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Abstract The back-propagation network (BPN) is a popular tool with applications in a
variety of fields. Nevertheless, different problems may require different parameter settings
for a given network architecture. A dataset may contain many features, but not all features
are beneficial for classification by the BPN. Therefore, a particle-swarm-optimization-based
approach, denoted as PSOBPN, is proposed to obtain the suitable parameter settings for BPN
and to select the beneficial subset of features which result in a better classification accuracy
rate. A set of 23 problems with a range of examples and features drawn from the UCI (Univer-
sity of California, Irvine) machine learning repository is adopted to test the performance of
the proposed algorithm. The results are compared with several well-known published algo-
rithms. The comparative study shows that the proposed approach improves the classification
accuracy rate in most test problems. Furthermore, when the feature selection is taken into
consideration, the classification accuracy rates of most datasets are increased. The proposed
algorithm should thus be useful to both practitioners and researchers.
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1 Introduction

Neural network is a well-known machine learning algorithm among data mining techniques,
and can be used in a variety of applications, such as modeling of electrostatic fluidized bed
coating processes [3], text classification [8], digital signal-type identification [11], industry
automotive [16], condition monitoring of a pneumatic process valve actuator [24], data-
base integration [34], defective classification [39], consumer loan evaluation [43], location
determination of mobile devices [61], and diagnosis of heart disease [67].

Back-propagation network (BPN) is one of the most popular neural network, which is a
viable, reliable, and attractive approach for data processing because (1) BPNs are capable of
modeling non-linear processes; (2) the data-driven features of BPNs make them powerful in
parallel computing and capable of handling large amounts of data, and (3) BPNs have good
fault tolerance and adaptability [4].

Before applying a BPN to problem solving, the parameter settings of the BPN, including
the hidden layer, learning rate, momentum term, number of hidden neurons, and learning cycle
must be determined. The parameter settings for network architectures must be determined
carefully in order to avoid constructing a suboptimal network model that may significantly
increase computational costs and produce inferior results.

In most pattern classification problems, given a large set of potential features, it is usually
necessary to find a small subset with which to classify. Data lacking any feature selection
may be redundant or noisy and may reduce the efficiency of classification. The main benefits
of feature selection are as follows: (1) reducing computational cost and storage requirements,
(2) dealing with the degradation of classification efficiency due to the finite size of training
sample sets, (3) reducing training and prediction time, and (4) facilitating data understanding
and visualization [1].

In feature selection, because each feature is necessary to determine whether it is useful or
not, the task of finding the optimal subset of features is inherently combinatory. Therefore,
feature selection is an optimization problem. An optimal approach is needed to evaluate all
possible subsets. This research proposes a particle swarm optimization (PSO) based approach,
denoted as PSOBPN, to obtain the appropriate parameter settings for a BPN, and to select
the beneficial subset of features which result in better classification accuracy rate.

The remainder of this paper is organized as follows. Section 2 reviews the studies on
the back-propagation network, feature selection, and particle swarm optimization. Section 3
elaborates on the proposed PSOBPN approach to determine the appropriate parameter set-
tings for the BPN, and determines the beneficial subset of features. Section 4 describes the
experiment results. Conclusions and future research are offered in the last section.

2 Literature review

2.1 BPN

The BPN is a common neural network model whose architecture consists of multilayer
perceptrons (MLP). The BPN uses the idea of “the gradient steepest descent method” to
minimize the errors between actual and predictive output functions. An increased number
of hidden layers and the transformation function of the smoothing differential can allow
the network to apply the gradient steepest descent method to correct the network weights
formula. Therefore, if there are enough hidden layers or hidden neurons, the linear threshold
curve can approach any function [17].
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The learning procedures of a BPN include initialization, forward, and reverse processes.
The net input and output of each neuron in the hidden and output layers are computed. Ini-
tially, the training data are fed to the input layer of the network. To compute the net input
of the neuron, each input connected to the neuron is multiplied by its corresponding weight,
and then summed. The error is propagated backwards by updating the weights and biases to
reflect the error of the network’s prediction. The weights and biases are updated to reflect the
propagated errors.

