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Abstract

Support Vector Machines, one of the new techniques for pattern classification, have been widely used in many application areas. The kernel

parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts

classification accuracy. The objective of this research is to simultaneously optimize the parameters and feature subset without degrading the SVM

classification accuracy. We present a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem.

We tried several real-world datasets using the proposed GA-based approach and the Grid algorithm, a traditional method of performing

parameters searching. Compared with the Grid algorithm, our proposed GA-based approach significantly improves the classification accuracy and

has fewer input features for support vector machines.
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1. Introduction

Support vector machines (SVM) were first suggested by

Vapnik (1995) and have recently been used in a range of

problems including pattern recognition (Pontil and Verri,

1998), bioinformatics (Yu, Ostrouchov, Geist, & Samatova,

1999), and text categorization (Joachims, 1998). SVM

classifies data with different class labels by determining a set

of support vectors that are members of the set of training inputs

that outline a hyperplane in the feature space. SVM provides a

generic mechanism that fits the hyperplane surface to the

training data using a kernel function. The user may select a

kernel function (e.g. linear, polynomial, or sigmoid) for the

SVM during the training process that selects support vectors

along the surface of this function.

When using SVM, two problems are confronted: how to

choose the optimal input feature subset for SVM, and how to set

the best kernel parameters. These two problems are crucial,

because the feature subset choice influences the appropriate

kernel parameters and vice versa (Fröhlich and Chapelle, 2003).
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.09.024

* Corresponding author. Tel.: C1 2483 702 831; fax: C1 2483 704 275.

E-mail address: clhuang@ccms.nkfust.edu.tw (C.-L. Huang).
Therefore, obtaining the optimal feature subset and SVM

parameters must occur simultaneously.

Many practical pattern classification tasks require learning

an appropriate classification function that assigns a given input

pattern, typically represented by a vector of attribute values to a

finite set of classes. Feature selection is used to identify a

powerfully predictive subset of fields within a database and

reduce the number of fields presented to the mining process. By

extracting as much information as possible from a given data

set while using the smallest number of features, we can save

significant computation time and build models that generalize

better for unseen data points. According to Yang and Honavar

(1998), the choice of features used to represent patterns that are

presented to a classifier affects several pattern classification

aspects, including the accuracy of the learned classification

algorithm, the time needed for learning a classification

function, the number of examples needed for learning, and

the cost associated with the features.

In addition to the feature selection, proper parameters

setting can improve the SVM classification accuracy. The

parameters that should be optimized include penalty

parameter C and the kernel function parameters such as

the gamma (g) for the radial basis function (RBF) kernel.

To design a SVM, one must choose a kernel function, set

the kernel parameters and determine a soft margin constant
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C (penalty parameter). The Grid algorithm is an alternative

to finding the best C and gamma when using the RBF

kernel function. However, this method is time consuming

and does not perform well (Hsu and Lin, 2002; LaValle and

Branicky, 2002). Moreover, the Grid algorithm cannot

perform the feature selection task.

Genetic algorithms have the potential to generate both the

optimal feature subset and SVM parameters at the same time.

Our research objective is to optimize the parameters and

feature subset simultaneously, without degrading the SVM

classification accuracy. The proposed method performs feature

selection and parameters setting in an evolutionary way. Based

on whether or not feature selection is performed independently

of the learning algorithm that constructs the classifier, feature

subset selection algorithms can be classified into two

categories: the filter approach and the wrapper approach

(John, Kohavi, & Peger, 1994; Kohavi and John, 1997). The

wrapper approach to feature subset selection is used in this

paper because of the accuracy.

In the literature, only a few algorithms have been proposed

for SVM feature selection (Bradley, Mangasarian, & Street,

1998; Bradley and Mangasarian, 1998; Weston et al., 2001;

Guyon, Weston, Barnhill, & Bapnik, 2002; Mao, 2004). Some

other GA-based feature selection methods were proposed

(Raymer, Punch, Goodman, Kuhn, & Jain, 2000; Yang and

Honavar, 1998; Salcedo-Sanz, Prado-Cumplido, Pérez-Cruz,

& Bousoño-Calzón, 2002). However, these papers focused on

feature selection and did not deal with parameters optimization

for the SVM classifier. Fröhlich and Chapelle (2003) proposed

a GA-based feature selection approach that used the theoretical

bounds on the generalization error for SVMs. The SVM

regularization parameter can also be optimized using GAs in

Fröhlich’s paper.

