
Corresponding author: Xiaodong Zhu  
E-mail: zhuxiaodong.jlu@gmail.com 

 
Journal of Bionic Engineering  8 (2011) 191–200 

 
 

An Improved Particle Swarm Optimization for Feature Selection 
 

Yuanning Liu1,2, Gang Wang1,2, Huiling Chen1,2, Hao Dong1,2, Xiaodong Zhu1,2, Sujing Wang1,2 
1. College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China 
2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, 

Jilin University, Changchun 130012, P. R. China 
 

Abstract    
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird 

flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been
reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In 
this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition 
among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, 
which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the 
rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating 
MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa-
bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed 
method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 
10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis 
show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy 
with smaller subset of features. 
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1  Introduction 

Feature selection is one of the most important fac-
tors which can influence the classification accuracy rate. 
If the dataset contains a number of features, the dimen-
sion of the space will be large and non-clean, degrading 
the classification accuracy rate. An efficient and robust 
feature selection method can eliminate noisy, irrelevant 
and redundant data[1].  

Feature subset selection algorithms can be catego-
rized into two types: filter algorithms and wrapper al-
gorithms. Filter algorithms select the feature subset be-
fore the application of any classification algorithm, and 
remove the less important features from the subset. 
Wrapper methods define the learning algorithm, the 
performance criteria and the search strategy. The learn-
ing algorithm searches for the subset using the training 
data and the performance of the current subset. 

Particle Swarm Optimization (PSO) was motivated 

from the simulation of simplified social behavior of bird 
flocking, firstly developed by Kennedy and Eberhart[2–3]. 
It is easy to implement with few parameters, and it is 
widely used to solve the optimization problems, as well 
as feature selection problem[4–5]. Various attempts have 
been made to improve the performance of standard PSO 
in recent years. However, few studies have put emphasis 
on researching into multi-swarm strategy. Usually, the 
PSO-based algorithms only have one swarm that con-
tains a number of particles. The PSO-based algorithms 
using multi-swarm strategy have more exploration and 
exploitation abilities due to the fact that different swarms 
have the possibility to explore different parts of the so-
lution space[6]. On the other hand, standard PSO con-
verges over time, thereby losing diversity, and thus their 
ability to quickly react to a peak’s move. The 
multi-swarm PSO can sustain the diversity of swarms, 
and ensure its adaptability, thereby improving the per-
formance of PSO.  
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Blackwell and Branke[7] split the population of 
particles into a set of interacting swarms. They used a 
simple competition mechanism among swarms that are 
close to each other. The winner is the swarm with the 
best function value at its swarm attractor. The loser is 
expelled and reinitialized in the search space, otherwise 
the winner remains. Parrott and Li[8] divided the swarm 
population into species subpopulations based on their 
similarity. Additional duplicated particles are removed 
when particles are identified as having the same fitness 
with the species seed within the same species. After 
destroying the duplicated ones, the new particles are 
added randomly until its size is resumed to its initial size. 
Niu et al.[9] proposed Multi-swarm Cooperative Particle 
Swarm Optimizer (MCPSO) based on a master-slave 
model, in which a population consists of one master 
swarm and several slave swarms. MCPSO is based on an 
antagonistic scenario, where the master swarm enhances 
its particles by a series of competitions with the slave 
warms. The master swarm enhances its particles based 
on direct competition with the slave swarms, and the 
most fitted particles in all the swarms possess the op-
portunity to guide the fight direction of the particles in 
the master swarm. 

However, the studies mentioned above have only 
solved the traditional optimization problems, namely 
continuous parameter optimization. Our proposed 
Multi-Swarm Particle Swarm Optimization (MSPSO) 
can not only solve the continuous parameter problems 
but also the discrete problems. Moreover, to maintain the 
diversity of swarms, they do not change the number of 
particles, as well as the number of swarms, thereby ig-
noring the competition among the swarms. In this paper, 
we propose MSPSO algorithm based on a modified 
multi-swarm PSO through introducing the mechanism 
for survival of the fittest to describe the competition 
among the swarms. Four rules are designed according to 
the mechanism, in which the number of sub-swarms is 
allowed to reduce during the iterations, namely, that 
some of the sub-swarms are destroyed during the itera-
tions, and the destroyed sub-swarms can not be recon-
structed any more.   