Since the parameter settings for a BPN are often designed quite differently due to the
unique characteristics of the data, trial-and-error seems to be the most common way to iden-
tify the optimum value of learning rate, momentum, hidden neurons, and learning cycle. The
following are problems generally faced when using a BPN:

(1) Learning rate and momentum term: Too high a learning rate will make it hard for it to
converge; too low a learning rate will cause slow convergence and may fall into local
optimization. Too small momentum term cannot increase the classification accuracy
rate; too big momentum term cause extreme modification.

(2) Number of hidden neurons: When there are too few hidden neurons, a larger error is
likely to occur. Increasing the number of hidden neurons can alleviate this situation but
will simultaneously affect the speeds of convergence and computing cost.

(3) Learning cycle: In the study of Schittenkopf et al. [50] back-propagation on the illus-
trated data set caused over-fitting which started after a certain number of training cycles.
Too much the learning cycle may cause the over-fitting. On the contrary, too low a learn-
ing cycle can lead to under-fitting.

Therefore, rule of thumb or “trial and error” methods are used to determine the parameter
settings for network architectures. However, it is difficult to obtain the optimal parameter
settings for network architectures. If parameter values are not set appropriately, that may lead
to over-fitting or under-fitting problem [13].

Lin and Ting [35] and Wang et al. [65] have tested a few different network architectures
to find the best network architecture. However, there is still a need for a systematic method
of determining the appropriate network architecture for building the model. Common issues
with the BPN-based modeling approach include the under-training problem, convergence
problem, over-fitting problem, and topology optimization problem [9]. While the first two
can be mitigated by careful selection of the stopping criteria, the latter two are of interest here
through an optimization approach, which optimizes the network topology as well as reduces
the risk of over-fitting.

Researchers have used three types of approaches to handle the problems discussed above.

(1) Search for the appropriate parameter settings of the BPN:
This method seeks to combine the other search approaches with the gradient steepest
descent method in order to rapidly determine excellent parameter settings for the net-
work architectures of the BPN. In most cases, one hidden layer is sufficient to compute
the arbitrary decision boundaries for the outputs [22]. The number of hidden neurons
required depends on the case. Khaw et al. [26] proposed using the Taguchi method to
adjust the number of hidden layers, number of hidden neurons, and the learning rate.
They attempted to find optimal network architectures faster while maintaining good
classification accuracy rates at the same time. Castillo et al. [6] used the genetic algo-
rithm (GA) to adjust the number of hidden neurons and initial weight. They constructed
network architectures through fixed learning cycles and adequate learning rates. In addi-
tion to the utilization of GA to adjust the number of hidden neurons and initial weight,

123



252 S.-W. Lin et al.

Castillo et al. [5] further calculated the suitable learning rate. Wang and Huang [64]
used the GA-based approach to tune BPN parameters and applied them to chaotic time
series problems.

(2) Search for the optimal weights after training:
This approach fixes the network architecture of the BPN, such as the number of hid-
den neurons and the number of hidden layers, to find optimal weights. Unlike the
back-propagation learning process of a BPN, this approach directly adjusts the weights
and searches for a training-completed model. The purpose of this approach is to use
prediction methods that are able to search for local optimization to find these weights
because the concept of the gradient steepest descent method employed by the BPN
falls relatively easily into local optimization. Sexton et al. [53] used the Tabu search
method, and Gupta and Sexton [15] employed genetic algorithm (GA) to find the opti-
mal weights. Ghosh and Verma [14] used an evolutionary least square based learning
method to find the weights and a special mechanism to adjust the number of hidden
neurons to achieve optimization. Huang et al. [22] used genetic algorithm to optimize
BPN weight matrices and evaluated its performance in six test functions.

(3) Neural network pruning:
This approach assumes that there are too many connections in the MLP architecture.
A new, smaller neural network architecture results from pruning some connections.
The pruned neural network architecture undergoes renewed training, but the classifi-
cation accuracy rate remains the same (or even better). Sexton et al. [54] proposed an
SA-based approach to determine the network architecture of the BPN. Yeung and Zeng
[69] used sensitivity measurement, the main idea of which is to constantly train the
network according to a certain performance criterion and then remove the neurons with
the lowest relevant values. Yamasaki et al. [66] applied an SA-based approach to decide
which connections should be eliminated. Heo and Oh [19] used genetic algorithm to
node pruning of the BPN input and hidden layers (neural networks node pruning with
genetic algorithm, NNPGA) and experiment with various databases from UCI machine
learning repository. Their study showed that the NNPGA has a better performance.