This paper is organized as follows: a brief introduction to

the SVM is given in Section 2. Section 3 describes basic GA

concepts. Section 4 describes the GA-based feature selection

and parameter optimization. Section 5 presents the experimen-

tal results from using the proposed method to classify several

real world datasets. Section 6 summarizes the results and draws

a general conclusion.
2. Brief introduction of support vector machines

2.1. The optimal hyperplane (linear SVM)

In this section we will briefly describe the basic SVM

concepts for typical two-class classification problems. These

concepts can also be found in (Kecman, 2001; Schőlkopf

and Smola, 2000; Cristianini and Shawe-Taylor, 2000).

Given a training set of instance-label pairs (xi, yi), iZ1,

2,., m where xi2Rn and yi2{C1, K1}, for the linearly

separable case, the data points will be correctly classified by

hw$xiiCbRC1 for yi ZC1 (1)

hw$xiiCb%K1 for yi ZK1 (2)
Eqs. (1) and (2) can be combined into one set of inequalities.

yiðhw$xiiCbÞK1R0 c i Z 1;.;m (3)

The SVM finds an optimal separating hyperplane with the

maximum margin by solving the following optimization

problem:

Min
w;b

1

2
wTw subject to : yiðhw$xiiCbÞK1R0 (4)

It is known that to solve this quadratic optimization problem one

must find the saddle point of the Lagrange function:

Lpðw; b;aÞZ
1

2
wT$wK

Xm

iZ1

ðaiyiðhw$xiiCbÞK1Þ (5)

where the ai denotes Lagrange multipliers, hence aiR0. The

search for an optimal saddle point is necessary because the Lp

must be minimized with respect to the primal variables w and b

and maximized with respect to the non-negative dual variable

ai. By differentiating with respect to w and b, the following

equations are obtained:

v

vw
Lp Z 0; w Z

Xm

iZ1

aiyixi (6)

v

vb
Lp Z 0;

Xm

iZ1

aiyi Z 0 (7)

The Karush Kuhn–Tucker (KTT) conditions for the optimum

constrained function are necessary and sufficient for amaximum

of Eq. (5). The correspondingKKT complementarity conditions

are

ai½yiðhw$xiiCbÞK1�Z 0 c i (8)

Substitute Eqs. (6) and (7) into Eq. (5), then LP is transformed to

the dual Lagrangian LD(a):

Max
a

LDðaÞZ
Xm

iZ1

aiK
1

2

Xm

i;jZ1

aiajyiyjhxi$xji

subject to : aiR0 i Z 1;.;m and
Xm

iZ1

aiyi Z 0

(9)

Tofind the optimal hyperplane, a dual LagrangianLD(a)must be

maximized with respect to non-negative ai. This is a standard

quadratic optimization problem that can be solved by using

some standard optimization programs. The solution ai for the

dual optimization problem determines the parameters w*and b*

of the optimal hyperplane. Thus, we obtain an optimal decision

hyperplane f(x,a*,b*) (Eq. (10)) and an indicator decision

function sign [f(x,a*,b*)].

f ðx;a�; b�ÞZ
Xm

iZ1

yia
�
i hxi; xiCb� Z

X
i2sv

yia
�
i hxi; xiCb�

(10)

In a typical classification task, only a small subset of the

Lagrange multipliers ai usually tend to be greater than zero.