To the best of our knowledge, this is the first paper  
to apply multi-swarm PSO to feature selection problem. 
The main innovations in this paper are described as 
follows: 

(1) A MSPSO algorithm was proposed, which con-

sists of a number of sub-swarms and a scheduling mod-
ule. The survival of the fittest is introduced to decide 
whether a sub-swarm should be destroyed or reserved. 
To achieve that goal, 4 rules are designed. The sched-
uling module monitors and controls each sub-swarm 
according to the rule during the iterations. 

(2) The F-score[10], which can calculate the score of 
each feature, was introduced to evaluate the results of 
the feature selection. The objective function is designed 
according to classification accuracy rate and the feature 
scores.  

(3) An Improved Feature Selection (IFS) method 
was proposed, which consists of two stages. In the first 
stage, both the Support Vector Machines (SVM) pa-
rameter optimization and the feature selection are dy-
namically executed by MSPSO. In the second stage, 
SVM model performs the classification tasks using these 
optimal values and selected features via 10-fold cross 
validation. 

The remainder of this paper is organized as follows. 
Section 2 reviews basic principles of PSO and SVM. 
Section 3 describes the objective function, multi-swarm 
scheduling module and IFS approach in detail. Section 4 
presents the experimental results on 10 benchmark date 
sets. Finally, section 5 summarizes the conclusion. 

2  Basic principles 

2.1  Particle swarm optimization  
PSO originated from the simulation of social be-

havior of birds in a flock[2–3]. In PSO, each particle flies 
in the search space with a velocity adjusted by its own 
flying memory and its companion’s flying experience. 
Each particle has its objective function value which is 
decided by a fitness function: 

1
1 1 2 2( ) ( ),t t t t t t

id id id id gd idv w v c r p x c r p x   (1) 

where i represents the ith particle and d is the dimension 
of the solution space, c1 denotes the cognition learning 
factor, and c2 indicates the social learning factor, r1 and 
r2 are random numbers uniformly distributed in (0,1), pid

t 

and pgd
t stand for the position with the best fitness found 

so far for the ith particle and the best position in the 
neighborhood, vid

t and vid
t 1 are the velocities at time t 

and time t  1, respectively, and xid
t is the position of ith 

particle at time t. Each particle then moves to a new 
potential solution based on the following equation: 
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1 ,  1,2,..., ,t t t
id id idx x v d D                   (2)  

Kennedy and Eberhart[11] proposed a binary PSO in 
which a particle moves in a state space restricted to 0 and 
1 on each dimension, in terms of the changes in prob-
abilities that a bit will be in one state or the other: 

,1,     ( ) ( )
,

0
i d

id

rand S v
x                          (3) 

1( ) .
1 vS v

e
                                        (4) 

The function S(v) is a sigmoid limiting transformation 
and rand( ) is a random number selected from a uniform 
distribution in [0.0, 1.0]. 
 
2.2  Support vector machines 

SVM is specifically designed for two-class prob-
lems[12–13]. Given a training set of instance-label pairs (xi, 
yi), i = 1, 2, . . ., m, where xi belongs to Rn and yi belongs 
to (+1, 1), the generalized linear SVM finds an optimal 
separating value f(x) = (w × x) + b. The classifier is: 

1
( ) sgn{ ( ) }.

n

i i i
i

f x a y x x b                (5) 

For the non-linear case, SVM will map the data in a 
lower dimensional space into a higher-dimensional 
space through kernel trick. The classifier is: 

1
( ) sgn{ ( ) },

n

i i i
i

f x a y K x x b                (6) 

where sgn{} is the sign function, ai is Lagrange multi-
plier, xi is a training sample, x is a sample to be classified, 
K(xi×x) is the kernel function. Example kernel function 
includes polynomial function, linear function, and Ra-
dial Basis Function (RBF). In this work, we investigated 
the RBF kernel function. 

3  IFS approach 

We have proposed the IFS approach, which com-
bines the parameter optimization and the feature selec-
tion, in order to obtain the higher classification accuracy 
rate. A modified PSO algorithm named MSPSO is pro-
posed, which holds a number of sub-swarms scheduled 
by the multi-swarm scheduling module. The multi- 
swarm scheduling module monitors all the sub-swarms, 
and gathers the results from the sub-swarms. 

The storage of MSPSO is shown in Fig. 1. The 

SVM parameters, feature values and system parameters 
are described in detail. We modify the PSO to solve 
discrete problem according to Ref. [11]. 