The genetic algorithm has been extensively used in artificial neural network optimiza-
tion and is known to achieve optimal solutions fair successfully. Li et al. [33] developed a
GA-based combined BPN for estimation. The study shows that the BPN model combined
with GA is more effective in finding the parameters of BPN than trial-and-error method. There
are several genetic algorithm (GA) approaches used to enhance the BPN performance. They
had been used in a variety of applications [7,21,23,28,31,42,48,52,60,70,71]. However,
they only consider their problems; furthermore comparisons are hard to make.

2.2 Feature selection

The BPN requires a dataset to construct a model. A dataset may consist of many features, but
not all features are helpful for classification. If the dataset has tremendous noise and complex
dimensionality, the BPN may face limitations in learning the classification patterns. Feature
selection may be considered part of the data cleaning and/or pre-processing step where the
actual extraction and learning of knowledge or patterns is done after a suitable set of features
is extracted. It is a process that aims to refine the list of features used, thereby removing
potential sources of noise and ambiguity.

Approaches for feature selection may be categorized into two models, filter models and
wrapper models [40]. In a filter model, statistical approaches, such as factor analysis (FA),
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independent component analysis (ICA), principal component analysis (PCA), and discrimi-
nant analysis (DA) have been devoted to the investigation of indirect performance measures,
mostly based on distance and information measures, in feature selecting. Even though this
model is faster, the resulting feature subset may not be optimal [40].

The wrapper model uses a variety of selection methods to choose feature subsets and then
evaluates the result after the classification algorithm calculates the classification accuracy
rate. If the relevant features can be selected or the noise removed, the classification accuracy
rate classifier can be improved.

The wrapper model is widely used in BPN feature selection. Yang and Honavar [68]
presented a DISTAL approach using feature selection to improve classification accuracy
rate. Kim and Han [27] proposed a GA approach to perform feature selection in neural net-
works for the prediction of a stock price index. Lezoray and Cardot [32] employed floating
search methods [29,45] to do the feature selection finding that the classification accuracy rate
apparently improves after the feature selection. Verikas and Bacauskiene [62] presented a
neural network-based feature selection technique. A network was trained with an augmented
cross-entropy error function. Zhang et al. [72] applied a GA approach to feature selection
in neural networks for fault defection in manufacturing industry. Sexton et al. [55] first
calculated the network weight of architecture, then pruned the neural network architecture
branches under a fixed number of hidden neurons, and finally used GA to conduct the feature
selection. Sivagaminathan and Ramakrishnan [58] used ant colony optimization to optimize
the feature subset that is suitable for feeding the neural network. Wang et al. [63] proposed
a hybrid intelligent system called R-FC-DENN. Their experiments are carried out based on
the UCI dataset. However, the above researches did not consider the parameter settings for
network architectures of BPN at the same time.

Several researchers have proposed methods to obtain the optimal parameter settings for
the network architectures of the BPN [5,14,15,26,53,54,66,69]. Nevertheless, the above
research did not consider the feature selection to find the optimal feature subset in order to
increase the performance simultaneously. Lin et al. [36] developed a simulated-annealing-
based back-propagation network (SABPN) to determine parameter settings and feature selec-
tion simultaneously, but since the number of learning cycles is set to 500, the learning ability
of the system may be limited.

2.3 Particle swarm optimization

Particle swarm optimization [25] is an emerging population-based meta-heuristic that sim-
ulates social behavior such as birds flocking to a promising position to achieve precise
objectives in a multidimensional space. It has been applied successfully to a wide variety
of highly complicated optimization problems [37] as well as various real-world problems
[18,30,41,46,47]. Like evolutionary algorithms, PSO performs searches using a population
(called a swarm) of individuals (called particles) that are updated from iteration to iteration.
The size of population is denoted as psize. To discover the optimal solution, each particle
changes its search direction according to two factors, its own best previous experience (pbest)
and the best experience of all other members (gbest). Shi and Eberhart [56] termed pbest the
cognitive part, and gbest the social part.