Geometrically, these vectors are the closest to the optimal
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hyperplane. The respective training vectors having nonzero ai

are called support vectors, as the optimal decision hyperplane

f(x,a*,b*) depends on them exclusively.
2.2. The optimal hyperplane for nonseparable data (linear

generalized SVM)

The above concepts can also be extended to the non-

separable case, i.e. when Eq. (3) there is no solution. The goal

is to construct a hyperplane that makes the smallest number of

errors. To get a formal setting of this problem we introduce the

non-negative slack variables xiR0, iZ1,., m. Such that

hw$xiiCbRC1Kxi for yi ZC1 (11)

hw$xiiCb%K1Cxi for yi ZK1 (12)

In terms of these slack variables, the problem of finding the

hyperplane that provides the minimum number of training

errors, i.e. to keep the constraint violation as small as possible,

has the formal expression:

Min
w;b;x

1

2
wTwCC

Xm

iZ1

xi

subject to : yiðhw$xiiCbÞCxiK1R0; xiR0

(13)

This optimization model can be solved using the Lagrangian

method, which is almost equivalent to the method for solving

the optimization problem in the separable case. One must

maximize the same dual variables Lagrangian LD(a) (Eq. (14))
as in the separable case.

Max
a

LDðaÞZ
Xm

iZ1

aiK
1

2

Xm

i;jZ1

aiajyiyjhxi$xji

subject to : 0%ai%C; i Z 1;.;m and
Xm

iZ1

aiyi Z 0

(14)

To find the optimal hyperplane, a dual Lagrangian LD(a) must

be maximized with respect to non-negative ai under the

constrains
P

aiyiZ0 and 0%ai%C, iZ1,.,m. The penalty

parameter C, which is now the upper bound on ai, is

determined by the user. Finally, the optimal decision hyper-

plane is the same as Eq. (10).
2.3. Non-linear SVM

The nonlinear SVM maps the training samples from the

input space into a higher-dimensional feature space via a

mapping function F, which are also called kernel function. In

the dual Lagrange (9), the inner products are replaced by the

kernel function (15), and the non-linear SVM dual Lagrangian

LD(a) (Eq. (16)) is similar with that in the linear generalized

case.

ðFðxiÞ$FðxjÞÞ :Z kðxi; xjÞ (15)
LDðaÞZ
Xm

iZ1

aiK
1

2

Xm

i;jZ1

aiajyiyjkðxi$xjÞ

subject to : 0%ai%C; i Z 1;.;m and
Xm

iZ1

aiyi Z 0

(16)

This optimization model can be solved using the method for

solving the optimization in the separable case. Therefore, the

optimal hyperplane has the form Eq. (17). Depending upon the

applied kernel, the bias b can be implicitly part of the kernel

function. Therefore, if a bias term can be accommodated within

the kernel function, the nonlinear SV classifier can be shown as

Eq. (18).

f ðx;a�; b�ÞZ
Xm

iZ1

yia
�
i hFðxiÞ;FðxÞiCb�

Z
Xm

iZ1

yia
�
i kðxi; xÞCb� (17)

f ðx;a�; b�ÞZ
X
i2sv

yia
�
i hFðxiÞ;FðxÞiZ

X
i2sv

yia
�
i kðxi; xÞ (18)

Some kernel functions include polynomial, radial basis

function (RBF) and sigmoid kernel (Burges, 1998), which

are shown as functions (19), (20), and (21). In order to improve

classification accuracy, these kernel parameters in the kernel

functions should be properly set.

Polynomial kernel:

kðxi; xjÞZ ð1Cxi$xjÞ
d (19)

Radial basis function kernel:

kðxi; xjÞZ expðKgjjxiKxjjj
2Þ (20)

Sigmoid kernel:

kðxi; xjÞZ tanhðkxi$xjKdÞ (21)

3. Genetic algorithm

Genetic algorithms (GA), a general adaptive optimization

search methodology based on a direct analogy to Darwinian

natural selection and genetics in biological systems, is a

promising alternative to conventional heuristic methods. GA

work with a set of candidate solutions called a population.

Based on the Darwinian principle of ‘survival of the fittest’, the

GA obtains the optimal solution after a series of iterative

computations. GA generates successive populations of alter-

nate solutions that are represented by a chromosome, i.e. a

solution to the problem, until acceptable results are obtained.

Associated with the characteristics of exploitation and

exploration search, GA can deal with large search spaces

efficiently, and hence has less chance to get local optimal

solution than other algorithms.