The proposed method consists of two stages. In the 
first stage, both the SVM parameter optimization and the 
feature selection are dynamically executed by MSPSO. 
In the second stage, SVM model performs the classifi-
cation tasks using these optimal values and selected 
feature subsets via 10-fold cross validation. 

An efficient objective function is designed ac-
cording to classification accuracy rate and F-score. The 
objective function consists of two parts: one is classifi-
cation accuracy rate and the other is the feature score. 
Both of them are summed into one single objective 
function by linear weighting. The two weights are a and 

b, and each controls the weight of the specific part. 
 

3.1  Classification accuracy 
The classification accuracy for the dataset was 

measured according to following equation: 

| |

1

( )
( ) ,

| | ,
1   if classify( ) = 

( )
0   otherwise

i
i

i

assess n
accuracy n

n nc
assess n

N

N
N         (7) 

where N is the set of data items to be classified (the test 
set), n N, nc is the class of the item n, and classify(n) 
returns the classification accuracy rates of n by IFS. 
 
3.2  F-score 

F-score is a simple technique which measures the 
discrimination of two sets of real numbers. Given train-
ing vectors Xk, k = 1.2,…,m, if the number of positive 
and negative instances are n+ and n , respectively, then 
the F-score of the ith feature is defined as follows[10]:  

( ) 2 ( ) 2

( ) ( ) 2 ( ) ( ) 2
, ,

1 1

( ) ( )
( ) ,

1 1( ) ( )
1 1

i i i i
n n

k i i k i i
k k

x x x x
F i

x x x x
n n

(8) 

where ix , ( )
ix , ( )

ix  are the averages of the ith feature of 
the whole, positive, and negative datasets, respectively. 

( )
,k ix  is the ith feature of the kth positive instance, and 

( )
,k ix  is the ith feature of the kth negative instance. The 

numerator shows the discrimination between the posi-
tive and negative sets, and the denominator defines the 
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one within each of the two sets. The larger the F-score is, 
the more this feature is discriminative. 

Both features of this data have low F-scores as in 
Eq. (8) denominator (the sum of variances of the positive 
and negative sets) is much larger than numerator. 

Xie and Wang[20] proposed the improved F-score to 
measure the discrimination between them. Given train-
ing vectors xk, k = 1, 2,…, m, and the number of datasets, 
if the number of the jth dataset is nj, j = 1, 2,…, l, then 
the F-score of the ith feature is defined as:  

( ) 2

1

( ) ( ) 2
,

1 1

( )

1 ( )
1

j

l
j

i i
j

i nl
j j

k i i
j kj

x x
F

x x
n

 

where ix , ( )j
ix  are the average of the ith feature of the 

whole dataset and the jth dataset respectively, ( )
,
j

k ix  is the 
ith feature of the kth instance in the jth dataset. The 
numerator indicates the discrimination between each 
dataset, and denominator indicates the one within each 
of dataset. The larger the F-score is, the more this feature 
is discriminative. 

In this study, we utilize F-score to calculate the 
score of each attribute in order to get the weights of the 
features according to F(FS(i)). Eq. (9) is responsible for 
calculating the scores of the feature masks. If the ith 
feature is selected (“1” represents that feature i is se-
lected and “0” represents that feature i is not selected), 
FS(i) equals the instance of feature i, otherwise FS(i) 
equals 0. 

instance , if  is selected 
( ) ,

0,       if   is not selected
i i

FS i
i

               (9) 

 

3.3  Objective function definition 
We design an objective function which combines 

classification accuracy rate and F-score. Objective 
function is the evaluation criteria for the selected fea-
tures. To get accuracy rate, we need to train and test the 
dataset according to the selected features. 

1

1

( ( ))
.

( )

b

b

N

j
i a i b N

k

F FS i
fitness accuracy

F k
     (10) 

In Eq. (10), a is the weight for SVM classification ac-

curacy rate, accuracyi the classification accuracy rate for 
the selected features, b the weight for the score of se-
lected features, F(FS(i)) the function for calculating the 
score of the current features, and the total score of the 
selected features and all features respectively are 

1
( )

bN

k
F k  and 

1
( ( ))

bN

j
F FS i  

 
3.4  Multi-swarm scheduling module 

MSPSO is proposed, which holds a number of 
swarms scheduled by the multi-swarm scheduling 
module. Each swarm controls its iteration procedure, 
position updates, velocity updates, and other parameters 
respectively. Each swarm selects different occasions 
from current computing environment, then, sends the 
current results to the multi-swarm scheduling module to 
decide whether it affects other swarms. The scheduling 
module monitors all the sub-swarms, and gathers the 
results from the sub-swarms. 

