NASA MDP data sets,” IET Softw., vol. 6, no.

6, p. 549, 2012.

[18] M. H. Halstead, Elements of Software Science, vol. 7. Elsevier,

1977, p. 127.

[19] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw.

Eng., vol. SE-2, no. 4, pp. 308–320, 1976.

[20] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Third Edition.

Elsevier Inc., 2011.

[21] F. Gorunescu, Data Mining: Concepts, Models and Techniques,

vol. 12. Springer-Verlag Berlin Heidelberg, 2011.

[22] J. Demsar, “Statistical Comparisons of Classifiers over Multiple

Data Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