A fitness function assesses the quality of a solution in the

evaluation step. The crossover and mutation functions are
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the main operators that randomly impact the fitness value.

Chromosomes are selected for reproduction by evaluating the

fitness value. The fitter chromosomes have higher probability

to be selected into the recombination pool using the roulette

wheel or the tournament selection methods.

Fig. 1 illustrates the genetic operators of crossover and

mutation. Crossover, the critical genetic operator that allows

new solution regions in the search space to be explored, is a

random mechanism for exchanging genes between two

chromosomes using the one point crossover, two point

crossover, or homologue crossover. In mutation the genes

may occasionally be altered, i.e. in binary code genes changing

genes code from 0 to 1 or vice versa.

Offspring replaces the old population using the elitism or

diversity replacement strategy and forms a new population in

the next generation.

The evolutionary process operates many generations until

termination condition satisfy. Fig. 2 depicts the GA evolution-

ary process mentioned above (Goldberg, 1989; Davis, 1991).
4. GA-based feature selection and parameters optimization

The chromosome design, fitness function, and system

architecture for the proposed GA-based feature selection and

parameter optimization are described as follows.
4.1. Chromosome design

To implement our proposed approach, this research used the

RBF kernel function for the SVM classifier because the RBF

kernel function can analysis higher-dimensional data and

requires that only two parameters, C and g be defined (Hsu,

Chang, & Lin, 2003; Lin and Lin, 2003). When the RBF kernel

is selected, the parameters (C and g) and features used as input

attributes must be optimized using our proposed GA-based
system. Therefore, the chromosome comprises three parts, C,

g, and the features mask. However, these chromosomes have

different parameters when other types of kernel functions are

selected. The binary coding system was used to represent the

chromosome. Fig. 3 shows the binary chromosome represen-

tation of our design. In Fig. 3, g1
C wg

nc

C represents the value of

parameter C, g1
gwg

ng
g represents the parameter value g, and

g1
f wg

nf

f represents the feature mask. nc is the number of bits

representing parameter C, nr is the number of bits representing

parameter g, and nf is the number of bits representing the

features. Note that we can choose nc and ng according to the

calculation precision required, and that ng equals the number of

features varying from the different datasets.

In Fig. 3, the bit strings representing the genotype of

parameter C and g should be transformed into phenotype by

Eq. (22). Note that the precision of representing parameter

depends on the length of the bit string (nc and nr); and the

minimum and maximum value of the parameter is determined

by the user. For chromosome representing the feature mask, the

bit with value ‘1’ represents the feature is selected, and ‘0’

indicates feature is not selected.

p Zminp C
maxpKminp

2lK1
!d (22)

P phenotype of bit string

minp minimum value of the parameter

maxp maximum value of the parameter

d decimal value of bit string

l length of bit string
4.2. Fitness function

Classification accuracy, the number of selected features, and

the feature cost are the three criteria used to design a fitness

function. Thus, for the individual (chromosome) with high

classification accuracy, a small number of features, and low

total feature cost produce a high fitness value. We solve the

multiple criteria problem by creating a single objective fitness

function that combines the three goals into one. As defined by

formula (23), the fitness has two predefined weights: (i) WA for

the classification accuracy; (ii) WF for the summation of the

selected feature (with nonzero Fi) multiplying its cost.

The weight accuracy can be adjusted to 100% if accuracy is

the most important. Generally, WA can be set from 75 to 100%

according to user’s requirements. Each feature has different

feature cost in the dataset from the UCI. If we do not have the

feature cost information, the cost Ci can be set to the same

value, e.g. ‘1’ or another number. The chromosome with high

fitness value has high probability to be preserved to the next

generation, so user should appropriately define these settings

according to his requirements.
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fitnessZWA!SVM_accuracyCWF!
Xnf

iZ1

Ci!Fi

 !K1

(23)

WA SVM classification accuracy weight

SVM_accuracy SVM classification accuracy

WF weight for the number of features

Ci cost of feature i

Fi ‘1’ represents that feature i is selected; ‘0’

represents that feature i is not selected
4.3. System architectures for the proposed GA-based approach