Each particle represents a candidate position (i.e., solution). A particle is considered as
a point in a D-dimensional space, and its status is characterized according to its position
and velocity. The D-dimensional position for the particle i at iteration t can be represented
as xt

i
= {xt

i1, xt
i2, . . . , xt

i D}. Likewise, the velocity (i.e., distance change) for particle i at
iteration t , which is also a D-dimensional vector, can be described as vt

i
= {vt

i1, v
t
i2, . . . , v

t
i D}.

123



254 S.-W. Lin et al.

In the simple version of PSO, there was no actual control over the previous velocity of
the particles. In the later versions of PSO, this shortcoming was addressed by incorporat-
ing a new parameter, called inertia weight introduced by Shi and Eberhart [57]. Let pt

i =
{pt

i1, pt
i2, . . . , pt

i D} represent the best solution that particle i has obtained until iteration t ,
and pt

g = {pt
g1, pt

g2, . . . , pt
gD} denote the best solution obtained from pt

i in the population
at iteration t . To search for the optimal solution, each particle changes its velocity based on
the cognitive and social parts as using Eq. (1).

V t
id = w ∗ V t−1

id + c1r1(Pt
id − xt

id) + c2r2(Pt
gd − xt

id), d = 1, 2, . . . , D (1)

where c1 indicates the cognitive learning factor; c2 indicates the social learning factor, inertial
weight (w) is used to slowly reduce the velocity of the particles to keep the swarm under
control, and r1 and r2 are random numbers uniformly distributed in U (0,1). It is possible
to clamp the velocity vectors by specifying upper and lower bounds on vmax to avoid too
rapid movement of particles in the search space. That is, the velocities of all the particles are
limited within the range of [−vmax, vmax] [51].

Each particle then moves to a new potential solution based on the following equation:

Xt+1
id = Xt

id + V t
id , d = 1, 2, . . . , D (2)

The basic process of the PSO algorithm is given as follows:

Step 1: (Initialization) Randomly generate initial particles.
Step 2: (Fitness) Measure the fitness of each particle in the population.
Step 3: (Update) Compute the velocity of each particle with Eq. (1).
Step 4: (Construction) For each particle, move to the next position according to Eq. (2).
Step 5: (Termination) Stop the algorithm if termination criterion is satisfied; return to Step

2 otherwise.

The process of PSO is finished if the termination condition is satisfied.

3 The proposed PSOBPN approach

The BPN uses the idea of “gradient steepest decent method” to minimize the errors between
actual and predictive output functions. However, worse parameter values used may obtain the
local optimal. Therefore, this study developed a particle swarm optimization (PSO) approach,
termed PSOBPN, for parameter determination and feature selection in the BPN. The PSO
approach is a multi-point search algorithm, which may be provide more probability to deter-
mine appropriate parameter values to escape the local optimal. In some complex problems
the BPN may need more learning cycles to learn the pattern. Therefore, compared with the
SA approach proposed by Lin et al. [36], a variable is added for determining the number of
learning cycles of BPN.

In order to find the best parameter settings for the BPN, the classification accuracy rate
of testing data is adopted as the fitness value of PSO-based approach. Therefore, for the
condition without feature selection, four decision variables, designated learning iteration,
learning rate, momentum term, and number of hidden neurons are required. Therefore, for
the feature selection, if n features are required to decide which features are chosen, and then
4 + n decision variables must be adopted. The value of these n variables ranges between 0
and 1. If the value of a variable is less than or equal to 0.5, then its corresponding feature is
not chosen. Conversely, if the value of a variable is greater than 0.5, then its corresponding
feature is chosen. For example, if the data set has six attributes and the BPN requires four
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Fig. 1 An example of solution representation for the proposed approach

Fig. 2 The flowchart of PSO algorithm

parameters, there are ten variables used as shown in Fig. 1. This solution can be decoded
as follows. The learning cycle is 2,400, the learning rate is 0.375, the momentum is 0.579,
the number of hidden neurons is 5, and the selected features are 1, 4, and 5. The parameter
settings and selected features are then adopted to build a BPN classifier.