Fig. 1 shows the structure of multi-swarm sched-
uling model, which consists of a multi-swarm scheduler 
and some sub-swarms. Each sub-swarm contains a 
number of particles. The multi-swarm scheduler can 
send commands or data to sub-swarms, and vice versa. 

(1) The swarm request rule  
If the current sub-swarm meets the condition ac-

cording to Eq. (11), it sends the results which correspond 
pbest (local best fitness) and gbest (global best fit-
ness)values to the multi-swarm scheduler. If Si = 1, the 
current swarm sends records which contain the pbest and 
gbest values, otherwise the current swarm does not send 
the results. 

1, if  ()
,

0, if ()

i i
i

i
i

i i
i

i

tit it
d rand Fitness

tit
S

tit itd rand Fitness
tit

   (11) 

In Eq. (11), d represents a threshold, tit the maximal 
iteration number, it the current iteration number. rand( ) 
is a random number uniformly distributed in U (0, 1). 

(2) The multi-swarm scheduler request rule 
The multi-swarm scheduler monitors each sub- 

swarm, and sends a request in order to obtain a result 
form current sub-swarm when the current sub-swarm is 
valuable. If sub-swarm has sent the swarm request rules 
more than k × n times, where k = 3, n = 1, 2, 3, ... ,100,  
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Fig. 1  The structure of multi-swarm scheduling. 

 
the multi-swarm scheduler will send the rule. The 
multi-swarm scheduler request rule is touched off ac-
cording to evaluating the activity level of the current 
sub-swarm. The more active the sub-swarm is, the more 
valuable it is, since the best result may be in it. 

(3) The multi-swarm collection rule 
The multi-swarm scheduler collects results from 

the alive sub-swarm and updates pbest and gbest from 
storage table.  

(4) The multi-swarm destroying rule 
a. If the swarm sends the swarm request rule k times 

and k < fi according to Eq. (12), then the multi-swarm 
scheduler destroys the current sub-swarm. 

b. If the swarm does not change the gbest in pn it-
erations, then the multi-swarm scheduler destroys the 
current sub-swarm. We set pn in the initialization of 
PSO. 

1

( )
.

n

l
i

ite l m
f

pl
                            (12) 

In Eq. (12), ite( ) is the function for calculating how 
many times the sub-swarm sends swarm request rule, m 
a threshold, pl the alive sub-swarm size. 

3.5  MSPSO algorithm 
Step 1: Load the dataset from the text file and 

convert the dataset from stream format to object format. 
Store the formatted memory data to temporary table for 
the initialization of PSO. Initialize the size of swarms 
randomly, and assign different memory to each swarm. 
Initialize all particle positions xij and velocities vij of 
each swarm with random values, then calculate objec-
tive function. Update pbest (local best) and gbest (global 
best) of each swarm from the table. Go to Step 2.  

Step 2: Specify the parameters of each swarm in-
cluding the lower and upper bounds of the velocity, the 
size of particles, the number of iterations, c1(the cogni-
tion learning factor), c2(social learning factor), di (in Eq. 
(11)), m(in the multi-swarm destroying rule) and pn(in 
Eq.(12)). Set iteration number = 0, current particle 
number = 1, titi = size of particles, and iti = current par-
ticle number. Go to Step 3. 

Step 3: In each swarm, if current iteration number < 
iteration number or gbest keeps no changes less than 45 
iterations, go to Step 4, otherwise destroy the swarm, and 
go to Step 10. The main scheduling module updates the 
pbest, and compares the gbest of current swarm with the 
previous one in the module, then judge whether to 
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update gbest using multi-swarm scheduler request rule 
or not. If gbest or pbest is changed, execute multi-swarm 
collection rule. 

Step 4: In each swarm, if current particle number < 
particle size, go to Step 5, otherwise, go to Step 9. 

Step 5: In each swarm, get gbest and pbest from the 
table and each particle updates its position and velocity. 
Go to Step 6. 