To precisely establish a GA-based feature selection and

parameter optimization system, the following main steps (as

shown in Fig. 4) must be proceeded. The detailed explanation

is as follows:

(1) Data preprocess: scaling. The main advantage of scaling is

to avoid attributes in greater numeric ranges dominating

those in smaller numeric ranges. Another advantage is to

avoid numerical difficulties during the calculation

(Hsu et al., 2003). Feature value scaling can help to
No
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featu

Genetic 
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Population

Parameter 
genes

Phenotype of 
parameter genes 

Feature 
genes

Phenotype of 
feature genes

Fig. 4. System architectures of the proposed GA-based feature selec
increase SVM accuracy according to our experimental

results. Generally, each feature can be linearly scaled to the

range [K1, C1] or [0, 1] by formula (24), where v is

original value, vt is scaled value, maxa is upper bound of

the feature value, and mina is low bound of the feature

value.

v0 Z
vKmina

maxaKmina

(24)

(2) Converting genotype to phenotype. This step will convert

each parameter and feature chromosome from its genotype

into a phenotype.

(3) Feature subset. After the genetic operation and

converting each feature subset chromosome from the

genotype into the phenotype, a feature subset can be

determined.

(4) Fitness evaluation. For each chromosome representing

C, g and selected features, training dataset is used to

train the SVM classifier, while the testing dataset is

used to calculate classification accuracy. When the

classification accuracy is obtained, each chromosome is

evaluated by fitness function— formula (23).
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Dataset

Termination 
are satisfied?

Training SVM  
classifier

Fitness evaluation 

Yes

mized (C, γ) and
re subset

Classfication accuracy for 
testing set

Selected feature subset

Testing set 
with selected 
feature subset

Training set 
with selected 
feature subset

 

Trained SVM  
classifier

tion and parameters optimization for support vector machines.



Table 1

Datasets from the UCI repository

No. Names No. of classes No. of instances Nominal features Numeric features Total features

1 German (credit card) 2 1000 0 24 24

2 Australian (credit card) 2 690 6 8 14

3 Pima-Indian diabetes 2 760 0 8 8

4 Heart disease (Statlog Project) 2 270 7 6 13

5 Breast cancer(Wisconsin) 2 699 0 10 10

6 Contraceptive Method Choice 3 1473 7 2 9

7 Ionosphere 2 351 0 34 34

8 Iris 3 150 0 4 4

9 Sonar 2 208 0 60 60

10 Statlog project: vehicle 4 940 0 18 18

11 Vowel 11 990 3 10 13
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(5) Termination criteria. When the termination criteria are

satisfied, the process ends; otherwise, we proceed with

the next generation.

(6) Genetic operation. In this step, the system searches for

better solutions by genetic operations, including selec-

tion, crossover, mutation, and replacement.
5. Numerical illustrations

5.1. Experiment descriptions

To evaluate the classification accuracy of the proposed

system in different classification tasks, we tried several real-

world datasets from the UCI database (Hettich, Blake, & Merz,

1998). These data sets have been frequently used as bench-

marks to compare the performance of different classification

methods in the literature. These datasets consist of numeric and

nominal attributes. Table 1 summarizes the number of numeric

attributes, number of nominal attributes, number of classes, and

number of instances for these datasets.

To guarantee valid results for making predictions regarding

new data, the data set was further randomly partitioned into

training sets and independent test sets via a k-fold cross

validation. Each of the k subsets acted as an independent
Termination crite

Training
set

Testing set     Ini
      (C

Training SVM
classifier using k-fol

validation

Average accurac

Yes

  Optimized (C,

Fig. 5. Parameters setting
holdout test set for the model trained with the remaining kK1

subsets. The advantages of cross validation are that all of the

test sets were independent and the reliability of the results

could be improved. The data set is divided into k subsets for

cross validation. A typical experiment uses kZ10. Other

values may be used according to the data set size. For a small

data set, it may be better to set larger k, because this leaves

more examples in the training set (Salzberg, 1997). This study

used kZ10, meaning that all of the data will be divided into 10

parts, each of which will take turns at being the testing data set.