In order to discover the optimal solution of the PSOBPN, each particle represents a candi-
date solution and changes its search direction according to two factors, its own best previous
experience (pbest) and the best experience of all other members (gbest). Figure 2 shows
the flowchart for the PSOBPN. First, the population of particles is initialized, each particle
having a random position within the D-dimensional space and a random velocity for each
dimension. Second, each particle’s fitness for the BPN is evaluated. Each particle’s fitness
in this study is the classification accuracy rate. If the fitness is better than the particle’s best
fitness, then the position vector is saved for the particle. If the particle’s fitness is better
than the global best fitness, then the position vector is saved for the global best. Finally the
particle’s velocity and position are updated until the termination condition is satisfied. The
termination in this study is the pre-determined maximum number of solutions evaluated.

In this study, the classification accuracy rates for the datasets were measured by comparing
the predict class and actual class. For example, in the classification problem with two-class
positive and negative, a single prediction has the four different possible outcomes as shown
in Table 1.

The true positive (TP) and true negative (TN) are correct classifications. A false positive
(FP) occurs when the outcome is incorrectly predicted as positive when it is actually negative.
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Table 1 Different outcomes of a
two-class prediction

Predicted class

Positive Negative

Actual class

Positive TP FN

Negative FP TN

A false negative (FN) occurs when the outcome is incorrectly predicted as negative when it
is actually positive. The overall classification accuracy rate is the number of correct classifi-
cations divided by the total number of classifications, which is computed as TP+TN

TP+TN+FP+FN .

In a multi-class prediction, the classification result is often displayed as a two-dimen-
sional confusion matrix with a row and column for each class. Each matrix element shows
the number of test cases for which the actual class is the row and the predicted class is the
column.

To evaluate the classification accuracy rate, the k-fold approach [49] is used. This study
set k as 10; that is, the data are divided into ten slices, and each slice of the data shares the
same proportion of each class of data. Nine data slices were used as training data, while the
tenth is used as the testing data. Since the number of data in each class was not a multiple of
ten, the dataset could not be partitioned equitably. However, the ratio of the number of data in
the training set to the number of data in the testing set was maintained as closely as possible
to 9:1.The proposed PSOBPN approach was run ten times to allow each slice of data to take a
turn as the testing data. The classification accuracy rate in of this experiment was calculated
by summing the individual accuracy rate for each run of testing, and then dividing the total
by ten.

4 Experimental results

The proposed approach was implemented using the C language and the Windows XP oper-
ating system and run on a personal computer with Pentium IV-3.0 GHz CPU and 512 MB of
RAM. In order to verify the proposed PSOBPN approach, 23 datasets in the UCI Machine
Learning Repository [20] were used for evaluation. The number of features, instances, and
classes for each UCI dataset used in this research are shown in Table 2. Normalization is
particularly useful for classification algorithms involving a neural network [17]. Thus, a fea-
ture is normalized by scaling its value so that it falls within scaled to [−1, 1]. If instance
has missing values in some of its features, the instance is then removed. The predicted
data of the Boston housing dataset was transformed from continuous into a binary class
[12].

Parameter selection may influence the quality of the computational results. To avoid too
rapid movement of particles in the search space, the lower and upper bounds on vmax is set
to −1 and 1, respectively. In order to obtain better parameter values used in PSOBPN, the
initial experiment is done as follows. Four datasets, Bupa, German, Pima, and Sonar, are
used to test various combinations of parameters. At the beginning, the maximum number of
solution evaluated is set to 50,000 (a large value), while w, c1, c2, and psize is set to 1.0, 1.0,
and 20, respectively. That is, the number of iterations is 2,500 (50,000/20=2,500). After
several runs of execution, we found that the classification accuracy rate is stable when the
maximum number of solution evaluated equal to 300 and 500 for the proposed approach
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Table 2 Datasets from the UCI repository