Step 6: Restrict position and velocity of each indi-
vidual. Go to Step 7. 

Step 7: Each particle calculates its fitness and up-
dates pbest and gbest. Execute swarm request rule, and 
go to Step 8. If the current swarm needs to be destroyed 
according to multi-swarm destroying rule, dispose the 
current swarm, and exit. 

Step 8: current particle number = current particle 
number + 1. Go to Step 4. 

Step 9: current iteration number = current iteration 
number + 1. Go to Step 3. 

Step 10: Execute multi-swarm collection rule, and 
exit. 

 
3.6  Convergence and complexity analysis 

Convergence analysis and stability studies have 
been reported by Clerc and Kennedy[14], Trelea[15], 
Kadirkamanathan et al.[16], and Jiang et al.[17]. The above 
studies proved conditions which could lead PSO to 
converge in limited iterations. In order to guarantee the 
convergence of the proposed method, we set the pa-
rameters of PSO as  = 0.9, c1 = 2, c2 = 2 (according to 
Refs. [18] and [19]). 

The time complexity of the proposed method is 
O(M×N×K), where M, N, K are the number of iterations, 
the number of sub-swarms, the number of particles re-
spectively. In the worst case, if the number of sub- 
swarms remains unchanged and the number of iteration 
reaches the maximum iteration number, the time com-
plexity is O(M×N×K). In general, the number of 
sub-swarms is reduced after some iterations, and thus the 
time complexity is  

1
( )

M

i
O L K , where 1  L  N. 

4  Experiments and results 

4.1  Experimental setting 
The numbers of iterations and particles are set to 

400 and 50 respectively. The searching ranges for c and  
are as follow: c  [2 15, 215],   [2 15, 215], [ vmax, vmax] 
is predefined as [ 1000, 1000] for parameter c, as 
[ 1000, 1000] for parameter , and as [ 6, 6] for feature 
mask. For objective function, we set wa and wb to 0.8 and 
0.2 according to our experience. The following datasets 
taken from the UCI machine learning and StatLog da-
tabases are used to evaluate the performance of the 
proposed IFS approach: Australian, German, Cleveland 
heart, breast cancer, heart disease, vehicle silhouettes, 
hill-valley, landsat satellite, sonar, and Wisconsin Di-
agnostic Breast Cancer (WDBC). 

The 10-fold cross validation was used to evaluate 
the classification accuracy. Then the average error across 
all 10 trials was computed. Because hill-valley and 
landsat satellite datasets have pre-defined training/test 
splits. Thus, except these datasets, all of the experi-
mental results are averaged over the 10 runs of 10-fold 
Cross-Validation (CV). 
 

Table 1  Dataset description 

No. Dataset Classes Instances Features Missing 
value 

1 Australian (Statlog 
project) 2 690 14 Yes 

2 German 
(Statlog project) 2 1000 24 No 

3 Cleveland heart 2 303 13 Yes 

4 Breast cancer 
(Wisconsin) 2 699 9 Yes 

5 Heart disease 
(Statlog project) 2 270 13 No 

6 Vehicle silhouettes 
(Vehicle) 4 846 17 No 

7 Hill-valley 2 1212 100 No 

8 Landsat satellite 
( Landsat ) 6 6435 36 No 

9 Sonar 2 208 60 No 

10 WDBC 2 569 30 No 

 
4.2  Results 

Table 2 shows the classification accuracy rates of 
IFS with and without feature selection. As shown in 
Table 2, the IFS with feature selection performs sig-
nificantly better than IFS without feature selection in 
almost all cases examined at the significance level of 
0.05, except the Australian dataset. The average classi-
fication accuracy rate for each dataset improved sig-
nificantly after feature selection. 

The results show that the classification accuracy 
rates of the IFS approach with and without feature se-
lection were better than those of grid search in all cases 
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as shown in Table 3. Grid search is a local search method 
which is vulnerable to local optimum. Grid search can 
supply local optimal parameters to SVM, but the search 
region is small, and it can not lead SVM to higher clas-
sification accuracy rate. The empirical analysis indicates 
that the developed IFS approach can obtain the optimal 
parameter values, and find a subset of discriminative 
features without decreasing the SVM classification ac-
curacy. 
 