The other nine data parts serve as the training data set for

adjusting the model prediction parameters.

Our implementation was carried out on the Matlab 6.5

development environment by extending the Libsvm which is

originally designed by Chang and Lin (2001). The empirical

evaluation was performed on Intel Pentium IV CPU running at

1.6 GHz and 256 MB RAM.

The Grid search algorithm is a common method for searching

for the best C and g. Fig. 5 shows the process of Grid algorithm

combined with SVM classifier. In the Grid algorithm, pairs of (C,

g) are tried and the one with the best cross-validation accuracy is

chosen. After identifying a ‘better’ region on the grid, a finer grid

search on that region can be conducted (Hsu et al., 2003).

This research conducted the experiments using the proposed

GA-based approach and the Grid algorithm. The results from
ria

tializing
,   )

 
d cross 

y

No
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Grid search
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Table 2

A 2!2 contingency table

Target (or disease)

C K

Predicted (or Test) C True Positive (TP) False Positive (FP)

K False Negative (FN) True Negative (TN)
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the proposed method were compared with that from the Grid

algorithm. In all of the experiments 10-fold cross validation

was used to estimate the accuracy of each learned classifier.

Some empirical results are reported in the following sections.
5.2. Accuracy calculation

Accuracy using the binary target datasets can be demon-

strated by the positive hit rate (sensitivity), the negative hit rate

(specificity), and the overall hit rate. For the multiple class

datasets, the accuracy is demonstrated only by the average hit

rate. A two by two table with the classification results on the

left side and the target status on top is as shown in Table 2.

Some cases with the ‘positive’ class (with disease) correctly

classified as positive (TPZTrue Positive fraction), however,

some cases with the ‘positive’ class will be classified negative

(FNZFalse Negative fraction). Conversely, some cases with

the ‘negative’ class (without the disease) will be correctly

classified as negative (TNZTrue Negative fraction), while

some cases with the ‘negative’ class will be classified as

positive (FPZFalse Positive fraction). TP and FP are the two

important evaluation performances for classifiers (Woods and

Bowyer, 1997). Sensitivity and specificity describe how well

the classifier discriminates between case with positive and with

negative class (with and without disease).

Sensitivity is the proportion of cases with positive class that

are classified as positive (true positive rate, expressed as a

percentage). In probability notation for sensitivity:

PðTCjDCÞZTP=ðTPCFNÞ. Specificity is the proportion of

cases with the negative class, classified as negative (true

negative rate, expressed as a percentage). In probability

notation: PðTKjDKÞZTN=ðTNCFPÞ. The overall hit rate is

the overall accuracy which is calculated by (TPCTN)/(TNC
FPCFNCFP).

The SVM_accuracy of the fitness in function (23) is

measured by sensitivity!specificity for the datasets with two

classes (positive or negative), and by the overall hit rate for the

datasets with multiple classes.
0

0.2

0.4

0.6

0.8

1
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Accurcay Weight

Accuracy Fitness

Fig. 6. Illustration of the classification accuracy versus the
5.3. Experimental results and comparison

The detail parameter setting for genetic algorithm is as the

following: population size 500, crossover rate 0.7, mutation

rate 0.02, two-point crossover, roulette wheel selection, and

elitism replacement. We set ncZ20 and nrZ20; the value of nf

depends on the experimental datasets stated in Section 5.1.

According to the fitness function of Eq. (23), WA and WF can

influence the experiment result. The higher WA is; the higher

classification accuracy is. The higher WF is; the smaller the

number of features is. We can compromise between weight WA

and WF. Taking the German and Australia datasets, for

example, as shown in Figs. 6 and 7, the accuracy (measured

by overall hit rate) is high with large numbers of features when

high WA and low WF are defined. We defined WAZ0.8 and

WFZ0.2 for all experiments. The user can choose different

weight values; however, the results could be different.