Dataset Number of features Number of instances Number of classes

Australian 14 690 2

Balance scale 4 625 3

Breast cancer (old) 9 699 2

Breast cancer (new) 32 569 2

Bupa liver 6 345 2

Car evaluation 9 1,728 4

CMC 9 1,473 3

German 30 1,000 2

Glass 9 214 6

Heart disease 13 270 2

Housing 13 506 2

Ionosphere structure 34 351 2

Iris 4 150 3

New thyroid 5 215 3

Pima Indians diabetes 8 768 2

Segmentation 19 2,310 7

Sonar 60 208 2

Vehicle 18 846 4

Vowel 10 990 11

Waveform with noise 40 5,000 3

Wine 13 178 3

Yeast 8 1,484 10

Zoo 17 101 7

without and with feature selection, respectively. After determining the maximum number of
solution evaluated, the following combinations of parameters were tested:

c1 = 0.5, 0.8, 1.0, 1.2, 1.5, 2.0;
c2 = 0.5, 0.8, 1.0, 1.2, 1.5, 2.0;

psize = 5, 10, 15, 20, 25, 30;
w = 0.7, 0.8, 0.9, 1.0;

Setting c1 = 0.8, c2 = 1.5, w = 0.9, and psize = 10 seemed to give better results; there-
fore they were used for further computational study. Because the proposed PSOBPN is a
non-deterministic approach, the solution obtained may not be equal for the same data. Thus,
the proposed PSOBPN approach is executed ten times for each fold in the dataset. When not
considering feature selection, due to the maximum number of solutions evaluated was 300
and the number of particles set to be 10, the number of iterations equals 30 (300/10). With
feature selection, the number of features selected for use can be obtained by the PSOBPN
approach. Since the PSOBPN approach has a larger solution space, in terms of number of
features, the number of solutions evaluated is also larger. Because the maximum number of
solutions evaluated was raised to 500, the number of iterations was 50 (500/10). The search
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Table 3 The classification accuracy rate of training and testing data set (%)

Without feature selection With feature selection

Training data Testing data Training data Testing data

Australian 93.74 93.85 91.88 92.80

Balance scale 99.56 99.36 99.47 99.36

Breast cancer (old) 99.19 98.83 98.49 98.98

Breast cancer (new) 99.68 98.02 99.26 99.28

Bupa liver 82.45 81.39 74.01 81.79

Car evaluation 99.94 99.93 100.00 99.93

CMC 65.67 60.82 61.30 62.52

German 92.81 80.58 86.62 81.88

Glass 89.63 86.14 90.05 86.66

Heart disease 96.58 91.20 91.59 94.24

Housing 99.24 99.71 98.76 99.51

Ionosphere structure 99.84 97.72 99.31 99.19

Iris 90.87 95.06 93.83 97.56

New thyroid 99.90 99.05 99.74 99.52

Pima Indians diabetes 82.60 82.16 78.96 83.33

Segmentation 99.10 98.32 99.51 98.49

Sonar 99.07 89.93 100.00 97.61

Vehicle 96.72 90.41 96.36 90.65

Vowel 98.57 98.18 98.31 98.55

Waveform with noise 93.45 87.26 94.53 87.18

Wine 98.37 100.00 100.00 100.00

Yeast 65.75 64.42 65.08 64.42

Zoo 100.00 97.00 99.45 100.00

ranges for parameter values of BPN are set as follows. The learning cycle ranged from 500
to 5000, the learning rate ranged from 0 to 0.45, while the momentum term ranged from 0.4
to 0.9. The BPN used one hidden layer and the sigmoid transfer function. The number of
hidden neurons ranged from one to the number of features in two-class datasets, while the
number of hidden neurons ranged from the number of classes to two multiplied by the sums
of the number of input features and the number of output neurons.

The classification accuracy rates obtained by the proposed PSOBPN approach for each
data set (both the training data and testing data) are shown in Table 3. It is noted that because
the difference in classification accuracy rates between the training data and testing data is
not excessive, the proposed approach can avoid the over-fitting problem and achieve better
classification accuracy rate.