Table 2  Results of the proposed IFS with and without feature 
selection 

With feature selection 
Without 
feature 

selection
Dataset Number 

of origi-
nal fea-

tures 

Number of  
selected 
features 

Accuracy 
rate (%) 

Accuracy 
rate (%)

Pair t test
P-value

Australian 14 8.4 ± 2.318 90.9 86.4 0.06 

German 23 12.7 ± 
1.025 80.2 75.9 < 0.001

Cleveland 
heart 13 6.1 ± 1.103 91.1 85.7 < 0.001

Breast 
cancer 9 4.9 ± 0.734 99.1 96.9 < 0.001

Heart dis-
ease 13 7.8 ± 0.949 91.5 84.4 < 0.001

Vehicle 17 7.1 ± 0.432 89.6 85.8 < 0.001

Hill-valley 100 40.1 ± 
1.264 74.1 71.2 < 0.001

Landsat 36 13 ± 0.668 95.4 91.9 < 0.001

Sonar 60 25.1 ± 
0.977 93.7 90.1 < 0.001

WDBC 30 13 ± 1.331 99.4 97.8 0.011 

 
Table 3  Experimental results summary of IFS with feature se-
lection, IFS without feature selection and grid search algorithm 

Dataset 
(1) IFS with 

feature 
selection 

(2) IFS 
without 
feature 

selection 

(3) Grid 
search 

Pair t test
(1)vs(3) 

Pair t test
(2)vs(3)

Australian 90.9 86.4 84.7 < 0.001 < 0.001

German 80.2 75.9 75.7 < 0.001 < 0.001

Cleveland 
heart 91.1 85.7 82.3 < 0.001 < 0.001

Breast 
cancer 99.1 96.9 95.2 < 0.001 < 0.001

Heart 
disease 91.5 84.4 83.6 < 0.001 < 0.001

Vehicle 89.7 85.8 84.2 < 0.001 0.21 

Hill-valley 74.1 71.2 69.8 0.01 < 0.001

Landsat 95.4 91.9 91.1 < 0.001 0.012 

Sonar 93.7 90.1 88.9 0.028 < 0.001

WDBC 99.4 97.8 97.4 < 0.001 0.531 

 

The comparison between IFS and GA + SVM by 
using feature selection is shown in Table 4. The detail 
parameter settings for GA+SVM were as follows: 
population size = 500, crossover rate = 0.7, mutation rate 
= 0.02. The classification accuracy rates of IFS with 
feature selection were higher than GA + SVM for all 
datasets, whereas the classification accuracy rates of GA 
+ SVM were higher than IFS without feature selection as 
shown in Table 4. Therefore, it is important to eliminate 
noisy, irrelevant features for increasing the classification 
accuracy rates. 

 
Table 4  Comparison between the IFS and GA + SVM approach 

IFS GA + SVM 

Dataset 

Number 
of  

original 
features

Number 
of  

selected 
features

Accuracy 
rate(%) 

Number 
of 

selected 
features

Accuracy 
rate(%) 