The termination criteria are that the generation number

reaches generation 600 or that the fitness value does not

improve during the last 100 generations. The best chromosome

is obtained when the termination criteria satisfy. Taking the

German dataset, for example, the positive hit rate, negative hit

rate, overall hit rate, number of selected features, and the best

pairs of (C, g) for each fold using GA-based approach and Grid

algorithm are shown in Table 3. For GA-based approach, its

average positive hit rate is 89.6%, average negative hit rate is

76.6%, average overall hit rate is 85.6%, and average number

of features is 13. For Grid algorithm, its average positive hit

rate is 88.8%, average negative hit rate is 46.2%, average

overall hit rate is 76.0%, and all 24 features are used. Note that

the weight WA and WF are 0.8 and 0.2 in all of our experiments.

Table 4 shows the summary results for the positive hit rate,

negative hit rate, overall hit rate, number of selected features,

and running time for the 11 UCI datasets using the two

approaches. In Table 4, the accuracy and average number of

features are illustrated with the form of ‘averageGstandard

deviation.’ The GA-based approach generated small feature

subsets while Grid algorithm uses all of the features.

To compare the overall hit rate of the proposed GA-based

approach with the Grid algorithm, we used the nonparametric

Wilconxon signed rank test for all of the datasets. As shown in

Table 4, the p-values for diabetes, breast cancer, and vehicle

are larger than the prescribed statistical significance level of

0.05, but other p-values are smaller than the significance level

of 0.05. Generally, compared with the Grid algorithm, the
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Table 3

Experimental results for German dataset using GA-based approach and Grid algorithm

Fold # GA-based approach Grid algorithm

Positive

hit rate

Negative

hit rate

Overall hit

rate%

Optimized C Optimized g Selected

features

Positive

hit rate

Negative

hit rate

Overall hit

rate%

Optimized

C

Optimized

g

1 0.863 0.7407 83 170.9992278 0.00491136 16 0.8493151 0.55555556 77 2048 0.000488

2 0.8592 0.7931 84 9.29520704 0.5189297 13 0.8591549 0.44827586 74 8 0.007813

3 0.9028 0.75 86 171.9769019 0.05343727 11 0.875 0.5 77 512 0.001953

4 0.8919 0.8462 88 60.24731324 0.05299713 11 0.9324324 0.46153846 81 8192 0.000122

5 0.9091 0.7059 84 174.4961022 0.02207236 13 0.9545455 0.32352941 74 512 0.000122

6 0.8904 0.7778 86 20.99907683 0.04938617 15 0.890411 0.48148148 78 128 0.000488

7 0.9041 0.7778 87 219.8157576 0.03912631 12 0.9452055 0.44444444 81 32768 0.000035

8 0.9155 0.7931 88 95.16782536 0.12330259 11 0.8309859 0.44827586 72 8 0.007813

9 0.871 0.7632 83 255.9134212 0.27580662 15 0.8225806 0.44736842 68 2048 0.000122

10 0.9538 0.7143 87 174.313561 0.01230963 13 0.9230769 0.51428571 78 512 0.000122

Average 0.89608 0.76621 85.6 13 0.8882708 0.46247552 76

Table 4

Experimental results summary of GA-based approach and Grid algorithm on the test sets

Names GA-based approach Grid algorithm p-value for

Wilcoxon

testing

Number of

original

features

Number of

selected

features

Average

positive hit

rate

Average

negative hit

rate

Average

overall hit

rate%

Average

positive hit

rate

Average

negative hit

rate

Average

overall hit

rate%

German 24 13G1.83 0.89608 0.76621 85.6G1.96 0.888271 0.462476 76G4.06 0.005*

Australian 14 3G2.45 0.8472 0.92182 88.1G2.25 0.885714 0.823529 84.7G4.74 0.028*

Diabetes 8 3.7G0.95 0.78346 0.87035 81.5G7.13 0.592593 0.88 77.3G3.03 0.139

Heart disease 13 5.4G1.85 0.94467 0.95108 94.8G3.32 0.75 0.909091 83.7G6.34 0.005*