In this study, results obtained by PSOBPN without feature selection are then compared
with those of SABPN [36], SASVM [37], PSOSVM [38], MONNA [32], GA DISTAL [68],
G-Prop [6], and NNPGA [19] as shown in Table 4. Only the classification accuracy rates
of Breast Cancer (old), (98.3% in PSOBPN and 99.0% in G-Prop), German (80.58% in
PSOBPN and 80.92% in SABPN), Housing (99.71% in PSOBPN and 99.90% in SASVM),
Iris (95.16% in PSOBPN and 97.33% in NNPGA), Segmentation (98.32% in PSOBPN and
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Table 4 The comparison results of approaches without feature selection (%)

Dataset SABPN SASVM PSOSVM MONNA GA DISTAL G-Prop NNPGA PSOBPN Time (s)

Australian 90.85 88.34 88.09 – – – – 93.85a 450

Balance scale – – – – – – 92.74 99.36a 541

Breast cancer (old) 98.31 97.95 97.95 97.8 97.8 99.0a – 98.83 321

Bupa liver 80.10 80.81 80.81 – – – – 81.39a 193

German 80.92a – 79.00 – – – 74.40 80.58 3610

Glass 81.31 78.38 78.04 82.2 70.5 69.0 70.00 86.14a 590

Heart disease 90.88 87.97 88.17 – 85.3 – 85.19 91.20a 235

Housing 96.19 99.90a 99.90a – 86.3 – – 99.71 2198

Ionosphere structure 97.66 97.50 97.50 90.1 94.3 – 91.14 97.72a 3764

Iris – – – – – 97.33a 95.06 72

Pima Indians diabetes 82.16a 80.19 80.19 76.6 76.3 – 77.50 82.16a 446

Segmentation – – – – – 99.57a 98.32 13566

Sonar 91.88a 91.85 88.32 – 83.0 – 82.00 89.93 1161

Vehicle 89.45 88.76 88.71 78.4 65.4 – 85.36 90.41a 3586

Vowel 97.85 99.27 99.27 – 69.8 – 99.90a 98.18 3167

Waveform with noise – – – – – – 84.88 87.26a 49350

Wine – – 99.56 – – – – 100.00a 295

Zoo – – – – – – 97.00a 97.00a 438

– Approach did not use this dataset for test
a The higher classification accuracy rate among approaches

99.57% in NNPGA) Sonar (89.93% in PSOBPN and 91.88% in SABPN), and Vowel (98.18%
in PSOBPN and 99.90% in NNPGA), obtained by PSOBPN are inferior to the classification
accuracy rates of other approaches. The remaining classification accuracy rates obtained by
the proposed PSOBPN approach are higher than those of other approaches, and the compu-
tation time is within an acceptable range.

Table 5 presents the results obtained by PSOBPN with feature selection and a number
of published results using other machine learning algorithms. Comparing the classification
accuracy rates of the proposed PSOBPN approach with those of SABPN [36], SASVM [37],
PSOSVM [38], MONNA [32], GA+DISTAL [68], GAP (genetic algorithm and program-
ming) [59], C4.5 (J48, the WEKA implementation of C4.5) [59], HIDER [10], XCS (Wilson’s
XCS classifier) [10], OFA (ordered fuzzy ARTMAP) [2], LVSM (Lagrangian support vector
machines) [44], and R-FC-DENN [63] only three two-class problems and five multi-class
problems whose classification accuracy rates obtained by PSOBPN are lower than those of
other approaches. Comparing the PSOBPN without feature selection with feature selection,
better results are obtained by implementing the feature selection at the expense of some
computation cost (Table 5). Although PSOBPN did not achieve the best classification results
across these eight problems, the difference is not great. In general, the PSOBPN approach
with feature selection performs well in both two-class and multi-class problems. Further, with
feature selection, the proposed PSOBPN approach can also effectively delete certain moder-
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Table 6 Comparison of the classification accuracy rate for PSOBPN approach with/without feature selection
(%)