Australian 14 8.4 ± 
2.318 90.9 7.9 ± 

0.432 88.1 

German 23 12.7 ± 
1.025 80.2 10.1 ± 

0.986 77.4 

Cleveland 
heart 13 6.1 ± 

1.103 91.1 6.9 ± 
2.011 86.8 

Breast 
cancer 9 4.9 ± 

0.734 99.1 5.5 ± 
0.988 98.2 

Heart 
disease 13 7.8 ± 

0.949 91.5 8.1 ± 
0.445 86.7 

Vehicle 17 7.1 ± 
0.432 89.6 11.5 ± 

0.664 88.1 

Hill-valle
y 100 40.1 ± 

1.264 74.1 55.9 ± 
1.981 73.5 

Landsat 36 13 ± 
0.668 95.4 18.3 ± 

1.498 93.4 

Sonar 60 25.1 ± 
0.977 93.7 31.0 ± 

1.212 91.6 

WDBC 30 13 ± 
1.331 99.4 17.3 ± 

0.991 98.9 

 
Fig. 2a and Fig. 2b show the global best classifica-

tion accuracies with different iterations on Australian 
and German datasets using IFS, PSO+SVM, GA+SVM 
respectively. Fig. 2e and Fig. 2f show the local best 
classification accuracies with different iterations on 
Australian and German datasets using IFS, PSO+SVM 
and GA+SVM respectively. The convergence speeds of 
PSO+SVM and GA +SVM were faster than IFS, 
whereas the resultant classification accuracies of 
PSO+SVM and GA+SVM were lower than IFS. 
Moreover, PSO+SVM and GA+SVM prematurely 
converged to local optimum, and thus it convinces that 
IFS has more exploration capability. The numbers of 
selected features with evolution on German and Austra-
lian datasets using three methods are shown in Fig. 3 and 
Fig. 4 respectively. Fig. 2c and Fig. 2d show the number 
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of sub-swarms with different iterations on Australian 
and German datasets using IFS. With different numbers 
of initial sub-swarms, a great number of sub-swarms 
were reduced, and only a small number of sub-swarms 
were remained at the final iteration. Most of the week 
sub-swarms are eliminated during the evolution, and 
thus it can be seen that excellent sub-swarms are pre-
served after competition, as enhance the exploration 
ability of the whole swarm to obtain more important 
features. 

The comparison between IFS and PSO+SVM using 

feature selection in terms of number of selected features 
and average classification accuracy rates is shown in 
Table 5. For comparison purpose, we implemented the 
PSO+SVM approach using the standard PSO algorithm, 
and the parameter settings were described as follows: 
iteration size was set as 500, number of particles as 100. 
The classification accuracy rate was adopted as the ob-
jective function. The analytical results reveal that IFS 
with feature selection performs significantly superior to 
the standard PSO with feature selection in all datasets in 
terms of the classification accuracy rates. 

 

 
Fig. 2  Prediction accuracies and number of sub-swarm with different iterations. (a) Global best accuracies with different iterations on 
Australian dataset using IFS, PSO+SVM and GA+SVM. (b) Global best accuracies with different iterations on German dataset using IFS, 
PSO+SVM and GA+SVM. (c) Each curve corresponding to a number of initial sub-swarms on Australian dataset using IFS. (d) Each 
curve corresponding to a number of initial sub-swarms on German dataset using IFS. (e) Local best accuracies with different iterations on 
Australian dataset using IFS, PSO+SVM and GA+SVM. (f) Local best accuracies with different iterations on German dataset using IFS, 
PSO+SVM and GA+SVM. 

 

         
Fig. 3  Number of selected features with different iterations on 
Australian dataset using IFS, PSO+SVM and GA+SVM. 

Fig. 4  Number of selected features with different iterations on 
German dataset using IFS, PSO+SVM and GA+SVM. 
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Table 5  Comparison between the IFS and standard PSO 

IFS PSO+SVM 

Dataset 

Number 
of 

original 
features 

Number of 
selected 
features 

Accuracy 
rate (%) 

Number of
selected 
features 

Accuracy 
rate (%)

Australian 14 8.4 ± 2.318 90.9 7.1 ± 0.798 89.9 

German 23 12.7 ± 1.025 80.2 9.4 ± 1.233 76.8 

Cleveland 
heart 13 6.1 ± 1.103 91.1 6.4 ± 0.558 87.4 

Breast 
cancer 9 4.9 ± 0.734 99.1 5.8 ± 0.447 97.6 

Heart 
disease 13 7.8 ± 0.949 91.5 6.2 ± 0.976 85.3 

Vehicle 17 7.1 ± 0.432 89.66 10.2 ± 1.298 86.2 

Hill-Valley 100 40.1 ± 1.264 74.12 61.3 ± 2.110 72.3 

Landsat 36 13 ± 0.668 95.44 15.1 ± 0.975 93.4 

Sonar 60 25.1 ± 0.977 93.71 35.2 ± 1.123 90.8 

WDBC 30 13 ± 1.331 99.41 16.9 ± 1.652 98.2 

5  Conclusion 

In this study, a novel multi-swarm MSPSO algo-
rithm is proposed to solve discrete problem, an efficient 
objective function of which is designed by taking into 
consideration classification accuracy rate and F-score. In 
order to describe the competition among the swarms, we 
introduced the mechanism for survival of the fittest. To 
further settle the feature selection problem, we put for-
ward the IFS approach, in which both the SVM pa-
rameter optimization and the feature selection are dy-
namically executed by MSPSO algorithm, then, SVM 
model performs the classification tasks using the optimal 
parameter values and the subset of features. The 
evaluation on the 10 benchmark problems by comparing 
with the standard PSO based, genetic algorithm based, 
and grid search based methods indicates that the pro-
posed approach performs significantly advantageously 
over others in terms of the classification accuracy rates. 
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