breast cancer 10 1G0 0.9878 0.8996 96.19G1.24 0.98 0.944444 95.3G2.28 0.435

Contraceptive 9 5.4G0.53 N/A N/A 71.22G4.15 N/A N/A 53.53G2.43 0.005*

Ionosphere 34 6G0 0.9963 0.9876 98.56G2.03 0.94 0.9 89.44G3.58 0.005*

Iris 4 1G0 N/A N/A 100G0 N/A N/A 97.37G3.46 0.046*

Sonar 60 15G1.1 0.9863 0.9842 98G3.5 0.65555 0.9 87G4.22 0.004*

Vehicle 18 9.2G1.4 N/A N/A 84.06G3.54 N/A N/A 83.33G2.74 0.944

Vowel 13 7.8G1 N/A N/A 99.3G0.82 N/A N/A 95.95G2.91 0.02*
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proposed GA-based approach has good accuracy performance

with fewer features.

The ability of a classifier to discriminate between ‘positive’

cases (C) and ‘negative’ cases (K) is evaluated using Receiver

Operating Characteristic (ROC) curve analysis. ROC curves

can also be used to compare the diagnostic performance of two

or more diagnostic classifiers (DeLeo and Rosenfeld, 2001).

For every possible cut-off point or criterion value we select to

discriminate between the two populations (with positive or

negative class value) there will generate a pair of sensitivity

and specificity. An ROC curve shows the trade-off between
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Fig. 7. Illustration of the classification accuracy versus the
sensitivity and specificity, and demonstrates that the closer

the curve follows the left-hand border and then the top border

of the ROC space, the more accurate the classifier. The area

under the curve (AUC) is the evaluation criteria for the

classifier.

Taking fold #4 of German dataset, for example, ROC

curve of GA-based approach and Grid algorithm are shown

in Fig. 8, where AUC is 0.85, 0.82, respectively. For the

ROC curve for the other nine folds can also be plotted in

the same manner. In short, the average AUC for the 10

folds of testing dataset of German dataset are 0.8424 for
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Fig. 8. ROC curve for fold #4 of German Credit Dataset.

Table 5

Average AUC for datasets with two classes

GA-based approach Grid algorithm

German 0.8424 0.7886

Australian 0.9019 0.8729

Diabetes 0.8298 0.7647

Heart disease 0.9458 0.8331

breast cancer 0.9423 0.9078

Contraceptive 0.7701 0.6078

Ionosphere 0.9661 0.8709

Iris 0.9756 0.9572

Sonar 0.9522 0.8898

Vehicle 0.8587 0.8311

Vowel 0.9513 0.9205
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GA-based approach and 0.7886 for Grid algorithm. We

summarize the average AUC for other datasets with two

classes in Table 5. The average AUC shows that GA-based

approach outperforms the Grid algorithm.

The average running time for GA-based approach is slightly

inferior to that of the Grid algorithm; however, the software

environment for the two approaches and the predefined

searching precision of the Grid algorithm affect the running

time. The Grid algorithm is performed under the Python, while

the proposed GA-based approach is implemented by using the

Matlab in our research. Generally, compared with other

systems, the running time is much longer when using the

Matlab. Although the proposed approach performed under the

Matlab did not outperform the Grid algorithm, it significantly

improves the classification accuracy and has fewer input

features for support vector machines.
6. Conclusion

SVM parameters and feature subsets were optimized simul-

taneously in this work because the selected feature subset has an

influence on the appropriate kernel parameters and vice versa.We

proposed a GA-based strategy to select the feature subset and set
the parameters for SVM classification. As far as we know,

previous researches didnot performsimultaneous feature selection

and parameters optimization for support vector machines.

We conducted experiments to evaluate the classification

accuracy of the proposed GA-based approach with RBF kernel

and the Grid algorithm on 11 real-world datasets from UCI

database. Generally, compared with the Grid algorithm, the

proposed GA-based approach has good accuracy performance

with fewer features.

This study showed experimental results with the RBF

kernel. However, other kernel parameters can also be optimized

using the same approach. The proposed approach can also be

applied to support vector regression (SVR). Because the kernel

parameters and input features heavily influence the predictive

accuracy of the SVR with different kernel functions; we can use

the same GA-based feature selection and parameters optimiz-

ation procedures to improve the SVR accuracy.
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