Dataset With feature selection Without feature selection P value

Australian 92.80 93.85 –

Balance scale 99.36 99.36 0.500 > α

Breast cancer (old) 98.98 98.83 0.062 > α

Breast cancer (new) 99.68 98.02 0.009 < α

Bupa liver 81.97 81.39 0.024 < α

Car evaluation 99.93 99.93 0.500 > α

CMC 62.52 60.82 0.001 < α

German 81.88 80.38 0.001 < α

Glass 86.66 86.14 0.045 < α

Heart disease 94.24 91.20 0.001 < α

Housing 99.51 99.71 –

Ionosphere structure 99.19 97.72 0.001 < α

Iris 97.56 95.06 0.002 < α

Pima Indians diabetes 83.33 82.16 0.001 < α

Segmentation 98.49 98.32 0.021 < α

Sonar 97.61 89.93 0.001 < α

Vehicle 90.65 90.41 0.110 > α

Vowel 98.55 98.18 0.045 < α

Wine 100.00 100.00 0.500 > α

Waveform with noise 87.18 87.26 –

Yeast 64.42 64.42 0.500 > α

Zoo 100.00 97.00 0.001 < α

Confidence level α = 0.05
– The classification accuracy rate is reduced with feature selection

ating or non-affecting features while maintaining the same or better classification accuracy
rate. The importance of the relationship of the remaining features for classification may be
examined in the future.

Compared with the SABPN [36], one variable is added for determining the number of
learning cycle of BPN in PSOBPN. Experimental results showed that the proposed PSOBPN
can achieve better classification accuracy rate than those of SABPN in most of datasets. That
is, the BPN may need more learning cycle to learn the pattern in some complex problems.
The experimental results showed that the classification accuracy rates obtained by PSOBPN
are better than those of SABPN in general. The result is accordance with the observation
provided by Schittenkopf et al. [50].

Finally, in order to verify whether a significant difference between the proposed PSO-
BPN approach with feature selection and without feature selection exists, the results of the
proposed PSOBPN approach with and without feature selection are compared, as shown
in Table 6. It can be noted in this Table, although the classification accuracy rates of three
datasets (Australian, Housing, and Waveform with noise) are reduced and four dataset (Bal-
ance scale, Car Evaluation, Wine, and Yeast) are same, those of the remaining datasets are
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increased. For the dataset whose classification accuracy rate increased, only the Breast (old)
and Vehicle dataset does not have significant difference; all other datasets have p-value lower
than 0.05, which means the significant difference exist. Therefore, the proposed PSOBPN
approach with feature selection is better than the proposed PSOBPN approach without feature
selection.

5 Conclusions and future research

This study applied the particle swarm optimization-based approach to search for appropri-
ate parameter values and beneficial features for BPN. The main contributions of this study
include

(1) The trial-and-error method traditionally used for BPN in determining the parameter
is time-consuming and cannot guarantee better results. The proposed approach can be
used to automatically determine the parameter values for BPN.

(2) When the feature selection is taken into account it can improve the performance, reduce
dimensionality, and remove noise of the BPN. The result showed that the classification
accuracy rates are significantly increased in many data sets when feature selection is
taken into account in BPN.

Compared with the previous studies, the classification accuracy rates of the proposed
PSOBPN approach are better than those of other approaches. Furthermore, with the feature
selection the proposed PSOPBN approach can also effectively delete some moderating or
non-affecting features while maintaining the same or better classification accuracy rate. The
results are by no means an exhaustive list of current machine learning algorithms, nor are
they guaranteed to be the best performing algorithms available, but they give some results of
the relative performance of our approach, which appears to be very good.

More studies can be done in the future. First, since the proposed approach is only applied
and compared with others using classification problems, the efficiency of the proposed
approach in the forecast of continuous values will be examined in the future. Second, the
proposed PSO-based meta-heuristic is sensitive to parameter settings, and sometimes it may
result in local optimal. Therefore, to perform a comprehensive study on alternative parame-
ter tuning policies and to customize the algorithm by developing new parameter and new
mechanism is room for further investigation. For example, other parameters, such as time
interval, time-varying inertia weight, may be added to the PSO algorithm, while particle
grouping may be used to split the population of particles into subgroups. These techniques
may help PSO to avoid falling into local optimal and improve the performance. Third, since
PSO is a meta-heuristics, it can be applied to other architectures of network, such as cascade
neural network and RBF network (radial basis function network). Moreover, PSOBPN may
be applied to a greater range of problems in the real world.
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